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ABSTRACT

Constellation Reconfiguration:

Tools and Analysis. (August 2010)

Jeremy John Davis, B.S., Virginia Tech

Co–Chairs of Advisory Committee: Dr. John L. Junkins
Dr. Daniele Mortari

Constellation reconfiguration consists of transforming an initial constellation

of satellites into some final constellation of satellites to maintain system optimality.

Constellations with phased deployment, changing mission requirements, or satellite

failures would all benefit from reconfiguration capability. The constellation recon-

figuration problem can be broken into two broad sub-problems: constellation design

and constellation transfer. Both are complicated and combinatorial in nature and

require new, more efficient methods. Having reviewed existing constellation design

frameworks, a new framework, the Elliptical Flower Constellations (EFCs), has been

developed that offers improved performance over traditional methods. To assist in

rapidly analyzing constellation designs, a new method for orbit propagation based

on a sequential solution of Kepler’s equation is presented. The constellation transfer

problem requires an optimal assignment of satellites in the initial orbit to slots in

the final orbit based on optimal orbit transfers between them. A new method for

approximately solving the optimal two-impulse orbit transfer with fixed end-points,

the so-called minimum ∆v Lambert’s problem, is developed that requires the solu-

tion of a 4th order polynomial, as opposed to the 6th or higher order polynomials or

iterative techniques of existing methods. The recently developed Learning Approach

to sampling optimization is applied to the particular problem of general orbit transfer
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between two generic orbits, with several enhancements specific to this problem that

improve its performance. The constellation transfer problem is then posed as a Linear

Assignment Problem and solved using the auction algorithm once the orbit transfers

have been computed. Constellations designed for global navigation satellite systems

and for global communications demonstrate significant improvements through the use

of the EFC framework over existing methods. An end-to-end example of constella-

tion reconfiguration for a constellation with changing regional coverage requirements

shows the effectiveness of the constellation transfer methods.
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Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.

Albert Einstein
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CHAPTER I

INTRODUCTION

A. Motivation

Constellations of satellites working collectively for a common purpose have been uti-

lized in space systems since the 1970s with the launch of the GPS constellation. Satel-

lite constellations have the advantage of providing regional or global coverage from

low Earth orbit (LEO), allowing for less demanding requirements on sensing and com-

munications systems and lower launch costs compared to satellites in geosynchronous

orbit (GEO).

Recent constellations include global communications constellations such as Glob-

alStar and Iridium, both launched in the mid to late 90s. Both Iridium and GlobalStar

quickly went bankrupt following the successful deployment of those constellations due

to demand severely depressed from that expected when the constellations were de-

signed. The experience of these two companies has led researchers to propose phased

deployment of constellations where the capacity of the system is increased as merited

by increased demand [1, 2].

Other researchers have considered constellations optimized for regional or zonal

coverage, either for communications or reconnaissance [3, 4, 5]. Because these satel-

lites sit in LEO orbits, they generally observe significant portions of the Earth beyond

the desired region. As such, slight orbit modification can be used to redirect the focus

of the coverage if mission requirements change.

The effectiveness of all constellations is affected by the failures of individual

satellites, whether in the form of reduced capability or coverage holes. Typically

The journal model is AIAA Journal of Guidance, Control, and Dynamics.
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some combination of on-orbit spares and launch-on-demand capability is built into the

system to handle failures [6]. An alternate solution may be to design excess capacity

into the system, allowing for a slight change in the constellation to compensate for a

lost satellite.

These three scenarios, phased deployment, modified regional coverage, and cov-

erage robustness, all encompass the idea of constellation reconfiguration, which we

broadly define as the on-orbit transfer of satellites in a given distribution among

multiple orbital planes to a new distribution consisting of more, fewer, or the same

number of satellites, different orbital planes, different orbit size and shape, or some

combination of these. Little attention in existing literature has been paid to the prob-

lem of constellation reconfiguration, and methods for optimal reconfiguration are the

focus of this research.

B. Literature Review

Constellation reconfiguration itself has seen little research as a whole, the notable

exceptions being de Weck’s group at MIT [1, 2, 7, 8] and the work of Ferringer et al.

at the Aerospace Corporation and Penn State [9, 10]. The work of both groups is

reviewed briefly here.

De Weck and his graduate students at MIT began publishing research on constel-

lation reconfiguration in 2003. They have focused exclusively on staged deployment

of global communications constellations, citing the failures of Iridium and GlobalStar

as key drivers, noting that quickly deploying a small constellation to meet the lim-

ited demand at the time with the capability to add capacity later may have saved

both companies. The first step de Weck’s group took was to quantify the financial

benefit made possible by staged deployment [7]. In this paper they neglected the cost
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of reconfiguration and computed the expected savings in life cycle cost (LCC) given

uncertainty in future demand. Due to lower initial costs for the smaller constellation,

a discount appreciated by pushing further deployment to later dates, and the flexi-

bility to respond to real market pressures, they found a savings of more than 20%

in LCC for a case study modeled after Iridium. Rather than optimize each succes-

sive constellation (as capacity increases) independently, they found the optimal set

of consecutive constellations that minimized cost.

With this result, de Weck’s group then developed a framework for finding an op-

timal pair of constellations where the staged deployment strategy consisted of main-

taining the initial constellation and simply augmenting it with additional satellites in

additional planes or additional satellites per plane [2]. Using the Simulated Anneal-

ing optimization method, they found optimal pairs of constellations where the initial

constellation was rarely optimal on its own. This paper included satellite costs based

on the requirements demanded from the selected constellation and the launch costs

of launching all satellites in both constellations. So whereas in the first paper, they

neglected reconfiguration costs, here all costs are included (though no orbit transfers

occur). Though they presented a case study, they made no attempt to compare the

LCC of the staged deployment-system and a standard system.

Simultaneously with this work, Scialom, a Master’s student of de Weck, was

researching the optimization of constellation reconfiguration, which was published in

his thesis and subsequently in a journal article [1, 8]. He considered the following

problem: given constellations A and B, minimize the cost of reconfiguration. The

framework he developed consisted of the following parts:

• Constellation Module: Computed the optimal streets-of-coverage or Walker con-

stellation for global coverage given an altitude and minimum elevation angle for
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the sensor.

• Astrodynamics Module: Computed ∆v for both low-thrust and impulsive ma-

neuvers. The specific position of a satellite on a given plane was neglected,

so ∆v calculations only considered changes in orbital plane, and only circular

orbits were considered.

• Assignment Module: The assignment problem, mapping satellites in the initial

constellation to satellites in the final constellation, was solved using an auction

algorithm. See Ref. [11] for a detailed description of the auction algorithm. The

assignment module had to be run iteratively in conjunction with the Launch

Module due to constraints on the number of satellites per launch (such that the

assignment problem is no longer a linear assignment problem).

• Launch Module: Computed launch costs and a launch schedule.

• Transfer Schedule: Used one of 4 schedules: initiate transfers of all satellites

at once, terminate transfers of all satellites simultaneously, transfer satellites

individually, and transfer satellites in two groups. Since the specific positions

of each satellite were neglected, the schedule was very loosely defined.

• Coverage Module: The coverage model simply assumed that the percent of

global coverage was equal to the percent of satellites not in transfer at a given

time. This method fails for multiple global coverage, regional coverage, and

when satellites can maintain some coverage during transfer. It further fails be-

cause having two partial constellations with none in transfer does not guarantee

complete global coverage.

• Cost Module: This included the launch costs, transfer costs (fuel costs), satellite

costs, and lost revenue due to reduced coverage.
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The comprehensive framework is a significant contribution, but as Scialom notes, a

higher fidelity model is needed in several modules.

In contrast to the work of de Weck et al., the group of Ferringer et al. has focused

exclusively on satellite failures, particularly the loss of a single satellite or plane of

satellites in the Global Positioning System (GPS) constellation. The recent Chinese

anti-satellite test that generated more than four-thousand pieces of debris reminded

everyone of the dangers space debris poses to satellites, and the importance of being

able to accommodate satellite failure.

For the global navigation problem, at least four satellites must be visible to

a user to provide a solution. In addition to this coverage specification, Ferringer

defined a number of cost functions related to the reconfiguration cost that he sought

to maximize or minimize:

• Maximize four-fold average daily visibility time

• Maximize four-fold worst-case-point daily visibility time

• Minimize total flight time

• Minimize maximum ∆v of a single satellite

• Minimize sum of ∆v variance

• Minimize number of maneuvered satellites

Every satellite in the constellation was permitted to be rephased within the plane by

being placed in a phasing orbit requiring K revolutions to achieve the desired phasing.

The design space consisted of the mean anomaly’s of each remaining satellite (after

failure of one or of a plane) and a single value of K applied to all maneuvers.
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One of the major contributions of Ferringer’s group was the application of par-

allel computation and the use of a Pareto-optimization technique [12] to find the

optimal reconfigurations given the various cost functions provided above. Even re-

stricting the reconfiguration to simple rephasings, it took well over 500 hours on a

250 core computing cluster to solve three different scenarios. These results reinforce

the challenge that constellation reconfiguration represents: the combinatorial nature

makes it difficult for even the most advanced computers.

These two groups have the only direct reference to constellation reconfiguration

currently in the literature, though others, such as Scott and Spencer at Penn State [13,

14], have considered reconfiguration of satellites flying in formation. Typically these

involve significant assumptions about the small separation between spacecraft orbits

and are not generally applicable to constellation reconfiguration.

C. Statement of Purpose

The purpose of this dissertation is to investigate various aspects of the constella-

tion reconfiguration problem. We break these down broadly into two components -

constellation design and constellation transfer.

At the heart of any constellation reconfiguration problem is the constellation

design on either end. Chapter II starts by reviewing existing design methodologies,

with a particular look at Walker constellations [15] in Section A, a popular constella-

tion design method that produces uniformly distributed constellations. The Flower

Constellations (FCs) of Mortari [16], introduced in 2004, can generate asymmetrical

constellations for regional coverage requirements, but demonstrate a similar unifor-

mity as special cases. Section B recaps the original formulation and then provides

the development of the Lattice Flower Constellations (LFCs). The LFC framework
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produces uniform (Harmonic) Flower Constellations with fewer parameters and with

a much deeper mathematical understanding. Walker constellations are then shown

to be the subset of LFCs that have an eccentricity of zero. The LFC framework

distributes satellites uniformly in mean anomaly and right ascension of the ascending

node (RAAN) using a simple 2×2 matrix of integer coefficients. Section C expands on

this concept by introducing the Elliptical Flower Constellations (EFCs) that utilize a

3×3 matrix of integer coefficients to distribute satellites uniformly in mean anomaly,

RAAN, and argument of perigee. Though LFCs permit elliptic orbits, allowing satel-

lites to have varying arguments of perigee in EFCs permits the use of eccentric orbits

at non-critical inclinations while preserving the uniformity of the constellation. Sev-

eral important properties of EFCs are derived, including the fact that EFCs include

Walker constellations, LFCs, and two other uniform distribution methodologies as

subsets. Finally, optimization studies of constellation design typically require hun-

dreds, if not thousands, of constellations to be evaluated (each with tens of satellites).

To speed this process, a new technique for solving Kepler’s equation is developed in

Section D that significantly reduces time spent on orbit propagation, a vital aspect of

any constellation design study. The topics presented in Chapter II allow for more ef-

ficient, more effective constellation design than any known methods and are a critical

component of any constellation reconfiguration study.

Once initial and final constellations have been designed, the satellites in the

initial constellation must execute orbit transfers to the satellite slots in the final

constellation, a process we call constellation transfer and the focus of Chapter III.

This is generally a “traveling salesman” problem that is not analytically solvable,

though iterative solution techniques exist. Given a cost function value (eg. fuel cost)

for each combination of initial satellite and final satellite slot where the goal is to

minimize the sum total of those costs, the optimal mapping can be formulated as
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the much simpler linear assignment problem (LAP). This formulation, along with an

explanation of the auction algorithm (one of the most efficient methods for solving

LAPs) is presented in Section A. The efficient yet accurate computation of the

cost function is critical to computing an optimal constellation transfer since the cost

function must be evaluated for n2 transfers, where n is the number of satellites.

Minimizing the ∆v required by a satellite is roughly equivalent to minimizing the fuel

cost. Section B discusses the nonlinear problem of transferring a satellite from a given

initial position and velocity to a given final position and velocity while minimizing

∆v using a two impulse maneuver. A new method for approximately minimizing ∆v

(exact solution, approximately optimal) is developed that requires only the solution of

a single quartic equation, as compared to the 6th-order equation or multiple iterations

required by alternate methods. A related problem is solving for the locations in the

initial and final orbits that give rise to a minimum ∆v transfer between the two elliptic,

non-coplanar orbits. This is solved using a recently developed Learning Approach to

sampling optimization (LA) method [17, 18, 19]. The LA method, along with some

modifications to improve its efficiency, is presented in Section C. Using an exhaustive

grid search to find the true global optimum with high confidence, we show that the

modified LA algorithm efficiently and reliably finds the global minimum and does

so more effectively than all competing search methods tested. Each of the methods

presented in Chapter III improve the ability of the analyst to efficiently solve the

constellation transfer problem.

Numerical studies and examples are presented throughout Chapters II and III

to verify and validate the algorithms developed. Chapter IV brings many of these

methods together through three case studies. The first study considers the prob-

lem of designing global navigation satellite systems (GNSS). The EFC framework is

employed to find constellation designs that provide improved performance over that
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provided by the current GPS or Galileo designs. The second study considers the

Iridium constellation, a constellation of 66 communications satellites in low Earth

orbit used for satellite phones. An EFC is designed to provide improved coverage

over that available from a Walker constellation. The third study looks at the entire

constellation reconfiguration problem. Two six-satellite LFCs are designed, each op-

timized to provide maximum coverage of different points on Earth. The constellation

transfer problem is then solved to optimally reconfigure between these two optimal

constellations.

The newly developed methods for constellation design and constellation trans-

fer allow for more efficient constellation reconfiguration analysis. The developments

are summarized in Chapter V, which also provides a discussion on possible future

directions of research. The incorporation of the elements presented here into a com-

prehensive framework is of particular interest for future efforts.
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CHAPTER II

CONSTELLATION DESIGN

As James Wertz observed, “One of the most important results of decades of con-

stellation studies has been that no absolute rules exist for constellation design.” [6]

Despite this prognosis, this chapter will attempt to shed some light on some powerful

methods of constellation design available to the design engineer, including several new

insights. Though it remains more an art than a science, these methods give hope to

more rigorous studies of constellation design.

Wertz provides an overview of the current state of constellation design [6], and a

brief review is presented here. Satellites in a constellation each have six independent

orbital parameters defining their path through space. In designing a constellation of n

satellites, where n > 20 is common, choosing 6n independent, continuous parameters

is prohibitive, even with recent advances in parallel computing. To combat this

curse of dimensionality, constellation designers typically hold some orbital parameters

constant across the constellation, or distribute their values in some prescribed pattern

such that the actual number of design parameters for a constellation is closer to 5-10,

regardless of the number of satellites. See Refs. [20] and [21] for a thorough survey of

constellation design methods as they have evolved over time.

Two main methods are currently practiced today - streets-of-coverage and Walker

constellations. Streets-of-coverage constellations typically involve placing satellites in

polar orbits that have been spaced such that the path covered by a satellite touches

or overlaps the path from the satellite in the next plane over. This type of design has

advantages in its simplicity of assessing coverage, but because it focuses redundant,

overlapping coverage in the unpopulated polar regions, it is rarely as efficient as more

uniform design strategies. The Walker constellations were developed by J.G. Walker
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in the 1970s and are the most commonly used constellations today [15, 22, 23]. In a

Walker constellation, the inclination of all satellites is identical, all orbits are circular,

and there are just 3 integer parameters that define the distribution of all satellites

in the constellation. Walker’s results will be presented more extensively later in

Section A.

A relative newcomer to constellation design methodology has been the Flower

Constellations (FCs), initially proposed by Mortari in 2004 [16]. The Flower Con-

stellations utilize several integer parameters, permit elliptical orbits, and enable the

most general known means to enforce a single repeating ground-track (or space-track)

followed by all satellites in an infinite family of constellations. Flower Constellations

also allow for non-uniform distributions of satellites to maximize regional coverage

capabilities. Using recent developments in reformulating the original Flower Constel-

lation theory, presented in Section B, it is possible to show that the uniform subset

of Flower Constellations are equivalent to Walker constellations, though they were

developed quite independently. Put another way, the Flower Constellations general-

ize Walker constellations in several ways, most notably to encompass elliptical orbits.

This dissertation will elucidate the general theory of FCs in a way that places these

constellation design tools into a unified and generalized framework.

Using elliptical orbits poses additional challenges. The individual satellite sys-

tems, particularly sensors and antennas, must be designed to operate over a con-

tinuously varying altitude. From a constellation design perspective, elliptical orbits

present unique problems due to the effects of Earth’s oblateness which causes the

orbits of the satellites to drift over time, thus typically destroying the symmetry

or coverage capabilities of the constellation that was so carefully designed. A new

approach for designing a constellation with elliptic orbits that addresses this latter

problem are given in Section C.
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Even with the reduced parameter set offered by such design strategies, the design

space is still large enough to make full combinatorial analysis challenging if not im-

possible. One complication is that the metrics by which a constellation are evaluated

must be computed over time. Given the complex, dynamic nature of the problem,

this is typically done through brute force propagation of all satellites through some

time of interest to compute the metric of interest. Since every candidate constella-

tion must be evaluated this way, speeding up the orbit propagation phase has major

implications for the speed, breadth, and effectiveness of such constellation optimiza-

tion design iterations. A new, extremely efficient, method for satellite propagation,

specifically focused on constellation design, is presented in Section D.

A. Walker Constellations

Throughout the 1970s, Walker studied the design of constellations for whole-earth

coverage [15, 22, 23]. He was interested in emerging applications of communications,

navigation, and surveillance and so considered cases of continuous multiple coverage,

where n ≥ 1 satellites are required to be in view of all locations on Earth at ev-

ery instant [15]. To achieve such coverage with the minimum number of satellites,

Walker hypothesized that optimal constellations would be symmetrical and uniform

in their distributions of satellites and involve only circular orbits of all the same or-

bital period. Though the work of Draim later proved that elliptical constellations

can offer improved performance [24, 25], Walker constellations have been used for

virtually everything, from the Iridium communications constellation to the Galileo

global navigation system, due to their simplicity and well documented tests and anal-

yses. It is believed that the popularity of Walker constellations rests on (i) the ability

to provide good sub-optimal configurations with a conceptually easy-access design
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approach, and (ii) the absence of a convenient design methodology for more general

constellation configurations.

1. Standard Methodology

Walker constellations, also known as Walker delta patterns, are defined by three

integer parameters, T/P/F :

• T is the total number of satellites in the constellation

• P is the number of orbital planes

• F is a phasing parameter

All satellites in the constellation have the same inclination (i), the same semi-major

axis (a), and zero eccentricity (e). The right ascensions of the ascending node

(RAANs) (Ω) of the P orbital planes are distributed equally about the equator.

The satellites that lie within a given plane are all evenly spaced in mean anomaly

around the circular orbit. To understand the phasing parameter, F , it is important to

introduce what Walker termed the pattern unit (PU), where 1PU = 360◦/T . When a

satellite on a given plane passes through the ascending node, the satellite on the next

adjacent plane to the east has advanced F PUs past its ascending node. Requiring

F to be an integer results in a repeating pattern as one moves around the equator.

The values of F are limited to the range [0, P −1] because that range encompasses all

possible patterns (the pattern with F = P is the same as the pattern with F = 0). To

complete the notation, Walker also defined the parameter S, the number of satellites

per plane (S = T/P ).
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2. Repeating Ground-Tracks

Most discussions of Walker constellation theory stop after that brief review, but

Walker also developed additional theory that addresses constellations with repeating

ground-tracks [15]. He defined the integers M and L to be the number of revolutions

of the Earth and the number of revolutions of the satellite, respectively, before the

ground-track repeats. In terms of the orbital period of the satellite, Tp, and the

rotational period of the Earth, Td, this relationship is expressed by the compatibility

equation

MTd = LTp (2.1)

Using integer values of M and L results in each individual satellite following a re-

peating ground-track (or more generally a repeating relative trajectory), but does not

force all of the satellites to be on the same repeating ground-track. Walker derived

the following equation for the number of unique ground-tracks, EL,M , in a Walker

constellation:

EL,M =
T

K
(2.2)

where K = gcd(SL+FM,PJ) and J = gcd(S,M). Clearly, K represents the number

of satellites following each ground-track.

This theory is not complete without a method to design constellations where all

satellites lie on the same repeating ground-track (ie. EL,M = 1). Walker showed that

given the orbit size in terms of M and L and the total number of satellites, that a

single repeating ground-track could be achieved by setting

S = gcd(M,T ) (2.3)

and

F =

(
S

M

)
(kP − L) (2.4)
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where k is an integer such that F falls within the allowable range [0, P − 1]. Though

this contribution is rarely referenced, it offers important insights into Flower Constel-

lations as will be seen in the following sections.

B. Flower Constellations

The ground-track of a satellite is the Earth-fixed path generated by the radius vector

piercing point on the surface of the Earth as both the Earth and the satellite move.

One method for designing the orbit of a satellite for a specific mission would be to look

at the ground-track and evaluate how well it covers the region of interest, provides

for communications, etc. Moreover, a “ribbon” centered on the ground-track can be

generated to show the cross-track coverage swath of a satellite sensor, accounting for

field-of-view or elevation constraints. But, generally, ground-tracks shift in longitude

from orbit to orbit, so let’s consider only repeating ground-tracks - those that are

specially phased to perfectly repeat after a certain number of orbits. Now imagine

that an optimal ground-track has been found to maximize some coverage metric of

interest. Wouldn’t it be useful to have an entire constellation of satellites spaced

out along that exact same ground-track to maintain persistent coverage? This is the

conceptual framework in which Flower Constellations were originally developed by

Mortari, starting in 2004 [16].

As will be seen through the rest of this section, there are several equations

that can be solved to enforce all satellites of a constellation to move on the same

repeating ground-track. They allow for an arbitrary number of satellites, for an

arbitrary number of planes, and for elliptical orbits. First we describe the original

formulation of Flower Constellations and some of their unique properties, followed

by a discussion of the recent Lattice Flower Constellation (LFC) extension of FC
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theory [26]. Finally, the LFCs are compared to the Walker constellations.

1. Original Formulation

The original Flower Constellation formulation [27] required all satellites to follow the

same repeating ground-track, or equivalently, the same repeating space-track relative

to the rotating frame of the Earth. The orbits were allowed to be eccentric, but all

satellites had the same semi-major axis, eccentricity, inclination, and argument of

perigee. In order for each individual satellite to follow a repeating ground-track, the

compatibility condition was enforced:

NpTp = NdTd (2.5)

where Tp is the orbital period, Td is the period of one Earth revolution, Np is the

integer number of orbital periods before repetition, and Nd is the integer number of

days before repetition. The effects of J2 perturbation (the dominant effect of Earth’s

oblateness) can be accounted for in the values of Td and Tp to maintain repeating

ground-tracks. The value of Tp (computed from the specified values of Np and Nd)

directly specifies the semi-major axis of every satellite in the constellation.

In addition to the number of satellites (Ns) and the values of Np and Nd, three

other integer phasing parameters must be chosen in the original FC framework: Fn,

Fd, and Fh. These six integer parameters were then used to recursively solve for the

position of every satellite in (Ω,M)-space using the equations

Ωk+1 = Ωk + 2π
Fn
Fd

(2.6)

Mk+1 = Mk − 2π
NpFn + FdFh(k)

FdNd

(2.7)

Note that Fh(k) could be specified as any sequence formed from the set [0, Nd − 1],
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though it was typically chosen to be constant. By choosing the six integer parameters

(Ns, Np, Nd, Fn, Fd, Fh) and three continuous parameters (e, i, ω), the entire constel-

lation is specified. This is the method used in the FC simulation and visualization

software FCVAT [28].

The original FCs exhibited a complex relationship between the allowable values of

the phasing parameters and the number of satellites. Avendaño, in Ref. [29], arrived

at the conclusion that the number of satellites in a Flower Constellation could not

exceed NdFd/G satellites, where G = gcd(Nd, NpFn+FdFh). Constellations with this

maximum number of satellites were termed Harmonic Flower Constellations (HFCs)

due to the uniform distribution that they display [29].

The constraint on the number of satellites in an HFC allowed them to be re-

formulated to eliminate one of the integer parameters and redefine others to have a

more intuitive, physical meaning. The value of Fd is actually the number of inertial

orbits or orbital planes, whereas the number of satellites per orbit could be defined

as Nso = Nd/G based on the constraint on number of satellites. A new configuration

number was defined Nc ∈ [0, Fd − 1] as

Nc = En
NpFn + FdFh

G
mod Fd (2.8)

where En and Ed are integers such that EnFn + EdFd = 1. These three parameters,

Fd, Nso, and Nc are required to be coprime to be consistent with the HFC framework.

The satellite positions in (Ω,M)-space for an HFC were still computed using Eq. (2.6)

after solving for the requisite phasing parameters and after specifying the values

(Fd, Nso, Nc).
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2. Lattice Flower Constellations

The Harmonic Flower Constellations provide a uniform distribution, but we find they

utilize a non-minimal description in their formulation, which leads to questions of

uniqueness and equivalency. Lattice Flower Constellations were developed, motivated

by the need to answer these questions, and can be described by five integer parameters

and three continuous parameters. The integer parameters can be broken into two sets,

the first describing the phasing of the satellites and the second describing the size of

the orbits. The first set is (No, Nso, Nc) where No is the number of orbital planes, Nso

is the number of satellites per orbit, and Nc is a phasing parameter. The second set

is (Np, Nd) which satisfies the compatibility equation of Eq. (2.5).

The phasing parameters define the RAAN (Ω) and initial mean anomaly (M) as

Ωij =
2πi

No

Mij =
2πj

Nso

− NcΩij

Nso

(2.9)

These equations can be rewritten in matrix notation as No 0

Nc Nso


 Ωij

Mij

 = 2π

 i

j

 (2.10)

where i = 0, . . . , No − 1, j = 0, . . . , Nso − 1 and Nc ∈ [0, No − 1]. Satellite (i, j) is

the jth satellite on the ith orbital plane. As proven in Ref. [26, Thm B.1], the LFC

framework includes all of the HFCs. Note that unlike the HFC formulation, the LFCs

separate the satellite phasing from the orbit size, so non-repeating ground-tracks can

be used without affecting the uniformity of the satellite distribution in (Ω,M)-space.

Additionally, there is no longer a requirement that (No, Nso, Nc) be coprime.

If repeating ground-tracks are used, the number of unique repeating ground-
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tracks followed by the satellites in the constellation is given by

Nrt = Ns/Nrs (2.11)

where Nrs = gcd(Ns, NoNd, NdNc − NsoNp). The condition for all satellites to have

the same repeating ground track requires that two integers µ and λ exist such that

Nd = λNso (2.12)

Np = µNo + λNc (2.13)

and (Np, Nd) are coprime.

As in HFCs, the remaining parameters required to define the constellation are

continuous parameters that are the same for all orbits in the constellation: the in-

clination angle, the eccentricity, and the argument of periapsis. It is felt that this

five parameter description of the LFCs {No, Nso, Nc, e, i, ω} is canonical and permits

important intuitive, as well as theoretical, insight to be obtained into the space of

feasible constellations.

3. Equivalence to Walker Constellations

The development of the LFC framework permitted a direct comparison to the Walker

constellations. First, a brief recap of notation for Walker and LFCs:

• Total of number of satellites, T , Ns

• Number of orbital planes, P , No

• Number of satellites per orbit, S, Nso

• Phasing parameter, F , Nc

• Number of orbital periods for compatibility, L, Np
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• Number of Earth revolutions for compatibility, M , Nd

• Number of repeating ground-tracks, EL,M , Nrt

• Number of satellites on each ground-track, K, Nrs

Since both constellations require that orbital planes are uniformly distributed, the

values of RAAN are the same for both constellations for a given number of orbital

planes. Similarly, the satellites within a plane are uniformly distributed in mean

anomaly in both cases, so in the case of an LFC restricted to circular orbits and the

same number of satellites per plane, they will be identical.

To show the relationship between the two phasing parameters, F and Nc, we

must investigate the physical meaning of Nc. Consider an LFC with argument of

perigee occurring at the ascending node (ω = 0). In that case, the first satellite on

the Ω = 0 plane is located at the ascending node (M = 0). The next plane to the east

is located at Ω = 2π/No, which places the first satellite on that plane at the location

M = −2πNc/Ns. Note that this is equivalent to −Nc PUs as defined by Walker,

or F = −Nc. Since the limitations on the value of F are purely to avoid repeating

the same pattern, it is clear that the negative sign has no effect on the constellations

achievable by each methodology.

Finally, consider the equations for the number of repeating ground tracks and

the number of satellites on each of those repeating ground-tracks (Eqs. 2.2 and 2.11):

EL,M = T/K, K = gcd(T, PM, SL+ FM)

Nrt = Ns/Nsr, Nsr = gcd(Ns, NoNd, NdNc −NsoNp)

Clearly, given the variable definitions above and the fact that F = −Nc, these equa-

tions are identical.
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Despite vastly differing approaches initially, both Mortari and Walker have con-

verged on essentially the same framework. The major difference remains that the

LFCs allow elliptical orbits, while Walker constellations are restricted to circular or-

bits.

C. Elliptical Flower Constellations

The oblateness of the Earth is typically disregarded for initial constellation design

because its effects are slow and generally not significant for circular orbits. The

dominant term arising from the Earth’s oblateness is known as the J2 effect, which

captures the second spherical harmonic describing the shape of the Earth’s gravita-

tional field. Though J2 affects all of the orbital parameters instantaneously, it causes

only RAAN, argument of perigee, and mean orbital rate to vary secularly. Identi-

cal semi-major axis and inclination leads to identical J2-induced orbit precession in

(Ω,M)-space, thus preserving the relative motion of the configuration in that space

(so circular orbit constellations are unaffected). For Flower Constellations, slight

changes to the compatibility equation (Eq. (2.5)) can compensate for the J2 effect on

RAAN and mean orbital rate. Dealing with the rotation of the argument of perigee

is more difficult.

1. Conceptual Design

The rotation of the argument of perigee is obviously only meaningful in elliptic or-

bits. Though orbits that are critically inclined at 63.4◦ experience no rotation of the

argument of perigee, this inclination requirement eliminates one of the design vari-

ables at the disposal of the constellation designer. To remove this critical inclination

constraint, we propose that satellites within a given orbital plane be placed in mul-



22

tiple orbits with arguments of perigee distributed evenly from 0-360◦. Given that

all orbits have the same inclination, eccentricity, and semi-major axis, their rate of

perigee rotation will be equal. Thus, as they each rotate, the relative perigee spacing

remains constant, and periodically the constellation resumes its original structure.

The concept is illustrated in Fig. 1. This approach is particularly well-suited for any

mission requiring global coverage.

Fig. 1. Elliptical Flower Constellation concept.

Lattice Flower Constellations are particularly elegant for global coverage due

to their uniformity of satellite distribution. How does one distribute satellites with

multiple arguments of perigee and still maintain some level of uniformity? Many

issues must be considered. First, as the arguments of perigee rotate around the orbit

normal (relative to the line of nodes) due to J2, occasionally the apogee (or perigee)

of an orbit on a given plane will align with the line of nodes where it intersects with

another plane. It would certainly not be uniform if an orbit on that second plane

also had apogee (or perigee) along that line of nodes simultaneously, as then two

satellites would be at apogee above the same point on Earth. Second, standard LFC

design defines the distribution within the plane by equally spacing satellites in mean

anomaly space. With satellites in different orbits within the same plane, does that
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mean anomaly space lose all meaning from a uniformity standpoint? Lastly, LFC

design constrains the interaction of satellites between planes, and this too must be

preserved. We will use the LFC framework wherever possible to provide uniform

satellite distributions as we develop the Elliptical Flower Constellations (EFCs).

2. Mathematical Formulation

To define the Elliptical Flower Constellations, we use No to represent the number of

orbital planes, Nω to represent the number of unique orbits (with different arguments

of perigee) on each plane, and N ′so to represent the number of satellites on each of

those orbits. Thus, the total number of satellites is represented by Ns = NoNωN
′
so.

We derive the EFCs using an “orthogonal” approach, where we hold a particular

element constant and design a LFC for the remaining two parameters.

We begin with the original LFC equations, using phasing parameter N1
c . In

this step, we assume the argument of perigee is held constant, but allow the mean

anomaly distribution to be affected by some unknown function, h(ω), of the argument

of perigee:

NoΩijk = 2πi

N ′soMijk +N1
c Ωijk = 2πj + h(ω) (2.14)

We assume here that h is a function of ω only, and not dependent on the orbital plane,

which helps ensure that we recover the original LFC equations if satellites have the

same argument of perigee.

Next, we address the distribution of the arguments of perigee by holding mean

anomaly constant. Again we use the LFC framework with phasing parameter N3
c , this

time replacing mean anomaly with argument of perigee - thus treating each perigee
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as a “satellite” to provide a uniform distribution:

NoΩijk = 2πi

Nωωijk +N3
c Ωijk = 2πk (2.15)

Lastly, we consider the multiple orbits within the same plane as a planar LFC

with phasing parameter N2
c , thus treating ω as if it were Ω and distributing M by

the equations

Nωωijk = 2πk + f(Ω)

N ′soMijk +N2
c ωijk = 2πj + g(Ω) (2.16)

Again, we allow these equations to be affected by functions of RAAN, since for con-

stant orbital plane, all satellites will still maintain an LFC within the plane.

Using the LFC framework, we have addressed maintaining the satellites in LFCs

when they have the same argument of perigee, phasing satellites within the plane uni-

formly, and distributing the arguments of perigee uniformly throughout the constel-

lation. Comparing Eqs. (2.15) and (2.16), it is clear that f(Ω) = −N3
c Ω. Differencing

Eqs. (2.14) and (2.16), one arrives at the equation

N2
c ω + h(ω) = N1

c Ω + g(Ω) (2.17)

Since this equation must hold for all values of Ω and ω, the only solution is that

g(Ω) = −N1
c Ω and h(ω) = −N2

c ω. To be mathematically rigorous, both g and h

could also include an arbitrary added constant, but this constant is ignored because

it does not affect the relative satellite spacing.

Equations (2.14)-(2.16) can now be reformulated into matrix notation, similar to
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Eq. (2.10), to define Elliptical Flower Constellations mathematically as
No 0 0

N3
c Nω 0

N1
c N2

c N ′so




Ωijk

ωijk

Mijk

 = 2π


i

k

j

 (2.18)

where

i = 0, . . . , No − 1 N1
c ∈ [0, No − 1]

j = 0, . . . , N ′so − 1 N2
c ∈ [0, Nω − 1]

k = 0, . . . , Nω − 1 N3
c ∈ [0, No − 1]

Note that the limits on these parameters result from the repetitious nature of the

constellation. Values outside of those ranges are perfectly valid, but they describe

satellites (or configurations) equivalent to ones defined within the specified ranges.

The specific values of (Ω, ω,M) for all satellites in an EFC can be calculated using

Algorithm 1.

Algorithm 1 Finds the location in (Ω, ω,M)-space of all satellites in an EFC

1: for i = 0, . . . , No − 1 do

2: Ω← 2πi/No

3: for k = 0, . . . , Nω − 1 do

4: ω ← (2πk −N3
c Ω)/Nω

5: for j = 0, . . . , N ′so − 1 do

6: M ← (2πj −N1
c Ω−N2

c ω)/N ′so

7: print Ω, ω, M

8: end for

9: end for

10: end for
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3. Properties

Elliptical Flower Constellations can be considered a generalization of the Lattice

Flower Constellations. Many of the properties of LFCs identified in Ref. [26] can be

applied to EFCs as well, as shown in this section.

First, we generalize the EFC concept to include any matrix E ∈ Z3×3 with

det(E) 6= 0 in the form

E


Ωijk

ωijk

Mijk

 = 2π


i

k

j

 (2.19)

This matrix represents a 3-D torus, where the intersections of the three lines defined

by the three rows of E define the locations of the satellites. Any matrix E with the

above properties can be reduced by integer row operations to a unique lower triangular

form presented in Eq. (2.18), known as the Hermite Normal Form [30] of E, which

we call EH . We define the three integer row operations that can be performed on a

matrix:

• Reflection: multiply a row by -1

• Permutation: switch two rows

• Shear: add a multiple of one row to another

We can further define four unique matrices required to carry out these operations on

a 3× 3 matrix:

• Multiply first row by -1

UN1 =


−1 0 0

0 1 0

0 0 1

 (2.20)
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• Switch rows 1 and 2

US12 =


0 1 0

1 0 0

0 0 1

 (2.21)

• Switch rows 1 and 3

US13 =


0 0 1

0 1 0

1 0 0

 (2.22)

• Add row 1 to row 2

UA12 =


1 0 0

1 1 0

0 0 1

 (2.23)

Note that these elementary row operations can all be performed on the EFC matrix

without changing the solution space. These four transformation matrices can also be

used to form all of the other row operations by switching rows:

• Negate row 2: UN2 = US12UN1US12

• Negate row 3: UN3 = US13UN1US13

• Switch rows 2 and 3: US23 = US13US12US13

• Add row 2 to row 1: UA21 = US12UA12US12

• Add row 1 to row 3: UA13 = US23UA12US23

• Add row 3 to row 1: UA31 = US13UA13US13

• Add row 2 to row 3: UA23 = US12UA13US12

• Add row 3 to row 2: UA32 = US13UA12US13
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Note that the transformation matrices have a determinant of ±1 and integer co-

efficients, and the product of these matrices can produce any integer matrix with

determinant ±1.

Theorem C.1. Two EFCs described by E and E ′ are equivalent in (Ω, ω,M)-space

if and only if E ′E−1 is a matrix with integer coefficients and determinant of ±1. In

other words, they are equivalent if and only if it is possible to achieve E ′ from E via

a sequence of integer row operations.

Proof. First, assume E ′E−1 = U ∈ Z3×3 and det(U) = ±1. Therefore, E ′ = UE.

All values of U can be constructed from UN1, US12, US13, and UA12. Since these

transformations have no effect on the solution space of E, it is clear that E and E ′

are equivalent if E ′E−1 = U ∈ Z3×3 and det(U) = ±1.

Second, we must also prove that if E and E ′ are equivalent then U exists such

that U ∈ Z3×3 with det(U) = ±1. Assume E and E ′ are equivalent and consider

three satellites that exist in both:
Ω1

ω1

M1

 = 2πE−1


i1

k1

j1

 = 2πE ′−1


i′1

k′1

j′1




Ω2

ω2

M2

 = 2πE−1


i2

k2

j2

 = 2πE ′−1


i′2

k′2

j′2




Ω3

ω3

M3

 = 2πE−1


i3

k3

j3

 = 2πE ′−1


i′3

k′3

j′3
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Premultiply these equations by E ′ to get

E ′E−1


i1

k1

j1

 =


i′1

k′1

j′1

 , E ′E−1


i2

k2

j2

 =


i′2

k′2

j′2

 , E ′E−1


i3

k3

j3

 =


i′3

k′3

j′3


Or equivalently,

E ′E−1


i1 i2 i3

k1 k2 k3

j1 j2 j3

 =


i′1 i′2 i′3

k′1 k′2 k′3

j′1 j′2 j′3


E ′E−1C = C ′

Similarly, by premultiplying by E, one arrives at EE ′−1C ′ = C. At this point C

and C ′ can be arbitrarily chosen as any three satellites. By choosing C = I, it is

clear that E ′E−1 = C ′ = U ∈ Z3×3. Similarly, choosing C ′ = I yields EE ′−1 = C =

V ∈ Z3×3. Clearly, UV = V U = I and det(UV ) = det(U) det(V ) = det(I) = 1.

Since U and V are integer matrices, this relationship of determinants requires that

det(U) = det(V ) = ±1. Therefore, if E ≡ E ′, then U exists such that U ∈ Z3×3 with

det(U) = ±1.

Whereas EFCs can be represented by any 3 × 3 integer matrix, this is a non-

minimal representation, so in practice the lower Hermite Normal Form, with six

intuitively understood parameters, is the best representation for design optimization

work. Note that Thm C.1 can be used to prove the limits on (N1
c , N

2
c , N

3
c ) specified

in Eq. (2.18).

When EFCs are used to describe circular orbit constellations, the argument of

perigee becomes ill-defined and multiple EFCs describe the same satellite distribution,
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creating another equivalency problem.

Theorem C.2. Given an Elliptical Flower Constellation,
No 0 0

N3
c Nω 0

N1
c N2

c N ′so




Ωijk

ωijk

Mijk

 = 2π


i

k

j


If the constellation is made of circular orbits (e = 0) then this EFC is equivalent to

the LFC (with e = 0):  No 0

Nc Nso


 Ωij

Mij

 = 2π

 i

j


where

Nc =

[
N1
cNω +N3

c (N ′so −N2
c )

gcd(Nω, N ′so −N2
c )

]
mod No (2.24)

and

Nso =
NωN

′
so

gcd(Nω, N ′so −N2
c )

(2.25)

Proof. The EFC equations can be rewritten:

ω =
2πk −N3

c Ω

Nω

(2.26)

M =
2πj −N1

c Ω−N2
c ω

N ′so
(2.27)

Substituting Eq. (2.26) into Eq. (2.27) yields

M =
2πjNω −N1

cNωΩ− 2πkN2
c +N2

cN
3
c Ω

N ′soNω

(2.28)

With zero eccentricity, M and ω are no longer independent, so define θ = M +

ω. Unique values of θ produce unique positions within the constellation. Using
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Eqs. (2.26) and (2.28) we find

N ′soNωθ = 2π
[
Nωj + (N ′so −N2

c )k
]
−
[
N3
c (N ′so −N2

c ) +N1
cNω

]
Ω (2.29)

Using an integer identity, we can say

Nωj + (N ′so −N2
c )k = gcd(Nω, N

′
so −N2

c )m (2.30)

where m is any integer. This allows us to rewrite Eq. (2.29)[
NωN

′
so

gcd(Nω, N ′so −N2
c )

]
θ +

[
N1
cNω +N3

c (N ′so −N2
c )

gcd(Nω, N ′so −N2
c )

]
Ω = 2πm (2.31)

which can be simply rewritten into the original LFC equation

Nsoθ +NcΩ = 2πm (2.32)

Note that, if gcd(Nω, N
′
so−N2

c ) 6= 1 then the circular case of the EFC degenerates as

there are not Ns unique slots for satellites.

Certain properties of the constellation can be easily computed from the general

integer (lattice) matrix E.

Theorem C.3. Given an EFC defined by E ∈ Z3×3, then

1. The total number of satellites is Ns = | det(E)|.

2. The number of satellites per orbit is N ′so = | gcd(e13, e23, e33)|.

Proof. Reduce E to its Hermite Normal Form, EH , by elementary row operations.

Since elementary row operations have no effect on the right hand side of the equations

above, they can equivalently be written:

1. The total number of satellites is Ns = | det(EH)| = NoNωN
′
so = Ns.
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2. The number of satellites per orbit is

N ′so = | gcd(eh13 , eh23 , eh33)|

= gcd(0, 0, N ′so)

= N ′so

Note that this gives a physical meaning to the requirement that det(E) 6= 0: otherwise

a constellation would have zero satellites.

Since satellites must have the same argument of perigee to travel on the same

repeating ground-track, the number of unique values of argument of perigee for a

given EFC is of interest.

Theorem C.4. The number of unique values of argument of perigee, Nuω, in an EFC

is given by

Nuω = Nω

(
No

gcd(No, N3
c )

)
(2.33)

Proof. First we look at the sub-matrix, Es that governs the values of ω when the EFC

is written in lower Hermite Normal Form (the last row of EH , governing the values

of mean anomaly, has no impact on the values of ω):

Es =

 No 0

N3
c Nω

 (2.34)

Matrix Es can be rewritten into upper Hermite Normal Form using elementary row

operations:

E ′s =

 Noω N ′3c

0 Nuω

 (2.35)

Clearly, Noω is the greatest common denominator of the first column of E ′s. As in

Thm. C.3, the elementary row operations do not affect this result, such that it is
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also equal to the greatest common denominator of the first column of Es. Therefore,

Noω = gcd(No, N
3
c ).

We can also define the number of unique orbits, Nuo = NoNω = det(Es). Again,

the determinant is unchanged by elementary row operations, so det(E ′s) = NoωNuω =

Nuo = NoNω. This yields

Nuω =
NoNω

Noω

= Nω

(
No

gcd(No, N3
c )

)
(2.36)

Theorem C.5. The satellites in an EFC follow Nrt relative trajectories with Nsr

satellites on each, given by

Nsr = gcd
[
N ′so gcd(No, N

3
c ), Nd gcd(No, N

3
c ), N1

cNd −N ′soNp

]
(2.37)

Nrt = Ns/Nsr = mNuω (2.38)

where m ≥ 1 ∈ Z.

Proof. For two satellites to be on the same relative trajectory, they must have the

same argument of perigee. The symmetry of the constellation allows us to evaluate

the number of satellites on a single relative trajectory, because that number will be

the same on all relative trajectories. Considering just the 0th relative trajectory with

all satellites having ω = 0 reveals the requirement

NoΩ = 2πi

N3
c Ω = 2πj

which means that we can solve for the values of Ω that result in the same argument

of perigee as

Ω =
2πl

gcd(No, N3
c )
, l ∈ Z
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Given that all satellites satisfying this condition have ω = 0 allows us to write the

following requirement for all satellites with the same repeating relative trajectory:
gcd(No, N

3
c ) 0

N1
c N ′so

Np Nd


 Ω

M

 = 2π


l

j

n

 , l, j, n ∈ Z

This matrix can be reduced using elementary row and column operations to the simple
α 0

0 β

0 0


 Ω

M

 = 2π


l

j

n

 , l, j, n ∈ Z

which has αβ unique solutions. The number of unique solutions of this matrix can

be given by the greatest common denominator of the determinants of the 2× 2 sub-

matrices. Since elementary row and column operations have no effect on the number

of solutions or the gcd of the sub-matrix determinants, the number of solutions can

be defined as

Nsr = gcd


∣∣∣∣∣∣∣

gcd(No, N
3
c ) 0

N1
c N ′so

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

gcd(No, N
3
c ) 0

Np Nd

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
N1
c N ′so

Np Nd

∣∣∣∣∣∣∣


yielding Eq. (2.37). The number of relative trajectories is clearly Nrt = Ns/Nsr. Sub-

stituting Nsr = N ′so gcd(No, N
3
c )/m, where m ∈ Z allows us to rewrite this equation

in terms of the number of unique values of argument of perigee as Nrt = mNuω.

Given the desirable properties of having satellites on the same repeating ground-

track, a method for achieving the minimum number of unique ground-tracks (Nrt =

Nuω) is desired.

Theorem C.6. Letting (Np, Nd) be two coprime integers satisfying the following for-



35

mula:

Np = λ gcd(No, N
3
c ) + µN1

c (2.39)

Nd = µN ′so (2.40)

where µ, λ ∈ Z produces exactly Nuω unique relative trajectories.

Proof. Substituting these equations for Np and Nd into Eq. (2.37) yields

Nsr = gcd
[
N ′sog, µN

′
sog, µN

′
soN

1
c −N ′so(λg + µN1

c )
]

= N ′so gcd [g, µg,−λg]

= N ′sog

where g = gcd(No, N
3
c ). This value of Nsr directly yields Nrt = Nuω.

4. Generalizations

Not only do EFCs share many properties with LFCs, but LFCs are actually a subset

of EFCs. An EFC with Nω = 1, N2
c = 0, and N3

c = 0 is equivalent to a LFC. Since

the LFC framework also encompasses all Walker constellations as proved in Ref. [26],

the EFCs include those as well. The LFCs are represented in the EFC framework

(using LFC variable definitions) by the matrix
No 0 0

0 1 0

Nc 0 Nso

 (2.41)
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Walker constellations are similarly represented (using Walker variable definitions):
P 0 0

0 1 0

−F mod P 0 S

 (2.42)

Dufour [31, 32] introduced elliptical Walker constellations with a single orbit per

plane, where the arguments of perigee were distributed according to the equation

ωij = ω0 +
2πiG

Ns

(2.43)

where G ∈ [0, No − 1] is a phasing parameter. If the denominator was No instead

of Ns, we could claim that EFCs also encompassed all of Dufour’s elliptical Walker

constellations by setting N3
c = 0, Nω = 1, and N2

c = −G mod No. In fact, Dufour’s

own limits on the values of G indicate that this is the correct denominator. Addi-

tionally, using Ns as the denominator leads to non-uniform constellations, where ω

is not uniformly distributed between orbital planes. Whereas the ∆ω between subse-

quent orbital planes is typically 2πG/Ns, the ∆ω between the first and last planes is

2πG/Ns−2πG/Nso. In the case where Ns = No or G = 0, the two different denomina-

tors produce the same constellation. Of the more than 50 constellations presented in

Refs. [31, 32], only one does not satisfy either of those conditions. We thus conclude

that EFCs can legitimately be considered a generalization of the elliptical Walker

constellations proposed by Dufour.

Also of interest are the elliptical constellations for global coverage developed

by Draim in Refs. [24, 25, 33]. Dufour notes that all of these constellations can be

described using the elliptical Walker constellation framework, and since all of Draim’s

constellations in Refs. [24, 25, 33] utilize Ns = No, they are unquestionably also a

subset of Elliptical Flower Constellations. The elliptical Walker constellations are
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represented in the EFC framework by:
P 0 0

−G mod P 1 0

−F mod P 0 S

 (2.44)

5. Other Design Considerations

Designing an Elliptical Flower Constellation requires more than selecting the six in-

teger parameters described above. The semi-major axis, eccentricity, and inclination

that is common to all satellites must be selected. Additionally, the RAAN (Ω0), argu-

ment of perigee (ω0), and mean anomaly (M0) of the first reference satellite can also

be selected arbitrarily without affecting the relative phasing within the constellation.

We can rewrite Eqn. (2.18) as
No 0 0

N3
c Nω 0

N1
c N2

c N ′so




Ωijk − Ω0

ωijk − ω0

Mijk −M0

 = 2π


i

k

j

 (2.45)

Thus, an EFC requires six integer parameters and six continuous parameters. Es-

sentially, the six continuous parameters define the orbit elements of the 0th satellite,

and the six integer parameters phase all other satellites relative to that one. Each of

the continuous parameters is subject to particular considerations as described in the

following sections.

Semi-major Axis and Eccentricity

The orbit semi-major axis and eccentricity are common among all satellites in the

constellation, and are typically bounded by some minimum and maximum altitudes.

Typically these bounds are a result of sensor or antennae limitations. Requiring
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hardware that can operate at varying altitudes is a significant limitation on the use

of elliptic orbits.

The semi-major axis can also be chosen to provide repeating ground-tracks as in

the Walker or Lattice Flower constellation theories. Satellites with the same argument

of perigee can also be placed on the same repeating ground-track through judicious

selection of the parameters (Np, Nd) as discussed in Thm. C.6.

Inclination

The inclination of the orbits has significant impact on the coverage provided by an

EFC. Even in circular orbit constellations, certain inclinations result in satellites

theoretically colliding, whereas others permit near perfect phasing as a satellite from

one plane passes directly between two satellites from another plane.

Considering two satellites in circular orbits with the same altitude, the closest

approach distance between the two satellites, ρmin, can be analytically computed from

the equations

∆F = ∆M − 2 arctan [− tan(∆Ω/2) cos i] (2.46a)

cos β = cos2 i+ sin2 i cos ∆Ω (2.46b)

ρmin = 2

∣∣∣∣∣
√

1− cos β

2
sin(∆F/2)

∣∣∣∣∣ (2.46c)

where ∆M and ∆Ω are the difference in orbit elements of the two satellites and i is

the inclination angle common to both [34]. Note that ρmin must be scaled by the orbit

radius to find the physical approach distance. The minimum distance encountered

within a constellation of circular orbits can be computed by calculating this approach

distance for all pairs of satellites. Perfect juggling requires that no two satellites are

ever closer than half the distance between two consecutive satellites in the same orbit.
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We can scale the minimum approach distance such that zero corresponds to collision

and one corresponds to perfect juggling. Using this scaling, the results for the 27/3/1

Walker constellation are plotted in Fig. 2 as a function of inclination angle. This is

the constellation design chosen for the Galileo GNSS system [35]. Note the peak near

an inclination of 56◦, the chosen inclination for Galileo.

Fig. 2. Minimum encounter distance in the 27/3/1 Walker constellation as a function

of inclination.

This indicates that even though inclination is technically a continuous parameter,

there exist discrete values of inclination that maintain high levels of uniformity in the

distribution of satellites. Equation (2.46) only applies to circular orbits, but similar

computations can be made for constellations of elliptic orbits and may prove insightful

in the design process. We can also use Eq. (2.46) to address the juggling of apogees and

perigees - an issue raised in the previous section. As in the development of Elliptical

Flower Constellations, we can consider the arguments of perigee to constitute their

own Lattice Flower Constellation, all of which rotate at the same rate, just like a
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constellation of circular orbits. Thus, this method must be used to chose an inclination

to achieve successful juggling of the apogees and perigees.

Selecting Ω0, ω0, and M0

The values of (Ω0, ω0,M0) provide the three angular elements of the reference satellite

(i, j, k) = (0, 0, 0). Though each of them could be drawn from [0, 2π), each can be

further bounded by constellation considerations once the 6 integer parameters have

been chosen.

Theorem C.7. Every initial condition of a given EFC can be described using values

of (Ω0, ω0, M0) in the ranges

Ω0 ∈
[
0,

2π

No

)
(2.47)

ω0 ∈
[
0,

2π

NoNω

gcd(No, N
3
c )

)
(2.48)

M0 ∈
[
0,

2π

Ns

gcd(NoNω, N
2
cNo, NωN

1
c −N2

cN
3
c )

)
(2.49)

Proof. Assume that the set {Ω?
ijk, ω

?
ijk,M

?
ijk} is the set of satellite locations given

(Ω0, ω0,M0) = (0, 0, 0). Equation (2.45) generates the identical set for particular

values of (Ω0, ω0,M0) if and only if the following equation is still satisfied:
No 0 0

N3
c Nω 0

N1
c N2

c N ′so




Ω?
ijk − Ω0

ω?ijk − ω0

M?
ijk −M0

 = 2π


i

k

j

 (2.50)



41

This condition can be rewritten as three separate equations involving (Ω0, ω0,M0):

NoΩ0 = 2πi (2.51)

N3
c Ω0 +Nωω0 = 2πk (2.52)

N1
c Ω0 +N2

c ω0 +N ′soM0 = 2πj (2.53)

The task is to find the minimum values of (Ω0, ω0,M0) that satisfy the above equa-

tions.

Solving Eq. (2.51) yields:

Ω0 =
2π

No

i (2.54)

The smallest value of Ω0 occurs when i = 1, thus establishing the upper limit on Ω0.

Solving Eq. (2.51) for Ω0 and substituting that into Eq. (2.52) results in:

ω0 =
2π

NoNω

(Nok −N3
c i)

=
2π

NoNω

gcd(No, N
3
c )m

Again, m = 1 represents the smallest value of ω0 before the pattern repeats. Similarly,

solving Eqs. (2.51) and (2.52) for Ω0 and ω0, respectively, and substituting them into

Eq. (2.53) yields the result

M0 =
2π

Ns

[
NoNωj −N2

cNok − (N1
cNω −N2

cN
3
c )
]

=
2π

Ns

gcd(NoNω, N
2
cNo, N

1
cNω −N2

cN
3
c )n

All EFCs can be described by values within these ranges due to their uniform,

symmetric nature. For general EFCs with a global coverage mission, the design

parameters can simply be taken as zero. When zonal or regional coverage is required,
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these variables significantly effect coverage. Clearly, ω0 is significant for critically

inclined orbits, even when global coverage is considered, but has no meaning when

dealing with circular orbits.

If one is considering global coverage, these ranges may not only be used for design

purposes, they can also be used as limits on orbit propagations, thereby reducing

computation time. Consider the naive ranges on each parameter

Ω0 ∈
[
0,

2π

No

)
, ω0 ∈

[
0,

2π

Nω

)
, M0 ∈

[
0,

2π

N ′so

)
(2.55)

These naive bounds can easily be shown to be the worst case bounds allowed bu the

optimal bounds of Thm. C.7. First, the bounds on Ω0 are identical. Second, since the

value of N3
c is always less than the value of No, the maximum value of gcd(No, N

3
c )

is No, and the maximum value of the optimal bound is 2π/Nω. Finally, the gcd in

the bounds on M0 has a maximum value of NoNω since neither of those parameters

is allowed to be zero. Therefore, M0 is bounded by 2π/N ′so in the worst case.

In the global navigation example of Chapter IV, with 27 satellites in 3 orbital

planes, the optimal bounds of Thm. C.7 reduce propagation time by a factor of ≈ 7.5

over these naive bounds when averaged over all 117 EFCs. Some of those 117 EFCs

see a reduction in propagation time of a factor of 81. The 150 EFCs with 25 satellites

and 5 orbital planes improve propagation times by a factor of ≈ 13.5 on average, with

a few improving by a factor of 125!

To complete the picture with respect to other design methods, Walker’s phasing

parameter in Ref. [15] is equivalent to our M0. Dufour includes an ω0 in his elliptical

Walker constellations that is a multiple of another integer parameter he introduces,

but the range of ω0 is limited to [−π/2, π/2] rather than the full allowable range of

[−π, π] [31, 32]. The continuous parameter used here clearly includes the discrete

values of Ref. [31, 32].
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D. Fast Orbit Propagation

Evaluating a satellite constellation design typically requires the computation of some

performance metric over some time span (the period of repetition for repeating

ground-track constellations). This is because the performance metrics include com-

plicated constraints, such as sensor field of view (FOV) or minimum elevation angle.

The coverage requirements can range from continuous global coverage to maximiz-

ing time over target of a specific region. All of these complications preclude the use

of any simply analysis of the system performance and require that all satellites be

propagated through time, evaluating the performance metric at each time step.

Solving for the position of an object given its orbit element representation is a

fundamental problem in celestial mechanics. Whether the orbits are being propagated

assuming simple Keplerian motion or more complicated perturbation methods using

orbit elements (ie. Lagrange’s equations), the orbit propagation problem ultimately

rests in solving the transcendental Kelper’s equation (KE)

n(t− t0) = M = E − e sinE (2.56)

where n is the mean orbital rate, t is the time, t0 is the time of periapsis passage,

M is the mean anomaly, and E is the eccentric anomaly. Mean anomaly is easily

solved for during orbit propagation due to its linear dependence on time, but the

eccentric anomaly is required to compute satellite positions and velocities. Other

orbit propagation methods that rely on numerical integration avoid solving Kepler’s

equation, but at the much greater expense of evaluating complex equations of motion.

Solving Kepler’s equation has been a rite of passage for some of the greatest minds

in mathematics since it first appeared about 350 years ago [36]. References [36, 37, 38]

provide overviews of the classic methods based on an iterative Newton’s method or
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truncated series expansion. In recent years, Nijenhuis [39] and Markley [40] have

developed advanced techniques for solving KE in only one or two iterations, whereas

Fukushima [41] and Feinstein and McLaughlin [42] have developed discretization

techniques that utilize computer science techniques to efficiently access large pre-

computed data sets.

We performed a comprehensive review of existing methods for solving Kepler’s

equation, particularly the computation of an initial estimate for use in further itera-

tive solvers. We then developed several new solutions using the fact that most orbit

propagations, especially those used for evaluating constellation designs, involve de-

termining orbital position at constant steps in mean anomaly - allowing us to develop

solutions based on previous values of eccentric anomaly. Both the existing methods

and new methods were analyzed for computational complexity and accuracy.

1. Review of Existing Methods

The literature on solving Kepler’s equation typically breaks down the process into

the formulation of a starter to compute an initial solution estimate, followed by the

application (sometimes iteratively) of a corrector. Odell and Gooding [43] present

a survey of a dozen starters, whereas Battin [37] presents several more. Of these

simple methods, two in particular stand out. The first is what Odell and Gooding call

solution S7, which is both computationally cheaper and more accurate on average than

their solutions S2, S3, S5, S8, S10, S11, and S12. Solution S7 is a piecewise function

incorporating S4 and S6 and is thus more accurate than either of those with similar

complexity. The basis for computational complexity and accuracy comparisons is

explained in Section 4.

Solution S7:
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1. 0 ≤M < 1− e

E =
M

1− e
(2.57)

2. 1− e ≤M < π − 1− e

S4 : E = M + e (2.58)

3. π − 1− e ≤M < π

S6 : E =
M + eπ

1 + e
(2.59)

Only solution S1 (E = M) is simpler computationally, but it is several orders of

magnitude less accurate. Solution S7 is also simpler and more accurate than any of

the additional methods presented by Battin.

The only solution presented by Odell and Gooding or Battin that competes with

S7 is solution S9 which is significantly more computationally complex, but also more

accurate. Solution S9 is defined as

E = M +
e sinM√

1 + e2 − 2e cosM
(2.60)

Taff and Brennan [44] conducted a survey of both starters and iteration methods

and identified a starter from Broucke [45] as the most efficient. Our complexity and

accuracy analysis of the starters studied by Taff confirms this analysis. Broucke

developed upper and lower bounds for the solution based on tangents and chords

with the solution space broken up into four sections. Broucke’s upper bounds are the

basis for solution S7. By averaging the upper and lower bounds, an efficient starter

is achieved with higher accuracy than S7. The Broucke starter can be written in the

form

E = αM + β (2.61)

Table I details the values of α and β for different regions of M .
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Table I. Broucke’s method parameters

Region α β

0 < M < 1− e 2π−(2+π)e
2π−2(2+π)e+4e2

0

1− e < M < π
2
− e π−e

π−2e
e
2

π
2
− e < M < π − e− 1 π+e

π+2e
3πe+2e2

2π+4e

π − e− 1 < M < π 2π+(2+π)e
2π+2(2+π)e+4e2

eπ(2+4e+π)
2π+2(2+π)e+4e2

Beyond these simple starters, both Mikkola [46] and Markley [40] present starters

that require the solution of a cubic equation. Both are orders of magnitude more

accurate than the three listed above, but the computational cost of the required

cube root makes them much less efficient. Though Mikkola requires slightly fewer

additions and multiplications than Markley, the computation time is dominated by

the transcendental functions and Markley is six times more accurate. We briefly

review the equations for Markley’s approach here; see Ref. [40] for the derivations.

α =
3π2 + 1.6π(π −M)/(1 + e)

π2 − 6
(2.62)

d = 3(1− e) + αe (2.63)

q = 2αd(1− e)−M2 (2.64)

r = 3αd(d− 1 + e)M +M3 (2.65)

w =
(
r +

√
q3 + r2

)2/3

(2.66)

E =
1

d

(
2rw

w2 + wq + q2
+M

)
(2.67)

Finally, Nijenhuis [39] took the S7 starter and recognized that it performs poorly

in the region e > 0.55 and M < 0.45 and so replaced S7 in that region by a slightly

modified Mikkola’s solution. Throughout the rest of the domain, he refined the S7
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starter using a single iteration of Halley’s rational method:

E = E − f

f ′ + 1
2
δf ′′

(2.68)

where δ = −f/f ′. Nijenhuis defines f(E) = E− esn(E)−M , where the sine function

has been replaced by the approximation

sn(x) = x− 0.6605x3 + 0.00761x5 (2.69)

where x = E for x < π/2 and x = π − E for x > π/2.

The computational complexity and accuracy of these starters (Broucke, S9,

Markley, and Nijenhuis) will be analyzed and discussed in Section 4 in compari-

son to the new methods presented here. The application of one or more correction

steps using Newton’s method, Halley’s method, or higher order methods will impact

the final solution of the starters in the same way in terms of improved accuracy and

increased computational burden. We focus here on more efficient starter methods

and refer the reader to Refs. [41, 43, 44] for a discussion of iterative techniques.

2. Sequential Orbit Propagation

For applications such as orbit visualization, preliminary mission analysis, or constella-

tion design, the orbit position and velocity are not solved at arbitrary discrete points.

Instead one typically utilizes points equally spaced in time throughout the orbit.

Rather than treat each of those points independently, solving Kepler’s equation for

each, we propose to use the information of previous points to produce approximate

solutions at lower computational cost.

The simplest solution of this type would be the simple recursion Ek+1 = 2Ek −

Ek−1, but this simply amounts to assuming constant steps in ∆E. The slightly more

complicated recursion Ek+1 = 3Ek − 3Ek−1 + Ek−2 improves on this estimate, but
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both of these recursions are orders of magnitude lower accuracy than the starters

reviewed above. Instead, we look at expansions of Kepler’s equation and the radius

vector to find seven different sequential solutions.

Taylor Expansion of Kepler’s Equation

Let us consider the problem of defining a sequence in eccentric anomaly such that

the associated sequence of mean anomaly Mk (at times tk) is such that (Mk −Mk−1)

is equal to an assigned constant difference ∆M , independent from index k. Start by

defining the function

f(E) = E − e sinE −M (2.70)

To obtain an approximated sequence we can write the Taylor expansion to second

order of Kepler’s equation as

f(Ek+1) = f(Ek) + f ′(Ek)∆Ek +
1

2
f ′′(Ek)(∆Ek)

2 (2.71)

Assuming the previous step was solved perfectly, it follows that f(Ek) = 0 and

f(Ek+1) = ∆M . Substituting in the values of the derivatives, one arrives at

∆M = (1− e cosEk) ∆Ek +
1

2
e sinEk (∆Ek)

2 (2.72)

Taking just the first term of the expansion yields a simple, linear sequence defined

by

Ek+1 = Ek +
∆M

1− e cosEk
(2.73)

which we will refer to as method M1. Essentially this equation uses Ek as an initial

guess and performs a single iteration of Newton’s method. This sequence has the

advantage of being very simple computationally, on the order of the S7 solution or

Broucke’s method described earlier.
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Alternatively, the second order Taylor series can be solved for ∆Ek directly,

yielding solution M2:

Ek+1 = Ek +

√
(1− e cosEk)2 + 2∆Me sinEk − (1− e cosEk)

e sinEk
(2.74)

Note that this is equivalent in form to using Ek as the initial guess and applying a

single correction of Halley’s irrational form.

Instead of Halley’s irrational form, we might instead solve it using Halley’s ra-

tional form, given in Eq. (2.68). Substituting the correct formulas yields

Ek+1 = Ek +
∆M

(1− e cosEk) + ∆Me sinEk

2(1−e cosEk)

(2.75)

which we call solution M3.

Finally, Battin [37] suggests the use of series reversion to solve Kepler’s equation,

which can be applied to this second order Taylor series to produce solution M4:

Ek+1 = Ek +
∆M

1− e cosEk
− e sinEk

2(1− e cosEk)

(
∆M

1− e cosEk

)2

(2.76)

These three second order solutions are more computationally complex than the

linear form (similar to S9), but significantly more accurate. Note that in all three

cases, knowing the value of f to be ∆M saves its costly computation involving the

sine function.

Since evaluation of the orbit position requires evaluation of sine and cosine of

each value of eccentric anomaly, the use of those functions in solutions M1-M4 do not

represent additional computation, as opposed to the sine and cosine of mean anomaly

seen in S9.
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Taylor Expansion of the Radius Vector

Alternatively, the propagation phase can be performed by evaluating the radius at

time tk + ∆t, through Taylor expansion. The series is

r(tk + ∆t) =
∞∑
n=0

dnr

dtn

∣∣∣∣
tk

∆tn

n!
(2.77)

where, for the elliptical case, the radius can be expressed in term of eccentric anomaly

r = a

 cosE − e
√

1− e2 sinE

 (2.78)

The derivatives appearing in the series expansion can be evaluated as

dr

dt
=
dr

dE

dE

dt
where

dE

dt
=

n

1− e cosE
(2.79)

For instance, keeping just the first three terms (position, velocity, and acceleration)

of the expansion given in Eq. (2.77) we obtain

rk+1 ≈ rk + ṙ ∆t+
1

2
r̈ ∆t2 (2.80)

where, using Eq. (2.79), we can express position, velocity, and acceleration in term

of eccentric anomaly as

r = a

 cosE − e
√

1− e2 sinE


ṙ =

a n

(1− e cosE)

 − sinE
√

1− e2 cosE


r̈ = − a n2

(1− e cosE)3

 cosE − e
√

1− e2 sinE


(2.81)
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Substituting Eq. (2.81) in Eq. (2.80) we obtain our formulation to perform the orbit

propagation step

cosEk+1 ≈ cosEk −
sinEk

(1− e cosEk)
∆M − 1

2

(cosEk − e)
(1− e cosEk)3

∆M2

sinEk+1 ≈ sinEk +
cosEk

(1− e cosEk)
∆M − 1

2

sinEk
(1− e cosEk)3

∆M2
(2.82)

Since these two equations are not independent, each must be normalized by L =√
cos2Ek+1 + sin2Ek+1 at each time step. As in the previous section, we define a

linear update, M5, using only the first two terms and a second order update, M6,

using all three. The advantage of this formulation is that it requires no trig function

evaluations to obtain the position and velocity of the satellite.

3. Expansion of the Difference Form of KE

Yet another approach involves the expansion of the difference form of Kepler’s equa-

tion, which can be written as

∆M = ∆Ek − e cosEk sin ∆Ek + e sinEk(1− cos ∆Ek) (2.83)

where we define ∆Ek = Ek+1 − Ek. Assuming ∆Ek = ∆Ek−1 + δ, and substituting

into this equation, we can write

∆M = ∆Ek−1 + δ − e cosEk(sin ∆Ek−1 cos δ + sin δ cos ∆Ek−1) (2.84)

+ e sinEk(1− cos ∆Ek−1 cos δ + sin ∆Ek−1 sin δ)

Assuming that δ is small (a reasonable assumption for small values of ∆M , particu-

larly at small to moderate values of eccentricity) allows us to solve for δ as

δ =
∆M −∆Ek−1 + e (sin(Ek + ∆Ek−1)− sinEk)

1− e cos(Ek + ∆Ek−1)
(2.85)



52

We can now define a quadratically recursive update method, M7, as

Ek+1 = Ek + ∆Ek−1 + δ (2.86)

The calculation of δ is computationally burdensome, but not without benefit as seen

in Section 4.

Initial Step

The proposed solutions utilizing sequences are sensitive to errors in the initial step

since this error can propagate through to all other steps. The second order forms

reduce to the linear form for E0 = 0 (or have no solution in the case of M2), given by

E1 =
∆M

1− e
(2.87)

This is the same equation used by S7 for small values of M , but as Nijenhuis found,

it performs poorly for eccentricities larger than about 0.55. So instead, we seek a

more accurate initial step at the price of increased computational complexity for that

single initial step. One option would be to utilize Markley’s or Mikkola’s solutions,

but instead we simply use the third order Taylor expansion to find a formula accurate

in the region M < 5◦. The third order expansion of Kepler’s equation can be written

∆M = (1− e)E +
eE3

6
(2.88)

which yields

r =
3∆M

e
(2.89)

q =
2(1− e)

e
(2.90)

E1 =
2rw

w2 + wq + q2
(2.91)
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where w is defined as in Eq. (2.66). This provides a solution just as accurate as

Markley or Mikkola in the specified range but with lower complexity. Clearly this

equation fails for e = 0, but in that case E1 = ∆M is the exact solution. This

equation is used for the initial step in all solutions M1-M7 in the numerical tests of

Section 4.

4. Numerical Analysis

In the following discussion, Markley’s solution refers to just the starter presented here

and does not include his high order correction. Similarly, the Nijenhuis solution refers

to his refined starter.

Algorithmic Complexity

We note that the information required for orbit propagation is not E itself, but rather

the sine and cosine of E, meaning any solution that solves for E must include the

evaluation of those two transcendental functions in any complexity analysis.

To support the proposed algorithms, the computational complexity of required

mathematical operations [30] is evaluated. Tables II and III provide summaries of

the number of evaluations for each method and the run-time bit complexity (using

big-O notation) for the three kind of operations involved: a) addition or subtraction,

b) multiplication or division or square root,1 and c) the trigonometric functions. In

these tables, n represents the number of digits for the specific operation (32 for single

and 64 for double precision). For both the Broucke and Nijenhuis solutions, the listed

complexity is the average over the range 0 ≤ e ≤ 1 and 0 ≤M ≤ π. Only operations

that must be computed for every value of M was considered. Quantities such as α

1The run-time bit complexity for multiplication appearing in Tables II and III is
associated with the Schönhage-Strassen algorithm [47].
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and β in Broucke’s solution (Eq. (2.61)) that depend only on constants and e can be

computed just once for an entire orbit propagation, so those operations were ignored.

Table II. Algorithmic complexity of existing methods

Operations Complexity Broucke S9 Markley2 Nijenhuis

+, − n 1.8 3 12 10.9

∗, /, √ n log(n) [log log(n)] 1 4 22 14.2

sin, cos M(n) log(n) 2 4 2 2

Table III. Algorithmic complexity of sequential methods

Operations Complexity M1 M2 M3 M4 M5 M6 M7

+, − n 2 4 3 3 3 7 7

∗, /, √ n log(n) [log log(n)] 2 6 4 6 8 14 3

sin, cos M(n) log(n) 2 2 2 2 0 0 4

To produce these complexity tables, each algorithm was evaluated for the min-

imum possible evaluations by pre-computing constants and simplifying equations

where possible. The cost of conditional statements or assignment statements was

not evaluated and may have a slight impact on computation time. All algorithms

that require a value for M include the cost of evaluating Mk+1 = Mk + ∆M .

It is clear from these tables that Markley’s and Nijenhuis’ methods are signifi-

cantly more complex than any of the other solutions. Since the trigonometric func-

tions are so much more costly than multiplication and division, it is also clear that

S9 is more complex than any of the proposed second order solutions (M2-M4). The

relationship between methods M5-M6 and methods M1-M4 is less clear, but tests us-

ing MATLAB Profiler suggest that M5 is comparable to M1 and M6 is comparable to

2Also requires a cube root for all values of (M, e)
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M2-M4 in run-time complexity. Direct comparison of times has been avoided because

such times are affected by choice of processor, operating system, coding language,

etc.

Accuracy

Each algorithm was evaluated on a fine grid over the range M ∈ [0, π] to assess

accuracy. Many authors stress the performance of their Kepler’s solver in the region

near e = 1, but this condition is rarely encountered in practice, so we evaluated over

the entire range e ∈ [0, 0.99]. The sequential starters were evaluated using a step-size

of ∆M = 1◦ and ∆M = 5◦ since the accuracy degrades as the step-size increases.

Again, since the end-goal is orbit propagation, each solution for E was converted into

a solution for the satellite position, and the error in that position as a percentage

of the semi-major axis was used to evaluate accuracy. This feels more intuitive than

relative errors in E and also more practical.

Figure 3 shows contour plots of the accuracy results of the existing methods.

The mean and maximum errors encountered are listed in Table IV. Clearly Broucke

and S9 have issues in the high eccentricity, low mean anomaly range which is what

led Nijenhuis to evaluate that region separately.

Table IV. Error in position propagation as percent of semi-major axis of existing

methods

Error Broucke S9 Markley Nijenhuis

Mean (%) 1.97 0.60 0.01 0.03

Maximum (%) 17.26 29.98 0.04 0.94

Note that the Markley solution is far and away the most accurate, and even

though Nijenhuis has replaced the most troublesome region, the maximum error en-
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(a) Broucke’s solution

(b) Solution S9 from Ref. [43]

Fig. 3. Error in position propagation as percent of semi-major axis of existing meth-

ods.
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(c) Nijenhuis’ solution

(d) Markley’s solution

Fig. 3. (cont.) Error in position propagation as percent of semi-major axis of existing

methods.
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countered is more than an order of magnitude larger than Markley.

Figures 4-10 show the accuracies for the new sequential starters, with the errors

summarized in Table V.

Table V. Error in position propagation as percent of semi-major axis of sequential

methods

Error M1 M2 M3 M4 M5 M6 M7

Mean (%) (∆M = 1◦) 0.58 0.01 0.01 0.03 0.56 0.03 0.03

Maximum (%) (∆M = 1◦) 3.21 0.26 0.38 1.48 3.09 1.39 5.68

Mean (%) (∆M = 5◦) 2.48 0.11 0.10 0.35 2.05 0.35 0.45

Maximum (%) (∆M = 5◦) 7.87 0.62 1.26 4.02 6.84 3.20 13.96

The behaviors of M1 and M5 are nearly identical, with a slight edge to M5.

Similarly, M4 and M6 are nearly identical, with a slight edge to M6. Since M5 and

M6 do not require evaluation of trig functions, they appear to be better candidates

than M1 or M4 respectively. Further, solution M4 is more computationally complex

thanM3 and also significantly less accurate, so its utility is questionable. SolutionsM2

and M3 perform comparably, but since M3 has the lower computational complexity,

it is preferred over M2.

Solution M7 appears from Table V to be less accurate than any of the second

order methods, but Fig. 10 shows that this is largely due to its poor performance for

large eccentricities (as expected). Since most satellites operate with low to moderate

values of eccentricity, the performance of these methods in that range is of particular

interest. Table VI shows the performance of Markley’s starter, method M3, and

method M7 in the restricted eccentricity range e ∈ [0, 0.55] with both 1◦ and 5◦ step-

sizes. In this range of eccentricity, M3 outperforms Markley for small values of ∆M

and is competitive for larger values of ∆M . Method M7 outperforms both Markley
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 4. Error in position propagation as percent of semi-major axis of method M1.
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 5. Error in position propagation as percent of semi-major axis of method M2.
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 6. Error in position propagation as percent of semi-major axis of method M3.
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 7. Error in position propagation as percent of semi-major axis of method M4.
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 8. Error in position propagation as percent of semi-major axis of method M5.
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 9. Error in position propagation as percent of semi-major axis of method M6.
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(a) ∆M = 1◦

(b) ∆M = 5◦

Fig. 10. Error in position propagation as percent of semi-major axis of method M7.
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and M3 for both values of ∆M , and with ∆M = 1◦, M7 outperforms Markley by

several orders of magnitude!

Table VI. Error in position propagation as percent of semi-major axis for small to

moderate eccentricities

Error Markley M3 (1◦) M3 (5◦) M7 (1◦) M7 (5◦)

Mean (%) 1.46×10−2 1.26×10−3 2.32×10−2 1.96×10−5 2.56×10−3

Max (%) 4.32×10−2 8.65×10−3 1.53×10−1 1.71×10−4 2.32×10−2

Discussion

All solutions in Refs. [37, 43, 44] were evaluated using similar complexity and accuracy

analysis to eliminate all but Broucke’s solution and S9. We have only considered the

accuracy and complexity of starter equations. Any iterative method may be applied to

these starters to achieve required accuracy, including discretized solutions which offer

improved efficiencies as seen in Refs. [41, 42]. The required accuracies are application

dependent, but in many cases, the accuracy achieved with the sequential starters

proposed here may be sufficient without subsequent iteration - allowing for extremely

fast orbit propagation.

In cases where high propagation accuracy is needed, not only will iterative meth-

ods be required, but osculating orbit elements may be involved. In these cases, the

orbit elements change so slightly over a single orbit that these simple starters us-

ing mean orbit elements will still provide an excellent starting point for the iterative

methods used to provide high fidelity. Note that the application of a single iteration

at each step of these sequential methods not only improves the estimate at that point,

but it also improves the estimate at every subsequent step as shown in Ref. [48]. As

such, an iterative method applied to these sequential starters will improve overall
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solution accuracy more than the same iterative method applied to a non-sequential

starter.

Both M1 and M5 considerably outperform Broucke’s solution at comparable com-

plexity, even for large step-sizes in ∆M . Solution S9 is outperformed in both accuracy

and complexity by methods M1-M6. These sequential starter values outperform all

other published simple starters.

Comparison to Nijenhuis’ method reveals that methods M2-M4 and M6 have

comparable accuracy at lower complexity for small step-sizes (∆M = 1◦). At larger

step-sizes, Nijenhuis’ method is slightly more accurate but at the cost of significant

computational overhead. Just as Nijenhuis refines the simple S7 starter, the sequential

starters presented here could be refined to yield solutions more accurate than those

of Nijenhuis but with the same computational complexity.

A similar observation can be made about Markley’s solution. None of the se-

quential starters challenge Markley for accuracy over the entire range of eccentricity,

but the computational burden of Markley is so great that the sequential starters could

be improved using a single iteration of any of a number of methods to provide solu-

tions with better accuracy than Markley but similar computational complexity. For

small to moderate values of eccentricity (e < 0.55), solutions M3 and M7 outperform

Markley by orders of magnitude.

E. Conclusions

Constellation design is too complex of a problem to solve by brute force, hence the use

of design frameworks that utilize only a handful of design parameters to specify an

entire constellation of satellites. The Walker constellations, the most popular today,

are the simplest of these representations, using only three parameters and circular
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orbits. The Flower Constellations and Lattice Flower Constellations of Mortari and

Avendaño expand on Walker constellations by including eccentric orbits - enabling

new capabilities and improved efficiencies in constellation design.

We present here a new framework for constellation design, the Elliptical Flower

Constellations. Elliptical Flower Constellations are defined by six integer parame-

ters, allowing for increased design flexibility. Like the Lattice Flower Constellations,

EFCs have a rigorous mathematical basis that enables easy computation of various

properties of the constellation.

The Elliptical Flower Constellations are a clear extension of the framework of

Lattice Flower Constellations, and it is tempting to consider even higher order models,

incorporating any of the other orbital parameters into a 4×4 matrix. The reason this

has not been done here is that the other parameters, semi-major axis, eccentricity,

and inclination, all affect the perturbations experienced by the individual satellites.

The J2 effect would tend to destroy a constellation that allowed satellites to vary in

any of those three parameters. Similarly, atmospheric drag could incur substantially

different station-keeping costs on satellites with different perigee altitudes. These

effects can be overcome through active station-keeping but typically at unreasonable

fuel costs. In practice, these three parameters must be held constant over the entire

constellation to maintain a uniformly distributed, symmetric constellation.

The Elliptical Flower Constellations include as subsets: Lattice Flower Constel-

lations, Walker constellations, elliptical Walker constellations, and Draim’s uniform,

elliptical, global coverage constellations. Importantly, this new framework enables

the use of non-critically inclined elliptic orbits for global coverage.

To efficiently analyze EFCs (or any other constellation), a new method of orbit

propagation is presented to reduce time spent on orbit propagation when analyz-

ing the coverage metrics of a constellation. This new approach utilizes a sequential



69

estimate for the values of eccentric anomaly when solving for Kepler’s equation. Com-

pared to the four best solutions to KE found in the literature, the new methods are

generally of lower computational complexity and higher accuracy.
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CHAPTER III

CONSTELLATION TRANSFERS

In considering constellation reconfiguration, we seek to solve not an orbit transfer

problem, but the constellation transfer problem. The optimal assignment of each

satellite in the initial constellation to a slot in the final constellation must be solved,

along with the optimal orbit transfer for each of those assignments. The optimal as-

signment depends directly on some cost associated with each possible orbit transfer,

whether that be time, fuel, a combination of the two, or some other metric (such as

coverage during transfer). To solve the assignment problem rigorously, we must cal-

culate the cost associated with every possible orbit transfer - some n2 orbit transfers

when the constellation consists of n satellites. Unlike the standard orbit transfer prob-

lem, the combinatorial nature of constellation transfer demands an efficient solution

to each orbit transfer problem.

One reasonable cost function for defining the optimal constellation transfer is

the minimization of the total fuel used by all satellites in the constellation. This

cost function can reduce the generalized assignment problem to the simple linear

assignment problem (LAP). This formulation and an efficient solution to it is provided

in Section A. To solve the optimal orbit transfer problem, a new method is developed

in Section B to solve for the optimal two-impulse maneuver with fixed initial and final

states. This new method provides an approximately optimal solution by solving a

quartic equation, which can be solved in closed form. To solve the general two-impulse

orbit transfer problem where initial and final positions can be freely chosen, the

recently developed Learning Approach (LA) to sampling optimization [17, 18, 19] is

used along with the previous solution method to quickly and accurately determine the

global minimum. Section C describes some slight modifications to the LA algorithm
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and its application to the specific problem of two-impulse orbit transfer. Finally,

Section D provides some concluding remarks about the constellation transfer problem.

A. Assignment Problems

The question of which satellite in the initial constellation maps to which slot in the

final constellation can easily be formulated as an assignment problem. Generalized

assignment problems come in many shapes and sizes, from simple linear assignment

problems to the NP-hard traveling salesman problem. Luckily, the minimum total

fuel constellation transfer can be solved using the relatively simple linear assignment

problem formulation (alternative formulations and exceptions are provided at the end

of this section).

1. Linear Assignment Problem

The linear assignment problem can be stated as: given n persons (agents, satellites)

and n objects (tasks, slots), match them on a one-to-one basis to maximize the cost

function

J =
n∑
i=1

n∑
j=1

CijXij (3.1)

Xij = 0 ∀ j 6= ji, Xiji = 1

where Cij represents the benefit of agent i being assigned to task j. Solving for

the permutation matrix Xij is the task of any algorithm seeking to solve the LAP.

Of course, in constellation transfers, we seek to minimize the fuel cost, rather than

maximize some benefit, which simply requires negating the cost function J .

The linear assignment problem can handle a mismatch in the number of agents

and the number of tasks by adding columns or rows of zeros to the matrix Cij. In

the case of constellation reconfiguration, a final constellation with more slots than
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satellites currently on orbit would effectively have more tasks than agents and would

require additional columns of zeros in Cij to compensate.

2. Auction Algorithm

The auction algorithm is the most efficient method for solving the linear assignment

problem and features guaranteed convergence. The naive auction algorithm was first

proposed by Bertsekas in 1979 and is briefly summarized here. A good tutorial of the

auction algorithm can be found in Ref. [11].

First, assign an arbitrary price Pj to each task (typically zero). Next, define the

value of completing task j to agent i, Vij, as the difference between the benefit and

the price:

Vij = Cij − Pj (3.2)

We will consider an agent to be “happy” if its assigned task ji satisfies

Viji = max
j
Vij (3.3)

The naive auction algorithm chooses an “unhappy” agent and assigns it to the task

that satisfies Eq. (3.3). The price of that task is then increased according to

Pji = Pji +

(
Viji −max

j 6=ji
Vij

)
(3.4)

The “bid” of the agent is effectively the difference in value between its best task and

its second best task.

In order to assign the optimal task to the “unhappy” agent, another agent had to

be reassigned to a new task - potentially making it unhappy. The auction algorithm

iterates through until no unhappy agents remain and the prices for all tasks have

converged.
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The problem with the naive auction algorithm is that if two tasks have the same

benefit for a given agent, it will bid zero for that task. Thus, the price will not

change, and an unending bidding war between two agents bidding zero for the same

task could result. To avoid this problem, the bid is augmented by some value ε and

agents are defined as “almost happy” when

Viji ≥ max
j
Vij − ε (3.5)

The auction algorithm iterates until all agents are almost happy. Smaller values of

ε lead to results closer to optimal, whereas larger values lead to faster convergence.

It is readily shown that the auction algorithm results in a final cost J? within nε of

optimal. See Ref. [11] for a discussion on dynamic values of ε as the algorithm moves

toward convergence and for a proof of optimality.

3. Alternative Formulations

Casting the constellation transfer problem as one that seeks to minimize the total

fuel use with no restrictions on which satellite ends up where leads to the simple LAP

with the auction algorithm as the obvious approach to obtain a solution. However,

other cost functions may be equally valid and some restrictions may apply.

If one seeks to minimize the maximum fuel expended by any single satellite

(or minimize the maximum transfer time), the formulation yields the linear bottle-

neck assignment problem (LBAP). Quadratic cost functions could also be considered,

yielding quadratic assignment problems (QAPs). The LBAPs can be solved effi-

ciently, whereas the QAP has no efficient solution to date. For information on these

and other assignment problems, see Refs. [49, 50, 51, 52, 53].

Restrictions on the placements of the satellites may also complicate the picture.

For instance, if the reconfiguration is a phased deployment, and there are multiple
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satellites on each launch vehicle, the cost of one satellite on the launch vehicle to

achieve a specific orbit is dependent on the assignment of all other spacecraft on

the launch vehicle. The LAP can be solved repeatedly, converging toward a solution

consistent with such constraints, as done in Ref. [1], but this is an inelegant solution.

Advances in solving more complicated assignment problems will lead to more options

for the constellation reconfiguration engineer.

B. Minimum ∆v2 Lambert’s Problem

Given the position of a satellite at two different, specified times provides all of the

information required to solve for the Keplerian orbit between those two positions in

the specified amount of time, a problem known as Lambert’s problem. This two-

point boundary value problem is used throughout celestial mechanics for a variety of

purposes, and there is vast existing literature on efficiently solving Lambert’s prob-

lem [37, 38, 54]. One typical use is interplanetary trajectory design, where Lambert’s

problem is solved for varying departure and arrival dates between two planets (the

dates define the initial and final positions from the planetary ephemeris) to optimize

for fuel cost. Alternatively, one can use the solution of Lambert’s problem to solve

the angles-only orbit determination problem [54].

If the initial and final positions of the satellite lie on two different orbits, then

the solution of Lambert’s problem can be considered the transfer orbit between the

two at the prescribed takeoff and arrival times, and the fuel cost calculated. But

Lambert’s problem in the classic formulation has a unique solution - it does not

permit any additional optimization unless Lambert’s problem is solved repeatedly for

different boundary conditions. Instead, many researchers have cast the problem of

the two-impulse orbit transfer as the “minimum ∆vtot Lambert’s problem”, where
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time of flight is unconstrained and the solution is the transfer orbit that minimizes

the sum of the ∆v’s applied [55, 56, 57, 58, 59]. All existing methods for solving this

problem involve either some iterative technique, or provide a high-order polynomial

that requires numerical techniques to solve for the roots.

In contrast to the iterative methods and numerical techniques, we seek a method

with constant computation time and guaranteed convergence for the combinatory

constellation transfer problem. We propose to solve a variation on the minimum

∆vtot Lambert’s problem, which we call the ∆v2
tot Lambert’s problem, utilizing the

cost function

∆v2
tot = |∆v1|2 + |∆v2|2, (3.6)

where ∆v1 and ∆v2 represent the initial and final orbit transfer impulses, respectively.

Using this function, remarkably, a closed form solution can be found, while the errors

between this cost function and the ∆vtot cost function are bounded.

This section presents a unique approach that ultimately produces a quartic equa-

tion whose roots are the solution to the cost function of Eq. (3.6). Handling multiple

solutions and the difference between the ∆vtot and ∆v2
tot solutions are then discussed.

The unique case of r1 and r2 being collinear creates a singularity, and an analytic

solution for this case is derived. A numerical example demonstrates the accuracy of

this approach.

1. Problem Definition

Given a satellite on some initial orbit defined by position r1 and velocity v1 and

some final orbit defined by r2 and v2, solve for the transfer orbit between them that

minimizes the cost function of Eq. (3.6). We define the velocities of the transfer orbit
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to be w1 and w2 such that the cost function can be rewritten

∆v2
tot = |w1 − v1|2 + |v2 −w2|2 (3.7)

In other words, the satellite starts at position r1 with velocity v1, and after an

impulsive (instantaneous) burn, moves onto the transfer orbit at position r1 but

velocity w1. After some unspecified coast time, the satellite arrives at r2 with velocity

w2, where it executes a second impulsive burn to achieve the desired velocity v2.

2. Approach

The approach is based on Battin’s formulation for the terminal velocity vectors of a

transfer orbit [37], which is briefly reviewed here. First, we know the F&G solution

for orbit propagation, given position vectors ri and velocity vectors wi:

r2 = Fr1 +Gw1 (3.8)

w2 = Ftr1 +Gtw1 (3.9)

Using both this formulation and the inverse formulation, the two position vectors can

be written as

r1 = Gtr2 −Gw2 (3.10)

r2 = Fr1 +Gw1 (3.11)

We define the following unit vectors

r̂i =
ri
ri

, where ri = |ri| (3.12)

ĉ =
r2 − r1

c
, where c = |r2 − r1| (3.13)

ĥ =
r̂1 × r̂2

|r̂1 × r̂2|
(3.14)
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Battin then defines the following scalar variables

wc =
c
√
µp

r1r2 sin ∆ϕ
(3.15)

wρ =

√
µ

p

1− cos ∆ϕ

sin ∆ϕ
(3.16)

where p is the semilatus rectum of the transfer orbit, and ∆ϕ is the angle between

the two position vectors (true anomaly variation on the transfer orbit). Combining

these definitions with those of F , G, Ft, and Gt allows the velocities to be written as

w1 = wcĉ + wρr̂1 (3.17)

w2 = wcĉ− wρr̂2 (3.18)

The important result is that the following product is a constant dependent only on

the geometry of the position vectors:

wcwρ =
µc

2r1r2

sec2 ∆ϕ

2
(3.19)

We define the constant K = wcwρ, which can also be calculated as

K =
µc

r1r2 + r1 · r2

(3.20)

We then define the initial (before impulse) velocity vectors vi in the same frame as

the transfer velocities (wi)

vi = viζ ĉ + viρr̂i + vihĥ (3.21)

It is important to note that these unit vectors are not orthogonal, so computing the

magnitude of these velocity vectors cannot be done by simply summing the squares

of the components. Nor can the components simply be computed by dotting the
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velocity vector with the unit vectors. We can compute the ∆vi’s as

∆v1 = w1 − v1 (3.22)

∆v2 = v2 −w2 (3.23)

∆v1 = (wc − v1ζ) ĉ +

(
K

wc
− v1ρ

)
r̂1 − v1hĥ (3.24)

∆v2 = (v2ζ − wc) ĉ +

(
v2ρ +

K

wc

)
r̂2 + v2hĥ (3.25)

We define a cost function J = |∆v1|2 + |∆v2|2. With some manipulation of the

above equations, one finds:

J = v2
1 +v2

2 +2K(cos θ1−cos θ2)+2w2
c+2

K2

w2
c

−2 (v1c + v2c)wc−2
K

wc
(v1r − v2r) (3.26)

where v1 and v2 are the magnitudes of the initial velocity vectors, cos θi = ĉ · r̂i,

vic = vi · ĉ, and vir = vi · r̂i.

Since the first three terms of J are constants, and the remaining terms are all

multiplied by 2, we ignore constants and redefine the cost function G which we seek

to minimize:

G =
1

w2
c

[
w4
c − (v1c + v2c)w

3
c −K (v1r − v2r)wc +K2

]
(3.27)

The first derivative of this cost function is given by

dG

dwc
=

1

w3
c

[
2w4

c − (v1c + v2c)w
3
c +K(v1r − v2r)wc − 2K2

]
(3.28)

Setting this derivative to zero to find the extremum of G yields a quartic of the form

w4
c + c3w

3
c + c1wc + c0 = 0 (3.29)
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where

c3 = −v1c + v2c

2

c1 =
K (v1r − v2r)

2

c0 = −K2

This quartic equation can be solved analytically using Ferrari’s method (see

Ref. [60]). Since c0 is always less than zero and the initial quartic term is positive,

there will always be at least two real solutions to this quartic polynomial. Considering

Eq. (3.28), it is clear that as wc →∞, dG
dwc
→∞, whereas as wc → 0 from the positive

side of zero, dG
dwc
→ −∞. As such, there exists at least one real solution of Eq. (3.29)

that is positive. Similarly, as wc → −∞, dG
dwc
→ −∞, whereas as wc → 0 from the

negative side of zero, dG
dwc
→ ∞. Again, this proves the existence at least one real

solution of Eq. (3.29) that is negative. Both of these solution points are guaranteed

to have a positive slope (ie. d2G
dw2

c
> 0) and so they are both minima. The positive

and negative solutions represent local minima in prograde and retrograde directions,

respectively. Rarely this equation yields four real solutions, in which case three local

minima and one local maxima exist. Comparing these solutions provides the desired

global minimum.

3. Multiple Solutions and Error Analysis

The method presented here transforms the optimal transfer into a single parameter

minimization. To better demonstrate what is happening when multiple solutions

occur and the difference between the minimum ∆vtot and minimum ∆v2
tot solutions,

consider Fig. 11. This particular case is a special case that has four real solutions

to the quartic described above and is diagrammed in Fig. 11a, with orbital elements
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Table VII. Orbit parameters for four solution case

Orbital element Initial orbit Final orbit

Perigee altitude (km) 386.8 7000.0

Apogee altitude (km) 9235.9 7000.0

R.A.A.N. 0 0

Argument of perigee −164.44◦ 0

Inclination 180.00◦ 0

True anomaly 73.85◦ 0

listed in Table VII. Though this type of transfer situation is unlikely to occur in

practice, it is useful to investigate from a mathematical viewpoint.

Figure 11b has as its axes the magnitude of the two burns, and the dashed (red)

and dotted (blue) lines represent feasible transfers between the two specified orbits.

For the minimum ∆vtot optimization, minima and maxima exist where these two

curves are tangent to a line with slope of −1 as shown in the figure. Minimum ∆v2
tot

optimization, alternatively, has solutions anywhere those two curves are tangent to

a circular arc. Triangles and circles show minima and maxima of ∆vtot and ∆v2
tot

respectively.

Consider solution 4 indicated in Fig. 11 where a significant difference exists be-

tween the ∆vtot and ∆v2
tot solutions. Despite the vastly different transfers, the error

in total ∆vtot cost is small - represented by the perpendicular distance of the ∆v2
tot

solution from the linear cost contour passing through the ∆vtot solution.

Minimization of ∆vtot means fuel minimization while ∆v2
tot minimization does

not, but the error is bounded, as shown here. Assume that the minimum ∆vtot

and ∆v2
tot require two different two-impulse maneuvers, p and q, respectively. It is

clear that ∆vtot(p) ≤ ∆vtot(q) and that ∆v2
tot(q) ≤ ∆v2

tot(p). Using the elementary
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(a) Diagram of initial and final orbits.

(b) Dashed (red) and dotted (blue) lines represent feasi-
ble transfers, parameterized by wc. Triangles and circles
show minima and maxima of ∆vtot and ∆v2

tot respectively.

Fig. 11. Special transfer case with four real roots.
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Table VIII. Orbit parameters range

Orbital element from to

Perigee altitude, hp (km) 350 36,000

Apogee altitude (km) hp 36,000

R.A.A.N. 0 360◦

Argument of perigee 0 360◦

Inclination 0 180◦

True anomaly 0 360◦

inequalities, |a| + |b| ≤
√

2(a2 + b2) and
√
a2 + b2 ≤ |a| + |b|, we can derive the

following estimation

∆vtot(q) ≤
√

2∆v2
tot(q) ≤

√
2∆v2

tot(p) ≤
√

2∆vtot(p). (3.30)

which implies a maximum cost overestimate of 41.4% using the ∆v2
tot optimality. In

practice, Eq. (3.30) overestimates this difference. To provide a better answer, the

results of a Monte Carlo approach is provided in Fig. 12. These results are obtained

with one million random tests, using random orbit and orbital positions with the

ranges provided in Table VIII. We calculate error as the percent difference in the

costs ∆vtot(p) and ∆vtot(q). They show that 74.3% of the cases resulted in errors of

less than 1%, and 95.4% of the cases had less than 5% error. The maximum error

achieved in these million cases was 15.8%. Despite efforts to maximize this error

and identify cases where maximal error may occur, we have been unable to find a

case that exceeds 20% error. Thus, the inequality of Eq. (3.30) is highly conservative

(pessimistic) as regards the degree of sub-optimality incurred by minimization of ∆v2
tot

instead of ∆vtot.
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Fig. 12. Histogram of percent error in |∆v1| + |∆v2| using the J = |∆v1|2 + |∆v2|2

cost function over one million random transfers.

4. Singularity

This method becomes singular when the departure and arrival radii become collinear.

When this happens, the value of K, as defined by Eq. (3.19), goes to infinity. When

the radii point in opposite directions, as in the Hohmann transfer case, an additional

design parameter - the angle of the orbit transfer plane - is introduced. When the

radii point in the same direction, the motion becomes rectilinear and a new quartic

equation must be solved. Both of these cases are treated in this section.

Collinear Radii in Opposite Directions

Consider the following equation for the magnitude of the orbit radius:

ri =
p

1 + e cosϕi
(3.31)
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where p is the semilatus rectum, e is the eccentricity, and ϕ is the true anomaly. For

a transfer between two collinear radii pointing in opposite directions, the final true

anomaly on the transfer orbit can be simply written as ϕ2 = ϕ1 + π, and the orbit

radii can be written in terms of the transfer orbit elements as

r1 =
p

1 + e cosϕ1

(3.32)

r2 =
p

1− e cosϕ1

(3.33)

which allows us to solve for p of the transfer orbit as the harmonic mean

p =
2r1r2

r1 + r2

(3.34)

Given that h =
√
µp, the angular momentum of the transfer orbit can be solved for

explicitly using only the orbit radii.

We can decompose the transfer velocities into two components, one parallel to

the orbit radii, wir, and one perpendicular to the orbit radii, wi⊥. The radial velocity

component of an orbit is given by [37]:

w1r =
µe sinϕ1

h
(3.35)

w2r =
µe sinϕ2

h
=
µe sin(ϕ1 + π)

h
=
−µe sinϕ1

h
(3.36)

such that we can define wr = w1r = −w2r. To solve for wi⊥, we simply use the

definition of angular momentum:

h = |ri ×wi| = riwi⊥ (3.37)

The direction of wi⊥ has an additional degree of freedom that serves to define the

plane of the orbit transfer. We define the angle between the transfer orbit plane and

the initial orbit plane as θ.
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We introduce a reference frame, O1, based on the initial orbit, defined by the

vectors {r̂1, ŝ1, ĥ1} where ĥ1 = r̂1×v̂1

|r̂1×v̂1| and ŝ1 = ĥ1 × r̂1. The initial, transfer, and

final velocity vectors can all be coordinatized in this O1 frame as follows:

v1 =


v1r

v1s

0

 =


v1 · r̂1

v1 · ŝ1

0

 (3.38)

v2 =


v2r

v2s

v2h

 =


v2 · r̂1

v2 · ŝ1

v2 · ĥ1

 (3.39)

w1 =


wr

w1⊥ cos θ

−w1⊥ sin θ

 (3.40)

w2 =


wr

−w2⊥ cos θ

w2⊥ sin θ

 (3.41)

Expanding the cost function J = |∆v1|2 + |∆v2|2 yields

J = v2
1+v2

2+w2
1⊥+w2

2⊥+2w2
r−2 [(v1r + v2r)wr + (v1sw1⊥ − v2sw2⊥) cos θ + v2hw2⊥ sin θ]

(3.42)

Again, after removing the first four terms which are constant, and removing the

common factor of two, a slightly modified cost function can be defined that we seek

to minimize:

G = w2
r − (v1r + v2r)wr − (v1sw1⊥ − v2sw2⊥) cos θ − v2hw2⊥ sin θ (3.43)

Taking the first derivative of G with respect to the two optimization variables wr and
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θ and substituting in the values of wi⊥ from Eq. (3.37) yields the following optimality

conditions:

wr =
v1r + v2r

2
(3.44)

tan θ =
r1v2h

r2v1s − r1v2s

(3.45)

The angle θ has two possible solutions in different quadrants, and these must both

be checked to find the minimum.

Collinear Radii in the Same Direction

Alternatively, a singularity can occur when the angle between the two radius vectors

is zero - they are collinear and pointed in the same direction. In this case, the transfer

orbit devolves into a rectilinear orbit. To solve the rectilinear orbit case we first note

the form of the transfer velocities:

wi = wir̂ (3.46)

The only unknowns of the transfer are the two magnitudes, wi. Second, we look at

the energy, α, of the orbit through the vis-viva equation:

αi =
2

ri
− w2

i

µ
(3.47)

Note that this is a generic form, allowing for elliptic, parabolic, and hyperbolic orbits.

By setting α1 = α2, we can reduce the problem to a single unknown wi. Note that the

sign of wi is known for the inner location (closest to the Earth) since passing through

the Earth must be restricted, but the sign of the outer location velocity is unknown.

For this reason we introduce the subscript I to refer to the inner location and O for

the outer location in place of the 1 and 2 subscripts. For instance, if r1 < r2, then we

equate rI = r1 and rO = r2.
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We break the initial and final velocities into components along the radial direction

and normal to the radial direction:

vi = virr̂ + vitt̂i (3.48)

such that

∆v1 = (w1 − v1r) r̂ − v1tt̂1 (3.49)

∆v2 = (v2r − w2) r̂ + v2tt̂2 (3.50)

This yields the cost equation:

J = v2
1 + v2

2 + w2
1 + w2

2 − 2 (w1v1r + w2v2r) (3.51)

Using Eq. (3.47) to solve for one of the unknown transfer velocities and making some

simplifications, we can define the equivalent cost function:

G = w2
O − wOvOr ± vIr

√
w2
O + 4K (3.52)

where we define K equivalent to before in Eq. (3.20) and the ± sign depends on

whether the initial position is the outer or inner point respectively. Taking the deriva-

tive of G, we find the optimality condition:

∂G

∂wO
= 2wO − vOr ±

vIrwO√
w2
O + 4K

= 0 (3.53)

This equation can then be transformed into the following quartic equation:

w4
O + c3w

3
O + c2w

2
O + c1wO + c0 = 0 (3.54)
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where

c3 = −vOr

c2 = 4K +
v2
Or − v2

Ir

4

c1 = −4KvOr

c0 = Kv2
Or

Note that not all solutions of this equation are solutions of Eq. (3.53), but all solutions

of Eq. (3.53) are also solutions of this equation. We also note that Eq. (3.53) is

guaranteed to have at least one real solution, because it is continuous and goes from

negative infinity to positive infinity as wO varies over that range. Thus, the quartic

is also guaranteed to have at least one real solution, which means Eq. (3.54) must

have two or four real roots. Checking all of the real solutions to minimize the cost

function solves this singular case.

5. Pork-chop Example

Using the general theory (and the theory developed for the singular case presented in

the previous section) it is possible to produce “pork-chops” and to identify the best

departure and arrival orbital positions for the two-impulse orbit transfer problem

between two generic elliptic orbits. For two orbits randomly selected, as specified by

Table IX, Fig. 13 show the contour plots for the minimum ∆vtot transfer cost (left

plot) and the associated minimum ∆v2
tot transfer cost (right plot). The two plots

are nearly identical, indicating that the ∆v2
tot minimization is sufficient for finding

optimal transfer locations. Figure 14 shows the percent difference between the two

plots.
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(a) ∆vtot optimal

(b) ∆v2
tot optimal

Fig. 13. Contour plots showing |∆v1| + |∆v2| cost using the ∆vtot optimality (left)

and ∆v2
tot optimality (right) over the ranges of true anomaly for initial and final orbit.
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Fig. 14. Percent error in |∆v1|+ |∆v2| using the ∆v2
tot optimality.

Table IX. Orbit parameters for pork-chop plots

Orbital element Initial orbit Final orbit

Perigee altitude (km) 10,236.2 26,158.9

Apogee altitude (km) 54,495.6 29,659.0

R.A.A.N. 83.86◦ 103.27◦

Argument of perigee 18.54◦ 159.13◦

Inclination 33.39◦ 57.08◦
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C. Optimal Two-Impulse Transfers

The method presented in the previous section solves for the optimal two-impulse

transfer when the initial and final states are fixed and time is free. In the constellation

transfer problem, the initial and final states are freely chosen so long as they lie on

the state-space of the initial and final orbit. In other words, the true anomaly for

departure and the true anomaly for arrival are additional optimization variables. As

shown in Fig. 13, the cost function over these variables has many local minima that

precludes the use of traditional optimization methods.

Methods such as the Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), or Simulated Annealing (SA) can be used to solve for global minima in com-

plicated, multi-variable optimization problems, but both have a number of parameters

to tune to produce the desired results [61, 62]. Alternatively, Henderson and Mor-

tari have developed a Learning Approach (LA) to sampling optimization algorithm

to solve these problems that requires no tuning [17, 18, 19]. Several refinements to

the LA algorithm are presented here, and it is then applied to the general optimal

two-impulse transfer problem.

1. Learning Approach to Sampling Optimization

The Learning Approach to sampling optimization is based on rejection sampling (or

accept-reject method) developed by von Neumann [63]. A brief review of the LA

method is presented here. First, we start with a cost function J(x) where x is an

n-d vector of design variables. The domain of the optimization problem is restricted

by some minimum and maximum values such that x ∈ [x−,x+]. Initially, the range

of the cost function must be defined on some interval J(x) ∈ [J−, J+]. The cost

function is then evaluated at the boundary points of the specified domain and these
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values are stored in a database.

The LA algorithm then generates a random point, xr, within the domain using

a uniform distribution. The points within the database are used to approximate the

value of the cost function at the randomly generated point, Ĵ(xr). Next, a random

value y is generated over the specified range of the cost function. If y > Ĵ(xr) then the

point is accepted, and the cost function is evaluated at xr and added to the database.

Otherwise, the point is simply rejected and no cost function evaluation takes place.

The process of generating random points within the domain and accepting some and

rejecting others continues until a specified number of points have been accepted.

The way the LA algorithm works is essentially that the database acts as a piece-

wise approximation to the cost function. The regions where the approximate cost

function are low will have small values of Ĵ(xr) and are thus more likely to be ac-

cepted. As more points are added, the database approximation becomes more and

more accurate and the point selection accelerates towards accepting points near the

true minima of the cost function. Still, no region of the domain has zero probability

of being accepted, so the entire domain is explored.

2. Refinements

Though the learning-adaptive algorithm is simple in theory, the implementation can

cause headaches. Two issues had to be addressed before the LA algorithm could be

applied to the impulsive transfer problem and before it could be efficiently used to

solve the constellation transfer problem. First, the question of how to organize the

generated points into a database had to be addressed. Secondly, limits on the cost

function J were required to select random values for the accept-reject sampling.
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Delaunay Triangulation

The problem of how to organize all of the data associated with this algorithm is

critical to the efficiency of the overall method. An unorganized database requiring

extensive searches will slow the process down so much it would be better to simply

choose points at random and evaluate all of them to find the global minimum. The

clumping of the samples poses additional problems because the database must handle

non-uniform distributions, and the continuous addition of new samples means the

database method must be efficient for dynamic datasets.

The k-vector approach described in Ref. [64] is extremely efficient, but it requires

a uniform dataset for maximum efficiency. Additionally, much of its efficiency is based

on significant pre-computing, so it works best on a static dataset. Quad-tree databases

are extremely popular, but again they work best on uniform datasets [65]. As the

dataset becomes non-uniform, a balancing operation must take place, decreasing its

efficiency. A K-D tree (extension of quad-tree to n dimensions) implementation with

automatic tree balancing has been developed for the LA algorithm in Ref. [66], but

we seek a simpler and more elegant solution for this limited 2-D application.

One method stands out for its ability to handle non-uniform, dynamic datasets:

Delaunay triangulation [67]. Not only is the efficiency of a Delaunay triangulation

unaffected by clustering, there is a method for constructing Delaunay triangulations

by adding one point at a time that ties for the best expected run-time complexity

on average. Delaunay triangulation takes points in R2 and generates a series of

edges connecting those points to create a convex shape filled with triangles (Delaunay

tesselation does a similar thing for higher dimension spaces). In general, an infinite

number of triangulations exist, but Delaunay triangulations maximize the minimum

angle of any triangle. In other words, Delaunay triangulation prefers equilateral
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triangles to long, skinny triangles. Note that Delaunay triangulations are the dual of

Voronoi diagrams [67].

This yields an additional favorable property of Delaunay triangulations (or tes-

selations) in that the three vertices of a triangle are often the nearest neighbors of all

the points residing within that triangle. As such, the points on the vertices can be

used in a simple linear interpolation to solve for the needed estimate of J in the LA

algorithm. These many advantages led to the use of the Delaunay triangulation as

the database method for this problem.

Generating y-values

A fine balance must be struck between the number of points rejected and the number

accepted. Higher numbers of rejected points provide better local convergence, but

restrict the LA algorithm’s ability to explore the entire domain. Despite the efficiency

of the Delaunay database method, running a search on every generated point to locate

the triangle that encloses it followed by a linear interpolation can take significant time

when the rejection rate is too high.

To accomplish the accept-reject sampling, a random variable y must be generated

based on the expected limits of the cost-function J . The original formulation of the

LA algorithm called for either a uniform distribution or a log-normal distribution to

generate a point within the range [J−, J+] [17]. The log-normal distribution has the

advantage of preferring low values of y, thereby weighting more heavily the regions of

local minima. Ref. [19] further recommended that those limits for an orbital transfer

problem be J− = 0 and J+ = max J(xi), where xi are all data points in the data base.

Note that a stricter lower limit reduces the number of spurious points rejected because

they are lower than the global minimum, whereas a stricter upper limit improves the

behavior of the LA algorithm of focusing efforts on the minima.
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Instead of the aforementioned limits and distributions, we adopted the following

for generating values of y:

y = (Jmed − Jmin)|z|+ Jmin (3.55)

where Jmed and Jmin are the median and minimum values of J in the database respec-

tively, and z is a zero-mean Gaussian random variable with σ = 1. This approach

has many advantages. First, like the log-normal scale, it tends to produce smaller

values of y, but the scaling is more intuitive to understand. Second, using the median

value of the database forces the sampling to become stricter as more points are added,

thus improving the convergence towards minima. Third, since the values Ĵ(xr) are

linearly interpolated from the values in the database, Ĵ(xr) is strictly greater than

min J(xi), so values of y below that level will always be rejected if generated.

Note that since this work was completed, Henderson and Mortari have proposed

several additional alternatives for generating y-values, similar to the one used here.

They have also performed extensive testing on a variety of benchmark problems using

these different formulations. For the authoritative analysis on the LA algorithm, refer

to Henderson’s forthcoming dissertation.

Tuning LA for Orbit Transfers

To improve performance, a few other tweaks have been made to the rejection sam-

pling method, given a target of n accepted points. Though this fine-tuning of the LA

algorithm is generally applicable to all problems, we make no claims as to improve-

ments in performance on any problem other than the optimal orbit transfer problem

studied here.

First, an initial set of points is accepted regardless of the accept-reject criteria

to fill out the domain - typically the first 1%-5% of n. Second, rather than using
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Jmed in Eq. (3.55), Jmax is used for the first 10% of the points, allowing for more of

the domain to be searched initially. Lastly, when a point is generated, the size of the

triangle that encloses it is evaluated. If the size of that triangle is more than 10 times

the average triangle size (number of triangles is approximately twice the number of

points in the database), then the point is accepted, regardless of the other accept-

reject criteria. This guarantees that the LA algorithm does not exclude huge swaths

of the domain that may need to be investigated. Without this additional criterion,

many cases were witnessed where a triangle had vertices at three peaks in the cost

function domain and the entire valley enclosed by that triangle went unsearched.

3. Application to Two-Impulse Transfers

We define the general two-impulse orbit transfer as follows. A satellite exists on some

initial orbit and must move to some final orbit. Both orbits can be arbitrarily defined

in shape, size, and orientation. The transfer departure point lies anywhere on the

initial orbit and the transfer arrival point lies anywhere on the final orbit. As such

the true anomalies of the departure and arrival points are independent optimization

variables. The time of flight is also unconstrained, permitting a third optimization

variable. The approach here is to solve the free time of flight optimization problem us-

ing the method presented in Section B, then use the Learning Approach optimization

technique to solve for the optimal initial and final true anomalies.

Satellite Phasing

Free time of flight and arbitrary initial and final position along an orbit clearly ignores

the critical issue of phasing along the orbit. This can be rectified with a combination

of three methods.

First, in-plane rephasing of a satellite simply entails boosting into a slightly larger
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orbit or dropping down into a slightly smaller one. After a number of revolutions, the

satellite is reinserted into the target orbit with the correct phasing. As the amount

of time spent on those phasing revolutions is allowed to increase towards infinity,

the fuel cost of the rephasing goes to zero. Even with non-infinite time, the costs

of in-plane rephasing are small enough to be neglected compared to the other orbit

shape changes and reorientations.

Second, if the initial and final orbit have different semi-major axes, the departure

time can be chosen such that the phasing is correct. Again, it may take infinite time

before the phasing becomes correct, and it may be impossible if the two orbital periods

are rational multiples of one another, but choosing the departure time can minimize

the rephasing effort required.

Lastly, the transfer orbit presents another opportunity to effect the phasing,

provided it has a different semi-major axis than the other two orbits. The transfer can

be allowed to extend to multiple revolutions without affecting the fuel requirements.

Describing Initial and Final Orbits

Typically the size, shape, and orientation of a general orbit can be described using a

set of five orbit parameters: semi-major axis, eccentricity, inclination, right ascension

of the ascending node (RAAN), and argument of perigee. The general orbit transfer

problem only requires information about the relative orientation between the two

orbits - not both inertial orientations. This allows a reduced set of parameters to be

used to describe the orbit transfer problem.

First, the inclination of the initial orbit can be set to zero without loss of general-

ity. Additionally, the RAAN of both orbits can be set to zero. The relative orientation

of the two orbits will be handled completely by the values of the argument of peri-

apsis. Given a direction cosine matrix (DCM), [CIN(Ωi, ii, ωi)], that rotates a vector
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from the inertial frame into the initial orbit frame and a direction cosine matrix,

[CFN(Ωf , if , ωf )], that rotates a vector from the inertial frame into the final orbit

frame, the DCM describing the relative orientation between the two orbits can be

computed as

[C] = [CFN ][CIN ]T (3.56)

The relative orbit elements can be calculated from the elements of this matrix as

follows:

ωi = − tan−1

(
C31

−C32

)
(3.57)

if = cos−1(C33) (3.58)

ωf = tan−1

(
C13

C23

)
(3.59)

This simplification means that the general orbit transfer problem can be de-

scribed using only the seven variables {ai, ei, ωi, af , ef , if , ωf}, rather than the typical

ten parameters required to define the size and orientation of two general orbits. This

reduced space will be used in the Monte Carlo tests later in this section.

Simple Example

To better understand how the LA optimization technique solves the orbit transfer

problem, we return to the example transfer presented at the end of the previous

section in Fig. 13. Since the LA method relies on random sampling, we will compare

it to randomly sampling the domain with a uniform distribution. The LA algorithm

initializes with 10 randomly selected points, where all points are accepted, to provide

a reasonable initial approximation of the cost function, so Fig. 15 shows that after 10

points, both the LA and the uniform distribution are identical.

As more points are added to the database, the LA algorithm focuses more on the
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(a) LA sampling

(b) Random sampling

Fig. 15. Initial distribution of 10 points for both the LA sampling algorithm and

a purely random sampling algorithm. The LA algorithm accepts the first 10 points

regardless of accept-reject criterion.
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minima. Figures 16 and 17 show the distributions of both techniques at 100 points,

200 points, 300 points, and 400 points. The points noted by circles (black) represent

accepted points. The filled in circle (red) represents the current best solution in

the database at each stage, whereas the triangle (green) represents the true global

minimum of this particular transfer.

In this particular case, both methods arrive approximately at the true global

minimum, though the LA algorithm performs slightly better. The LA algorithm

arrives at a cost 1.8% off of the true minimum cost at a distance of 4.7◦ from the

minimum, whereas the random sampling algorithm is 5.3% off the true minimum cost

at a distance of 6.3◦.

Monte Carlo Results

To further test the LA sampling algorithm as it applies to the two-impulse trans-

fer problem, a Monte Carlo test was run. One thousand (1,000) different sets of

initial and final orbits, as defined by the seven parameters {ai, ei, ωi, af , ef , if , ωf}

described earlier, were run through the LA sampling algorithm and also through a

simple random sampling algorithm that accepted all points. A brute force grid search

was used to initialize multiple local minima searches, the results of which were used

to determine the true global minimum of the ∆v2
tot cost function. The minimum

value reported by both the LA sampling and random sampling algorithms were then

compared to these global minimum values.

Figure 18 shows the percent error in the value of the ∆v2
tot cost function between

the true global minimum and that found by the two different algorithms. The average

error over all test cases was 1.0% for the LA algorithm with 96.0% of the cases

below 5% error, versus 2.9% average error and only 81.9% below the 5% threshold

for the random algorithm. The maximum error encountered was 12.2% and 35.4%
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(a) 100 points

(b) 200 points

Fig. 16. Accepted points for the LA sampling algorithm.
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(c) 300 points

(d) 400 points

Fig. 16. (cont.) Accepted points for the LA sampling algorithm.
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(a) 100 points

(b) 200 points

Fig. 17. Accepted points for the random sampling algorithm.
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(c) 300 points

(d) 400 points

Fig. 17. (cont.) Accepted points for the random sampling algorithm.
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respectively. It is concluded that the LA algorithm outperforms the random sampling

algorithm by about a factor of three in this application.

For the constellation transfer problem, correctly computing the cost function is

of utmost importance, but it is still interesting to see how far off in true anomaly

space the true global minimum was from the global minimum computed by each

algorithm. Figure 19 shows the error in true anomaly space in degrees between the

calculated locations of the global minimum. For the LA algorithm, 71.2% of the

reported global minima are within 10◦ of the true global minima, compared to only

43.6% for the random algorithm. Despite the large number of cases with large errors

in global minimum location, the errors in the cost function remain low - a look at

the relationship between the two errors reveals very little correlation - indicating that

when the location error is large, the algorithm has converged on a local minimum

that is only slightly worse than the global optimum.

When considering the entire constellation transfer problem, we have introduced

the ∆v2
tot cost function to minimize computational cost, but this has some error built

into it, as discussed in the previous section. Since no global search routine, including

the LA method presented here, can guarantee convergence to the true global mini-

mum, a valid question is to ask what are the end-to-end errors. That is, the output

of the LA algorithm is a slightly sub-optimal solution of a slightly approximated cost

function, so what is the error of that final solution compared to the true optimal

value accrording to the desired ∆vtot cost function? Figures 20 and 21 show the same

results as the Figs. 18 and 19, but with respect to the ∆vtot cost function.

Despite the slightly sub-optimal result using an approximated cost function, the

LA sampling algorithm still averages only 1.3% error from optimal over the 1,000 test

cases and has 95.9% of the test cases within 5% error!
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(a) LA sampling

(b) Random sampling

Fig. 18. Percent error of the minimum ∆v value using the ∆v2
tot cost function.
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(a) LA sampling

(b) Random sampling

Fig. 19. Error in degrees of the location of the global minimum using the ∆v2
tot cost

function.
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(a) LA sampling

(b) Random sampling

Fig. 20. Percent error of the minimum ∆V value using the ∆vtot cost function.
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(a) LA sampling

(b) Random sampling

Fig. 21. Error in degrees of the location of the global minimum using the ∆vtot cost

function.
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D. Conclusions

The general constellation transfer problem can be defined as selecting the optimal

assignment of satellites in an initial constellation to satellite slots in a final constella-

tion while simultaneously solving for the optimal orbit transfers for those assignments.

This chapter has shown how the constellation transfer problem can be formulated and

solved as a linear assignment problem, although this formulation requires the optimal

orbit transfer problem to be solved for every combination of initial satellite position

and final constellation slot.

To efficiently solve these orbit transfer problems, this chapter then presented

a closed-form solution for the minimum ∆v2
tot Lambert’s problem. The resulting

procedure constitutes an easy tool to implement that can be useful when extensive

minimum ∆vtot problems must be solved. Since the method does not require any

iterations, the number of steps for the whole procedure (complexity) is constant.

This is a crucial property when the algorithm has to be extensively used within

the constellation transfer framework or other optimization routines. The solution

provided by minimizing ∆v2
tot does not always minimize the fuel consumption, but it

represents a good approximation, and it can be used as the starting point for finding

(e.g. using gradient descent approach) the true optimal two-impulse maneuver with

minimum ∆vtot. The difference between ∆v2
tot and ∆vtot minimizations is numerically

found to be bounded with a maximum value lower than 20%.

An efficient solution to the ∆v2
tot Lambert’s problem, however, is only part of

what is needed to solve the general orbit transfer problem. Allowing the initial and

final positions to vary about the initial and final orbit presents a difficult global

optimization problem with multiple local minima. The newly developed Learning

Approach to sampling optimization was applied to the two-impulse orbit transfer
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problem. Section 2 introduced some modifications and improvements to the LA

algorithm to improve its overall performance. The LA algorithm was demonstrated

to outperform a simpler random sampling approach and to efficiently solve the global

optimization problem with only 400 evaluations of the ∆v2
tot cost function.



112

CHAPTER IV

CASE STUDIES

Chapters II and III provided the development of several new techniques critical to ef-

ficiently solving the constellation design and constellation transfer problems. Though

each method was assessed individually within those chapters, here we look at three

particular case studies to emphasize their utility. First, we consider the problem of

designing a constellation for a global navigation satellite system (GNSS). Using the

European Galileo GNSS design as a baseline, we design an Elliptical Flower Constel-

lation demonstrating superior performance for the same launch costs. In the second

example, we consider the design of a new Iridium LEO communications constellation

(Iridium recently announced plans to launch a new constellation by 2014 [68]). Com-

pared to an optimal Walker constellation design, the EFC design provides improved

global coverage to minimize downtime for satellite phone users. Lastly, we design two

Lattice Flower Constellations to provide regional coverage over two different sites,

then solve the constellation transfer problem using the minimum ∆v2
tot and auction

algorithm approaches discussed in Chapter III.

A. Global Navigation Satellite System

To examine the effectiveness of the Elliptical Flower Constellation framework for

designing a global coverage constellation, we first use the example of global navigation.

Flower Constellations were first studied for use in GNSS by Park [69], who found

improvements over the Galileo GNSS constellation by using a combination of two

Harmonic Flower Constellations found by trial and error. Tonetti [70] ran a Genetic

Algorithm (GA) to improve upon Park’s results. Both of these Flower Constellations

were designed for 30 satellites and utilized large numbers of orbital planes (15 and
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30 respectively), which is unattractive from a launch and operational standpoint.

Alternatively, Bruccoleri [71] found a Harmonic Flower Constellation with 24 satellites

that showed improved performance over the GPS constellation. All three studies

considered only circular orbits rather than be restricted to a critically inclined Flower

Constellation with elliptic orbits. In this study, we consider both 27 and 25 satellite

EFCs. We have not considered the combination of two or more EFCs into the same

constellation, as was done in Ref. [69], but this may yield additional improved results.

1. Cost Function

As a cost function to drive these design studies, we consider the Geometric Dilution

of Precision (GDOP), a measure of the accuracy of a GNSS solution. The lower the

value of GDOP, the more accurate is the GNSS solution. GDOP is dependent entirely

on the geometry of the satellites within view of a specific ground site and relies on

the visibility matrix, given by

A =



r̂
T

1 1

r̂
T

2 1

...
...

r̂
T

n 1


(4.1)

where r̂i is the unit vector from ground site to the ith satellite, and n is the number of

visible satellites. We defined a minimum elevation angle of 10◦ to determine satellite

visibility in this simulation. We define the matrix H = ATA. GDOP can then be

calculated

GDOP =
√

tr (H−1) (4.2)

This compact equation is simple, but requires a matrix inverse for every point

(in time and space) that needs to be evaluated, so here we derive a new equation with
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faster computation. Since the trace of a matrix is the sum of its eigenvalues, and the

eigenvalues of a matrix inverse are the inverses of the original matrix eigenvalues, we

can rewrite the computation of GDOP as

GDOP =

√∑
i

1

λi
(4.3)

where λi are the eigenvalues of H. Note that
∑

i λi = 2n. This alternate form of

GDOP calculation reduced computation time in MATLAB by more than a factor of

two.

To evaluate the accuracy of a given GNSS constellation, 1,000 points were dis-

tributed uniformly around a spherical Earth. The constellation was propagated using

an initial argument of perigee of zero with 5◦ steps in mean anomaly, and GDOP

was calculated for all ground sites at each of those times. The initial argument of

perigee was then rotated in 5◦ steps with mean anomaly propagation performed at

each step. This is a useful approximation of the behavior of the constellation due to

the low rate of rotation of argument of perigee as compared to mean anomaly. The

values of GDOP from all of these evaluations were then averaged, and the GA sought

to minimize this mean GDOP value.

2. Design Study: 27 Satellites

In this study, we compare performance to the Galileo constellation, designed as a

27/3/1 Walker constellation at 56◦ inclination and semi-major axis of 29,600 km [35,

72]. Initial design studies based on a variety of performance and operational con-

siderations led to this particular selection of the number of satellites and number of

orbital planes, so those were held constant in this design study. Once those numbers

are fixed, the Walker constellation framework allows for just two design variables: the

phasing parameter F and the inclination angle. The phasing parameter is restricted
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to just 3 possible values. In contrast, the new EFC framework allows for 117 unique

combinations of the parameters {Nω, N ′so, N
1
c , N2

c , N3
c } and permits eccentricity to

vary in addition to the inclination angle. Additionally, elliptic orbits are cheaper to

launch into than circular orbits of the same semi-major axis, so holding launch cost

constant allows EFCs with higher altitudes. Thus, the search space is significantly

expanded, yet still contains the original Galileo constellation design.

Preliminary analysis to reduce the design space consisted of evaluating all 117

EFCs over four values of eccentricity and eleven values of inclination:

e ∈ [0.1, 0.2, 0.3, 0.4], i ∈ [45◦, 47◦, . . . , 65◦]

Circular orbits were not considered because they all collapse to LFC/Walker constel-

lations per Thm. C.2. The inclination range was chosen to place the Galileo optimal

inclination of 56◦ in the middle. The semi-major axis was held fixed at 29,655 km,

corresponding to a repetition time of 17 orbits in 10 days. A satellite was considered

in view if it was at least 10◦ above the horizon (grazing angle).

The constellations were evaluated for both mean GDOP and maximum GDOP

encountered throughout the propagation. As a first cut, only solutions with a max-

imum GDOP below 6 were accepted (corresponding to the original requirements for

the GPS constellation [73, 74]). There were 9 EFCs out of the original 117 that

satisfied this requirement at a variety of inclinations and eccentricities, all of the form
No 0 0

N3
c Nω 0

N1
c N2

c N ′so

 =


3 0 0

N3
c 9 0

N1
c 0 1


All of the minima for mean GDOP occurred in the inclination range i ∈ [53◦, 59◦]

over the full range of eccentricity.
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This initial analysis was completed at a fixed altitude, but one advantage of

elliptical orbits is their ability to launch into larger orbits for the same launch cost. To

demonstrate this fact, consider the simple example of launching into a circular parking

orbit at an altitude of 200 km. Figure 22 shows the cost in ∆v for a two-impulse

maneuver into final orbits of varying semi-major axis and eccentricity. Clearly, as

eccentricity increases for a constant semi-major axis, the impulse requirement falls.

(a) Orbit transfer illustration for the case
of a=29,655 km

(b) ∆v requirements

Fig. 22. Demonstrating the lower ∆v requirements for elliptic orbits vs. circular

orbits of the same semi-major axis

The GIOVE-A and GIOVE-B satellites, launched as test vehicles for Galileo,

launched into 190 km altitude circular parking orbits at an inclination of 51.8◦ [75].

They were then boosted into their final orbit using a simple two-burn maneuver.

Using the limiting case of a 60◦ final inclination, a minimum eccentricity required to

launch into an orbit of a given semi-major axis with the same two-burn maneuver

cost as Galileo can be calculated. The minimum ∆v2
tot algorithm of Chapter III was

used for this computation assuming 180◦ transfer angle.

Following the design guidelines laid out by the Galileo constellation design en-
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gineers, we seek a constellation with a repeating ground-track with repetition times

between 5 and 10 days. Shorter repetition times lead to the build up of perturbations

as the satellites pass over the same gravitational disturbances repeatedly, whereas

longer repetition times pose operational challenges. Given these limitations and the

desire to keep the apogee below GEO, we selected nine values of semi-major axis.

Table X shows the different values of semi-major axis, minimum eccentricity (for the

same launch cost), and maximum eccentricity (for apogee below GEO). Only values

of semi-major axis larger than the planned Galileo system were considered because

Ref. [72] shows that performance improves as altitude increases (though with dimin-

ishing returns, and they considered only circular orbits).

Table X. Values of semi-major axis used for GNSS optimization

Np Nd a (km) emin emax

17 10 29,655 0.045 0.424

13 8 30,561 0.078 0.382

8 5 30,878 0.089 0.368

11 7 31,252 0.101 0.351

14 9 31,464 0.107 0.342

13 9 33,057 0.151 0.277

10 7 33,302 0.157 0.268

7 5 33,753 0.168 0.251

11 8 34,161 0.177 0.236

For the second stage of the design study, another brute force grid search was

completed with inclination selected from i ∈ [52◦, 53◦, . . . , 60◦], semi-major axis and

e = emin selected from Table X, and the EFC parameters selected from the 9 EFCs
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down-selected in the first stage.

After selecting the optimal inclination angle for each EFC at each altitude, one

EFC outperformed all others at all altitudes:
No 0 0

N3
c Nω 0

N1
c N2

c N ′so

 =


3 0 0

2 9 0

0 0 1


As expected, the best performance occurred at the maximum altitude with a =

34, 161 km and e = 0.177. The optimal inclination was the same as that of Galileo:

56◦. The mean GDOP of Galileo was calculated to be 2.32, whereas the mean GDOP

of this EFC designed constellation is 2.24 - an improvement of 3.5%. Given an

inclination of only 56◦ (as opposed to 60◦), the minimum eccentricity to achieve the

same launch cost to this much larger orbit is 0.150. The mean GDOP varies only

slightly (by 0.005) over the allowable eccentricity range, so eccentricity can be chosen

based on other considerations. For instance, small eccentricity is attractive from an

operational perspective, whereas larger eccentricity increases the allowable on-orbit

satellite dry mass.

This EFC exhibits an interesting property: the satellites share the same geometry

of the Galileo constellation at all times, they simply vary in altitude over time. The

geometry is not an exact match, as the rotation of the argument of perigee perturbs

it somewhat, but the two constellations bear great resemblance to one another. This

“breathing” behavior, where the EFC mimics an LFC but with varying altitude, will

occur for any EFC of the form
No 0 0

N3
c Nω 0

N1
c N2

c N ′so

 =


No 0 0

Nc Nso 0

0 0 1
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where No, Nso, and Nc are the parameters of the associated LFC.

The results of this study indicate that the Galileo constellation, at a semi-major

axis of almost 30,000 km and 27 satellites, is very nearly optimal. The original

designers chose a design point near the knee of the curve where increasing number of

satellites or altitude met with diminishing returns [35], which is why the EFC design

could only slightly improve upon the original Galileo design.

3. Design Study: 25 Satellites

The ultimate goal of a constellation designer is a constellation that maximizes perfor-

mance while minimizing total system cost. Toward that end, reducing the number of

satellites in a constellation, thereby eliminating its hardware and launch vehicle costs

is one of the most effective means of reducing costs. We consider here the problem

of designing an EFC with 25 satellites, divided into 5 orbital planes, to see what

performance can be achieved while reducing the number of satellites by two.

The design approach is the same as in the previous section. For the 25 satellite,

5 plane case, there exist 150 unique EFCs, and these were all studied over a range of

eccentricities and inclinations at the original Galileo altitude. The maximum GDOPs

encountered by the 25 satellite constellations were significantly higher than the orig-

inal 27 satellite study, so the initial results were pared down by requiring the mean

GDOP to be less than 3 and the maximum GDOP to be less than 16. This left 8 differ-

ent EFCs which were effective at a variety of eccentricities and inclinations. Table XI

shows the configuration parameters for these 8 EFCs, all of which had Nω = 5.

When the altitude was allowed to vary as in the previous section (with e = emin),

the maximum altitude was again the most effective. Unlike the 27 satellite case,

however, there was significant variation in GDOP as a function of eccentricity, so

each of the 8 EFCs were analyzed over a range of eccentricities at the maximum



120

Table XI. Elliptical Flower Constellation parameters for 25 satellite GNSS

N1
c N2

c N3
c

0 2 3

3 2 2

4 2 2

3 3 4

4 3 3

3 4 3

4 4 2

4 4 4

altitude.

The best 25 satellite constellation was found to be inclined at 55◦ with an eccen-

tricity of 0.207 and EFC parameters
No 0 0

N3
c Nω 0

N1
c N2

c N ′so

 =


5 0 0

4 5 0

4 4 1


The mean GDOP experienced with this constellation was 2.49, compared to the

2.24 of the 27 satellite EFC in the previous section. This 10% reduction in mean

accuracy is significant, but may be warranted given the reduced costs of a 25 satellite

constellation. Of course, if the spare satellite strategy employed is to place one spare

satellite in every orbital plane, then both the 27 satellite, 3 plane constellation and

this 25 satellite, 5 plane constellation require 30 total satellites on orbit. The major

shortcoming of the 25 satellite constellation is its maximum GDOP of 9.11, compared
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to a maximum GDOP of 3.87 for the 27 satellite EFC. A value above 6 is considered

unusable [73], so there are times at which users would be unable to get a fix using

this system. One conclusion is that the Galileo constellation as currently designed is

very well optimized!

B. Iridium Design

The Iridium constellation was initially launched in 1997-1998 to provide global satel-

lite phone service. The anticipated consumer demand never materialized due to the

explosion of cell phones, and the company quickly went bankrupt in 1999 [76]. The

bankrupt company was purchased for pennies on the dollar and service was restarted

in 2001, with a focus on commercial and government customers with needs to com-

municate in remote areas of the world. In February 2007, Iridium announced a plan

to launch a new constellation of satellites in 2014 to replace the existing one. The

new satellites will have increased bandwidth capabilities, as well as several scientific

instruments on board to measure the atmosphere [68].

The original Iridium constellation consisted of 66 satellites in 6 planes in a streets-

of-coverage design pattern. Iridium has announced that the new constellation will also

have 66 satellites in 6 planes at the same altitude - 781 km - but have not released

details of the constellation design. To compare the efficacy of the Elliptical Flower

Constellation approach, both an optimal Walker constellation and EFC were designed

with the announced number of satellites, orbital planes, and semi-major axis.

A brute force search was conducted through the 6 available Walker constella-

tions and the 396 EFCs. The eccentricity for the EFCs was set to 0.07, which yields a

perigee altitude of ≈ 300 km. Satellites below that altitude are subject to significant

atmospheric drag, so that established the maximum allowable eccentricity. The in-
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clination of all of the constellations was varied between 40◦ and 90◦ in 2◦ increments.

As in the GNSS example, 1,000 points were distributed uniformly about a spherical

Earth, and satellite visibility required a minimum elevation angle of 5◦.

The optimal Walker constellation was a 66/6/2 at an inclination of 64◦. The

optimal EFC had an inclination of 62◦ and EFC parameters
No 0 0

N3
c Nω 0

N1
c N2

c N ′so

 =


6 0 0

0 11 0

1 6 1


The constellations were propagated with 5◦ steps in mean anomaly, and every point

on the Earth’s surface was evaluated for single satellite visibility at each time step.

We define the failure rate to be the sum total, both spatially and temporally, of the

number of points with no satellite visibility divided by the total number of point

evaluations. A failure rate of zero corresponds to continuous global coverage. The

optimal Walker constellation exhibited a failure rate of 2.8% compared to a failure

rate of only 0.9% for the EFC - a factor of 3 improvement.

A simple coverage metric was used to optimize these constellations, and streets-

of-coverage designs were not considered. Still, this simple example shows the power

of using EFCs for global coverage over the traditional Walker constellation design

methodology. Whereas the GNSS example showed the utility of eccentric orbits

due to lower launch costs, this example illustrates how eccentric orbits can improve

coverage due to their larger mean altitude. The mean orbital radius of a satellite when

averaged over time is equal to a(1+e2/2). So increasing eccentricity while maintaining

semi-major axis results in a larger mean altitude, thereby improving coverage. In

this case, optimizing the design using EFCs leads to significant advantages over the

optimal Walker constellation.



123

C. Surveillance Reconfiguration

The previous two examples demonstrated the advantages of using EFCs over tradi-

tional Walker constellations. In this section, we complete an example of solving the

constellation transfer problem. Two Lattice Flower Constellations were independently

designed to optimize coverage over either Baghdad, Iraq or Kabul, Afghanistan, and

then the constellation transfer tools of Chapter III were applied to optimize the trans-

fer between them. This is an example of changing mission requirements motivating

constellation reconfiguration.

1. Constellation Design

The following scenario is not based on any existing needs or capabilities, but is merely

meant to be representative of a possible situation calling for constellation reconfigu-

ration. Assume that the U.S. seeks to deploy a constellation of satellites for surveil-

lance and reconnaissance of particular sites and has enabled this constellation to be

reconfigurable by incorporating high-impulse thrusters into the satellite design. This

constellation consists of 6 satellites in an unspecified number of planes and with a re-

peating ground-track that repeats every day after 12 orbital periods (a = 8, 059 km).

Initially the constellation is designed to provide coverage of Baghdad, Iraq, lo-

cated at 33◦20′0′′N and 44◦26′0′′E. Later, the mission changes to require coverage of

Kabul, Afghanistan at 34◦31′59′′N and 69◦9′58′′E. Since this is a regional coverage

requirement, LFCs are better suited than EFCs to tackle this problem. Only criti-

cally inclined orbits were considered to allow for the use of elliptical orbits without

concern for J2 effects.
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Genetic Algorithm

The design space includes a combination of integer and real valued variables and the

cost function is very non-linear with multiple minima. Genetic Algorithms (GAs)

have been widely used for such problems and are implemented for this problem using

MATLAB’s Genetic Algorithms Toolbox. A complete description of GAs is beyond

the scope of this paper, but here is a brief explanation.

An initial population is randomly generated where each member of the population

is represented by a chromosome comprised of genes representing each design variable.

In this problem, the chromosome is defined as an index number indicating one of

the 12 integer parameter combinations, an eccentricity value ranging between 0 and

0.171, an argument of perigee on the interval [0◦, 360◦), and two scale factors between

0 and 1 to vary the mean anomaly and RAAN of the 0th satellite. A scale factor of 0

corresponds to those parameters being zero, whereas a scale factor of 1 corresponds

to the maximum values of M and Ω as calculated by Thm. C.7. Eccentricity was

restricted to maintain perigee above 300 km altitude.

A fitness (cost) function is evaluated for each member of the population. In this

problem, we seek to maximize the amount of time within view of the target latitude

and longitude. A new population is then generated by recombining and mutating the

“fittest” members of the original population. Each population is known as a genera-

tion, and each generation represents an iteration of the optimization program. The

average fitness of the population typically improves with each generation as the pop-

ulation evolves toward the optimal solution. The mutation enables the population

to escape local minima in search of the global minimum, whereas the recombina-

tion (known as cross-over) averages the best solutions of the population to converge

towards minima.
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Design Results

Satellite visibility for this problem was restricted to satellites above 5◦ elevation angle

and ground sites within the 45◦ field of view (FOV) of a nadir pointing sensor. Clearly

the FOV is the limiting requirement, but a minimum elevation angle must be specified

simply to avoid satellites “seeing” a ground site through the Earth.

We denote the constellation designed for Baghdad coverage as Constellation B

and the constellation designed for Kabul coverage as Constellation K. The optimal

parameters for these constellations, as found by the GA, are given in Table XII. Note

that an argument of perigee of 270◦ places the apogee at the northernmost point of

the orbit, and that both constellations converged to nearly the maximum eccentricity

allowed to maximize coverage.

Table XII. GA generated LFC designs for coverage of Baghdad and Kabul

Parameter Constellation B Constellation K

No 6 6

Nso 1 1

Nc 0 0

e 0.168 0.170

ω 258.5◦ 273.9◦

Ω0 41.4◦ 30.9◦

M0 221.6◦ 272.7◦

The amount of time each site is visible over the course of a single day by each

constellation is given by Table XIII. The ground-tracks of both constellations are

sufficiently dense that both sites are covered by both constellations, but the optimal

constellation provides an improvement of more than 10% in both cases.
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Table XIII. View time per day of each site by each constellation in minutes

Site Constellation B Constellation K

Baghdad 90 74

Kabul 84 94

2. Constellation Transfer

The first step in solving the constellation transfer problem was to solve for the required

∆v for each of the 36 different orbit transfers between the 6 satellites of Constellation

B and the 6 satellites of Constellation K. As described in Chapter III, the phasing

of the satellites was ignored, and the Learning Approach to sampling optimization

was combined with the minimum ∆v2
tot methodology to rapidly compute the ∆v’s

presented in Table XIV.

Table XIV. Required ∆v to transfer from one slot in Constellation B (Bi) to another

slot in Constellation K (Ki) in km/s. Optimal assignment in bold.

K1 K2 K3 K4 K5 K6

B1 12.82 10.26 6.19 1.02 4.62 9.27

B2 9.38 12.96 10.22 6.20 1.02 4.69

B3 4.64 9.38 12.91 10.33 6.26 1.02

B4 1.05 4.63 9.32 12.92 10.23 6.28

B5 6.21 1.02 4.63 9.35 12.94 10.24

B6 10.21 6.22 1.02 4.57 9.31 12.83

A few things are immediately obvious from Table XIV. First, the optimal as-

signment, shown in bold, is individually optimal for every satellite. The auction
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algorithm was initialized with a random assignment, and it quickly converged on

the correct assignment. Note that not all constellation transfer assignments will be

this straightforward and the auction algorithm is a useful tool for automating the

assignment process. Secondly, the uniformity of the LFCs is clearly evident from the

repeated values throughout the table. The near perfect agreement between the values

validates the optimal ∆v calculation method.

Whether the total ∆v cost of 6.14 km/s is justified by the > 10% improvement

in coverage time is left to the fictitious customer. This example demonstrates the

solution to the entire constellation reconfiguration problem, from constellation design

to constellation transfer using the methods outlined in Chapters II and III.

D. Conclusions

This chapter presented two case studies on using the Elliptical Flower Constellations

for constellation design, and then a third case study on the entire constellation recon-

figuration problem. All three examples demonstrated improvements over standard

design and analysis methodologies.

The first example investigated the Galileo GNSS constellation and utilized the

fact that elliptical orbits are cheaper to launch into than circular orbits of the same

semi-major axis to find an EFC at a higher altitude with improved performance. The

3.5% improvement in mean positioning accuracy using EFCs was achieved despite

the high degree of optimality found within the original Galileo design. The GNSS

design study converged on an EFC with an almost identical distribution to that

of the original Galileo constellation, highlighting one of the advantages of the EFC

framework: since it generalizes Walker constellations, LFCs, and many of Draim’s

elliptic constellations, it can converge on one of those designs if that design is indeed
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optimal.

The second example focused on the Iridium communications constellation which

sought continuous global coverage from a LEO constellation of 66 satellites in 6 orbital

planes. An optimal EFC with an eccentricity of only 0.07 was found that reduced the

failure rate of the constellation by a factor of three when compared to the optimal

Walker constellation.

The third and final example considered a constellation designed for regional

coverage of a specific site being reconfigured to provide coverage of a different site.

The entire constellation design and constellation transfer process was demonstrated.

The computation methods for calculating optimal ∆v costs were shown to be reliable

and repeatable, and the auction algorithm successfully chose the optimal transfer

assignment.
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CHAPTER V

CONCLUSION

A. Summary

Satellite constellations provide capabilities above and beyond those achievable by ter-

restrial or single satellite systems. Their feasibility, capability, and cost effectiveness

can all be enhanced through constellation reconfiguration. Whether by phasing up

deployment to meet growing demand, or by repositioning the constellation to ac-

count for changing mission requirements, or by re-optimizing after the loss of one or

more satellites, constellation reconfiguration improves the optimality of the system

throughout its lifetime.

Constellation reconfiguration can be broken into two separate (but not neces-

sarily independent) problems: constellation design and constellation transfer. Both

problems are combinatorial in nature and require new, more efficient methods to

solve them. This dissertation has presented a number of new approaches to make the

constellation reconfiguration problem more tractable.

1. Constellation Design

The constellation design problem has been dominated by the streets-of-coverage and

Walker constellation design methodologies for the last 40 years. The recent develop-

ment of Flower Constellations by Mortari has offered the constellation designer a new

framework that permits elliptic orbits and specializes in repeating ground-track con-

stellations. The Lattice Flower Constellations (LFCs), a subset of the original Flower

Constellation theory, provide uniform constellations that can be seen as generalizing

Walker constellations to include elliptical orbits.
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The first major contribution of this work to constellation design methodology has

been the development of the Elliptical Flower Constellation (EFC) framework. The

EFC framework produces constellations with satellites uniformly distributed not only

in (Ω,M)-space as in Walker constellations or LFCs, but in the extended (Ω, ω,M)-

space. Distributing satellites in multiple orbits with different arguments of perigee

within the same plane enables the use of eccentric orbits for global coverage constella-

tions without restricting the inclination to the non-J2-perturbed critical inclination.

Design studies of both global navigation satellite systems and satellite phone

communications systems revealed that EFCs offer significantly improved performance

over the popular Walker constellations. This is possible through two main mecha-

nisms. First, elliptical orbits are cheaper to launch into than circular orbits of the

same semi-major axis, so the use of elliptical orbits in EFCs allows for larger orbits

(and the attendant improved coverage) than the circular orbits of Walker. Second,

elliptical orbits average a greater mean altitude than circular orbits of the same semi-

major axis, so even constellations of the same size will see improved coverage using

elliptical orbits.

One of the major powers of the EFC framework is that it generalizes all known

constellation design methods for producing uniform constellations. Not only do they

generalize Walker constellations and LFCs, they also generalize the elliptical Walker

constellations of Dufour and the uniform, global coverage constellations of Draim. As

such, even if elliptical orbits do not offer a benefit for a given application, an EFC-

based design algorithm will converge to the optimal Walker constellation or LFC, as

dictated by the performance index and imposed constraints.

The second major contribution of this work in the area of constellation design

was the development of a new approach to orbit propagation. Given the combina-

torial nature of constellation design and the large number of satellites within each
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constellation, orbit propagation often consumes the majority of analysis time. The

new methods focus on solving Kepler’s equation in a sequential manner, using results

from earlier in the orbit to improve the estimates at later times. Seven different meth-

ods were presented, and each was more accurate and less computationally complex

than the best existing methods in literature. The result is that a number of them can

be used for initial mission analysis and design where low fidelity but high speeds are

needed. Where higher fidelity is needed, the new methods still offer the best starting

estimates for initializing iterative solving techniques.

2. Constellation Transfer

To complete an optimal constellation reconfiguration, all satellites within the initial

constellation must perform an optimal orbit transfer into a slot in the final constel-

lation. Designing all of those orbit transfers and assigning satellites slots in the final

constellation constitutes the constellation transfer problem. Like the constellation de-

sign problem, constellation transfer is combinatorial in nature and requires efficient

methods for rapid exploration of the design space.

If the goal of the constellation transfer optimization is to minimize total fuel

expenditure (or some other total measure), the assignment problem reduces to the

simple Linear Assignment Problem (LAP) which can be efficiently solved by the auc-

tion algorithm. Solving the LAP or more general assignment problems requires that

the cost be computed for every individual orbit transfer, thus requiring an efficient

method for solving the optimal orbit transfer problem.

Considering the optimal impulsive orbit transfer where initial and final states

are fixed but time is free to minimize fuel expenditure, existing methods use itera-

tive techniques or require root-solving high-order (6+) polynomials. This dissertation

developed a new method for calculating an approximately optimal orbit transfer re-
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quiring the solution of only a 4th order polynomial, with no iterations. Rather than

minimizing the sum of ∆v, the new method minimizes the sum of ∆v2. The errors

of this method were shown to be bounded and typically small, and the improved effi-

ciency over existing methods speeds computation of optimal two-impulse maneuvers.

In the constellation transfer problem, the phasing of the satellites can be safely

ignored, because the cost of rephasing is insignificant compared to other orbit trans-

fer costs. Thus, the optimal departure and arrival points on the initial and final

orbits must be chosen to optimize for fuel expenditure. The domain includes multiple

local minima, requiring the use of advanced optimization techniques. The recently

developed Learning Approach (LA) to sampling optimization was applied to the or-

bit transfer problem utilizing the ∆v2
tot method to evaluate the cost at the sampled

departure and arrival points. Several modifications specifically designed to enhance

the LA algorithm when applied to the two-impulse orbit transfer were presented, and

Monte Carlo tests proved the efficacy of the approach.

A full end-to-end constellation reconfiguration problem was presented to demon-

strate the effectiveness of the constellation transfer methods developed here, as well

as that of the auction algorithm in finding the optimal assignment. The methods

presented constitute a complete tool to automate the solution of the constellation

transfer problem in an efficient manner.

B. Future Work

The constellation design and transfer problems have been treated independently in

this dissertation, but in reality an optimal constellation reconfiguration would require

solving both problems simultaneously. Solving each piece independently leads to a

sub-optimal whole. For optimal (and practical) constellation reconfiguration, constel-
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lations must be designed with transfer in mind. Phased deployment or satellite failure

scenarios can be designed for, though designing multiple constellations and transfers

simultaneously magnifies the computational burden. Parallel computing offers some

hope that this problem will become tractable. Designing constellations in the face of

changing mission requirements remains an unaddressed problem.

As the constellation reconfiguration problem moves toward a complete solu-

tion, incorporating multiple constellation designs and transfers simultaneously, ef-

fort should be directed toward multi-objective optimization. The coverage metrics

for each constellation and the transfer costs for each transfer could be considered as

unique objectives for which the designer is seeking some Pareto optimal solution.

With progress towards solving the complete, end-to-end reconfiguration prob-

lem comes the need to perform end-to-end constellation reconfiguration studies to

demonstrate the advantage of reconfigurability. Though the theoretical benefits of

constellation reconfiguration are easy to see, quantitative benefits need to be shown

before constellation reconfiguration will become practically realized.

1. Constellation Design

The theory of EFCs is substantially developed in this work, but EFCs would benefit

from a detailed study enumerating and classifying the “good” EFC designs, just

as Walker did for his constellations. Certain sets of EFC parameters will provide

more uniform global coverage than others, and will be optimal at a discrete number

of inclinations. Perhaps some general rules exist that would help the constellation

designer eliminate some EFCs out of hand, thereby reducing the design space and

enabling faster design studies.

Alongside the classification of “good” EFC designs is the identification of mis-

sions where EFCs provide the most substantial benefits over more traditional meth-
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ods. From the case studies presented here, it is clear that very robust constellations,

such as Galileo, can be improved upon by using EFCs, but not as much as constel-

lations on the edge of providing global coverage, like Iridium, which see substantial

improvements. It seems EFCs would be particularly well-suited for applications re-

quiring non-continuous global coverage. For instance, many commercial companies

today offer Earth imagery from their own satellite constellations which provide im-

agery at the customer’s request of anywhere in the world within a given time frame.

The improved coverage offered by EFCs could reduce the time between imaging passes

while also providing variable resolution imagery.

In many applications, particularly regional coverage, uniform satellite distribu-

tions may not be desirable. The orbital parameters in the EFC framework are dis-

tributed such that there is linear spacing between satellites. What if non-linear, but

still periodic distributions were permitted instead? For instance what if RAAN was

distributed such that Ωi = (2πi2/N2
o )? The pattern would still repeat, but the planes

are non-uniformly spaced. The EFC framework could be modified on the right hand

side to be something besides 2πi (2πi2/No in this example). In principle, an infinity

of periodic patterns could be considered. Perhaps these non-uniform constellations

would provide additional benefits for regional coverage problems.

2. Constellation Transfer

The work presented here solves the two-impulse constellation transfer problem, but

many other options are available. Staying with impulsive trajectories, n-impulse

transfers offer superior performance, but are much more difficult to compute. Satel-

lites with low-thrust capabilities are arguably better suited to multiple reconfigu-

rations, but some rapid algorithm for minimizing flight time to complete an orbit

transfer needs to be developed. Alternatively, the J2 effect can be utilized to redis-
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tribute both RAAN and argument of perigee by making changes to eccentricity and

semi-major axis, which varies those rates with respect to the other satellites in the

constellation. These different constellation transfer methods must be addressed.

In addition to allowing for different transfer methods, different transfer metrics

could be used to formulate different assignment problems. For instance, it may be

beneficial to minimize the maximum ∆v experienced by any one satellite, rather than

minimizing the sum total, which leads to the Linear Bottleneck Assignment Problem

(LBAP). More complicated metrics, like ones that combine time of flight and fuel

cost in a non-linear way lead to more complicated general assignment problems, but

advanced techniques do exist to approximately solve them.

Lastly, there are several issues that were not addressed surrounding the constel-

lation transfer problem. Multiple satellites on the same launch vehicle create issues

for the assignment problem, since they will typically all launch into the same (but

unspecified) orbital plane. The scheduling of the transfers must be dealt with, in-

cluding which satellites transfer when, and this could be dependent on some coverage

metric that the constellation attempts to maintain while transferring.

C. Conclusion

In time, reconfiguring constellations to maintain optimality throughout their lifetime

will be realized. While many open questions remain in the constellation reconfigura-

tion problem, the tools developed and presented in this work significantly improve the

efficiency with which that problem can be solved. These methods also apply to the

more general constellation design and orbit transfer problems, providing all satellite

systems engineers with new tools for producing enhanced constellation capabilities

and reducing computation time.
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