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ABSTRACT 

 

Inter-Kingdom Signaling Interactions in Enterohemorrhagic Escherichia coli Infections.  

(August 2010) 

Tarun Bansal, B. Tech., U.D.C.T. (University of Mumbai), India 

Co-Chairs of Advisory Committee: Dr. Arul Jayaraman 
        Dr. Thomas K. Wood 

 

 The overall goal of this research was to understand the role of inter-kingdom signaling in 

enterohemorrhagic Escherichia coli (EHEC) infections of the human gastro-intestinal (GI) tract 

from the perspective of both the invading pathogen and the human intestinal epithelial cells, 

which they colonize.  Differential gene expression of EHEC was studied upon exposure to the 

human neuroendocrine hormones epinephrine and norepinephrine. We determined that these 

hormones increase EHEC chemotaxis, motility, biofilm formation, colonization of host cells, and 

virulence gene expression. We also studied the EHEC response to the GI tract commensal 

bacterial signaling molecules indole and autoinducer-2 (AI-2). We observed that indole 

decreases all the EHEC phenotypes that are increased by the human hormones and represses 

EHEC virulence. However, the effect of AI-2 was similar to that observed with hormones and 

opposite to that observed with indole, i.e. AI-2 increases EHEC virulence phenotypes.  

 We studied changes in host cell transcriptome in the presence of the commensal 

bacterial signal indole. Indole increases expression of genes involved in tight junction and gap 

junction formation, and production of mucins and actin cytoskeleton genes. Indole also down-

regulates genes encoding for pro-inflammatory cytokines, chemokines, and Toll-like receptors. 

The gene expression results were confirmed with phenotypic assays where we observed an 

increase in trans-epithelial resistance, increase in the anti-inflammatory cytokine IL-10, decrease 
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in the pro-inflammatory cytokine IL-8, decrease in the activity of the pro-inflammatory 

transcription factor NF-κB, and decrease in colonization by EHEC of the indole-pre-treated 

HCT-8 cells.  

We established that factors secreted by epithelial cells are important determinants of 

EHEC virulence. Gene expression studies showed that 34 out of 41 LEE virulence genes were 

induced when EHEC was cultured in conditioned medium. In addition, the data showed 

increased expression of the shiga toxin-2 prophage 933W. These changes in gene expression 

were corroborated by a 5-fold increase in HCT-8 cell colonization and increased intracellular 

Stx2 phage titers. We determined that the HCT-8-secreted factor(s) was protein-based and that it 

was greater than 3 kDa in size.  

In conclusion, we have characterized the pathogen response to various eukaryotic and 

prokaryotic GI tract signals. We have established, for the first time, that the commensal bacterial 

signal indole is an inter-kingdom signal for the host epithelial cells. Overall, our studies provide 

a greater understanding of host-pathogen interactions.   
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CHAPTER 

INTRODUCTION 

I 

 

1.1 BACKGROUND 

A majority of bacteria exist in the natural world as surface attached (i.e. in the form of a 

biofilm) rather than as free planktonic cells (1). While biofilms are deleterious in most scenarios 

(2), there are instances when bacterial communities are beneficial. For example, the human 

gastro-intestinal (GI) tract is colonized by approximately 1014

 

 bacteria (3) that belong to 

hundreds of species and exist in a symbiotic relationship with the host (4-5). This symbiosis is 

disturbed when pathogenic bacteria enter the GI tract, which leads to enteric infection. One of 

the most potent and dangerous pathogens is from the genus Escherichia. This genus has six 

reported pathogenic strains, of which, enterohemorrhagic E. coli (EHEC) is a food-borne 

pathogen (6) and responsible for causing bloody diarrhea and hemolytic uremic syndrome (HUS) 

(7), leading to kidney failure and even death in certain cases. The presence of pathogenicity 

islands (PAI) in its genome makes this pathogen different from other non-pathogenic E. coli 

strains in the GI tract. EHEC produces a histopathological lesion on epithelial cells called an 

attaching and effacing (A/E) lesion (8), and the formation of this lesion is thought to be the 

primary cause of pathogenicity. The EHEC genome contains a 43 kb PAI known as the Locus of 

Enterocyte Effacement (LEE), which contains all of the genes required for formation of A/E 

lesions on host epithelial cells (8). Five LEE operons (LEE1 through LEE5) make up the entire  

 
 
 
____________ 
This dissertation follows the style of Proceedings of the National Academy of Sciences of the 
United States of America. 
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LEE PAI, and these operons are regulated by the LEE-encoded regulator (Ler) which is 

considered to be the single most important regulator of virulence genes in EHEC. 

EHEC infections have been reported to progress through a three-step mechanism, 

namely migration of the pathogen toward the epithelial cell surface, colonization of epithelial 

cells, and infection of cells by releasing toxins (8-9). In this work, we address the role of inter-

kingdom (IK) signaling on all three of the critical steps that are involved in EHEC infection.  

 

1.2 MOTIVATION 

EHEC has been widely reported to be the prime cause of bloody diarrhea prevalent in 

many countries (10). Each year, EHEC causes approximately 3,000 infections all over the USA, 

and 2,100 hospitalizations, with an overall cost of $405 million (11). This is part of the 76 

million food-related infections per year in the U.S., which result in 325,000 hospitalizations, 

5,000 deaths, and a cost of $152 billion/year (http://www.producesafetyproject.org/admin/assets 

/files/Health-Related-Foodborne-Illness-Costs-Report.pdf-1.pdf). EHEC infections pose a 

serious clinical problem as they are often associated with complications and permanent 

disabilities, including neurological defects, hypertension, and renal insufficiency (12). Notably, 

the infective dose of EHEC is very low (10-100 colony forming units) (13). Currently EHEC 

infections are not treated with antibiotics as this has been shown to increase development of 

HUS in infected children (14), as well as lead to the increased release of shiga-like toxins (10) 

since the shiga-like toxins are related to prophage in this strain, and the antibiotics cause the 

phage to become lytic due to an SOS response (15). Given the seriousness of EHEC infections, 

understanding the mechanisms underlying EHEC infection can lead to the development of 

approaches for combating human GI tract infections. The overall goal of this work is to 
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investigate the effects of different eukaryotic and prokaryotic signaling molecules on EHEC 

infection. 

EHEC is exposed to a wide range of signaling molecules in the GI tract. These include 

bacterial quorum sensing molecules such as autoinducer-2 (AI-2) and autoinducer-3 (AI-3) that 

are involved in the regulation of phenotypes crucial for virulence and infection (16-17); note the 

identity of AI-3 has not been confirmed. For example, adhesion of pathogenic E. coli to host 

cells is regulated by AI-2 and AI-3 (16, 18). An EHEC luxS mutant that is deficient in the 

synthesis of the AI-2 demonstrated markedly decreased expression of flagella and motility genes 

required for adherence to epithelial cells (19), and we have found that direct addition of AI-2 

stimulates E. coli biofilm formation (20). The concentration of these bacteria-derived soluble 

signals is expected to be high in the GI tract, as non-pathogenic commensal bacteria that reside 

in the GI tract (3) produce AI-2 and AI-3. Other bacterial signaling molecules such as the 

stationary-phase signal indole (21) that are produced by E. coli (22), are also expected to be 

present at high concentrations in the GI tract. Indole decreases motility and biofilm formation of 

non-pathogenic E. coli (22), and could be important in EHEC infections since it has been shown 

to regulate virulence genes in enteropathogenic E. coli (23). 

Apart from these prokaryotic signals, the GI tract contains high concentrations of 

eukaryotic signaling molecules, like hormones. The GI tract is richly enervated with sympathetic 

nerve fibers with approximately one million such nerves fibers present in various layers, 

including the mucosal layer to which EHEC adheres during infection (24). These nerves lead to 

the production of different human neuroendocrine hormones like dopamine and norepinephrine 

(NE), which can spill over into the lumen through diffusion. Two such hormones that seem to 

influence the behavior of EHEC are epinephrine (epi) and NE, which act as neurotransmitters 

inside the human body. It has been reported that NE increases the growth rate of commensal 
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bacteria as well as EHEC (4), and that both epi and NE influence the production of virulence 

factors in EHEC (16). Though these reports strengthen the possibilities of bacteria – host cell 

interactions, the complete mechanism behind these interactions is not yet understood. 

 

1.3 RESEARCH OBJECTIVES, IMPORTANCE, AND NOVELTY 

We studied the effects of individual signaling molecules, prokaryotic as well as 

eukaryotic, on EHEC phenotypes relevant to infection (chemotaxis, colonization of epithelial 

cells, and release of toxins) and EHEC gene expression. We also investigated the changes in 

gene expression of human intestinal epithelial cells when they are exposed to bacterial signals. 

These experiments will lead to a better understanding of the EHEC infection process and 

identification of variables that influence it.   

This is the first study of EHEC virulence phenotypes and gene expression in presence of 

both eukaryotic hormones (epi and NE) and prokaryotic signaling molecules (indole and AI-2), 

which are present in the GI tract (25-26) and are encountered by EHEC during infection. Human 

epithelial cell gene expression has not been studied in the presence of these signaling molecules 

and our objectives were to investigate this in detail, to develop a fundamental understanding of 

the response of human cells to commensal and pathogenic bacteria. 

The specific objectives were to: 

• Determine the changes in gene expression and virulence phenotypes (such as 

chemotaxis, motility, biofilm formation, and colonization of epithelial cells) of EHEC 

on exposure to the eukaryotic hormones epi and NE 

• Study the changes in gene expression and virulence phenotype of EHEC on exposure 

to the bacterial signals indole and AI-2 
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• Study the changes in human intestinal epithelial cell gene expression, trans-epithelial 

resistance, inflammatory cytokine and transcription factor production, anti-

inflammatory cytokine production, and resistance to pathogen colonization on 

exposure to the commensal bacterial signal indole 

• Investigate the effects of host cell-secreted factors on EHEC gene expression, 

colonization and release of toxins 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 HUMAN GASTRO-INTESTINAL TRACT 

 The human GI tract acts as an interface between the outside and internal human 

environment, and at nine meters long and 400 m2 in surface area, is as large as a tennis court 

(27). The GI tract contains roughly the same number of neurons as the spinal cord. These 

neurons produce hormones that are secreted into the lumen of the intestine (Fig. 2.1A). The GI 

tract also houses a large variety of microorganisms, belonging to more than 500 diverse species 

and at 1014

 Due to the presence of acid and other secretions (bile, pancreatic juice) in the stomach 

and duodenum, very few bacteria colonize these organs, and thus, the upper GI tract contains 

less than 10

 cells, outnumbering the human cells by a factor of 10 (28). Intestinal epithelial cells 

act as a barrier for intestinal microbial pathogens and absorb water and nutrition. Colonization of 

the gut begins immediately once an infant is born, is affected by external environment and 

nutrition (27), and stabilizes about a week after birth.  

3 bacteria per gram of luminal content (27). The number of resident bacteria 

increases progressively in the lower GI tract, with the jejunum and the ileum containing 104 and 

108 cells per gram, respectively (27). The lower GI tract (i.e. the colon) contains the most 

complex microbial ecosystem, containing roughly 1012 cells per gram of luminal content (27). A 

majority of the 500 species that are estimated to colonize the GI tract have never been cultivated 

in the lab. Also, about 30-40 species account for more than 90% of the total bacterial population, 

and anaerobic bacteria outnumber aerobic bacteria by a factor of 1000 (27). The important 

genera of microbes include Bacteroides, Bifidobacterium, Eubacterium, Clostridium, 

Lactobacillus, and Enterococcus (27). 
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Fig. 2.1. GI tract schematic. (A) Intestinal epithelial cells are enervated by sympathetic nerves 
that release hormones into the lumen and are colonized by commensal bacteria that release 
bacterial signals. EHEC encounters all of these signals on entering GI tract. (B) Chemical 
structures of important GI tract signals.  
  

(A) 

(B) 
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A symbiotic relationship exists between commensal bacteria and host cells. The host GI 

tract provides a nutrient-rich environment for the microbes while they play an important role in 

development of the host immune system. Microbes also control the proliferation of epithelial 

cells by accelerating their differentiation cycle during morphogenesis (29). In addition, microbes 

ferment non-digestible dietary residues and provide biochemical pathways that are not available 

in the hosts. Importantly, commensal bacteria provide a barrier against pathogen colonization 

through the production of bacteriocins, (Fig. 2.1A), alterations in pH, and by competing for 

nutrients required by pathogens for growth (27). 

 However, any alteration in the homeostasis between the host cells and bacteria leads to 

serious consequences. Inappropriate immune and inflammatory responses toward commensal 

bacteria lead to inflammatory bowel disease (IBD), pathologies such as Crohn’s disease and 

ulcerative colitis (30). IBD is known to affect 1.4 million Americans, with most patients in the 

age range of 15 to 30 years. Crohn’s disease affects mostly the ileum and colon, while ulcerative 

colitis involves the rectum (30). In IBD, infiltration of lamina propia with innate (neutrophils, 

macrophages etc.) and adaptive (B and T cells) immune cells results in pronounced 

inflammation. In addition, expression of pro-inflammatory cytokines, like TNF-α and IL-23, 

leads to activation of pro-inflammatory pathways. Treatment options for these diseases are 

limited, although recent studies involve administering anti-TNF-α antibody, and IL-10- 

producing T cells and bacteria, both of which reduce inflammation (30). Thus, it is extremely 

important to maintain homeostasis. 
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2.2 INTESTINAL BARRIER FUNCTION 

 Intestinal goblet cells secrete a gel-like substance called mucin, which forms a barrier 

between the luminal contents and the intestinal epithelial cell layer (31). Mucins are also 

responsible for absorption of nutrients and help in waste removal. It has been reported that 

deficiencies in the mucosal layer can lead to several inflammatory diseases. The GI tract has the 

largest mucosal surface in the body, and is especially critical, since the GI tract is continuously 

in close contact with the commensal, and sometimes pathogenic, microorganisms. Mucosa-

associated lymphoid tissue consists of T cells, B cells, and macrophages, and is responsible for 

innate and adaptive immune responses in the host. 

 Intestinal cells present a selectively permeable barrier to allow certain nutrients to pass 

through. This paracellular system consists of tight junction proteins, adherens junction proteins 

and desmosomes (31). The tight junction system is comprised of occludins, claudins, myosins, 

and zona occludens. Occludin was the first tight junction protein identified; and claudins are 

important transmembrane proteins that regulate permeability of the epithelial layer. Zona 

occludens, like ZO-1 and ZO-2, are required for tight junction assembly. Adherens junctions are 

made up of E-cadherin, catenins and F-actin. Adherens junctions are also required for the 

assembly of tight junctions, which then seal the paracellular space. Loss of adherns junction 

proteins leads to a defective cell-matrix, defective differentiation and cell apoptosis.   

 Tight junction properties are regulated by the intestinal immune response, particularly by 

pro-inflammatory cytokines TNF-α and IFN-γ. Increased TNF-α secretion leads to high cellular 

permeability and, thus, leads to colitis. In order to enhance cellular barrier properties and to 

prevent diseases such as Crohn’s, it has been suggested that an increase in claudin expression 

should be targeted. Tight junctions are responsible for maintaining homeostasis by allowing only 
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select molecules to pass through and, thus, maintenance of this barrier is very important in 

healthy tissue.  

 

2.3 ENTEROHEMORRHAGIC ESCHERICHIA COLI 

E. coli is a facultative Gram-negative anaerobe present in the human GI tract as a 

commensal bacterium. However, certain strains of E. coli possess virulence factors that make 

them pathogenic for host cells. EHEC is a foodborne pathogen responsible for severe disease 

outbreaks in humans worldwide. EHEC survives well in the environment and also within healthy 

cattle, which are usually asymptomatic when carrying this pathogen. Among the serotypes of 

EHEC, such as O26:H11, O91:H21, O111:H8, O157:H7 and O157:NM that are frequently 

associated with disease, O157:H7 is the most common and widely prevalent in the USA, the UK 

and Japan. EHEC serotype O157:H7 was first identified in 1982 as a human pathogen causing 

bloody diarrhea (32), and later as a cause of HUS, a disease characterized by acute renal failure, 

mostly affecting children. EHEC are defined as pathogenic E. coli strains that produce shiga-like 

toxins (Stx) and cause hemorrhagic colitis and HUS (33). The Centers for Disease Control and 

Prevention have estimated that EHEC O157:H7 cause 73,000 infections, 2,200 hospitalizations 

and 60 deaths annually in the USA (34), and the annual cost associated with these infections is 

$405 million (11). Currently, there is no specific treatment for EHEC infections, and the use of 

antibiotics is avoided. Thus, fluids and electrolytes are administered to limit the extent of 

symptoms and prevent complications. This makes it imperative to prevent and control EHEC 

infections.  
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Table 2.1. Major virulence factors of EHEC (33)  
 
 
 

Factor Location Components Function 

LEE 

Pathogenicity 

Island 

Chromosome 

LEE1 

LEE2 

LEE3 

LEE4 

LEE5 

- Type III secretion system 

- Attaching and effacing lesion 

Shiga toxins 

Phage DNA inserted in 

chromosome 

Stx1 – phage CP-933V 

Stx2 – phage BP-933W 

 
- Host cell damage 

- release of cytotoxins 

Plasmid O157 F-like plasmid 

ehxA 

katP 

etp 

espP 

toxB 

- Hemolysin 

- Peroxidase 

- Type II secretion 

- Serine protease 

- Adhesion/colonization factor 

RpoS Chromosome  - Acid, heat and salt resistance 

Iha Chromosome  - Adherence conferring molecule 
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2.4 MAJOR VIRULENCE FACTORS OF EHEC 

Several virulence factors are associated with EHEC pathogenesis. Stx are major but not 

the only virulence factors and others include LEE, plasmid O157 (pO157), enterotoxin, and acid, 

heat and salt resistance (Table 2.1).   

 

2.4.1 Shiga Toxins 

 Stx is a very potent cytotoxin and causes damage to a variety of cell types (35). There 

are two types of EHEC Stx, Stx1 and Stx2. EHEC can express Stx1, Stx2, or both. Expression of 

Stx2 alone is associated with more toxicity than expression of Stx1 alone or expression of both 

Stx1 and Stx2. Thus, strains producing Stx2 are more virulent and associated with HUS (33). Stx 

has a conserved structure consisting of one active A subunit and five receptor binding B 

subunits, making an AB5 complex (33). The B5 subunit binds to host receptor 

globotriaosylceramide (Gb3) or globotetraosylceramide (Gb4) and after binding, the A subunit is 

internalized, which then inhibits protein synthesis inside the host cell. 

   

2.4.2 Locus of Enterocyte Effacement 

 During colonization of the intestinal mucosa, EHEC induce the A/E histopathological 

lesion on the intestinal epithelial cells (8). Once attached, bacteria stimulate host cell actin 

polymerization, and express components of the type III secretion system (T3SS), which releases 

several toxins into the host cells (8). First, an adhesin called intimin is secreted along with its 

receptor Tir, and later EHEC secreted proteins (Esp), like EspA and EspB, are injected into the 

host cell, which modify host cell signal transduction leading to cell death. The genes responsible 

for A/E lesions are located in LEE Pathogenicity Island (36). This pathogenicity island is 43 kb 

in size and consists of 41 open reading frames (ORFs) distributed in five operons (LEE1 through 
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LEE5), and three major regions. The middle region of LEE contains eae and tir, and T3SS 

encoding-genes are present upstream. The region downstream of eae consists of T3SS-secreted 

proteins like EspA, EspB, EspD and EspF. The LEE genes are regulated in trans by Ler. 

Additionally, non-LEE encoded virulence effectors, e.g. NleH1 and NleH2, have recently been 

discovered (37).  

 

2.4.3 Plasmid O157 

 A plasmid is circular extrachromosomal DNA that is capable of replicating 

independently of the chromosome. Plasmids are responsible for providing antibiotic resistance, 

producing virulence factors, and toxin-anti-toxin pairs (33). EHEC contains a plasmid O157 

(pO157) that is highly conserved between the different pathogenic E. coli strains and confers 

additional virulence traits to this pathogen (33). Its size ranges from 92 to 104 kb and has been 

sequenced. This plasmid is comprised of sequences for transposons and prophages. Some of the 

virulence genes encoded in pO157 (Table 2.1) are hemolysin (ehxA), type II secretion (etp), 

serine protease (espP), eae fragment (ecf), and toxB adhesin (38-39). Hemolysin was the first 

virulence factor identified in pO157 and consists of 3.4 kb fragment. Thirteen genes encode for 

type II secretion (T2SS) in pO157 and are similar to T2SS of Gram-negative bacteria (39). EspP 

cleaves pepsin A and human coagulation factor V, affects colonization and adherence of EHEC, 

and may be responsible for mucosal hemorrhage. ToxB also induces adherence of EHEC to host 

cells through the increased secretion of T3SS (40) and may inhibit host lymphocytes. Several 

published studies have produced conflicting evidence on the role of pO157 in EHEC 

pathogenesis, and thus, the precise function of pO157 has yet to be elucidated. 
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Fig. 2.2. EHEC infection model. The figure details steps during EHEC infection of the GI tract. 
Migration towards epithelial cell surface (1), colonization of epithelial cells (2), and release of 
toxins (3).  
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2.5 EHEC INFECTION PROCESS 

The EHEC infection process follows three distinct steps in vivo and it is necessary for 

the pathogen to colonize the GI tract to initiate infection (6). EHEC specifically colonizes the 

large intestine in humans. The first step in the infection process is migration of the pathogen 

from the intestinal lumen towards the host cell surface. The second important step is adherence 

to the host cell surface and formation of A/E lesions through the T3SS. Tir is then translocated 

into the host cell cytoplasm. The third step involves secretion of virulence factors such as EspA 

and EspB into the host cell, leading to host cell lysis (Fig. 2.2). 

 

2.6 IMPORTANT BACTERIAL SIGNALING MOLECULES IN THE GI TRACT 

 

2.6.1 Indole 

 Indole (Fig. 2.1B) is a stationary phase bacterial signaling molecule (41) that is produced 

in large amounts by approximately 85 species of Gram-positive and Gram-negative bacteria 

(42). It was first discovered in 1897 that E. coli and Vibrio cholerae produce indole in stationary 

phase (43). Commensal E. coli produce as much as 600 μM of indole in suspension cultures (22) 

and indole has been detected in human feces at comparable concentrations (~ 250 - 1100 µM) 

(44-45). 

Indole is produced in E. coli from L-tryptophan via tryptophan indole-lyase or 

tryptophanase (encoded by tnaA) (41). Initially, indole was dismissed as a mere metabolite and 

not a signaling molecule due to limited research (46). However, work from our laboratory has 

shown that indole is an extracellular signal (41), represses E. coli K-12 biofilm formation 

through the sensor for quorum sensing signals, SdiA (41), and is more effective in repressing E. 

coli K-12 biofilm at low temperatures, i.e., 25oC and 30oC (47). Indole also affects drug 
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resistance and plasmid stability in E. coli (48-49). Additionally, in non-indole-producing 

bacteria, like Pseudomonas aeruginosa, and eukaryotes, like fungi, indole reduces virulence and 

cell growth, respectively (50-51). Thus, indole is a very important interspecies signal. 

 

2.6.2 Autoinducer-2 

 Previously, it was assumed that bacteria lived unicellularly, and respond to external 

stimuli singularly and not as a community. However, recent reports have revealed that this 

assumption is simplistic and somewhat incorrect (52). In fact, bacteria communicate with each 

other through ‘signaling molecules’ (52). Through these chemicals, bacteria can monitor their 

population density, and accordingly regulate gene expression and other phenotypes like motility 

and biofilm formation (53). This communication is important for bacterial communities to either 

survive or prosper in the environment that they are within (53). This cell density-dependent, cell-

to-cell signaling mechanism is called quorum sensing (QS) and the signal is called an 

autoinducer (52). Autoinducers are small, hormone-like organic molecules, that on exceeding a 

critical threshold, cause the bacteria to alter their gene expression (52). Several QS circuits (52) 

have been identified for both Gram-positive and Gram-negative bacteria that use peptides and 

acyl-homoserine lactones (AHL) as signals, respectively. In addition, there exists an inter-

species signaling system based on the luxS – autoinducer-2 (AI-2) signaling. 

 AI-2 is a stationary phase signaling molecule that unlike other autoinducers, is produced 

by a large number of bacterial species, including those of Escherichia, Vibrio, Pseudomonas, 

Agrobacterium, Erwinia (54), and thus, is considered to be a common bacterial signal (55). AI-2 

is synthesized in bacteria through the conversion of S-adenosylhomocysteine to S-

ribosylhomocysteine, and then S-ribosylhomocysteine to (S)-4,5-dihydroxypentane-2,3-dione 
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(DPD) by the enzymes Pfs and LuxS, respectively  (55). DPD spontaneously cyclizes to form a 

number of molecules, and AI-2 (Fig. 2.1B) is one of them. 

AI-2 was first identified in Vibrio harveyi and it is involved in cell density-dependent 

light production in these bacteria (55). Bacteria like E. coli, in different phases of growth, both 

produce and consume AI-2 (56). AI-2 is produced and released extracellularly in the exponential 

phase of bacterial growth, while it is imported back inside the cell during the stationary phase of 

growth (56). The lsr operon is responsible for uptake of AI- 2 and LsrR represses this operon 

(56). LsrB is the periplasmic AI-2 binding protein. Upon binding to LsrB, AI-2 is internalized 

via the LsrCD transport system (52). Once internalized, AI-2 is phosphorylated by LsrK and this 

phosphorylated AI-2 inhibits LsrR, which in turn de-represses the lsr operon. Finally, rapid 

internalization of all the remaining extracellular AI-2 occurs.  

Several organisms use AI-2 to control diverse functions, including but not limited to, 

regulation of virulence gene expression in Actinobacillus actinomycetemcomitans (57), EHEC 

(58), P. gingivalis (59), and V. cholerae (60), motility, cell division, and biofilm formation in E. 

coli (18, 20, 61), and biofilm formation and carbohydrate metabolism in Streptococcus gordonii 

(62).  

Recently, QS systems have been linked with inter-kingdom signaling. In one such 

example, the AHL-based QS system of the plant pathogen Serratia liquifaciens is inhibited by 

furanone produced by the marine algae Delisea pulchra (63). Additionally when AHLs are 

administered to the legume Medicago truncatula, it differentially expresses several proteins (64). 

Bacterial AHLs also modulate mammalian host cell gene expression; for example, the P. 

aeruginosa signal 3OC12-HSL regulates production of NF-κB in host cells (65) and helps the 

pathogen to maintain persistent infections. Thus, bacteria communicate not only amongst 

themselves, they also interact with host cells through these intricate signaling systems. 
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2.7 IMPORTANT HOST-DERIVED SIGNALING MOLECULES IN THE GI TRACT 

 

2.7.1 Norepinephrine 

 The human GI tract is enervated with millions of sympathetic nerve fibers (66) that run 

along the arteries and terminate in the mucosa (67). The sympathetic nervous system (SNS) 

produces human the hormone NE (Fig. 2.1B) along with several other molecules in small and 

large vesicles (66). It is important to realize that, in addition to being produced in the adrenal 

medulla, NE is also produced locally in the GI tract and, thus, local concentrations of this 

neuroendocrine hormone can be very high (67). NE is directly involved with several immune 

responses; e.g., NE enhances the migration of monocytes, and increases the pro-inflammatory 

cytokine IL-8 secretion (67). High concentrations of NE stimulate apoptosis in certain cell types 

(68). NE also inhibits phagocytosis and natural killer (NK) cell activity at high concentrations 

(10-7 to 10-5

 NE has also been studied for a possible role in inter-kingdom signaling. NE has been 

shown to increase the growth rate of commensal E. coli.NE also enhances growth of the 

pathogen EHEC (70-71) and increases virulence factor production. For example, the K99 pilus 

adhesion virulence-related factor of EHEC increases in NE-supplemented culture over a 9-15 h 

incubation period (72), and NE also upregulates iron uptake through enterobactin. Additionally, 

production of Shiga toxins by EHEC is enhanced (Stx1 by over 100-fold) in the presence of NE 

(24). Thus, NE could play an important role as an inter-kingdom signal.  

 M) and reduces secretion of TNF-α, IL-12 and IFN-γ. During Crohn’s disease, tissue 

levels of NE are lower in patients than control subjects (69). Thus, SNS represses the 

inflammatory reaction via β-adrenergic receptors. 
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2.7.2 Cytokines 

 Interleukin-8 (IL-8) was first described as an important neutrophil chemotactic factor in 

1987 (73). IL-8 is involved in transmigration of leukocytes into tissues, and promotes neutrophil 

adhesion to a variety of surfaces including, but not limited to, plastic, extracellular matrix 

proteins, endothelial and epithelial cells. IL-8 is often secreted in response to bacterial infections, 

as seen in vitro with several cell lines (74). IL-8 recruits neutrophils to the site of the infection to 

clear microbes such as Candida albicans (75). Increased IL-8 expression is also observed in 

diseases such as idiopathic pulmonary fibrosis (76). However, increased IL-8 expression in 

cystic fibrosis patients reduces the capacity to kill P. aeruginosa, thus, resulting in enhanced 

damage to lungs and increased susceptibility to infection (77). Also, it has been argued that IL-8 

induced macrophages may enhance growth of tumor cells by providing growth factors and, thus, 

IL-8 can promote tumor formation (78). 

Interleukin-10 (IL-10) plays an important role in regulation of the immune system 

through its involvement in several pathophysiological processes. It was first discovered that IL-

10 inhibited production of IL-2, tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ) (79) 

and plays a key role in host immune system suppression. IL-10 blocks inflammatory cytokine 

production (80) and chemokine secretion (81). Mice lacking IL-10 show symptoms similar to 

Crohn’s disease (82). IL-10 also enhances survival of B cells, T cells, tumor cells, and NK cells. 

Recently, a report suggested that increased production of IL-10 in the presence of commensal 

bacteria could be one of the mechanisms of host immune tolerance of the commensal microbial 

population (83). 

 Interleukin-12 (IL-12) is a 70kDa heterodimeric protein in its active form, and is a type 1 

immune activation cytokine that is released during the early immune response of cells. Dendritic 

cells and macrophages, which are involved in early cell response to infections, are the primary 
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producers of IL-12 (84). Thus, IL-12 is secreted in response to tumors, and pathogens such as 

bacteria, fungi and parasites. Also, release of IL-12 is enhanced in presence of other pro-

inflammatory signaling molecules like IFN-γ, IL-4, IL-6 and TNF-α (85-86). It is also important 

to note that IL-12 is continually secreted until the invading pathogen is cleared from the system. 

  

 2.7.3 Nuclear Factor-κB 

 The NF-κB signaling pathway is an important regulator of the host immune response 

and plays key role in pathogenesis (87). Pro-inflammatory functions of this pathway are well 

established. The NF-κB family consists of p50, p52, p65, c-REL, and RELB, which form homo- 

or hetero-dimers (87). Inhibitor of NF-κB, called IκB, usually keeps this family inactive, and the 

activation of NF-κB is thus controlled by the IκB kinase (IKK) complex. Once activated, IKK 

phophorylates IκB, causing subsequent IκB degradation, which allows NF-κB dimerization and 

active gene transcription.  

 NF-κB is rapidly activated in response to stress, allowing the host cells to detect 

potential threats in their environment. NF-κB activates the transcription of genes encoding 

cytokines, chemokines and antimicrobial molecules (88). However, it also induces the anti-

apoptotic genes (89), preventing cellular apoptosis, and reduces necrosis through inhibition of 

reactive oxygen species (90). Thus, NF-κB protects host cells against infection and helps the cell 

survive. 

  

2.7.4 Toll-like Receptors 

 The epithelial innate immune response consists of surface-associated, pattern 

recognizing receptors called TLRs, which play a critical role in host cell defense against 

bacterial pathogens (91). There are eleven different types of TLRs and each has its own ligand 
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that it recognizes and binds to (91); however, they activate similar sets of genes. TLRs recognize 

pathogen-associated molecular patterns or PAMPs, and activate host cell defense machinery; 

e.g., the NF-κB signaling pathway, that are important for the immune response.  

For example, TLR2 specifically responds to the presence of Gram-positive bacteria 

through lipoteichoic acid or muramyl dipeptide (92). Similarly, TLR3 detects the presence of 

double-stranded virus DNA, and activates IRF3, STAT1 and NF-κB. TLR4 is a very important 

receptor that is responsible for detecting several components of Gram-negative bacteria, 

primarily lipopolysaccharide (LPS), which is a component of the bacterial cell wall. TLR4-

deficient mice are unable to respond to infection with either Mycobacterium tuberculosis or LPS 

(93). Other proteins that TLR4 responds to are pneumolysin, a streptococcal protein, taxol, 

fibrinogen and fibronectin (91-92). TLR5 has flagellin as its ligand, while TLRs 7-9 recognize 

foreign RNA and DNA strands. Unlike all of the other TLRs, which are present on cell surface, 

TLR3, and TLRs 7-9 are present on the endosome. TLR-2, TLR-3, and TLR-9 have been 

reported to modulate intestinal inflammation and maintain homeostasis (91), unlike other TLRs 

that are pro-inflammatory in nature. Since TLRs play a crucial role in development of mucosal 

inflammation, researchers are interested in blocking their activity to reduce inflammation during 

diseases such as IBD and Crohn’s disease. By understanding the mechanism of TLR signaling, 

anti-inflammatory strategies can be developed for treatment. 
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CHAPTER III 

DIFFERENTIAL EFFECTS OF EPINEPHRINE, NOREPINEPHRINE, AND INDOLE 

ON EHEC CHEMOTAXIS, COLONIZATION, AND GENE EXPRESSION* 

 

3.1 OVERVIEW 

During infection in the GI tract, EHEC is exposed to a wide range of signaling 

molecules, including the eukaryotic hormones epi and NE, and bacterial signal molecules such 

as indole. Since these signaling molecules have been shown to be involved in the regulation of 

phenotypes such as motility and virulence that are crucial for EHEC infections, we hypothesized 

that these molecules also govern the initial recognition of the large intestine environment and 

attachment to the host cell surface. Here, we report that epi and NE exert divergent effects on 

EHEC chemotaxis, motility, biofilm formation, gene expression, and colonization of HeLa cells, 

as compared to indole. Using a novel two flourophore chemotactic assay, it was found that 

EHEC is attracted towards epi and NE while it is repelled by indole. In addition, epi and NE also 

increased EHEC motility and biofilm formation while indole attenuated these phenotypes. DNA 

microarray analysis of surface-associated EHEC indicated that epi/NE up-regulated the 

expression of genes involved in surface colonization and virulence while exposure to indole 

decreased their expression. The gene expression data also suggested that AI-2 uptake was 

 

 

 

* Reprinted with permission from “Differential effects of epinephrine, norepinephrine, and 
indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression” by Tarun 
Bansal, Derek Englert, Jintae Lee, Manjunath Hegde, Thomas K. Wood, and Arul Jayaraman, 
2007, Infection and Immunity 75:4597-4607, Copyright by American Society for Microbiology. 
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repressed upon exposure to epi/NE but not indole. In vitro adherence experiments confirmed that 

epi and NE increase attachment to epithelial cells while indole decreased adherence. Taken 

together, these results suggest that epi and NE increase EHEC infection while indole attenuates 

the process. 

 

3.2 INTRODUCTION 

The GI tract is colonized by approximately 1014 commensal bacteria consisting of 

hundreds of bacterial species, including the genus Escherichia (3-5). The introduction of 

pathogenic bacteria such as EHEC into the human gastrointestinal GI tract results in colonization 

of host cells and leads to the onset of bloody diarrhea and HUS (7, 13).  EHEC infections 

progress through a three-step mechanism, the first of which involves adhesion of bacteria to host 

cells and the formation of microcolonies (8-9). EHEC infections pose a serious clinical problem 

as they are often associated with complications and permanent disabilities, including 

neurological defects, hypertension, and renal insufficiency (12). Understanding the mechanisms 

underlying EHEC pathogenicity could lead to better approaches for attenuating the deleterious 

consequences associated with GI tract infections (14).  EHEC is exposed to a wide range of 

signaling molecules in the GI tract. These include bacterial quorum sensing molecules such as 

AI-2 and AI-3 that are involved in the regulation of phenotypes crucial for virulence and 

infection (16-17). For example, Sperandio et al. (16, 18) have shown that the adhesion of 

pathogenic E. coli to host cells, which is an important initial step in the infection process, is 

regulated by these soluble signals. An EHEC luxS mutant that is deficient in the synthesis of the 

AI-2 and AI-3 demonstrated markedly decreased expression of flagella and motility genes 

required for adherence to epithelial cells (19) and we have found direct addition of AI-2 

stimulates E. coli biofilm formation (20). The concentration of these bacteria-derived soluble 
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signals is expected to be high in the GI tract, as both pathogenic as well as non-pathogenic 

commensal bacteria that reside in the GI tract (3) produce AI-2 and AI-3. Other bacterial 

signaling molecules such as the stationary-phase signal indole (21) that are produced by 

commensal E. coli (22), are also expected to be present at high concentrations in the GI tract. 

Indole decreases motility and biofilm formation of non-pathogenic E. coli (22), and could be 

especially important in EHEC infections since it has been shown to regulate virulence genes in 

enteropathogenic E. coli (23).  

   Recent studies have also shown that eukaryotic signals in the GI tract also play an 

important role in EHEC adhesion and infections. Catecholamines such as epi and NE have been 

shown to enhance the growth of pathogenic bacteria (70, 94-95) and production of virulence 

factors (72, 96). NE has also been shown to increase adhesion of EHEC to cecal mucosa (97), 

colonic mucosa (4), and ileum (98). Sperandio et al. (16) initially demonstrated that the epi and 

NE function similarly to AI-3 by activating the virulence genes (e.g., LEE genes) in EHEC (16). 

Recent studies by Clarke et al. (99) and Walters and Sperandio (17) have also shown that AI-3 

and epi utilize the same receptor (QseC) and suggest a synergistic relationship between these two 

molecules in the expression of virulence genes.  

   The goal of this work was to investigate the effect of eukaryotic and prokaryotic 

extracellular molecules on phenotypes important in EHEC infections. We hypothesized that 

EHEC infection is influenced to different degrees by the different eukaryotic and prokaryotic 

molecules present in the GI tract. Therefore, we investigated the effect of three molecules – the 

eukaryotic hormones epi and NE, and the E. coli stationary-phase signal indole - on EHEC 

chemotaxis, biofilm formation, and adherence to epithelial cells. The molecular basis of the 

alterations in EHEC physiology upon exposure to epi, NE, and indole was also investigated 

using DNA microarrays. Our results suggest molecular-level interactions between prokaryotic 
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and eukaryotic signaling molecules in EHEC colonization. To our knowledge, this is the first 

report of EHEC chemotaxis, motility, and biofilm formation in response to eukaryotic signaling 

molecules. 

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Bacterial strains, materials and growth 

  EHEC and E. coli TG1 were obtained from ATCC (Manassas, VA) and Stratagene (La 

Jolla, CA), respectively.  Plasmids pCM18 (100) and pDS-RedExpress (Clontech, CA) were 

used to constitutively express the green fluorescent protein and the red fluorescent protein, 

respectively. Luria-Bertani medium (LB) was used for overnight cultures of EHEC (ATCC, 

Manassas, VA). LB supplemented with 0.2% (w/v) glucose (LB glu) was used in all biofilm 

experiments.  Epi and NE were purchased from MP Biomedicals (Irvine, CA). Indole was 

purchased from Sigma Chemical Co. (St. Louis, MO).  

 

3.3.2 Agarose plug chemotaxis assay 

  Chemotaxis experiments in agarose plugs were performed by adapting the procedure of 

Yu and Alam (101) to include live cells tagged with the green fluorescent protein (GFP) and 

dead cells tagged with the red fluorescent protein (RFP). Briefly, an overnight culture of 

EHEC/pCM18 was used to inoculate 10 mL of growth medium (10 g/L typtone, 5 g/L yeast 

extract, 2 mM MgSO4, 2 mM CaCl2) to a turbidity of ~ 0.05 at 600 nm, and grown to mid-

exponential phase (turbidity at 600 nm of ~ 0.7). The chemotaxis compound was also added to 

the medium during growth. Cells were harvested, washed twice, and resuspended in 1 mL of 

chemotaxis buffer (CB, 1X phosphate buffered saline pH 7.4, 0.1 mM EDTA, 10 mM sodium 
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succinate). In addition, kanamycin-killed E. coli TG1 (pDsRedExpress) was also added to the 

cell suspension such that the live cell to dead cell ratio was 2:1. In parallel, the chemotaxis 

compound was mixed with a 2% low melting agarose in CB containing trace amounts of 

bromophenol blue (to help visualization of the plug) at 55o

 

C. A 10 µl aliquot of the agarose 

solution containing the chemotaxis compound was added between a glass slide and a raised glass 

coverslip. Two hundred µl of the cell suspension was immediately added to the slide and the 

migration of bacteria toward or away from the agarose plug imaged on a Zeiss Axiovert 200 

fluorescence microscope (Thornwood, NY). Green and red fluorescence images were obtained 

every 5 min for 30 min. Images were processed and analyzed using the Zeiss Axiovision 4.5 

software. 

3.3.3 Motility and biofilm assays 

  Motility assays were performed as described by Sperandio et al. (102). Briefly, 

overnight cultures of EHEC were subcultured 1:100 in LB medium and grown to a turbidity of ~ 

1.0 at 37o

  Biofilms assays were performed in 96 well polystyrene plates according to the protocol 

described by Pratt and Kolter (103). Cells were grown for 24 h without shaking in the presence 

of epi (50 µM), NE (50 µM), or indole (500 µM). Each data point was averaged from 18 

replicate wells (six wells from three independent cultures).  

C. Epi (50 µM), NE (50 µM) or indole (500 µM) were added to the motility agar plates 

(1% tryptone, 0.25% NaCl, and 0.3% agar), and the size of the motility halos were measured 

after 8 h. Six motility plates were used for each molecule, and the experiment was repeated with 

three independent cultures (total of 18 motility plates per molecule).   

  Biofilms for microarray experiments were formed on glass wool for RNA extraction and 

DNA microarray analysis (104). Briefly, an overnight culture of EHEC was used to inoculate 10 
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g of glass wool in 250 mL of LB glu medium to a starting turbidity of ~ 0.03. Biofilms were 

developed at 37oC for 7 h with shaking in the presence of epi (50 µM), NE (50 µM), or indole 

(500 µM). Based on our unpublished data showing that extracellular indole levels increase after 

4 h of culture (due to depletion of glucose) and indole biosynthesis is subject to catabolite 

repression (105), the glucose in the medium was replenished after 3.5 h so as to minimize the 

effects of intracellularly produced indole on the observed gene expression patterns.  The glass 

wool was removed from the culture quickly and gently washed two times in 100 mL 0.85% 

NaCl buffer at 4oC (less than 30 seconds).  Biofilm cells were removed from glass wool by 

sonication for 2 minutes in 200 mL of 0.85% NaCl buffer at 4oC, cell pellets was stored at -80o

 

C, 

and RNA was isolated as described previously (104).  

3.3.4 RNA isolation and DNA microarrays  

  Total RNA was isolated from EHEC biofilms and RNA quality assessed using gel 

electrophoresis (106). E. coli Genome 2.0 arrays (Affymetrix, CA) containing approximately 

10,000 probe sets for all 20,366 genes present in four strains of E. coli, including EHEC, were 

used to profile changes gene expression in EHEC biofilms upon epi, NE, and indole addition. 

Hybridization was performed for 16 h, and the total cell intensity was scaled automatically in the 

software to an average value of 500. The data were inspected for quality and analyzed according 

to the procedures described in Data Analysis Fundamentals which includes using premixed 

polyadenylated transcripts of the B. subtilis genes (lys, phe, thr, and dap) at different 

concentrations. Genes were identified as differentially expressed if the expression ratio (between 

biofilms treated with epi/NE/indole and untreated control biofilm cells) was greater than 2.0 

(based on the standard deviation of fold-change values) (107) and the change p-value is less than 

0.05. The differentially expressed genes were annotated using gene ontology definitions 
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available in the Affymetrix NetAffxTM

 

 Analysis Center (http://www.affymetrix.com/analysis 

/index.affx). The expression data have been deposited in the NCBI Gene Expression Omnibus 

(GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession 

number GSE5552. 

3.3.5 Quantitative reverse-transcription PCR  

   Quantitative RT-PCR was performed using a Bio-Rad iCycler (Bio-Rad, CA) real-time 

PCR unit (41). Approximately 50 ng of total RNA (from the same sample used for microarray 

analysis) from control or epi-treated EHEC was used for reverse transcription.  Gene sequences 

were downloaded from the A Systematic Annotation Package for Community Analysis of 

Genomes, ASAP) website (https://asap.ahabs.wisc.edu/asap/home.php?formSubmitReturn=1) 

and gene-specific primers were used for lsrA, lsrB, lsrC, and rpoA (housekeeping control) (Table 

3.1). Threshold cycle numbers were calculated using the MyiQ software (Bio-Rad), and PCR 

products were verified using agarose electrophoresis.  

 

3.3.6 In vitro adhesion assays 

  Adhesion of EHEC to HeLa S3 cells was performed using a previously described 

protocol (9). HeLa S3 cells (ATCC, Manassas, VA) were routinely cultured and propagated in 

DMEM medium with 10% heat-inactivated fetal bovine serum (FBS) according to standard 

protocols (ATCC). Low passage HeLa cells were cultured in to standard 24-well tissue culture 

plates and grown at 37oC in a 5% CO2 humidified environment until ~ 80% confluency. HeLa 

cell monolayers were washed thrice with sterile PBS to remove unattached cells, and the growth 
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Table 3.1. Primers used for quantitative RT-PCR  

 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

lsrA AACATCCTGTTTGGGCTGGCAA AAACAAGCGTTCGGTTTCCGCA 

lsrB AGCATCCTGGCTGGGAAATTGT AAATTCTTTCACCGTGCCGCGT 

lsrC ACAGCGTTTGGACGCAGTTT ACGCAGGCTGCAATTGCTTT 

rpoA CGCGGTCGTGGTTATGTG GCGCTCATCTTCTTCCGAAT 
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medium was replaced with antibiotic-free DMEM medium with 10% FBS. Approximately 5 x 

106 of a freshly grown EHEC culture (turbidity of ~ 1.0) was added to each well and incubated 

for 3 h at 37oC in a 5% CO2 environment. Loosely attached cells were removed by washing the 

wells thrice with sterile PBS, and the HeLa cells were lysed in the wells using 0.1% Triton X-

100 in PBS. The cell suspension in each well was vigorously vortexed, and serial dilutions of the 

bacteria were plated on LB plates. Colonies were counted after 24 h incubation at 37o

 

C.  

3.4 RESULTS 

 

3.4.1 Effect of epi, NE, and indole on EHEC chemotaxis, motility, and biofilm formation 

   A standard agarose plug assay (101) was modified to include a live and dead strain, each 

tagged with a different fluorophore, to create a new assay for studying chemoattraction or 

repulsion exhibited by EHEC towards epi, NE, and indole. EHEC expressing GFP and 

kanamycin-killed E. coli TG1 with RFP were mixed together and introduced into the vicinity of 

an agarose plug containing the chemotaxis molecule. Diffusion of epi and NE from the agarose 

plug resulted in attraction of EHEC (green) and accumulation near the agarose plug while the 

dead cells (red) were evenly distributed (Figs. 3.1A & 3.1B). The concentration at the edge of 

the plug was not inhibitory to EHEC as cells were observed attached to the agarose plug after 30 

min of exposure. A distinct clearance zone was also detected between the attracted cells and cells 

in the bulk fluid (i.e., away from the agarose plug), which also suggested a concentration-

dependent migration of cells towards epi and NE. This chemoattractive response was similar to 

that observed with the positive control casamino acids (Fig. 3.1C).   
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Fig. 3.1. Agarose plug chemotaxis. Attraction or repulsion of EHEC to different chemoeffectants 
was determined using a modified agarose plug assay. Fluorescence images from bacteria 
exposed to (A) 500 µM epi, (B) 500 µM NE, (C) 2% casamino acids, (D) 5000 µM Indole, (E) 1 
x 10-4

  

  M glycerol, (F) 1X M9 salts solution are shown. Green cells are EHEC expressing green 
fluorescence protein and red cells are kanamycin-killed E. coli TG1 expressing red fluorescence 
protein. Fluorescence images were obtained on a Zeiss Axiovert 200 microscope after 30 min 
using a 10X objective. Data shown are a representative image from three independent 
experiments. Arrows indicate chemoattractant ring (Panel A), clearance zone (Panel C), and 
chemorepellant band (Panel D).  
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   In contrast, exposure to indole resulted in migration of EHEC away from the agarose 

plug, and a clearance zone was formed closer to the agarose plug (Fig. 3.1D); this repulsion was 

similar to that observed with the negative control glycerol (Fig. 3.1E). Exposure to a neutral 

chemoeffectant (M9 salts) did not result in any attraction or repulsion (Fig. 3.1F). These results 

clearly show that EHEC demonstrates chemotactic attraction towards epi and NE but migrates 

away from indole.  

   Based on the significant changes in chemotaxis and its relation to cell motility (20), the 

effect of epi, NE, and indole on EHEC motility was also investigated. Epi and NE were used at a 

concentration of 50 µM based on published reports (16), while indole was used at a higher 

concentration (500 µM) based on the ~ 400 µM extra-cellular concentration of indole in 

stationary phase cultures of EHEC (25). At these concentrations, no significant alteration in the 

growth rate of EHEC was observed (1.35 ± 0.02, 1.35 ± 0.02, and 1.33 ± 0.07 for EHEC, EHEC 

+ 50 µM epi and EHEC + 50 µM NE, respectively), indicating that the observed results are not 

due to changes in growth rate. Addition of epi and NE increased motility by 1.4-fold, as 

compared to untreated controls, while indole decreased EHEC motility by 2.8-fold (Fig. 3.2).  

   In addition, the effect of these molecules on EHEC biofilm formation was also 

determined. Fig. 3.2 also shows that epi and NE resulted in a 1.7- and 1.5-fold increase 

(statistically significant at p < 0.01 using the Student t-test) in EHEC biofilm formation on 

polystyrene, respectively, after 24 h. On the other hand, addition of indole decreased biofilm 

formation by 2.4-fold after 24 h. Together, our data indicate that epi, NE, and indole affect 

EHEC motility and biofilm formation in a manner consistent with their effect on chemotaxis. 
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Fig. 3.2. Epi, NE, and indole affect EHEC motility and biofilm formation. The relative change in 
EHEC motility and biofilm upon exposure to epi (50 µM), NE (50 µM), and indole (500 µM) 
was determined. Motility data are shown as mean ± one standard deviation from 18 motility agar 
plates from three independent experiments. Biofilm data are mean ± one standard deviation from 
36 wells and three independent experiments. ‘*’ indicates statistical significance determined 
using the Student t-test (p < 0.01).  
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Table 3.2. Summary of changes in EHEC biofilm gene expression. Significant changes 
are in bold. Epi = epinephrine; NE = norepinephrine; Ind = indole 

 
 

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

     

AI-2 Genes  

c1993 1.4 1.4 1.6 Putative integral membrane transport protein 

lsrA -9.8 -5.3 1.0 Fused AI2 transporter subunits of ABC 
superfamily: ATP-binding components 

lsrB -7.0 -5.3 -1.4 Putative LACI-type transcriptional regulator 

lsrC -4.3 -2.3 1.2 AI2 transporter 

lsrD -3.2 -1.4 1.5 AI2 transporter 

lsrG -3.2 -3.0 -1.1 Autoinducer-2 (AI-2) modifying protein LsrG 

lsrK -2.8 -2.3 1.2 AI-2 kinase 

lsrR -3.7 -3.7 1.1 lsr operon transcriptional repressor 

     

Phosphate related Genes   

phnD -2.1 1.2 2.1 Phosphonates-binding periplasmic protein 
precursor 

phnG -1.1 1.5 2.3 PhnG protein 

phnP -1.2 1.3 2.1 PhnP protein 

phoB 2.1 3.0 -2.6 Phosphate regulon transcriptional Regulatory 
protein phoB 

phoH -4.9 -4.6 -1.9 PhoH protein 

phoR 2.6 3.5 -1.6 Phosphate regulon sensor protein phoR 

phoU 1.9 2.1 -3.7 Phosphate transport system protein phoU 

pstA 2.5 2.6 -3.2 Phosphate transport system permease protein 
pstA 

pstB 1.3 1.5 -3.7 Phosphate transport ATP-binding protein pstB 
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Table 3.2. Contd. 

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

pstC 2.6 3.0 -2.3 Phosphate transport system permease protein 
pstC 

pstS 1.1 1.1 -4.6 Phosphate-binding periplasmic protein 
precursor 

purE 3.0 3.7 1.4 Phosphoribosylaminoimidazole carboxylase 
catalytic subunit 

purK 1.2 2.6 1.6 Phosphoribosylaminoimidazole carboxylase 
ATPase subunit 

purT -1.4 2.5 2.1 Phosphoribosylglycinamide formyltransferase 2 

 

Hydrogenase Genes 
  

hyaA -3.0 -3.2 1.1 Hydrogenase-1 large chain 

hyaB -4.0 -3.5 1.2 Hydrogenase-1 operon protein hyaE 

hyaC -3.7 -3.0 1.1 Hydrogenase-1 operon protein hyaF 

hyaD -3.2 -2.8 1.2 Hydrogenase-1 small chain precursor 

hyaE -3.5 -2.5 1.3 Hydrogenase-1 large chain 

hyaF -3.0 -2.6 1.1 Hydrogenase-1 operon protein hyaE 

     

PTS Genes   

mtlA -13.9 -11.3 1.0 PTS system, mannitol-specific IIABC 
component 

manX -4.6 -3.5 1.1 PTS system, mannose-specific IIAB component 

manY -2.8 -2.3 1.1 PTS system, mannose-specific IIC component 

manZ -2.8 -2.1 1.2 PTS system, mannose-specific IID component 

fruB -1.7 -2.1 1.2 PTS system, fructose-specific IIA/FPr 
component 
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Table 3.2. Contd.   

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

  

Glycerol related Genes  

glgC -2.5 -3.0 -1.3 Glucose-1-phosphate adenylyltransferase 

glpA -4.9 -1.7 1.7 Anaerobic glycerol-3-phosphate dehydrogenase 
subunit A 

glpD -9.2 -18.4 1.3 sn-glycerol-3-phosphate dehydrogenase 
(aerobic) 

glpF -5.7 -5.7 1.3 Glycerol uptake facilitator protein 

glpK -7.5 -6.1 1.1 Glycerol kinase 

glpQ -2.1 -2.5 -1.1 Glycerophosphoryl diester phosphodiesterase, 
periplasmic precursor 

glpR -1.6 -2.1 -1.1 Glycerol-3-phosphate regulon repressor 

ugpB -7.0 -6.1 -1.4 Glycerol-3-phosphate-binding periplasmic 
protein precursor 

     

Histidine Biosynthesis Genes  

hisA -2.1 -2.8 -1.6 
1-(5-phosphoribosyl)-5-[(5-
phosphoribosylamino)methylideneamino] 
imidazole-4-carboxamide isomerase 

hisB -2.3 -2.6 -2.1 
Bifunctional: histidinol-phosphatase (N-
terminal); imidazoleglycerol-phosphate 
dehydratase (C-terminal) 

hisC -4.0 -4.6 -2.8 Histidinol-phosphate aminotransferase 

hisD -4.3 -4.3 -2.6 Histidine biosynthesis 

hisF -3.0 -3.0 -2.0 Imidazole glycerol phosphate synthase subunit 
hisF 

hisG 1.1 -1.3 -2.8 ATP phosphoribosyltransferase 

hisH -1.6 -2.1 -2.0 Imidazole glycerol phosphate synthase subunit 
hisH 
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Table 3.2. Contd.   

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

hisI -2.1 -2.0 -1.9 Histidine biosynthesis 

hisL 3.0 1.1 -3.7 His operon leader peptide 

hisL 1.7 -1.2 -3.5 Histidine biosynthesis 

hisP -2.5 -1.4 -1.1 Nucleotide binding 

     

Two Component Signal Transduction Genes 

dos 1.3 2.1 1.4 Putative phosphodiesterase, oxygen-sensing 
protein 

evgS -3.2 -1.5 -1.2 Two-component signal transduction system 
(phosphorelay) 

fimZ 1.1 2.1 3.0 
Fimbiral protein Z, putative transcriptional 
regulator of fimbrial expression (LuxR/UhpA 
family) 

glnL 3.2 2.5 -1.9 Two-component signal transduction system 
(phosphorelay) 

narL -2.6 -2.0 -1.4 Nitrate/nitrite response regulator protein narL 

prpR -3.5 -3.7 1.1 Regulator for prp operon 

rstA 2.5 1.9 -1.3 Transcriptional Regulatory protein rstA 

yedV 1.4 2.6 2.0 Putative 2-component sensor protein 

ygeV -2.1 -1.4 -1.5 Two-component signal transduction system 
(phosphorelay) 

     

Sulfate Genes    

cysD -3.0 -3.0 -1.6 Sulfate adenylyltransferase (ATP) activity 

cysI -3.5 -3.0 -1.2 Sulfite reductase [NADPH] hemoprotein beta-
component 

cysJ -4.3 -2.8 1.0 Sulfite reductase [NADPH] flavoprotein alpha-
component 

sseA -2.1 -1.9 1.4 3-mercaptopyruvate sulfurtransferase 
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Table 3.2. Contd.   

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

     

Motility/Chemotaxis genes   

acs -8.0 -4.3 1.1 Acetyl-coenzyme A synthetase 

c2129 3.0 2.5 1.5 Cell division activator cedA 

c4004 1.3 2.1 1.1 Hypothetical protein 

csgA -4.3 -2.8 1.5 Cell adhesion 

csgB -5.7 -4.6 -1.1 Minor curlin subunit precursor 

csgF -3.7 -2.5 -1.4 Curli production assembly/transport component 
csgF precursor 

fimZ 1.1 2.1 3.0 
Fimbiral protein Z, putative transcriptional 
regulator of fimbrial expression (LuxR/UhpA 
family) 

fliD 2.0 2.1 1.4 Cell motility 

fliR -1.1 1.9 2.3 Flagellar biosynthetic protein fliR 

gidB 1.4 2.1 1.5 Methyltransferase gidB 

motB -2.3 -1.2 1.3 Chemotaxis motB protein 

mreC 1.5 2.1 1.2 Rod shape-determining protein mreC 

sfmA -1.2 1.5 2.1 Putative fimbrial-like protein 

sfmF 1.0 1.5 2.3 Putative fimbrial-like protein 

sfmH -2.0 1.0 2.5 Fimbrial assembly protein 

yhhP 1.7 2.5 1.5 SirA protein 

Z0020 1.5 2.5 2.1 Cell adhesion 

Z4971 -1.9 3.7 1.9 Cell adhesion 

     

Cytochrome Genes   

appB -3.0 -2.3 1.2 Cytochrome BD-II oxidase subunit II 
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Table 3.2. Contd.   

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

appC -2.5 -2.1 1.1 Cytochrome BD-II oxidase subunit I 

cyoC -2.1 -3.0 1.0 Cytochrome O ubiquinol oxidase subunit III 

nrfA -3.2 -1.5 1.5 Cytochrome c552 precursor 

nrfB -2.8 1.0 1.5 Cytochrome c-type protein nrfB precursor 

     

Cold-shock Protein Genes   

cspA 1.5 1.5 -3.2 Cold shock protein cspA 

cspE 2.3 2.5 -1.1 Cold shock-like protein cspE 

cspG 8.0 6.1 -4.0 Cold shock-like protein cspG 

cspH 22.6 21.1 -2.5 Cold shock-like protein cspH 

deaD 2.1 2.6 -1.2 Cold-shock DEAD-box protein A 

     

Anti-sense RNA Genes   

dsrA 3.5 4.9 1.3 Anti-sense RNA, silencer of rcsA gene, interacts 
with rpoS translation 

rdlD 4.0 4.0 -2.5 Antisense RNA, trans-acting regulator of ldrD 
translation 

sokB 9.2 7.0 -1.1 Antisense RNA blocking mokB and hokB 
translation 

sokC 2.0 2.6 -1.6 Antisense RNA blocking mokC (orf69) and 
hokC (gef) translation 

     

Glutamine/Glutamate Genes  

c0018 24.3 24.3 5.7 Putative glutamate dehydrogenase 

glnA 1.6 1.3 -2.3 Glutamine synthetase 

glnH -1.2 1.0 -2.1 Glutamine-binding periplasmic protein 
precursor 
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Table 3.2. Contd.   

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

glnP 2.5 3.0 -1.9 Glutamine transport system permease protein 
glnP 

gltJ 3.7 4.3 -1.6 Glutamate/aspartate transport system permease 
protein gltJ 

gltK 2.6 2.6 -1.6 Glutamate/aspartate transport system permease 
protein gltK 

gltL 1.4 1.7 -1.9 Glutamate/aspartate transport ATP-binding 
protein gltL 

ybeJ -1.3 -1.1 -2.5 Glutamate/aspartate Periplasmic binding protein 
precursor 

     

Iron Related Genes   

c3773 2.0 2.1 1.6 Putative iron compound permease protein of 
ABC transporter family 

cydA 2.0 2.8 -1.1 Cytochrome D ubiquinol oxidase subunit I 

cydB 1.9 2.8 -1.2 Cytochrome D ubiquinol oxidase subunit II 

feoA 2.5 2.6 -1.3 Ferrous iron transport protein A 

feoB 2.0 3.2 1.0 Ferrous iron transport protein B 

fhuB 1.3 2.5 1.1 Ferrichrome transport system permease protein 
fhuB 

fhuC 1.6 2.5 1.0 Ferrichrome transport ATP-binding protein 
fhuC 

fhuD 2.5 4.6 1.1 Ferrichrome-binding periplasmic protein 
precursor 

yodB 2.5 2.6 -1.3 Cytochrome b561 homolog 1 

     

NADH Dehydrogenase Genes  

nuoA -1.3 -2.5 1.1 NADH dehydrogenase I chain A 

nuoB -2.0 -3.5 1.0 NADH dehydrogenase I chain B 
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Table 3.2. Contd.   

Gene 
Symbol 

Fold 
change 

Epi 

Fold 
Change 

NE 

Fold 
Change 

IND 
Gene Title 

nuoC -1.7 -4.0 -1.1 NADH dehydrogenase I chain C/D 

nuoE -2.0 -4.3 -1.1 NADH dehydrogenase I chain E 

nuoI -1.1 -2.5 1.1 NADH dehydrogenase I chain I 

nuoJ -1.3 -2.5 1.3 NADH dehydrogenase I chain J 

nuoK -1.3 -2.3 1.4 NADH dehydrogenase I chain K 

nuoL -1.2 -2.3 1.4 NADH dehydrogenase I chain L 

     

TCA Genes   

sdhD -13.0 -21.1 1.1 Succinate dehydrogenase hydrophobic 
membrane anchor protein 

sdhC -12.1 -18.4 1.1 Succinate dehydrogenase cytochrome b-556 
subunit 

sdhA -11.3 -16.0 1.3 Succinate dehydrogenase, catalytic and 
NAD/flavoprotein subunit 

sdhB -10.6 -12.1 1.0 Succinate dehydrogenase iron-sulfur protein 

sucA -7.5 -11.3 1.1 2-oxoglutarate dehydrogenase E1 component 

sucB -7.0 -9.2 -1.1 
Dihydrolipoamide succinyltransferase 
component of 2-oxoglutarate dehydrogenase 
complex 

sucD -6.5 -8.6 1.0 Succinyl-CoA synthetase alpha chain 

sucC -6.5 -8.6 1.0 Succinyl-CoA synthetase beta chain 

acnB -2.0 -4.3 1.0 Aconitate hydratase activity 

icdA -1.9 -2.6 1.1 Isocitrate dehydrogenase [NADP] 

yojH -1.2 -2.3 -1.5 Malate:quinone oxidoreductase 

mdh -2.0 -2.1 -1.1 Malate dehydrogenase 
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3.4.2 Gene expression in epi, NE, and indole treated EHEC biofilms  

   The molecular basis of the effect of epi, NE, and indole on chemotaxis, motility, and 

biofilm formation was investigated using DNA microarrays. EHEC biofilms were formed in LB 

glu medium for 7 h on glass wool in the presence of epi, NE, or indole. The glass wool biofilm 

model was used to mimic surface-associated short-term growth of EHEC, which is similar to the 

localized adherence required for infection (108). Genes whose expression was altered by at least 

2-fold were selected and sorted into functional categories (e.g., metabolism, transport; Table 3.2) 

and the expression trends with the different stimuli analyzed. 

   The number of genes differentially expressed in response to epi, NE, and indole 

treatments were initially compared (Fig. 3.3). A total of 938 and 970 genes were differentially 

expressed by epi and NE, respectively, with 411 differentially expressed genes common between 

the two treatments (316 + 80 + 15 genes in Fig. 3.3). In comparison, 163 and 216 EHEC genes 

were commonly expressed between epi and indole or NE and indole, respectively. Nearly equal 

numbers of common differentially expressed genes were either similarly (86 out of 163 genes 

up-regulated by both epi and indole) or divergently (77 out of 163 genes down-regulated by both 

epi and indole) expressed upon exposure of EHEC to either epi or indole. On the other hand, a 

majority (197 out of 216) of the common differentially regulated genes between NE and indole 

were similarly expressed (i.e., genes up-regulated by NE were also up-regulated upon exposure 

to indole and vice-versa). These results indicate that epi and NE, although similar in structure, 

exert different effects on EHEC biofilm gene expression.  

   The common significantly expressed EHEC genes between epi, NE, and indole exposure 

were further analyzed (i.e., intersection between epi, NE, and indole in Fig. 3.3). Since epi and 

NE exhibit divergent effects on chemotaxis, motility, and biofilm formation as compared to 

indole, we sought to classify genes which were either similarly or divergently altered in 
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Fig. 3.3. Gene expression in EHEC biofilms upon exposure to epi, NE, or indole. The effect of 
epi (50 µM), NE (50 µM), and indole (500 µM) on gene expression in EHEC biofilms on glass 
wool was determined. The number of differentially expressed genes for each molecule, as well 
as the number of genes common with other molecules, is indicated in the Venn diagram. Genes 
common between all three molecules are not included in any of the other categories to facilitate 
interpretation. Annotated genes common to epi, NE, and indole treatments (i.e., divergently 
expressed between epi/NE and indole) are shown along with arrows indicating increase or 
decrease in expression. E = epinephrine; N = norepinephrine; IND = Indole.  
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expression by epi/NE and indole. The addition of epi and NE significantly altered several genes, 

including those that function in AI-2 uptake, phosphate metabolism, glutamate/glutamine 

metabolism, cold shock, antisense RNA, hydrogenase activity, phosphotransferase system, TCA 

cycle, iron uptake and transport, and two component signal transduction systems (Table 3.2).  

   The expression of genes involved in the transport and uptake of AI-2 were decreased in 

EHEC biofilms upon exposure to epi and NE. The entire lsr operon (lsrACDBFG) that encodes 

an AI-2 uptake and modification system (109-110), as well as regulators of the lsr operon (lsrK 

and lsrR) demonstrated decrease in expression ranging from 1.4 to 9.8 fold upon exposure to epi 

and NE (Table 3.3). However, the AI-2 exporter gene, ydgG (104), was not significantly altered 

in expression. The trends observed with the microarrays were further validated using real-time 

RT-PCR and comparable changes in expression were observed for lsrA (-9.8 in microarrays vs. -

4.8 with RT-PCR), lsrB (-7 in microarrays vs. -2.5 with RT-PCR), and lsrC (-4.3 in microarrays 

vs. -2.4 with RT-PCR). Together, these results suggest that the uptake of AI-2, but not export, 

was down-regulated by epi and NE in EHEC biofilms.   

   Genes belonging to three functional groups - cold shock response, phosphate 

metabolism, and glutamate/glutamine metabolism - were also divergently regulated by indole in 

EHEC biofilms as compared to epi and NE. For example, the cspH gene was up-regulated 22.6-

fold by epi and 21.1-fold by NE, but was down-regulated by 2.5-fold upon indole treatment. 

Changes in the expression of these divergently regulated genes are discussed below. 

   Cold shock genes: Stress-related cold shock genes were differentially altered in EHEC 

biofilms by epi, NE, and indole. The data show that cold shock regulator genes (cspGH) 

increased in expression in epi and NE treated biofilms by 6 to 23-fold, while indole decreased 

the expression of these genes by 2.5 to 4-fold. Earlier work from our laboratory (22) has shown 

that cold shock genes are up-regulated in developing (7 h), but not mature E. coli K12 biofilms.  
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Table 3.3. Changes in the expression of AI-2 uptake genes in EHEC biofilms after 7 h 
exposure to epi and NE. Significant changes are in bold 
 

Gene 

Symbol 

Biological Process 

Description 

Fold Change (Array) 
Fold Change 

(RT-PCR) 

Epi NE Epi 

lsrB AI-2 transporter -7.0 -5.3 -2.5 

lsrG Antibiotic biosynthesis -3.2 -3.0 - 

lsrD Transport -3.2 -1.4 - 

lsrA Transport -9.8 -5.3 -4.8 

lsrC Transport -4.3 -2.3 -2.4 

lsrK Carbohydrate metabolism -2.8 -2.3 - 

lsrR 
Regulation of transcription, 

DNA-dependent 
-3.7 -3.7 - 
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The changes in the cold-shock response genes, along with the alterations in biofilm formation 

(Fig. 3.2A) further support the hypothesis that epi and NE increase EHEC colonization while 

indole decreases biofilm formation. 

   Phosphate-related genes: The expression of phosphate-related genes in EHEC biofilms 

were also divergently regulated upon exposure to epi and NE or indole. Several genes belonging 

to the pho (phoBRU) and pst (pstAC) operons were increased in expression upon exposure to epi 

or NE whereas the expression of the pstSCAB genes and phoBU genes was significantly down-

regulated in indole-treated biofilms. The phosphate transport system (encoded by the pstSCAB-

phoU operon) has been previously shown to play an important role in E. coli CFT073 virulence 

and pathogenicity (111). Recently, Buckles et al. (112) have also identified PhoU as a virulence 

factor in urinary tract colonization. The changes in pst and pho gene expression observed with 

epi and NE suggest that these signal molecules increase EHEC virulence while indole inhibits 

expression of genes involved in virulence.  

   Glutamate/glutamine genes: The expression of genes involved in glutamate/glutamine 

biosynthesis and transport were increased in epi and NE treated EHEC biofilms. These included 

genes involved in glutamate transport (e.g., gltJ, glnP) that function in importing glutamate into 

the cell (113-114). A decrease in the expression of these genes was observed with indole; 

however, these changes in expression were not significant. Genes involved in nitrogen 

metabolism are known to be involved in virulence of Gram-positive and -negative bacteria (115). 

Recently, Walters et al. (17) reported that glutamate and oxaloacetate are utilized to generate L-

aspartate that is converted to homecysteine and used for autoinducer-3 (AI-3) production. The 

increase in the expression of genes involved in glutamate intake suggests that epi/NE might 

stimulate AI-3 production in EHEC during biofilm formation, whereas indole might inhibit the 

synthesis of AI-3 (although the changes in the expression of glnP and gltJ are slightly below the 
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two-fold significance threshold). 

 

3.4.3 Adherence to HeLa cells in the presence of epi, NE, and indole  

   Based on the chemoattraction of EHEC to epi and NE and repulsion away from indole, 

we hypothesized that these molecules would also divergently impact EHEC adhesion that leads 

to virulence and infection. The human cervical carcinoma epithelial cell line, HeLa S3, was used 

for determining the effect of epi, NE, and indole on EHEC adherence to epithelial cells. 

Although not of intestinal origin, HeLa cells have been extensively used for studying EHEC 

infections as they exhibit several classical features of infection including the formation of 

attaching and effacing lesions (6, 9).  Fig. 3.4 shows that exposure to 50 µM of epi or NE for 3 h 

increased the attachment of EHEC to HeLa cells by 3.4 and 5.2-fold, respectively. On the other 

hand, adherence to HeLa cells in the presence of 500 µM of indole was reduced by 3.1-fold as 

compared to untreated controls. These results are consistent with the effect that these molecules 

have on EHEC chemotaxis, motility, biofilm formation, and gene expression. 

 

3.5 DISCUSSION 

The data presented in this report clearly demonstrate that the eukaryotic signaling 

molecules epi and NE impact EHEC chemotaxis, motility, biofilm formation, gene expression, 

and attachment to epithelial cells in a manner different from that of the prokaryotic signal indole. 

The mechanisms utilized by this enteric pathogen to ‘recognize’ its environs and initiate 

colonization are not fully understood. Kaper and Sperandio (13) have proposed that pathogenic 

E. coli detect quorum sensing molecules from commensal bacteria, as well as other eukaryotic 

signals in the GI tract, to initiate colonization and infection. Our data provide evidence that 

EHEC can utilize eukaryotic and prokaryotic signals to ‘sense’ and detect the appropriate 
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Fig. 3.4. Epi, NE, and indole affect EHEC attachment to HeLa cells. The relative change in 
EHEC attachment to HeLa cells after 3 h of exposure to epi (50 µM), NE (50 µM), and indole 
(500 µM) was determined. Cell counts (mean ± one standard deviation) are from duplicate LB 
agar plates and generated from 5 HeLa cell culture wells. Control indicates EHEC cell counts 
obtained without addition of any molecule. ‘*’ and ‘**’ indicate statistical significance 
determined using the Student t-test at p < 0.01 and p< 0.005, respectively. 
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location (i.e., large intestine) prior to colonization.  

The chemotactic migration of EHEC towards epi and NE is especially intriguing as it 

suggests that the pathogen has evolved to recognize these signals during host cell infections. 

Sensing of epi, NE, and indole by EHEC could be the first step in a sequence of events leading 

to infection, as phenotypes such adherence and colonization, which are down-stream of 

chemotactic recognition and important for infection, are also up-regulated by epi and NE. 

Indeed, catecholamines have been shown to increase the adherence of EHEC to intestinal 

mucosa in different in vivo models of infection (4, 97). Our observations on the recognition of 

epi and NE by EHEC are also in agreement with other reports on epi and NE regulating the 

expression of virulence genes and infection (16-17), and together, suggest an important role for 

these molecules in EHEC infections. 

Even though the presence and concentration of epi and NE in the intestinal lumen has 

not been directly measured, it is reasonable to assume that EHEC encounters these molecules 

during infection. It is well established that approximately 50% of the NE present in the human 

body is synthesized in the GI tract by the enteric nervous system (116-117). Hence, very high 

local concentrations of catecholamines exist in the GI tract, which can result in NE leaking into 

the lumen through diffusion driven by the concentration gradient (118).  Evidence towards this 

has been presented by Chen et al. (119) who demonstrated that addition of 10 µM NE to the 

contraluminal side of mucosal explants from cecum and colon increases EHEC adherence on the 

luminal side. The likelihood of NE also being present in the lumen is also supported by the work 

of Ahlman et al. (120-121) who detected a different neuroendocrine molecule, serotonin, in the 

intestinal lumen. However, it should be noted that epi is less likely to be present in the intestinal 

lumen, as there have been no prior reports on epi being generated through the enteric nervous 
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system or by the mesenteric organs (116). Hence, the concentration gradients driving diffusion 

of epi in to the lumen will be smaller than that observed with NE.   

   We restricted our investigation to gene expression changes in a surface-associated 

(biofilm) model as opposed to planktonic cultures because EHEC is predominantly found in this 

mode during infections (i.e., localized adherence of microcolonies to epithelial cells). However, 

very little is known about enterohaemorrhagic and enteropathogenic E. coli biofilms in vivo. The 

first report on enteropathogenic E. coli biofilm formation in vitro was only recently published by 

Sperandio and co-workers (122).  However, the surface-attached growth is a valid model as the 

microcolonies formed during EHEC infection are also a key element in biofilm formation. 

Second, genes involved in pathogenic E. coli infections (e.g., EspA, BFP) have also been shown 

to play a key role in biofilm formation (122). Third, the persistent nature of EHEC infections is 

similar to the antimicrobial resistance demonstrated by surface-associated bacteria; therefore, 

surface-associated bacteria can be a good model for studying EHEC infections (122). The above 

lines of evidence suggest surface-associated growth is an important aspect of EHEC 

pathogenesis.  

   Our data clearly show that 15 genes (encoding for functions related to virulence and 

biofilm formation) are divergently regulated between epi/NE and indole. It should also be noted 

that these signals also exhibited similar effects on the expression of nearly 80 other genes (Fig. 

3.3). However, a majority of these similarly-regulated genes are hypothetical proteins, and of the 

annotated genes, none are related thus far to surface-attachment or virulence. Therefore, based 

on the available annotation information, we propose that epi/NE and indole play antagonistic 

roles during EHEC colonization and infection of epithelial cells. Identification and 

characterization of the 80 similarly regulated genes is needed to generate a comprehensive 

picture of the role that these molecules play during EHEC infection in the GI tract. Unpublished 
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data indicate that some of the genes (e.g., pstA) identified in our study are important in the 

EHEC response to NE and in infection, as a EHEC pstA mutant does not demonstrate a 

significant increase in attachment to HeLa cells upon exposure to NE (data not shown). 

The changes in the expression of glutamate transport genes suggest an intriguing 

possibility that epi and NE are involved in up-regulating AI-3 production. Since glutamate is 

involved in AI-3 synthesis (17), it is possible that this increase in glutamate uptake underlies an 

increase in AI-3 synthesis, and thereby, virulence. While some genes related to virulence (e.g., 

phoU) were altered in expression, none of the virulence genes (e.g., eae) per se demonstrated 

any significant changes in expression upon treatment with epi and NE. These results are in 

contrast to other studies (4, 118) that have reported increased production of shiga toxins by 

EHEC upon exposure to catecholamines. However, the experimental conditions between the two 

studies are sufficiently different (rich LB medium in our study versus serum-based basal 

medium; gene expression measurement at 7 h in our study versus shiga toxin measurement at 12, 

24, and 48 h) and possibly underlie the observed differences. It is also possible that colonization 

of abiotic surfaces (such as glass wool in our study) does not lead to expression of virulence 

genes as the cues from epithelial cells may be necessary for induction of the virulence genes may 

be missing (25).  This would also explain the decrease in the expression of curli genes (csgAB, 

csgF) upon exposure to epi and NE, given that curli have been shown to mediate pathogenic E. 

coli internalization (123). Current work in our laboratory focuses on comparing virulence gene 

expression between EHEC colonization of abiotic and biotic surfaces. 

The entire lsr operon was down-regulated upon exposure to epi and NE but not indole, 

which suggests that the uptake of AI-2 was down-regulated upon exposure to epi and NE and 

does not play a significant role in biofilm formation. However, unpublished data from our lab 

show that addition of AI-2 increases EHEC biofilm formation by 9.9-fold after 24 h. The 
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increase in EHEC biofilm upon addition of AI-2 is also consistent with our prior work (20, 104) 

showing that an AI-2 export deficient K12 mutant (∆ydgG) demonstrates 7000-fold increase in 

biofilm formation (104). Together, these suggest the possibility that a second AI-2 transporter is 

present in EHEC (that is not impacted by the addition of epi or NE), as our data (not shown) also 

show no difference in intracellular AI-2 levels between control and epi/NE treated EHEC. The 

notion of a second AI-2 transporter is also consistent with that previously proposed by Wang et 

al. (109) in non-pathogenic E. coli and Taga et al. (124) in S. typhimurium.  

It is interesting to note that some of the genes up-regulated by NE in EHEC biofilms are 

also similarly altered by other bacterial molecules. Recent work from our laboratory (25) shows 

that the indole derivative isatin (1-H-indole-2,3-dione) up-regulated the expression of cold-shock 

response genes (cspGH, deaD) by 4.6 to 17.1-fold and down-regulated the expression of the AI-

2 uptake genes (lsrACDBFG) by 10.6 to 61-fold, both of which consistent with the data 

presented in this study (Table 3.2).  Similarly, both NE and isatin down-regulated the expression 

of genes involved in sulfur metabolism (cys genes), which are important in biofilm formation 

(125). Together, these results suggest commonalities between the effect of NE and isatin on 

EHEC physiology, especially with respect to AI-2 signaling and biofilm formation. 

The consistency with which epi, NE, and indole impact five different responses – 

chemotaxis, motility, biofilm formation, gene expression, and adherence to HeLa cells – strongly 

indicates that these three molecules are important determinants of EHEC colonization in the GI 

tract. It should be noted that at the concentrations used, epi and NE did not increase the growth 

rate of EHEC, which is in contrast to prior reports describing NE-mediated increase in growth of 

EHEC and other bacteria (71, 95). However, the similar growth rates observed between control 

and epi/NE treated cultures further emphasizes the fact that the changes observed in chemotaxis, 
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motility, biofilm formation and HeLa cell adherence are not an artifact of increased cell density 

arising from increased growth rate upon exposure to epi/NE. 

Our data suggest a complex scenario where the individual signals in the GI tract exert 

markedly different effects on the different phenotypes, with the net resultant of these interactions 

determining the extent of colonization and host cell infection. The divergence in the response to 

epi/NE vs. indole suggests that concentration-dependent interactions between these abundant 

could be important in GI tract infections. For example, a predominance of epi or NE (such as 

during stress or after injury) could lead to increased chemotactic migration and colonization of 

host cells, while excess indole can lead to a decrease in the extent of EHEC colonization. While 

the current study establishes the response of EHEC to a single concentration of these molecules, 

the colonizing pathogen is likely to encounter diffusion-driven gradients of different signals in 

the intestinal lumen. Current work in our laboratory is focusing on presenting different 

concentration gradients of signaling molecules and their combinations to EHEC and 

investigating their effect on chemotaxis and colonization.   

Based on the divergent regulation of EHEC chemotaxis, motility, and biofilm formation 

by epi/norpei and indole, we propose a model for EHEC colonization in the GI tract that is 

dependent on indole concentration (Fig. 3.5). In this model, it is assumed that neuroendocrine 

signals such as epi and NE are present in the intestinal lumen (with some diffusion-driven 

gradient) throughout the large intestine while spatial (positional) heterogeneities in the 

concentration of indole exist in the large intestine due to heterogeneities in the distribution of 

commensal bacteria (especially that of indole-producing non-pathogenic E. coli) (126). We 

propose that the migration of EHEC to the epithelial cell surface is primarily driven by ‘sensing’ 

of epi/NE but occurs only in regions of the biofilm where indole concentration is low or below a 
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Fig. 3.5. Hypothetical model for EHEC colonization in the GI tract.  Gradients of epi and NE 
influence the chemotactic migration of EHEC to epithelial cell surfaces. Cells that do not 
encounter high concentrations of epi and NE will continue to move parallel to, and not toward, 
the epithelial cell surface. (A) In the absence of indole-secreting commensal E. coli, colonization 
of the non-pathogenic biofilm occurs throughout the epithelial cell surface. (B) In the presence 
of commensal E. coli, the pathogen is exposed to gradients of indole which repel it from the host 
cells. In this scenario, colonization occurs only in regions where non-pathogenic, non-E. coli 
bacteria are present. The direction of migration is indicated by arrows. 
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critical threshold value.  It follows that EHEC colonization occurs to a large extent in regions of 

the GI tract that are not colonized by non-pathogenic E. coli (i.e., regions with low levels of 

indole). Furthermore, since EHEC itself secretes indole (~500 µM), subsequent colonization will 

occur only in places that are not already colonized by the pathogen, thereby contributing to 

further colonization and the spread of infection. Thus, the extent of EHEC colonization is likely 

to be strongly influenced by the spatial distribution of both eukaryotic signals and indole-

producing commensal bacteria in the GI tract.  
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CHAPTER IV 

TEMPORAL REGULATION OF ENTEROHEMORRHAGIC ESCHERICHIA COLI 

VIRULENCE MEDIATED BY AUTOINDUCER-2* 

 

4.1 OVERVIEW 

  The AI-2 molecule is produced by many bacterial species including various human GI 

tract commensal bacteria, and has been proposed to be involved in inter-species communication. 

Since pathogens are likely to encounter AI-2 in the GI tract, we studied the effects of AI-2 on 

various phenotypes associated with EHEC infections. AI-2 attracted EHEC in agarose plug 

chemotaxis assays and also increased swimming motility, as well as increased EHEC attachment 

to HeLa cells.  The molecular basis underlying the stimulation of EHEC chemotaxis, motility 

and colonization by AI-2 was investigated at the transcriptome level using DNA microarrays. 

We found that exposure to AI-2 altered the expression of 23 LEE genes directly involved in the 

production of virulence determinants, as well as other genes associated with virulence (e.g., 46 

flagellar/fimbrial genes, 24 iron-related genes), in a temporally-defined manner. To our 

knowledge, this is the first study to report AI-2 mediated regulation of EHEC chemotaxis and 

colonization, as well as temporal regulation of EHEC transcriptome by AI-2. Our results suggest 

that AI-2 is an important signal in EHEC infections of the human GI tract.  

 
 
 
 
 
 
 
* Reprinted with permission from “Temporal regulation of enterohemorrhagic Escherichia coli 
virulence mediated by Autoinducer-2” by Tarun Bansal, Palmy Jesudhasan, Suresh Pillai, 
Thomas K. Wood, and Arul Jayaraman, 2008, Applied Microbiology and Biotechnology, 78:811-
819, Copyright by Springer (www.springerlink.com). 
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4.2 INTRODUCTION 

  The GI tract is colonized by approximately ~ 1014

  EHEC infections have been reported to proceed in three stages: migration of the 

pathogen toward the epithelial cell surface, colonization of epithelial cells, and infection of cells 

by releasing shiga-like toxins (9). It is becoming increasingly evident that prokaryotic and 

eukaryotic cell-cell communication signals present in the GI tract impact the different steps 

involved in EHEC infections. Bacterial signals present in the GI tract include molecules 

produced by the commensal bacterial flora (e.g., indole, a stationary phase signal secreted by 

commensal E. coli) (41) and those involved in quorum sensing (e.g., AI-2 and AI-3) (127). 

Recent results from our laboratory have shown that indole attenuates EHEC chemotaxis, 

motility, biofilm formation, colonization of epithelial cells, and the expression of genes related to 

virulence (26), suggesting that indole signaling could be important in EHEC infections. 

Similarly, AI-3 has also been shown to regulate EHEC virulence and flagellar gene expression 

(16) and function similar to the human hormone epi (17).  However, the effect of AI-2, which 

has been proposed as an inter-species signaling molecule and is produced by many species of 

commensal bacteria (3), on EHEC virulence and infection has not been fully understood.   

 bacteria belonging to hundreds of 

species that exist in a symbiotic relationship with the host without leading to host inflammatory 

response (5). However, the introduction of pathogens, such as EHEC, into the GI tract disturbs 

this delicate balance between prokaryotes and eukaryotes (5), and causes bloody diarrhea and 

HUS (7). Currently EHEC infections are not treated with antibiotics as this has been shown to 

increase development of HUS in infected children (14), as well as lead to the increased release of 

shiga-like toxins (10). In the United States there are approximately 70,000 infections annually 

and 2,000 hospitalizations with an overall cost of $405 million (11), which makes EHEC 

infections a serious problem.  
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  AI-2 is synthesized in bacteria through the conversion of S-adenosylhomocysteine to S-

ribosylhomocysteine, and then S-ribosylhomocysteine to (S)-4,5-dihydroxypentane-2,3-dione 

(DPD) by the enzymes Pfs and LuxS, respectively  (55). DPD spontaneously cyclizes to form a 

number of molecules, and AI-2 is one of them. While purified AI-2 (DPD) has been shown by us 

to be directly involved in non-pathogenic E. coli biofilm formation (20) and three groups have 

shown that the inability to form AI-2 stimulates motility (18, 107, 128), its effect on pathogenic 

E. coli has been inconsistent.  For example, a recent study (127) reported that addition of AI-2 to 

a EHEC luxS mutant did not significantly alter the expression of virulence genes other than 

LEE4 and LEE5, and concluded that AI-2 does not impact EHEC virulence.  However, this 

study did not account for temporal regulation of AI-2 uptake and signaling.  

  The goal of this study was to investigate the effect of AI-2 on phenotypes related to 

EHEC virulence and infection. Since AI-2 concentration is likely to be high in the human GI 

tract, we hypothesized that AI-2 will significantly impact EHEC colonization and infection. We 

studied the relative changes in EHEC chemotaxis, motility and attachment to HeLa cells – 

important components of EHEC infections – in the presence of AI-2 using a low-nutrient 

medium that mimics the GI tract environment (24). The temporal response of EHEC gene 

expression in response to AI-2 exposure was also investigated using a series of DNA 

microarrays. Our results suggest an important role for AI-2 in EHEC infections. To our 

knowledge, this is the first study to report AI-2 mediated regulation of EHEC chemotaxis and 

colonization, and the temporal response of EHEC to AI-2.  
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4.3 MATERIALS AND METHODS 

 

4.3.1 Bacterial strains, materials and growth 

  Strain VS94 (EHEC ΔluxS) (16) was kindly provided by Dr. V. Sperandio. Plasmids 

pCM18 (100) and pDS-RedExpress (Clontech, CA) were used to constitutively express GFP and 

RFP respectively. LB medium was used to grow overnight cultures of bacteria. 10 µg/mL 

tetracycline, 100 µg/mL kanamycin and 150 µg/mL erythromycin were used for plasmid 

selection. AI-2 as (

 

S)-4,5-dihydroxy-2,3-pentanedione was purchased from Omm Scientific 

(Dallas, TX).  

4.3.2 Agarose plug chemotaxis assay 

  Chemotaxis assay in agarose plugs was performed as described previously (26). Briefly, 

an overnight culture of VS94 expressing pCM18 was used to inoculate 10 mL growth medium 

with erythromycin, and the culture was grown to mid-exponential phase (turbidity of 0.7 at 600 

nm). The cells were harvested, washed and resuspended in chemotaxis buffer with kanamycin-

killed E. coli TG1/pDS-RedExpress cells in a 2:1 ratio and were exposed to a plug containing 

AI-2. Migration of bacteria was imaged on a Zeiss Axiovert 200 fluorescence microscope 

(Thornwood, NY) over a period of 20 minutes. Images were analyzed using Zeiss Axiovert 

software, Version 4.5. 

 

4.3.3 Motility assay 

  Swimming motility was assayed as previously described (26). Briefly, overnight culture 

of VS94 was sub-cultured to a turbidity of 0.05 at 600 nm in LB medium and grown to a 

turbidity of ~ 1.0 at 600 nm at 37°C. AI-2 (1 µM to 100 µM) was added to the motility agar 
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plates (1% tryptone, 0.25% NaCl, and 0.3% agar), and the sizes of the halos were measured after 

8 h. Five motility plates were used for each AI-2 concentration. 

 

4.3.4 In vitro adhesion assays  

  Adhesion of EHEC to HeLa S3 cells was performed using a previously described 

protocol (26). HeLa S3 cells (ATCC, Manassas, VA) were cultured and propagated in DMEM 

with 10% heat-inactivated bovine serum according to standard protocols (ATCC). Low-passage-

number HeLa cells were cultured in standard 24-well tissue culture plates and grown at 37°C in 

5% CO2 until ~ 80% confluence. HeLa cell monolayers were washed two times with sterile PBS 

to remove unattached cells, and the growth medium was replaced with antibiotic-free DMEM 

with 10% bovine serum. Approximately 106

 

 cells of a freshly-grown VS94 culture (turbidity of ~ 

0.8 at 600 nm) were added to each well and incubated for 3 h at 37°C and 5% CO2. Loosely 

attached cells were removed by washing the wells two times with sterile PBS, and the HeLa cells 

were lysed in the wells using 0.1% Triton X-100 in PBS. The cell suspension in each well was 

vigorously vortexed, and serial dilutions of the bacteria were plated on LB plates. Colonies were 

counted after 24 h incubation at 37°C. 

4.3.5 AI-2 uptake assay 

  Overnight cultures of VS94 were diluted in Standard American Petroleum Institute 

(SAPI) medium (24) to a turbidity of 0.1 at 600 nm. SAPI medium contains limited nutrients 

(2.77 mM dextrose, 6.25 mM ammonium nitrate, 1.84 mM monobasic potassium phosphate, 

3.35 mM potassium chloride, 1.01 mM magnesium sulfate and 10 mM HEPES); hence, it was 

used here to mimic the in vivo milieu of the human GI tract (24). The medium pH was adjusted 

to 7.5 and filter-sterilized. 30% (v/v) bovine serum was then added. The cells were grown to a 
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turbidity of approximately 0.5 at 600 nm at 37oC before adding 100 µM AI-2. Turbidity was 

measured and supernatants were collected every hour for 7 h after addition of AI-2. Three 

independent cultures were used, and the V. harveyi autoinducer assay was performed as 

described previously (129). Briefly, an overnight culture of V. harveyi was diluted 1:5000 in 

fresh AB medium, mixed with supernatants in a ratio 9:1, and grown for 4 h at 30o

 

C with 

shaking. Luminescence was then measured using TD-20e luminometer (Turner Biosystems, 

Sunnyvale, CA) to determine the amount of extracellular AI-2 remaining at each time-point. 

4.3.6 RNA isolation and DNA microarrays 

  Overnight cultures of VS94 were diluted in SAPI medium to a turbidity of 0.1 at 600 

nm. The cells were allowed to grow to a turbidity of 0.5 at 600 nm at 37oC and 100 µM AI-2 was 

added to the culture. In the control flasks, no AI-2 was added. The cultures were then allowed to 

grow for 3.5 h, 4 h, 4.5 h or 5.5 h before cell pellets were collected by centrifugation and stored 

at -80o

  Total RNA was isolated from the cell pellets, and RNA quality was assessed using gel 

electrophoresis. E. coli Genome 2.0 arrays (Affymetrix, California) containing 10,208 probe sets 

for all 20,366 genes present in four strains of E. coli, including EHEC, were used to profile 

changes in gene expression using RNA samples for each treatment. Hybridization was 

performed for 16 h, and the total cell intensity was scaled automatically in the software to an 

average value of 500. The data were inspected for quality and analyzed according to the 

procedures described by the manufacturer (Affymetrix Data Analysis Fundamentals) which 

include using premixed polyadenylated transcripts of the B. subtilis genes (lys, phe, thr, and dap) 

at different concentrations. Genes were identified as differentially expressed if the expression  

C. 
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Table 4.1. Summary of changes in VS94 gene expression in presence of AI-2. Relative 
changes less than 1 indicate the genes were repressed in presence of AI-2. Relative changes 
greater than 1 indicate genes were induced in presence of AI-2 

 

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

 

AI-2 uptake operon 
   

lsrC 8.57 13.00 9.19 1.23 AI-2 transporter: putative ABC transport 
system permease protein 

lsrB 7.46 10.56 6.50 1.15 Putative LACI-type transcriptional regulator 

lsrG 7.46 8.00 6.06 1.00 Autoinducer-2 (AI-2) modifying protein LsrG 

lsrK 7.46 6.50 5.28 1.32 AI-2 kinase 

lsrA 7.46 11.31 8.00 1.23 Fused AI-2 transporter subunits of ABC 
superfamily 

yneB 6.50 6.06 6.06 1.15 putative aldolase 

lsrD 6.50 8.57 8.57 1.14 AI-2 transporter: putative ABC transport 
system permease protein 

lsrR 6.06 8.00 6.50 1.23 lsr operon transcriptional repressor: putative 
transcriptional regulator, sorC family 

 

Virulence/LEE genes 
   

eae 0.81 0.87 2.00 1.15 Intimin adherence protein 

espF 0.71 0.87 1.52 1.15 Putative secreted protein encoded by cryptic 
prophage CP-933M 

espA 0.76 0.66 1.62 1.23 Secreted protein EspA 

sepQ 1.07 0.81 1.62 1.15 Type III secretion system SepQ protein 

sepL 0.81 0.81 1.74 1.07 Type III secretion system SepL protein 

escS 0.81 0.66 1.87 1.23 Transport 

escU 0.93 0.68 1.87 1.15 Transport 

escC 0.93 0.87 1.74 1.23 Protein transporter activity 

cesD 0.87 0.76 1.87 1.15 Response to stress 
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Table 4.1. Contd. 

 

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

escT 0.87 0.71 1.74 1.15 Protein targeting 

escV 1.00 0.81 1.62 1.23 Protein secretion 

escR 0.87 0.76 1.62 1.15 Type III protein (virulence-related) secretor 
activity 

escN 1.07 0.81 1.52 1.32 Defense response 

escF 0.71 0.76 1.74 1.07 Pathogenesis 

eaeH 0.57 0.66 2.00 1.23 Attaching and effacing protein, pathogenesis 
factor 

ECs3718 0.81 0.76 1.52 1.15 Pathogenesis 

ECs1092 0.71 0.93 1.62 1.23 Viral envelope fusion with host membrane 

ECs2183 0.62 1.00 1.74 1.23 Viral envelope fusion with host membrane 

ECs1535 0.71 1.00 1.52 1.15 Viral envelope fusion with host membrane 

Z4190 0.93 0.71 2.00 1.23 Type III protein (virulence-related) secretor 
activity 

Z4189 0.93 0.88 1.87 1.07 Type III protein (virulence-related) secretor 
activity 

Z4196 0.81 0.76 1.87 1.23 Type III protein (virulence-related) secretor 
activity 

Z4180 1.23 0.81 1.87 1.32 Type III protein (virulence-related) secretor 
activity 

 

Flagellar/fimbrial genes 
   

fliR 0.57 0.66 1.74 1.00 Flagellar biosynthetic protein fliR 

fliQ 0.57 0.87 1.87 1.07 Flagellar biosynthetic protein fliQ 

fliP 0.57 0.81 1.74 1.15 Flagellar biosynthetic protein fliP precursor 

fliN 0.66 0.87 1.87 1.23 Flagellar motor switch protein fliN 

fliL 0.62 0.93 1.74 1.15 Flagellar fliL protein 
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Table 4.1. Contd. 

 
  

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

fliK 0.57 0.76 1.52 1.15 Flagellar hook-length control protein 

fliI 0.54 0.87 1.74 1.23 Flagellum-specific ATP synthase 

fliG 0.62 0.71 1.74 1.32 Flagellar motor switch protein fliG 

fliF 0.66 0.76 1.74 1.15 Flagellar M-ring protein 

fliA 0.66 0.81 1.62 1.15 RNA polymerase sigma factor for flagellar 
operon 

flhE 0.66 0.76 1.74 1.23 Flagellar protein 

flgK 0.57 0.81 1.52 1.15 Flagellar hook-associated protein 1 

flgJ 0.62 0.93 1.52 1.15 Peptidoglycan hydrolase flgJ 

flgH 0.54 0.87 1.62 1.23 Flagellar L-ring protein precursor 

flgG 0.57 0.87 1.62 1.07 Flagellar basal-body rod protein flgG 

flgB 0.54 0.76 1.62 1.15 Flagellar basal-body rod protein flgB 

fimZ 0.62 0.76 1.87 1.23 
Fimbrial protein Z, putative transcriptional 
regulator of fimbrial expression (LuxR/UhpA 
family) 

fimG 0.57 0.76 1.52 1.15 FimG protein precursor 

fimF 0.66 0.81 1.62 1.41 FimF protein precursor 

fimD 0.54 0.87 1.52 1.15 Outer membrane usher protein fimD precursor 

fimC 0.66 0.66 1.62 1.23 Chaperone protein fimC precursor 

sfmH 0.62 0.81 2.00 1.23 Fimbrial assembly protein 

sfmF 0.66 0.76 1.62 1.15 Putative fimbrial-like protein 

sfmD 0.57 0.87 1.62 1.32 Putative outer membrane protein 

sfmC 0.44 0.81 1.87 1.23 Putative chaperone 

sfmA 0.62 0.87 1.52 1.15 Putative fimbrial-like protein 

c1936 0.54 0.93 2.00 1.00 Type-1 fimbrial protein, A chain precursor 

c0430 0.57 0.93 1.62 1.15 Type-1 fimbrial regulatory protein fimB 
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Table 4.1. Contd. 

 
   

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

ycbV 0.62 0.87 1.74 1.15 Putative fimbrial-like protein 

ycbU 0.62 1.00 1.62 1.07 Putative fimbrial-like protein 

ycbQ 0.62 0.76 1.62 1.15 Putative fimbrial-like protein 

ycbR 0.62 0.93 1.62 1.07 Putative fimbrial chaperone 

Z0615 0.57 0.93 1.52 1.23 Cell adhesion 

yadN 0.54 0.81 1.74 1.15 Cell adhesion 

Z3597 0.62 0.93 1.74 1.15 Cell adhesion 

Z3601 0.62 0.76 1.52 1.23 Cell adhesion 

Z4971 0.62 0.71 1.62 1.07 Cell adhesion 

Z3598 0.62 0.81 1.74 1.23 Cell adhesion 

Z5225 0.62 0.87 1.87 1.07 Cell adhesion 

Z3135 0.66 0.87 1.52 1.07 Cell adhesion 

yehD 0.66 0.76 1.62 1.07 Cell adhesion 

Z3596 0.66 0.87 1.74 1.23 Cell adhesion 

Z1538 0.66 0.87 1.62 1.15 Cell adhesion 

flgI 0.62 0.76 1.62 1.00 Ciliary or flagellar motility 

ydeS 0.62 0.81 2.00 1.15 Hypothetical fimbrial-like protein ydeS 
precursor 

ydeQ 0.66 0.87 1.74 1.15 Hypothetical fimbrial-like protein ydeQ 
precursor 

 

Iron related genes 
    

napH 0.57 0.81 1.74 1.15 Ferredoxin-type protein napH 

napG 0.66 0.76 1.87 1.32 Ferredoxin-type protein napG 

napF 0.54 0.87 1.62 1.07 Ferredoxin-type protein napF 
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Table 4.1. Contd. 

 
   

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

napB 0.66 0.76 1.52 1.41 Diheme cytochrome-C napB precursor 

fixX 0.54 0.81 1.74 1.23 Ferredoxin-like protein 

fixC 0.66 0.76 1.62 1.15 FixC protein 

fixB 0.62 0.81 1.52 1.23 Probable flavoprotein subunit, carnitine 
metabolism 

fixA 0.57 0.76 1.62 1.15 FixA protein 

c1650 0.50 0.87 1.62 1.23 Putative iron compound ABC transporter, 
ATP-binding protein 

fepE 0.62 0.81 1.74 1.07 Ferric enterobactin (enterochelin) transport 

ygcO 0.62 0.93 1.52 1.23 Ferredoxin-like protein ygcO 

hcaC 0.62 0.76 1.74 1.15 Ferredoxin subunit of phenylpropionate 
dioxygenase 

c2068 0.62 0.81 1.62 1.07 Putative ferredoxin-like protein ydhY 

c2065 0.66 0.87 1.52 0.87 Putative ferredoxin-like protein ydhX 

c1652 0.62 0.76 1.87 1.15 Hypothetical protein 

ynfE 0.66 0.71 1.74 1.15 Putative dimethyl sulfoxide reductase chain 
ynfE precursor 

ybjW 0.57 1.00 1.74 1.15 Prismane protein homolog 

c3734 0.62 0.87 1.52 1.32 Hydrogenase-2 small chain precursor 

nrfB 0.57 0.81 1.87 1.41 Cytochrome C-type protein nrfB precursor 

dmsA 0.66 0.87 1.62 1.00 Anaerobic dimethyl sulfoxide reductase chain 
A precursor 

hcaE 0.57 0.66 1.52 1.23 3-phenylpropionate dioxygenase, alpha 
subunit 

mhpB 0.57 0.81 1.62 1.32 2,3-dihydroxyphenylpropionate 1,2-
dioxygenase 

napA 0.62 0.81 1.52 1.32 Iron ion binding 

Z3785 0.66 0.87 1.52 1.07 Iron ion binding 
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Table 4.1. Contd. 

 
  

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

 

Colanic acid genes 
    

wcaJ 0.66 0.66 1.62 1.23 Putative colanic biosynthesis UDP-glucose 
lipid carrier transferase 

wcaH 0.62 0.87 1.52 1.23 GDP-mannose mannosyl hydrolase 

wcaG 0.57 0.81 1.52 1.32 GDP-4-keto-6-L-galactose reductase 

wcaF 0.50 1.07 2.14 1.23 Putative colanic acid biosynthesis 
acetyltransferase wcaF 

wcaE 0.57 0.87 2.00 1.00 Putative colanic acid biosynthesis glycosyl 
transferase wcaE 

wcaC 0.54 0.87 1.87 1.15 Putative colanic acid biosynthesis glycosyl 
transferase wcaC 

wcaB 0.54 1.00 1.52 1.07 Putative colanic acid biosynthesis 
acetyltransferase wcaB 

wcaA 0.50 0.66 1.52 1.15 Putative colanic acid biosynthesis glycosyl 
transferase wcaA 

 

Galactitol operon 
    

agaZ 0.62 0.71 2.00 1.32 Putative tagatose 6-phosphate kinase agaZ 

agaY 0.57 0.62 1.74 1.41 Tagatose-bisphosphate aldolase agaY 

agaV 0.62 0.87 1.62 1.23 PTS system, N-acetylgalactosamine-specific 
IIB component 2 

agaI 0.62 0.81 1.62 1.23 Putative galactosamine-6-phosphate isomerase 

agaI 0.62 1.00 1.62 1.07 Putative galactosamine-6-phosphate isomerase 

agaC 0.54 0.87 1.62 1.23 PTS system, N-acetylgalactosamine-specific 
IIC component 1 

agaB 0.54 0.81 1.52 1.07 PTS system, N-acetylgalactosamine-specific 
IIB component 1 
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Table 4.1. Contd. 

 
   

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

gatZ 0.66 0.81 1.74 1.15 Putative tagatose 6-phosphate kinase 1 

gatD 0.50 0.81 1.52 0.93 Galactitol-1-phosphate dehydrogenase 

gatB 0.66 0.66 1.87 1.15 PTS system, galactitol-specific IIB component 

gatA 0.62 0.87 1.87 1.23 PTS system, galactitol-specific IIA component 

 

Cell wall/cycle related genes 
   

Z1537 0.57 0.87 1.52 1.15 Cell wall organization and biogenesis 

Z5223 0.66 0.66 1.62 1.15 Cell wall organization and biogenesis 

Z2086 0.57 0.81 2.00 1.00 Cell division 

Z3128 0.66 0.71 1.87 1.32 Cell division 

kil 0.54 0.71 1.62 1.15 Kil protein (killing function) of lambdoid 
prophage Rac 

      

Two-component signal transduction genes  

uhpB 0.66 0.76 2.14 1.15 Sensor protein uhpB 

yqeI 0.66 0.81 1.74 1.07 Putative sensory transducer 

rtcR 0.57 0.76 2.00 1.32 Two-component signal transduction system 
(phosphorelay) 

torS 0.54 0.76 1.62 1.23 Two-component sensor molecule activity 

 

Hydrogenase genes 
    

hyfR 0.57 0.87 1.52 1.32 Putative 2-component regulator, interaction 
with sigma 54 

hyfI 0.57 0.87 1.52 1.23 Hydrogenase 4 Fe-S subunit 

hyfG 0.62 0.81 1.52 1.15 Hydrogenase 4 subunit 

hyfE 0.57 0.93 1.52 1.15 Hydrogenase 4 membrane subunit 
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Table 4.1. Contd. 

 
   

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

hyfD 0.57 0.87 1.62 1.32 Hydrogenase 4 membrane subunit 

hyfC 0.54 0.81 1.74 1.23 Hydrogenase 4 membrane subunit 

hyfA 0.54 0.71 1.62 1.32 Hydrogenase 4 Fe-S subunit 

 

hyc operon 
   

hycG 0.62 0.71 1.52 1.32 Formate hydrogenlyase subunit 7 

hycF 0.54 0.76 1.62 1.15 Formate hydrogenlyase subunit 6 

hycE 0.62 0.76 1.52 1.15 Formate hydrogenlyase subunit 5 precursor 

hycD 0.62 0.81 1.87 1.00 Formate hydrogenlyase subunit 4 

hycC 0.54 0.87 1.62 1.07 Hydrogenase 3, membrane subunit (part of 
FHL complex) 

hycA 0.54 0.71 1.62 1.23 Formate hydrogenlyase regulatory protein 
hycA 

 

Ethanolamine genes 
    

eutJ 0.50 0.81 1.74 1.15 Ethanolamine utilization protein eutJ 

eutI 0.62 0.81 1.74 1.23 Ethanolamine utilization protein eutD 

eutG 0.62 0.76 1.62 1.32 
Ethanolamine utilization; homolog of 
Salmonella enzyme, similar to iron-containing 
alcohol dehydrogenase 

eutE 0.57 0.66 1.52 1.32 Ethanolamine utilization protein eutE 

c2987 0.62 0.71 1.62 1.15 Ethanolamine utilization protein eutS 

c2985 0.62 0.87 1.52 1.32 Ethanolamine utilization protein eutQ 

c2986 0.62 1.15 1.62 1.15 Ethanolamine utilization protein eutP 

cchB 0.54 0.81 1.62 1.23 Ethanolamine utilization protein eutN 

Z3715 0.62 0.76 1.74 1.15 Ethanolamine metabolism 
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Table 4.1. Contd. 

 
   

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

 

Threonine genes 
    

tdcR 0.62 0.66 1.62 1.07 Threonine dehydratase operon activator 
protein 

tdcD 0.66 0.66 1.87 1.15 Propionate kinase/acetate kinase II, anaerobic 

tdcB 0.66 0.76 1.74 1.15 Threonine dehydratase catabolic 

tdcA 0.62 0.81 1.62 1.15 tdc operon transcriptional activator 

 

Sorbitol genes 
    

srlD 0.57 0.81 1.52 1.32 Sorbitol-6-phosphate 2-dehydrogenase 

srlB 0.50 0.87 2.00 1.32 PTS system, glucitol/sorbitol-specific IIA 
component 

srlA 0.54 0.93 1.62 1.07 PTS family enzyme IIC, glucitol/sorbitol-
specific 

srlA 0.57 0.87 1.62 1.07 PTS system, glucitol/sorbitol-specific IIC2 
component 

 

Phosphonate genes 
    

phnJ 0.66 0.87 1.87 1.07 Conserved protein in phn operon 

phnH 0.47 1.00 2.00 1.07 PhnH protein 

phnF 0.47 0.76 1.87 1.23 Probable transcriptional regulator phnF 

phnE 0.47 0.76 2.00 1.15 Membrane channel protein component of Pn 
transporter 

phnE 0.62 0.93 1.52 1.23 Membrane channel protein component of Pn 
transporter 

phnD 0.62 0.76 1.87 1.32 Phosphonates-binding periplasmic protein 
precursor 
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Table 4.1. Contd. 

 
   

Gene 
Relative Change (AI-2/control) 

Function 
3.5 h 4 h 4.5 h 5.5 h 

 

Citrate genes 
   

citT 0.54 0.66 2.14 1.15 Citrate carrier 

citG 0.54 0.81 2.30 1.32 2-(5''-triphosphoribosyl)-3'-
dephosphocoenzyme-A synthase 

citF 0.57 0.76 1.74 1.41 Citrate lyase alpha chain 

citE 0.62 0.66 1.62 1.23 Citrate lyase beta chain 

citD 0.44 0.71 1.74 1.23 Citrate lyase acyl carrier protein (gamma 
chain) 

Sodium ion transport genes    

ygjE 0.57 0.81 1.52 1.23 Putative tartrate carrier/transporter 

yihO 0.66 0.71 1.52 1.07 Putative permease 

ybhI 0.44 0.93 2.00 1.15 Putative membrane pump protein 

Z5001 0.50 0.76 1.87 1.23 Sodium ion transport 

yihP 0.54 1.00 1.74 1.15 Sodium ion transport 
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ratio (between AI-2 and the control cells at different time-points) was greater than 1.5 (based on 

the standard deviation between values measuring relative changes in expression) (107) and if the 

change in the P value was less than 0.05. The differentially expressed genes were annotated 

using gene ontology definitions available in the Affymetrix NetAffx Analysis Center 

(http://www.affymetrix.com/analysis/index.affx). The expression data have been deposited in the 

NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible 

through GEO Series accession number GSE9388. 

  A total of eight microarrays were used in this study at the four time-points for samples 

without and with externally added 100 µM AI-2. The genes were sorted into various functional 

categories (Table 4.1), and the role of AI-2 in regulation of these genes was analyzed.  

 

4.4 RESULTS 

 

4.4.1 Effect of AI-2 on VS94 chemotaxis, motility and colonization 

  A two-fluorophore agarose plug assay was used to determine the effect of AI-2 on 

EHEC chemotaxis. AI-2 attracted VS94 in a concentration-dependent manner, where migration 

towards AI-2 was increasingly pronounced as the concentration of AI-2 in the plug was 

increased to 500 µM (Fig. 4.1B); i.e., more live (green) cells move to the plug containing AI-2 

than dead cells (red). When casamino acids (positive control) were used in the plug, VS94 was 

similarly attracted (Fig. 4.1C); whereas exposure to nickel sulfate (negative control) caused 

VS94 to move away from the plug (Fig. 4.1D). Exposure to no chemical (experimental control) 

elicited no response from VS94 (Fig. 4.1A). Motility assays showed that low concentrations of 

AI-2 (1 µM) did not evoke a response from the pathogen while AI-2 at 100 µM increased the 

swimming motility by 1.3-fold (Fig. 4.2A). Since, AI-2 impacted EHEC motility and 
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Fig. 4.1. Agarose plug chemotaxis assay. Response of VS94 to various chemicals was observed 
using a modified agarose plug assay in which dead cells are red (RFP) and live cells are green 
(GFP). Fluorescent images are shown from: experimental control (no AI-2) (A), AI-2 (500 µM) 
(B), casamino acids (positive control) (C) and nickel sulfate (negative control) (D). Data are a 
representative image from three independent experiments. Arrow indicates chemo-attractant ring 
(B). 
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Fig. 4.2. AI-2 effects on VS94 motility and attachment to HeLa cells. Relative change in VS94 
motility in the presence of AI-2 (A). Motility data are mean ± one standard deviation for 5 plates 
for each concentration. Relative change in VS94 attachment to HeLa cells in the presence of AI-
2 (B). Data are from 6 HeLa cell culture wells for each concentration. ‘*’ indicates statistical 
significance determined using student t-test at p < 0.01.   
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chemotaxis; we also tested the effect of presence of AI-2 on EHEC adherence to HeLa cells. 

Consistent with the changes in chemotaxis and motility, AI-2 at concentrations of 100 µM and 

500 µM caused a statistically significant increase in attachment of VS94 to HeLa cells by 1.6-

fold and 2.4-fold, respectively (Fig. 4.2B).  Hence, AI-2 increases EHEC chemotaxis, motility, 

and attachment to HeLa cells.  These are the first results to show regulation of EHEC chemotaxis 

and colonization by AI-2.  

 

4.4.2 Uptake of AI-2 in VS94 

  As a first step towards determining the genes that are altered in expression by AI-2, we 

investigated the time at which externally added AI-2 is imported by the EHEC luxS mutant. 

Extracellular AI-2 levels were determined at different time-points corresponding to various 

growth phases of VS94 using the AI-2 bioassay (129).  The concentration of AI-2 in the GI tract 

is not known; therefore, experiments were performed with 100 

 

µM AI-2 as this concentration 

was sufficient to increase chemotaxis, motility, and attachment of VS94, and has also been used 

in a recent study (127). Our data show that ~ 99% of the externally added AI-2 was still present 

in the medium after 3 h. However, after 4 h, the extracellular AI-2 concentration dropped 

precipitously to less than 5% of the initial value (Fig. 4.3); this indicates that AI-2 is imported by 

VS94 between 3 and 4 h after addition. Based on these results, transcriptome analysis were 

performed at different time-points including when extracellular AI-2 was actively being 

absorbed by the cells (3.5 h), was reduced to zero (4 h), and was likely processed and cleared 

from the cells (4.5 h and 5.5 h) (110). 
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Fig. 4.3. AI-2 uptake assay. VS94 was grown in SAPI medium to a turbidity of 0.5 at 600 nm 
and 100 µM AI-2 was added. Supernatants were collected, and the V. harveyi autoinducer assay 
was performed to determine amount of extracellular AI-2 remaining. Three independent cultures 
were used to generate the AI-2 uptake profile.  
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4.4.3 Transcriptome profiling of the effect of AI-2 

  We investigated the molecular basis underlying the effect of AI-2 on VS94 chemotaxis, 

motility and attachment to epithelial cells using DNA microarrays. VS94 was grown both in the 

absence (negative control) and presence of 100 µM AI-2 and cells were isolated at various times 

based on the AI-2 uptake assay (Fig. 4.3). Genes whose expression was altered by 1.5-fold 

(based on the standard deviation of our data (107) which was less than 1.5) in presence of AI-2 

were selected and sorted into operons or various functional groups (e.g., virulence genes, 

flagellar genes, iron uptake genes etc.; Table 4.1), and the temporal expression trends were 

analyzed (Fig. 4.4). 

  The data show that after 3.5 h of exposure to AI-2, 1441 genes were down-regulated and 

127 genes were up-regulated as compared to the negative control with no AI-2. The genes that 

were down-regulated included flagellar and fimbrial genes (average fold-change of 0.60-fold for 

46 genes), iron uptake genes (average fold-change of 0.61-fold for 24 genes) and operons related 

to biofilm formation, galactitol (average fold-change of 0.59-fold for 11 genes) and colanic acid 

operon (average fold-change of 0.56-fold for eight genes). The lsr operon, involved in AI-2 

uptake (110, 130), was the most-induced operon at this time point (average fold-change of 6 to 

9-fold).  

  At 4 h, the gene expression data showed that fewer genes were significantly altered in 

expression in VS94 exposed to AI-2 as compared to the negative control with no AI-2. The 

expression of 48 genes was significantly induced while 145 genes were down-regulated after 4 h. 

As expected, the lsr operon was again induced by 6- to 13-fold, but all the other operons that 

were down-regulated at 3.5 h (e.g., LEE genes, flagella genes etc.), were unchanged from the 

negative control.  

  In contrast to the gene expression data at 3.5 h, a significant number of genes (1619  
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Fig. 4.4. Changes in VS94 gene expression with AI-2 as a function of time. Effect of AI-2 (100 
µM) on genes related to the lsr operon (a), virulence (b), flagella/fimbriae (c), iron (d), biofilm 
(e), and metabolism (f). 
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genes) were up-regulated at 4.5 h in the presence of AI-2, while only 71 genes were repressed 

compared to the negative control with no AI-2. The lsr operon was induced (5- to 9-fold) along 

genes related to the flagella, iron uptake, and biofilm formation. Most importantly, 23 LEE genes 

that are involved in EHEC virulence (36) were also significantly induced (average fold-change 

of 1.74-fold) at this time point. At 5.5 h, after all the extracellular AI-2 had been taken up by 

VS94 cells (Fig. 4.3), only 207 genes were found to be repressed and 64 genes were induced by 

AI-2 as compared to the negative control. The lsr operon was no longer differentially expressed 

as no more extracellular AI-2 was available for uptake.  

 

4.5 DISCUSSION  

  It is becoming increasingly evident that the signaling environment in the GI tract is an 

important determinant of pathogen colonization and infection. This is not surprising as the GI 

tract is colonized by hundreds of bacterial species (5) that produce a diverse range of signals.  

We (26) have recently demonstrated for the first time that the bacterial signal indole is important 

in EHEC infections by demonstrating that indole down-regulated EHEC chemotaxis, motility, 

biofilm formation, and adherence to epithelial cells in a manner directly opposite to that 

observed with the eukaryotic hormones epi and NE. Here we demonstrate that the bacterial 

signal quorum sensing signal AI-2 is also important in EHEC infections. 

  It is highly likely that EHEC encounters AI-2 in the GI tract as this inter-species 

communication signal is produced by several commensal bacterial species that reside in the GI 

tract (3). Although the concentration of AI-2 in the GI tract is not known, unpublished data from 

our laboratory show that the concentration used in this study (100 μM) is comparable to that 

produced by ~ 108 cells/mL of non-pathogenic E. coli, which is the reported density of 

commensal E. coli in the GI tract (131-133).  However, this only provides an approximate 
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estimate of in vivo AI-2 levels as commensal E. coli constitutes only 1% of the GI tract flora 

(131, 133), and other commensal bacteria present in the GI tract can also synthesize and utilize 

AI-2.   

  The chemotactic recognition of AI-2 and the increase in motility by EHEC in the 

presence of AI-2 suggest that this signal is involved in the initial migration of EHEC to epithelial 

cells. Consistent with this increase in chemotaxis and motility, the presence of AI-2 also causes 

an increase in adherence to HeLa cells. Given the direct correlation between colonization to 

epithelial cells and increased virulence (24, 72), our data strongly suggests that the presence of 

AI-2 leads to increased EHEC colonization of host cells and virulence. This is also corroborated 

by the gene expression data showing that genes involved in bacterial colonization and biofilm 

formation (colonic acid and galactitol transport genes) are up-regulated by AI-2 (Fig. 4.4E). 

Colanic acid is a capsular exopolysaccharide that is involved in colonization (134). Similarly, 

genes associated with galactitol transport are important during early developmental stages of 

bacterial colonization of abiotic surfaces (135). The up-regulation of these genes is consistent 

with increased attachment of EHEC to HeLa cells in our experiments.  

  The regulation of virulence genes (LEE genes) and several other operons important in 

virulence strongly suggests the importance of AI-2 in EHEC infections. Several studies (20, 107, 

127-128, 136) have used whole transcriptome analysis to understand the effect of AI-2 on gene 

expression in both non-pathogenic and pathogenic bacteria. While the role of AI-2 in non-

pathogenic E. coli biofilm formation has been established, its effect on EHEC phenotypes is less 

well understood.  One study (136) recently observed that AI-2 down-regulated several virulence 

genes including rpoS (positive regulator of LEE3 operon) and prgH (cell invasion protein) in 

Salmonella enterica serotype Typhimurium delta luxS. However, another recent study (127) 

observed that several metabolism genes, but only two virulence genes, espA and eae, belonging 
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to LEE4 and LEE5 respectively, were altered in expression when VS94 was exposed to AI-2, 

and concluded that AI-2 is not involved in EHEC virulence. On the other hand, our results 

clearly show that LEE genes and other operons involved in virulence are up-regulated in VS94 

upon exposure to AI-2 (Fig. 4.5). Irrespective of the effect exerted by AI-2 (i.e., up-regulation or 

down-regulation of virulence) or the extent to which virulence genes were altered in expression, 

our data and these studies clearly indicate that AI-2 is an important signal in GI tract infections.  

  A notable difference between this study and prior work (127) is that we specifically 

account for temporal aspects of AI-2 signaling. This is important as several groups have 

demonstrated that AI-2 is taken up by bacterial cells only during the early stationary phase of 

growth (109-110) and is rapidly phosphorylated and cleared from the system (110). Therefore, it 

is possible that the effects of AI-2 on virulence gene expression were not evident at the single 

time points at which transcriptome analysis was performed in these studies (127).    

  The addition of AI-2 induced the expression of 23 virulence genes (belonging to all five 

LEE operons – LEE1 through LEE5) by an average of 2-fold (Fig. 4.4B) after 4.5 h.  Induction 

of flagellar and fimbrial genes has been associated previously with virulence (137) and in our 

studies, we also observed that 46 fimbrial genes were regulated by AI-2 over time (Fig. 4.4C). 

The same was true for 24 iron-related genes (Fig. 4.4D). Iron has been reported to increase 

virulence of certain strains of E. coli along with other species such as Vibrio, Neisseria and 

Hemophilus through the production of cytotoxins and leukotoxins (138). Together, the 

transcriptome profiling data strongly support our hypothesis that AI-2 is involved the regulation 

of EHEC virulence.  The temporal aspect of AI-2 signaling in virulence gene expression is not a 

non-specific effect that is seen with all genes, as approximately 400 genes involved in 

phenotypes other than virulence were not altered in expression at any of the 4 time-points at  
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Fig. 4.5. Overall changes in VS94 gene expression in presence of AI-2. Genes significantly 
regulated by AI-2 were divided into two groups – virulence related and non-virulence related. 
The genes were further classified based on operons and functions.  
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which transcriptome analysis was performed (Fig. 4.4F).   

  The regulation of EHEC virulence by AI-2 was temporally regulated, as LEE genes and 

other genes related with virulence were down-regulated in AI-2 exposed cells at 3.5 and 4 h. 

This is intriguing as the AI-2 uptake data clearly show that almost all of the externally added AI-

2 is still present in the culture supernatant at this time point (Fig. 4.3).  One possible explanation 

for this observation could be that additional mechanism(s) for AI-2 signal recognition exist. For 

example, AI-2 could be sensed by a membrane-bound receptor that transduces, but not transports 

into the cell, the AI-2 signal. The idea of a lsr-independent AI-2 recognition mechanism has also 

been proposed (109, 124). These observations could also reflect the need for a different signal 

for AI-2 to up-regulate virulence, in the absence of which AI-2 down-regulates certain 

phenotypes. Taken together, our data suggest that AI-2 signaling in EHEC is tightly regulated, 

which is reasonable considering that AI-2 is likely to be abundant in the GI tract and the 

additional layers of regulation likely prevent early up-regulation of virulence genes (i.e., prior to 

colonization).   

  The choice of growth medium could explain the contradiction between our results and 

the work of Kendall et al. (127) on the effects of AI-2 on EHEC virulence. In our study, we used 

serum supplemented-SAPI medium which has limited nutrients in an effort to mimic the in vivo 

milieu of human GI tract (139). More importantly, SAPI medium also contains ~ 10-fold less 

glucose than standard glucose supplemented DMEM medium which was used in Kendall et al. 

(127). The presence of glucose in culture is important as it is well established that AI-2 uptake is 

regulated by catabolite repression in the presence of glucose through down-regulation of the lsr 

operon (109-110); hence, glucose can mask the impact of AI-2 on gene expression. 

  The validity of our data is clearly evident from the temporal expression pattern of the lsr 

operon which consists of eight genes that are involved in uptake of extracellular AI-2 during the 
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stationary phase. These genes were all up-regulated between 6- and 12-fold at the first three 

time-points, (i.e., only when extracellular AI-2 was available) but not at 5.5 h since no 

extracellular AI-2 was remaining at that time point (Fig. 4.4A). The transcriptome analysis data 

revealed that, in addition to altering the expression of genes involved in virulence, AI-2 also 

controlled the expression of genes involved in other phenotypes and functions (e.g., 

metabolism).  In this regard, our data is consistent with that of several prior reports that have 

reported on the role of AI-2 in metabolism (127, 130).  

  Although the relative changes in expression of genes other than the lsr operon are not 

very high, they are statistically significant. Furthermore, it should also be noted that entire 

operons associated with these phenotypes were differentially expressed. For example, 23 LEE 

genes were differentially expressed at 4.5 h after AI-2 addition, as were 46 flagellar and fimbrial 

genes, 24 iron related genes, and 19 genes associated with colonization. A possible reason for the 

relatively small changes in expression of the virulence genes could be the choice of the 

experimental system. Although we used a luxS mutant that does not produce AI-2 to study the 

effect of external addition of AI-2, AI-3 synthesis is not affected in these cells as it has been 

reported to take place independent of luxS (17). Since AI-3 has been reported to be involved in 

EHEC virulence (127), the reduced fold-change in AI-2 treated cells relative to control could be 

a result of high levels of AI-3-mediated virulence gene expression in the control cells.  

  In summary, we show here that AI-2 is an important determinant of EHEC virulence and 

infection. Phenotypic assays for chemotaxis, motility, and colonization clearly demonstrate the 

importance of AI-2 in EHEC pathogenesis, and are strongly supported by the gene expression 

data. To our knowledge, this is the first temporal study of EHEC gene expression in presence of 

AI-2. 
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CHAPTER V 

THE BACTERIAL SIGNAL INDOLE INCREASES EPITHELIAL CELL TIGHT 

JUNCTION RESISTANCE AND ATTENUATES INDICATORS OF INFLAMMATION* 

 

5.1 OVERVIEW 

Inter-kingdom signaling is established in the GI tract in that human hormones trigger 

responses in bacteria; here we show the corollary is true, that a specific bacterial signal, indole, 

triggers responses in epithelial cells.  Our prior work has shown that indole, secreted by 

commensal E. coli and detected in human feces, reduces pathogenic E. coli chemotaxis, motility, 

and attachment to epithelial cells.  However, the effect of indole on intestinal epithelial cells is 

not known. Since intestinal epithelial cells are likely to be exposed continuously to indole, we 

hypothesized that indole may be beneficial for these cells, and investigated changes in gene 

expression with the human enterocyte cell line HCT-8 upon exposure to indole. Exposure to 

physiologically-relevant amounts of indole increased expression of genes involved in 

strengthening the mucosal barrier and mucin production, which were consistent with an increase 

in the trans-epithelial resistance of HCT-8 cells. Indole also decreased TNF-α-mediated 

activation of NF-κB, expression of the pro-inflammatory chemokine IL-8, and the attachment of 

pathogenic E. coli to HCT-8 cells, as well as increased expression of the anti-inflammatory 

cytokine IL-10. The changes in trans-epithelial resistance and NF-κB activation were specific to 

 
 
 
 
* Reprinted with permission from “The bacterial signal indole increases epithelial cell tight 
junction resistance and attenuates indicators of inflammation” by Tarun Bansal, Robert C. 
Alaniz, Thomas K. Wood, and Arul Jayaraman, 2010,  Proceedings of the National Academy of 
Sciences of the United States of America,107:228-233, Copyright by the National Academy of 
Sciences. 
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indole, as other indole-like molecules did not elicit a similar response. Our results are similar to 

that observed with probiotic strains, and suggest that indole could be important in the intestinal 

epithelial cells response to gastrointestinal tract pathogens. To our knowledge, this is the first 

report of a specific bacterial signal that is recognized as a beneficial cue by human cells. 

 

5.2 INTRODUCTION 

The human GI tract is rich in a diverse range of signaling molecules. A wide range of 

bacterial signals (e.g., AI-2, AI-3, and indole) (28) are produced by the ~1014

Inter-kingdom recognition of hormones by pathogens was first demonstrated by Lyte et 

al. (24). Subsequently, Sperandio et al. (16) showed that EHEC virulence is increased upon 

exposure to epi and NE, and epi binds and signals through the QseC receptor (99). Work from 

our group (26) has also shown that epi and NE increase EHEC chemotaxis, motility, adherence 

to epithelial cells, and virulence gene expression. While these studies provide evidence for the 

recognition of human hormones by pathogens, the converse (i.e., recognition of bacterial specific 

signaling molecules by intestinal epithelial cells and their role in GI tract function) has not been 

fully investigated. While several studies have shown that culture supernatants from probiotic 

strains attenuate pathogen infection (140-141), modulate inflammation in dendritic cells (142) 

 non-pathogenic 

commensal bacteria that co-exist with host cells in the GI tract, while neuroendocrine hormones 

(e.g., NE, dopamine) are also synthesized in situ in the GI tract via the enteric nervous system. 

The close proximity of bacteria and the host cells in the GI tract, as well as the high local 

concentrations of the signals they secrete, has led to a signal-centric paradigm wherein GI tract 

signals are considered to be important mediators of homeostasis and infections through intra-

kingdom (i.e., recognition of bacterial signals by other bacteria) and/or inter-kingdom (i.e., 

recognition of host signals by bacteria and vice-versa) signaling and communication.  
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and Caco-2 cells (143), and increase intestinal epithelial cell barrier function (144), the specific 

molecules contributing to these responses and the mechanisms involved are not known. In fact, 

most individual bacterial signals have been shown to be deleterious to host cells; for example, 

the P. aeruginosa quorum sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine 

lactone (3OC12-HSL) disrupts epithelial barrier integrity in Caco-2 cells (145), increases the 

expression of pro-inflammatory cytokines in murine fibroblasts and human lung epithelial cells 

(146), and disrupts NF-κB signaling to promote persistence of a local P. aeruginosa infection 

(65). Therefore, mechanisms underlying inter-kingdom recognition of bacterial signals by 

eukaryotic cells remain poorly understood.  

Indole is produced in E. coli from L-tryptophan via tryptophan indole-lyase or 

tryptophanase (encoded by tnaA) (41). Prior work from our laboratory has shown that indole is 

an extracellular signal, represses E. coli K-12 biofilm formation through the sensor of quorum 

sensing signals, SdiA (41), is more effective in repressing E. coli K-12 biofilm at low 

temperatures, i.e., 25oC and 30oC (47), and exerts the opposite effect as epi and NE on EHEC 

chemotaxis, motility, adherence to epithelial cells, and virulence gene expression, at 37o

Since commensal E. coli produce as much as 600 μM of indole in suspension cultures 

(22) and indole has been detected in human feces at comparable concentrations (~ 250 - 1100 

µM) (44-45), it is likely that intestinal epithelial cells are continually exposed to high 

concentrations of indole. Therefore, we hypothesized that indole is recognized as an inter-

kingdom signal in intestinal epithelial cells. Measurements of changes in gene expression in 

HCT-8 intestinal epithelial cells and phenotypic measurements of trans-epithelial resistance, NF-

κB activation, IL-8 and IL-10 secretion, and EHEC attachment, show that indole modulates 

expression of pro-inflammatory genes, increases expression of anti-inflammatory genes, 

C (26). 
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strengthens epithelial cell barrier properties, and decreases pathogen colonization. Our data 

strongly suggest indole is a beneficial inter-kingdom signal for intestinal epithelial cells.  

 

5.3 MATERIALS AND METHODS 

 

5.3.1 Growth and maintenance of HCT-8 cells 

  The human colon-cancer cell line HCT-8 (ATCC, Manassas, VA), derived from 

enterocytes at the junction of the large and small bowel, was maintained in RPMI (Roswell Park 

Memorial Institute) 1640 medium with 10% horse serum, 1 mM sodium pyruvate, 10 mM 

HEPES, 100 U/ml penicillin and 100 µg/ml streptomycin, at 37°C in 5% CO2, according to 

standard ATCC protocols (henceforth referred to as RPMI medium).   

 

5.3.2 RNA isolation and microarrays 

  HCT-8 cells were grown in monolayers in standard tissue-culture T-25 flasks to ~ 80% 

confluence. Cells were washed twice with sterile phosphate buffered saline (PBS; 9 g/liter NaCl, 

0.795 g/liter Na2HPO4, 0.144 g/liter KH2PO4) and exposed to 1 mM indole (Acros Organics, 

New Jersey, NJ; stock solution of 250 mM in DMF) in triplicate for 4 h or 24 h. This 

concentration of indole was chosen based on detection of 30 – 130 µg indole/g fecal matter (44-

45) (or ~ 250 – 1100 µM, assuming a feces density of 1 g/cm3 (147)). Control cells were exposed 

to same volume of solvent, dimethyl formamide (DMF). At the end of exposure, cells were 

washed twice with PBS, detached from the flasks using trypsin-EDTA, centrifuged and stored at 

-80°C. RNA was isolated using Qiagen RNeasy Mini Kit (Valencia, CA) and the quality of RNA 

assessed using gel electrophoresis (gel images were observed for high and low molecular weight 

smears, which indicate DNA and RNase contamination, respectively) and 
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spectrophotometrically (A260/A280 ratio between 1.9 and 2.1). Reverse transcription, cDNA 

labeling, hybridization of arrays, and scanning were performed using standard protocols at The 

Center for Environmental and Rural Health (CERH) Genomics core facility at Texas A&M 

University. Following quality assessment on an Agilent Bioanalyzer, 2 µg total RNA was used 

to generate biotin-labeled cRNA via a modified Eberwine RNA amplification protocol using the 

CodeLink iExpress Kit (Applied Microarrays Inc, Tempe, AZ).  Labeled cRNA was hybridized 

to CodeLink Human genome arrays (Catalog # 300026) for 18 h followed by washing, staining, 

and scanning according to the standard CodeLink protocol.  Array images were processed using 

CodeLink system software and global median normalization was used to generate normalized 

expression values. A total of nine arrays were performed with three arrays each for control and 

exposure to indole at 4 h and 24 h.  

  Pair-wise comparison between control and indole-treated cells and identification of 

differentially-expressed genes was carried out using a sequential three-step procedure. First, only 

those transcripts that were detected in all six arrays (three arrays each for control and indole) 

were selected for further analysis. Second, the data were filtered for quality and only those 

signals that were classified as “G” (good) by the Codelink analysis software in all six arrays 

were processed further. Third, transcripts exhibiting a statistically significant change in 

expression in indole-treated arrays with respect to control were identified using the Student’s T-

test at a significance level of p < 0.01. Using this approach, 523 and 4102 genes were 

differentially expressed upon indole exposure after 4h and 24 h, respectively. 

The microarray data have been deposited in the Gene Expression Omnibus (GEO) 

database; accession number GSE14379 (www.ncbi.nlm.nih.gov/geo). 
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5.3.3 In vitro colonization assays  

  Adhesion of EHEC to HCT-8 cells was performed using a previously described protocol 

(26). Low-passage-number HCT-8 cells were cultured in standard 24-well tissue culture plates 

and grown at 37°C in 5% CO2 until ~ 80% confluence. Indole (1 mM final concentration) was 

added to some wells 24 h prior to the experiment. After the pre-incubation, HCT-8 cell 

monolayer was washed two times with PBS to remove traces of indole, and antibiotic-free RPMI 

with 10% heat-inactivated horse serum was added. Approximately 107

 

 cells of a freshly-grown 

EHEC culture (turbidity of ~ 0.8 at 600 nm) were added to each well along with 500 µM NE and 

incubated for 3 h at 37°C and 5% CO2 as previously described (26). Loosely attached bacteria 

were removed by washing the wells twice with PBS, and the HCT-8 cells were lysed in the wells 

using 0.1% Triton X-100 in PBS. The cell suspension in each well was vigorously vortexed, and 

serial dilutions of the bacteria were grown on LB-agar plates. Colonies were counted after 24 h 

incubation at 37°C. 

5.3.4 Reporter lentivirus and NF-κB activity measurements 

 HCT-8 cells were transduced with a NF-κB reporter lentivirus (kind gift of Prof. Stelios 

Andreadis, SUNY Buffalo). The 3rd generation lentiviral plasmid contains a fluorescent protein 

(ZsGreen-DR) that is under the control of an inducible phosphoglycerate kinase (PGK) promoter 

and tandem repeats of the NF-κB binding sequence (response element). Binding of NF-κB to its 

response element results in transcription of the ZsGreen-DR protein, and can be used to monitor 

activation of NF-κB. In addition, the reporter plasmid also contains a DsRed2 fluorescent protein 

under control of a cytomegalovirus (CMV) constitutive promoter for monitoring transduction 

efficiency. Details on construction of the lentivirus reporter plasmid are described in Tian and 

Andreadis (148). Lentiviral particles were produced by co-transfection of the NF-κB reporter 
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plasmid and three other plasmids (plasmid pMDL-g/p, plasmid pSRV-rev and plasmid pMDG-

VSVG) into 293T/17 cells. Virus particles in the supernatant were harvested after 24 h, pelleted 

by ultracentrifugation (50,000 g at 4oC for 2 h), and resuspended in Dulbecco's Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum.  

For transduction, HCT-8 cells were seeded at low density (~ 30,000 cells/well in a 24-

well plate; ~ 30% confluence) and incubated for 24 h at 37°C and 5% CO2. Next day, the 

reporter lentivirus was diluted 10-fold in RPMI medium and 8 µg/ml Polybrene (hexadimethrine 

bromide) was added to lentivirus solution. To each well, 200 µl of the lentivirus-polybrene 

mixture was added and the plate was incubated for 24 h at 37°C and 5% CO2. The supernatant 

was removed, fresh RPMI medium was added, and the cells maintained in culture for a further 3-

5 days. The transduction efficiency (determined using expression of the DsRed2 fluorescent 

protein) was ~ 70%. 

  Reporter cells transduced with the lentivirus were then exposed to different bicyclic-

aromatics for 4 h, followed by incubation with 40 ng/mL of TNF-α to activate NF-κB. The 

different compounds and the concentrations used were: indole (1 mM), and 250 µM each of 

indole-2,3-dione, 2-hydroxyindole, 5-hydroxyindole, 7-hydroxyindole, and indole-3-acetic acid. 

These concentrations were chosen based on preliminary data from our lab on the toxicity of 

these compounds to HCT-8 cells. Expression of the NF-κB-driven ZsGreen-DR fluorescent 

protein was monitored using a Zeiss Axiovert 200 fluorescence microscope (Thornwood, NY). 

Positive control was cells exposed to TNF-α, while the negative control cells were not exposed 

to either TNF-α or bicyclic aromatics. The cells were positioned on an automated stage on 

microscope, enclosed in an incubated chamber at 37oC and 5% CO2, and fluorescence and 

transmitted light images taken at different time points. For experiments with indole, images were 

taken every hour for 18 h, whereas for experiments with the other compounds, images were 
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obtained at a single time point after 18 h. For all experiments, images were taken at the exact 

same spot at every time using the mark-and-find feature of the microscope; thus, eliminating any 

user bias. Fluorescent images were analyzed using an in-house developed image analysis 

program developed in MatLab (The MathWorks Inc; Natick, MA) (149).  

 

5.3.5 Trans-epithelial resistance (TER) measurements 

Approximately 105 HCT-8 cells were grown on 0.33 cm2 0.4 µm Transwell filter units 

(Costar, Cambridge, MA) for TER measurement (150), with 100 µl and 600 µl RPMI medium 

added to the apical side and basolateral sides, respectively. Polarization of HCT-8 cells was 

observed using a volt-ohmmeter (World Precision Instruments, Sarasota, FL). Cells were 

considered to be polarized when the TER was ~ 500 Ω.cm 2 (typically after 5-6 days in culture) 

(150). After verification of polarization, different bicyclic aromatics were added to both apical 

and basolateral chambers and the TER was monitored. The different compounds and the 

concentrations used were: indole (1 mM), and 250 µM each of indole-2,3-dione, 2-

hydroxyindole, 5-hydroxyindole, 7-hydroxyindole, and indole-3-acetic acid. For experiments 

with indole, TER was monitored at different time points, while the TER upon exposure to the 

other compounds was measured at a single time point after 24 h. The change in TER upon 

exposure to bicyclic aromatics was calculated relative to control cells (exposed to DMF only). 

 

5.3.6 Extracellular indole assay 

Extracellular indole assay was performed as described previously (25). Briefly, HCT-8 

cells were grown in 24-well plates till ~ 80% confluence. To cells in three wells, 1 mM indole 

was added and to cells in three wells, no indole was added (negative control). Also, to three 

empty wells, 1 mM indole was added to RPMI medium alone, as positive control. The plate was 
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then incubated for 24 h and the supernatants from all the wells were collected. Extracellular 

indole was measured by mixing 500 µl supernatant with 200 µl Kovac’s reagent. The pink-

colored solution, arising from the reaction of p-dimethylaminobenzaldehyde with indole, was 

diluted in HCl-amyl alcohol mixture and the absorbance was measured at 540 nm. Indole 

concentrations were determined according to standard concentration curves. 

 

5.3.7 HCT-8 viability assay 

 HCT-8 cells were grown in 24-well plates till ~ 80% confluence and washed once with 

PBS prior to the experiment. Indole (1 mM) in fresh RPMI media was added to triplicate wells 

while the same volume of DMF was added to the negative control wells. The plate was 

incubated at 37oC and 5% CO2 for 24 h. Next day, the cells were washed twice with PBS and 

detached from the surface using 100 µl of trypsin-EDTA. The cells were then resuspended in 

500 µl RPMI medium and an equal volume of 0.4% trypan blue solution (Mediatech Inc, 

Manassas, VA) was added to cells. The cells were then incubated at room temperature for 2 

minutes, and the number of live (transparent) and dead (blue) cells in 10 µl of this solution was 

counted using a hemocytometer (Hausser Scientific, Horsham, PA) at 25X magnification. For 

each sample, cells present in five 1 mm x 1 mm squares were counted and used for calculating 

the cell density. 

 

5.3.8 Quantitative RT-PCR 

DNA microarray data was corroborated using qRT-PCR (26). The primers were 

designed using PrimerQuest online software (Table 5.1). qRT-PCR was performed using iScript 

one-step RT-PCR kit with SYBR green (Bio-Rad Laboratories, CA) on a MyiQ single-color 

real-time PCR detection system (Bio-Rad Laboratories). The threshold cycles, as calculated by 
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the MyiQ optical system software (Bio-Rad Laboratories), were used to determine the relative 

changes between the samples. The experiments were run in triplicate in 20 µl reactions and 50 

ng of total RNA was used for each reaction, with the final forward and reverse primer 

concentrations at 0.15 µM each. After amplification, template specificity was ensured through 

melting curve analysis. 18S RNA was used as the housekeeping gene for normalizing the data. 

 

5.3.9 IL-8 Enzyme linked immunosorbent assay (ELISA) 

IL-8 concentration in the HCT-8 cell supernatants was determined using a commercially 

available human IL-8 ELISA kit (Pierce Biotechnology Inc., Rockford, IL) according to 

manufacturer’s instructions. HCT-8 cells were exposed to solvent (control) or 1 mM indole for 

either 4 h or 24 h and the supernatants were collected. To some wells, 1 mM indole was added 

for 4 h and then 20 ng/ml TNF-α was added to stimulate IL-8 production. 4 h later, supernatants 

from those cells were collected. IL-8 standard supplied by manufacturer was diluted serially at 

1000, 400, 160, 64, 25.6, and 0 pg/ml, and was used to determine the concentration of IL-8 

released by cells. The assay range is 25.6-1000 pg/ml and the sensitivity is < 2 pg/ml. The assay 

was performed with three biological replicates per condition. The samples were diluted as 

required to maintain IL-8 concentration in the assay range.  

 

5.3.10 Flow cytometry and intracellular cytokine staining   

Changes in IL-10 production in response to indole or DMF (solvent control) were 

determined using intracellular cytokine staining as previously described (151). Briefly, confluent 

monolayers of HCT-8 cells in a 24-well plate were exposed to 1 mM indole or solvent for 24 h. 

BD GolgiPlug (BD Biosciences, San Jose, CA), a protein transport inhibitor containing brefeldin 

A, was added to the cells for the final 6 h of incubation, at a 1000-fold final dilution. Cells were 
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Table 5.1. Sequences of primers used for RT-PCR 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

ISGF3G TCCATTCAGACATTGGGAGCAGCA AGATGAAGGTGAGCAGCAGTGAGT 

CXCL5 ATCCTCCAATCTTCGCTCCTCCAA AAACAAACGCAACGCAGCTCTCTC 

IL-8 TTGAGGCCAAGGGCCAAGAGAATA AAACCAAGGCACAGTGGAACAAGG 

Pre-IL-1 AATGATCAGTACCTCACGGCTGCT TGGTCTTCATCTTGGGCAGTCACA 

Cldn3 AGATGCAGTGCAAGGTGTACGACTC TGCCACGATGGTGATCTTGGCCTT 

ZO3 TGCTGAGATGCCTGACCAGTTTGA AGTACTGCACATAGTTGAGGCGCT 

Muc13 CCTGGGCAAACATTGCTCTTGAGT TTGCAAGCTCTGGGCTGTTCAAAG 

18S TCAACTTTCGATGGTAGTCGCCGT ACTCATTCCAATTACAGGGCCTCG 
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washed twice with PBS, detached from the surface using trypsin-EDTA, resuspended in RPMI, 

and added to 96-well round-bottom plates. After two washes in PBS supplemented with 0.5% 

bovine serum albumin, cells were fixed on ice with 4% paraformaldehyde, permeabilized with 

Perm/Wash buffer (BD Biosciences), followed by staining with phycoerythrin (PE) labeled anti-

human IL-10 antibody (eBioscience Inc., San Diego, CA) for 2 h. Cells were resuspended in 

PBSA and stored in the dark at 4oC until analysis. Unstained cells were used as negative control. 

Data (8000 events/sample) were acquired on BD FACSAriaII cell sorter system (BD 

Biosciences) and analyzed using FlowJo software (Tree Star Inc., Ashland, OR).  

 

5.4 RESULTS  

 

5.4.1 HCT-8 intestinal epithelial cell transcriptome profiling upon exposure to indole 

  To investigate whether indole affects cells of the GI tract, changes in intestinal epithelial 

cell gene expression upon exposure to 1 mM indole for 4 h and 24 h were determined using 

whole-transcriptome profiling. Genes exhibiting a statistically significant change (p < 0.01) in 

expression relative to untreated controls were used to populate the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways with the Pathway Express software (152). Exposure to indole 

for 4 h resulted in the differential expression of 523 genes, of which 476 genes were induced and 

47 genes were repressed. Importantly, no single pathway or ontology classification was 

dominant in the differentially expressed genes. On the other hand, approximately 8% (4102 

genes; 3083 annotated) of the HCT-8 transcriptome was differentially expressed after 24 h 

exposure to indole. Although several pathways were populated by this approach, (e.g., 

metabolism, transport, protein modification, etc) (Fig. 5.1), we limit our discussion to specific 

pathways - epithelial cell structure and organization, inflammation, and infection – that are  
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Fig. 5.1. Classification of genes differentially expressed upon indole exposure. Differentially 
expressed genes were identified from the microarray data (control and 24 h indole exposure) as 
described in the supporting information, and classified into various functional categories. The 
three entries in each data label represent, in order, “functional category, number of genes 
differentially expressed, and % of total differentially expressed genes’.  
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Table 5.2. Classification of genes differentially regulated by 1 mM indole at 24 h 
 
 
 

Classification Pathway* Total genes 
in pathway 

Genes 
regulated by 

indole 

Cell 
structure/adhesion 

Adherens junction 75 19 

Cell adhesion molecules (CAMs) 133 38 

Gap junction 96 17 

Regulation of actin cytoskeleton 211 50 

Tight junction 135 29 

Cytokine-cytokine receptor 
interaction 259 45 

Inflammatory/ 
immune response 

Jak-STAT signaling pathway 153 38 

MAPK signaling pathway 265 48 

Phosphatidylinositol signaling 
system 77 22 

Toll-like receptor signaling pathway 102 27 

Cell growth/cycle 
Apoptosis 84 23 

Cell cycle 112 25 

 
* Epithelial cell pathways were determined by Pathway Express. 
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related to pathogen colonization in the GI tract (Table 5.2). The entire list of differentially 

expressed genes, with fold-changes in expression, is included as Table 5.3. 

 

5.4.2 Changes in epithelial cell barrier properties and colonization 

Indole significantly induced several genes involved in the maintenance of epithelial cell 

structure and function. These included genes responsible for tight junction organization, actin 

cytoskeleton, mucin production, and adherens junction, which together suggest strengthening of 

epithelial cell barrier properties. Coordinated induction of seven claudin genes (Table 5.3) 

suggested that 24 h exposure to indole increases paracellular resistance (Fig. 5.2A). The decrease 

in the expression of the pore-forming cldn2, which increases paracellular cation permeability 

(153), also further supports that indole mediates an increase in paracellular resistance. Tight 

junction proteins TJP1, TJP3 and TJP4, which are downstream of claudin-mediated tight 

junction regulation (Fig. 5.2A), and gap junction proteins GJE1, GJB3, GJB4, and GJA8 were 

also induced by indole.  Exposure to indole also induced the expression of 50 cytoskeleton genes 

(e.g., actinin, cingulin, syntrophin), and the coordinated induction of several cytoskeleton gene 

families suggests fortification of the actin cytoskeleton upon exposure to indole. Similarly, genes 

involved in the production of mucins (muc1, muc3, muc13, muc20, and mucin and cadherin-like 

transcript variant 4), high molecular weight glycoproteins secreted by intestinal epithelial cells 

(154) and integral to epithelial cell defense, were also induced in expression upon exposure to 

indole. Together, these transcriptome changes suggest indole promotes intestinal epithelial cell 

barrier function and increases resistance to pathogen colonization.  
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Table 5.3. Partial list of genes differentially regulated by 1 mM indole at 24 h  

NCBI Accession Control 
Average 

Indole 
Average 

Fold 
Change 

(ind/cont) 
p-value Description 

 
Immune/Inflammatory response (201)   

      
NM_003733.2 247.0 364.7 1.5 0.0027 2'-5'-oligoadenylate synthetase-like 

(OASL), transcript variant 1 

NM_006422.2 141.6 247.0 1.7 0.0057 A kinase (PRKA) anchor protein 3 
(AKAP3) 

NM_000681.2 563.1 1029.9 1.8 0.0037 Adrenergic, alpha-2A-, receptor 
(ADRA2A) 

NM_015158.1 97.0 176.1 1.8 0.0018 Ankyrin repeat domain 15 
(ANKRD15), transcript variant 1 

NM_020427.2 205.1 348.9 1.7 0.0024 ARS component B (ARS) 
NM_012070.2 123.8 249.9 2.0 0.0053 Attractin (ATRN), transcript variant 3 

NM_001144.3 423.0 903.1 2.1 0.0017 Autocrine motility factor receptor 
(AMFR), transcript variant 1 

NM_139317.1 55.1 84.3 1.5 0.0087 Baculoviral IAP repeat-containing 7 
(livin) (BIRC7), transcript variant 1 

NM_013314.2 254.0 403.0 1.6 0.0102 B-cell linker (BLNK) 

NM_004282.2 2510.0 1791.0 -1.4 0.0080 BCL2-associated athanogene 2 
(BAG2) 

NM_004048.2 854.1 1616.1 1.9 0.0043 Beta-2-microglobulin (B2M) 

NM_006129.2 387.3 727.6 1.9 0.0044 Bone morphogenetic protein 1 
(BMP1), transcript variant BMP1-3 

NM_006129.2 98.5 202.8 2.1 0.0006 Bone morphogenetic protein 1 
(BMP1), transcript variant BMP1-3 

NM_005448.1 184.9 391.4 2.1 0.0000 Bone morphogenetic protein 15 
(BMP15) 

NM_000710.2 26.3 65.5 2.5 0.0010 Bradykinin receptor B1 (BDKRB1) 

NM_032966.1 233.6 662.5 2.8 0.0003 

Burkitt lymphoma receptor 1, GTP 
binding protein (chemokine (C-X-C 
motif) receptor 5) (BLR1), transcript 
variant 2 

NM_006077.1 795.3 1515.6 1.9 0.0020 Calcium binding atopy-related 
autoantigen 1 (CBARA1) 

NM_001841.1 135.3 331.0 2.4 0.0005 Cannabinoid receptor 2 (macrophage) 
(CNR2) 

NM_001712.2 97.1 170.4 1.8 0.0031 
Carcinoembryonic antigen-related cell 
adhesion molecule 1 (biliary 
glycoprotein) (CEACAM1) 

NM_006016.3 2895.0 4996.0 1.7 0.0080 CD164 antigen, sialomucin (CD164) 
NM_001764.1 29.5 78.4 2.7 0.0095 CD1B antigen, b polypeptide (CD1B) 
NM_001765.1 484.8 866.7 1.8 0.0020 CD1C antigen, c polypeptide (CD1C) 
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Table 5.3. Contd.     

      

NCBI Accession Control 
Average 

Indole 
Average 

Fold 
Change 

(ind/cont) 
p-value Description 

NM_013230.1 1225.6 3106.5 2.5 0.0014 CD24 antigen (small cell lung 
carcinoma cluster 4 antigen) (CD24) 

NM_203331.1 2102.6 4271.9 2.0 0.0056 

CD59 antigen p18-20 (antigen 
identified by monoclonal antibodies 
163A5, EJ16, EJ30, EL32 and G344) 
(CD59), transcript variant 4 

NM_203331.1 928.3 1887.8 2.0 0.0003 

CD59 antigen p18-20 (antigen 
identified by monoclonal antibodies 
163A5, EJ16, EJ30, EL32 and G344) 
(CD59), transcript variant 4 

NM_203331.1 52.8 137.8 2.6 0.0035 

CD59 antigen p18-20 (antigen 
identified by monoclonal antibodies 
163A5, EJ16, EJ30, EL32 and G344) 
(CD59), transcript variant 4 

NM_006725.1 152.8 352.0 2.3 0.0023 CD6 antigen (CD6) 

NM_004355.1 23.0 52.6 2.3 0.0007 
CD74 antigen (invariant polypeptide of 
major histocompatibility complex, 
class II antigen-associated) (CD74) 

NM_001768.4 226.5 423.8 1.9 0.0003 CD8 antigen, alpha polypeptide (p32) 
(CD8A), transcript variant 1 

NM_001784.2 785.7 1509.1 1.9 0.0029 CD97 antigen (CD97), transcript 
variant 2 

NM_016174.3 289.8 658.9 2.3 0.0019 Cerebral endothelial cell adhesion 
molecule 1 (CEECAM1) 

NM_002995.1 421.1 636.9 1.5 0.0025 Chemokine (C motif) ligand 1 (XCL1) 

NM_005283.1 41.8 88.5 2.1 0.0060 Chemokine (C motif) receptor 1 
(XCR1) 

NM_004590.2 65.8 124.1 1.9 0.0019 Chemokine (C-C motif) ligand 16 
(CCL16) 

NM_005624.2 62.1 399.5 6.4 0.0000 Chemokine (C-C motif) ligand 25 
(CCL25), transcript variant 1 

NM_002984.1 72.7 138.5 1.9 0.0063 Chemokine (C-C motif) ligand 4 
(CCL4) 

NM_001838.2 905.8 1477.9 1.6 0.0072 Chemokine (C-C motif) receptor 7 
(CCR7) 

NM_002996.1 145.0 304.1 2.1 0.0076 Chemokine (C-X3-C motif) ligand 1 
(CX3CL1) 

NM_002090.1 269.8 441.0 1.6 0.0018 Chemokine (C-X-C motif) ligand 3 
(CXCL3) 

NM_002994.3 954.1 182.9 -5.2 0.0059 Chemokine (C-X-C motif) ligand 5 
(CXCL5) 

NM_001504.1 131.7 244.1 1.9 0.0000 Chemokine (C-X-C motif) receptor 3 
(CXCR3) 

NM_006564.1 30.0 56.5 1.9 0.0029 Chemokine (C-X-C motif) receptor 6 
(CXCR6) 
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Table 5.3. Contd.     

      

NCBI Accession Control 
Average 

Indole 
Average 

Fold 
Change 

(ind/cont) 
p-value Description 

NM_144601.2 271.5 450.1 1.7 0.0017 Chemokine-like factor super family 3 
(CKLFSF3), transcript variant 1 

NM_178818.2 216.4 261.3 1.2 0.0044 Chemokine-like factor super family 4 
(CKLFSF4), transcript variant 1 

NM_138460.2 418.9 813.0 1.9 0.0002 Chemokine-like factor super family 5 
(CKLFSF5), transcript variant 1 

NM_020644.1 3965.0 6005.3 1.5 0.0035 Chromosome 11 open reading frame 15 
(c11orf15) 

NM_000759.2 616.4 997.0 1.6 0.0015 
Colony stimulating factor 3 
(granulocyte) (CSF3), transcript variant 
1 

NM_000760.2 42.2 67.3 1.6 0.0027 
Colony stimulating factor 3 receptor 
(granulocyte) (CSF3R), transcript 
variant 1 

NM_020428.2 380.0 971.5 2.6 0.0077 CTL2 gene (CTL2) 

NM_022570.3 90.6 156.4 1.7 0.0064 

C-type (calcium dependent, 
carbohydrate-recognition domain) 
lectin, superfamily member 12 
(CLECSF12), transcript variant 2 

NM_004935.2 1988.4 3431.6 1.7 0.0019 Cyclin-dependent kinase 5 (CDK5) 
NM_004935.2 1745.1 2910.9 1.7 0.0075 Cyclin-dependent kinase 5 (CDK5) 

NM_014376.1 164.0 365.5 2.2 0.0045 Cytoplasmic FMR1 interacting protein 
2 (CYFIP2) 

NM_001380.2 398.2 692.4 1.7 0.0039 Dedicator of cytokinesis 1 (DOCK1), 
mrna 

NM_001379.1 289.4 164.3 -1.8 0.0073 DNA (cytosine-5-)-methyltransferase 1 
(DNMT1) 

NM_004417.2 217.7 468.3 2.2 0.0084 Dual specificity phosphatase 1 
(DUSP1) 

NM_007207.3 92.4 174.6 1.9 0.0036 Dual specificity phosphatase 10 
(DUSP10), transcript variant 1 

NM_030640.1 396.2 631.5 1.6 0.0061 Dual specificity phosphatase 16 
(DUSP16) 

NM_152511.2 170.1 374.7 2.2 0.0034 Dual specificity phosphatase 18 
(DUSP18) 

NM_020185.3 776.5 1305.7 1.7 0.0015 Dual specificity phosphatase 22 
(DUSP22) 

NM_004090.2 121.8 332.4 2.7 0.0035 
Dual specificity phosphatase 3 
(vaccinia virus phosphatase VH1-
related) (DUSP3) 

NM_016946.3 1140.3 1939.9 1.7 0.0001 F11 receptor (F11R), transcript variant 
1 

NM_032036.2 1162.1 2741.3 2.4 0.0005 Family with sequence similarity 14, 
member A (FAM14A), mrna 

NM_004107.3 175.3 422.4 2.4 0.0012 Fc fragment of igg, receptor, 
transporter, alpha (FCGRT) 
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NM_001456.1 911.1 1665.2 1.8 0.0054 Filamin A, alpha (actin binding protein 
280) (FLNA) 

AK090439.1 142.5 275.1 1.9 0.0034 FLJ00359 protein 
AK090461.1 128.1 197.9 1.5 0.0083 FLJ00382 protein 

NM_004778.1 131.7 225.2 1.7 0.0043 G protein-coupled receptor 44 (GPR44) 

NM_000853.1 821.5 1637.8 2.0 0.0005 Glutathione S-transferase theta 1 
(GSTT1) 

NM_000853.1 513.6 1231.2 2.4 0.0031 Glutathione S-transferase theta 1 
(GSTT1) 

NM_015675.1 646.6 1065.5 1.6 0.0065 Growth arrest and DNA-damage-
inducible, beta (GADD45B) 

NM_006705.2 54.7 135.8 2.5 0.0017 Growth arrest and DNA-damage-
inducible, gamma (GADD45G) 

NM_005811.2 104.3 143.9 1.4 0.0054 Growth differentiation factor 11 
(GDF11) 

NM_005260.2 59.2 111.9 1.9 0.0026 Growth differentiation factor 9 (GDF9) 

NM_005261.2 874.5 1515.8 1.7 0.0010 
GTP binding protein overexpressed in 
skeletal muscle (GEM), transcript 
variant 1 

NM_012202.1 334.3 519.5 1.6 0.0088 Guanine nucleotide binding protein (G 
protein), gamma 3 (GNG3) 

NM_004120.3 93.9 186.4 2.0 0.0006 Guanylate binding protein 2, 
interferon-inducible (GBP2) 

NM_016315.1 819.3 1348.1 1.6 0.0079 GULP, engulfment adaptor PTB 
domain containing 1 (GULP1) 

NM_014413.2 3985.6 6055.4 1.5 0.0095 Heme-regulated initiation factor 2-
alpha kinase (HRI) 

NM_006674.2 252.3 660.2 2.6 0.0027 HLA complex P5 (HCP5) 

NM_002127.3 5114.9 12125.2 2.4 0.0000 HLA-G histocompatibility antigen, 
class I, G (HLA-G) 

NM_002127.3 329.9 1165.4 3.5 0.0005 HLA-G histocompatibility antigen, 
class I, G (HLA-G) 

NM_015336.1 402.8 613.8 1.5 0.0049 Huntingtin interacting protein 14 
(HIP14) 

NM_012484.1 2323.2 746.1 -3.1 0.0032 
Hyaluronan-mediated motility receptor 
(RHAMM) (HMMR), transcript variant 
1 

NM_030796.2 311.7 644.5 2.1 0.0048 Hypothetical protein dkfzp564k0822 
(DKFZP564K0822) 

NM_018289.2 149.8 260.6 1.7 0.0000 Hypothetical protein FLJ10979 
(FLJ10979) 

NM_032376.2 836.4 1732.0 2.1 0.0044 Hypothetical protein MGC4251 
(MGC4251) 

NM_006389.2 334.8 661.7 2.0 0.0018 Hypoxia up-regulated 1 (HYOU1) 
NM_013332.1 1361.3 788.3 -1.7 0.0068 Hypoxia-inducible protein 2 (HIG2) 
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NM_014002.1 196.1 378.2 1.9 0.0042 
Inhibitor of kappa light polypeptide 
gene enhancer in B-cells, kinase 
epsilon (IKBKE), mrna 

NM_002211.2 4541.4 6901.7 1.5 0.0072 

Integrin, beta 1 (fibronectin receptor, 
beta polypeptide, antigen CD29 
includes MDF2, MSK12) (ITGB1), 
transcript variant 1A 

NM_022873.1 326.7 612.7 1.9 0.0032 
Interferon, alpha-inducible protein 
(clone IFI-6-16) (G1P3), transcript 
variant 3 

NM_005533.2 130.7 310.3 2.4 0.0002 Interferon-induced protein 35 (IFI35) 

NM_001549.2 99.2 164.1 1.7 0.0011 Interferon-induced protein with 
tetratricopeptide repeats 4 (IFIT4) 

NM_012420.1 128.9 253.1 2.0 0.0010 Interferon-induced protein with 
tetratricopeptide repeats 5 (IFIT5) 

NM_006084.3 259.5 1055.6 4.1 0.0003 Interferon-stimulated transcription 
factor 3, gamma 48kda (ISGF3G) 

NM_012275.2 21.2 34.5 1.6 0.0026 Interleukin 1 family, member 5 (delta) 
(IL1F5), transcript variant 1 

NM_014271.2 147.7 283.2 1.9 0.0024 Interleukin 1 receptor accessory 
protein-like 1 (IL1RAPL1) 

NM_006858.2 1079.2 1890.1 1.8 0.0093 Interleukin 1 receptor-like 1 ligand 
(IL1RL1LG) 

NM_003854.2 68.1 116.2 1.7 0.0013 Interleukin 1 receptor-like 2 (IL1RL2) 
NM_000628.3 265.9 585.1 2.2 0.0002 Interleukin 10 receptor, beta (IL10RB) 

NM_004512.3 111.5 223.7 2.0 0.0004 Interleukin 11 receptor, alpha 
(IL11RA), transcript variant 1 

NM_000882.2 242.1 140.9 -1.7 0.0029 

Interleukin 12A (natural killer cell 
stimulatory factor 1, cytotoxic 
lymphocyte maturation factor 1, p35) 
(IL12A) 

NM_138284.1 349.0 215.7 -1.6 0.0071 Interleukin 17D (IL17D) 

NM_005699.2 70.6 105.5 1.5 0.0040 Interleukin 18 binding protein 
(IL18BP), transcript variant C 

NM_000878.2 53.3 78.1 1.5 0.0040 Interleukin 2 receptor, beta (IL2RB) 

NM_181339.1 265.6 424.7 1.6 0.0062 Interleukin 24 (IL24), transcript variant 
2 

NM_173065.1 521.7 781.7 1.5 0.0004 
Interleukin 28 receptor, alpha 
(interferon, lambda receptor) 
(IL28RA), transcript variant 3 

NM_172138.1 69.4 111.2 1.6 0.0022 Interleukin 28A (interferon, lambda 2) 
(IL28A) 

NM_000588.3 15.4 19.4 1.3 0.0079 Interleukin 3 (colony-stimulating 
factor, multiple) (IL3) 

NM_000589.2 213.6 492.7 2.3 0.0009 Interleukin 4 (IL4), transcript variant 1 
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NM_000584.2 1003.0 557.4 -1.8 0.0265 Interleukin 8 (IL8) 

NM_002227.1 167.8 330.8 2.0 0.0018 Janus kinase 1 (a protein tyrosine 
kinase) (JAK1) 

NM_004972.2 73.9 130.5 1.8 0.0059 Janus kinase 2 (a protein tyrosine 
kinase) (JAK2) 

NM_000215.2 72.6 111.5 1.5 0.0002 Janus kinase 3 (a protein tyrosine 
kinase, leukocyte) (JAK3) 

AB032991.1 632.5 1352.3 2.1 0.0019 KIAA1165 protein 

NM_005810.3 42.7 80.8 1.9 0.0073 Killer cell lectin-like receptor 
subfamily G, member 1 (KLRG1) 

NM_005567.2 3281.8 7208.0 2.2 0.0036 Lectin, galactoside-binding, soluble, 3 
binding protein (LGALS3BP) 

NM_006840.2 58.3 103.6 1.8 0.0023 
Leukocyte immunoglobulin-like 
receptor, subfamily B (with TM and 
ITIM domains), member 5 (LILRB5) 

NM_014387.2 50.8 90.0 1.8 0.0035 Linker for activation of T cells (LAT) 

NM_005516.3 4500.2 8437.6 1.9 0.0100 Major histocompatibility complex, 
class I, E (HLA-E) 

NM_018950.1 5745.2 9954.3 1.7 0.0054 Major histocompatibility complex, 
class I, F (HLA-F) 

NM_006120.2 507.5 999.9 2.0 0.0032 Major histocompatibility complex, 
class II, DM alpha (HLA-DMA) 

NM_002118.3 748.1 1603.3 2.1 0.0103 Major histocompatibility complex, 
class II, DM beta (HLA-DMB) 

NM_002120.2 430.7 900.5 2.1 0.0017 Major histocompatibility complex, 
class II, DO beta (HLA-DOB) 

NM_033554.2 26.0 57.0 2.2 0.0054 Major histocompatibility complex, 
class II, DP alpha 1 (HLA-DPA1) 

NM_002125.3 88.7 142.8 1.6 0.0094 Major histocompatibility complex, 
class II, DR beta 5 (HLA-DRB5) 

NM_014751.2 175.1 347.7 2.0 0.0033 Metastasis suppressor 1 (MTSS1) 

NM_014268.1 444.7 872.9 2.0 0.0078 Microtubule-associated protein, RP/EB 
family, member 2 (MAPRE2) 

NM_002751.5 442.6 726.7 1.6 0.0033 Mitogen-activated protein kinase 11 
(MAPK11), transcript variant 1 

NM_002750.2 167.0 288.4 1.7 0.0102 Mitogen-activated protein kinase 8 
(MAPK8), transcript variant 2 

NM_006301.2 127.0 265.3 2.1 0.0072 Mitogen-activated protein kinase 
kinase kinase 12 (MAP3K12) 

NM_004721.3 61.5 128.9 2.1 0.0042 Mitogen-activated protein kinase 
kinase kinase 13 (MAP3K13) 

NM_006609.2 271.6 521.9 1.9 0.0004 Mitogen-activated protein kinase 
kinase kinase 2 (MAP3K2) 

NM_006116.2 87.8 208.7 2.4 0.0029 
Mitogen-activated protein kinase 
kinase kinase 7 interacting protein 1 
(MAP3K7IP1), transcript variant alpha 
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NM_005204.2 230.6 387.6 1.7 0.0090 Mitogen-activated protein kinase 
kinase kinase 8 (MAP3K8) 

NM_006575.3 460.7 751.9 1.6 0.0059 
Mitogen-activated protein kinase 
kinase kinase kinase 5 (MAP4K5), 
transcript variant 1 

NM_005439.1 3071.5 4872.6 1.6 0.0080 Myeloid leukemia factor 2 (MLF2) 

NM_002463.1 80.7 127.6 1.6 0.0079 Myxovirus (influenza virus) resistance 
2 (mouse) (MX2) 

NM_002488.2 1416.3 2187.3 1.5 0.0009 NADH dehydrogenase (ubiquinone) 1 
alpha subcomplex, 2, 8kda (NDUFA2) 

NM_030571.2 917.9 1285.7 1.4 0.0007 Nedd4 family interacting protein 1 
(NDFIP1) 

NM_002499.1 74.0 183.1 2.5 0.0004 Neogenin homolog 1 (chicken) (NEO1) 

NM_017595.4 306.8 630.2 2.1 0.0008 NFKB inhibitor interacting Ras-like 2 
(NKIRAS2), transcript variant 2 

NM_002548.1 367.0 666.1 1.8 0.0015 Olfactory receptor, family 1, subfamily 
D, member 2 (OR1D2) 

NM_002859.1 347.5 549.1 1.6 0.0077 Paxillin (PXN) 

NM_005026.2 56.9 124.1 2.2 0.0002 Phosphoinositide-3-kinase, catalytic, 
delta polypeptide (PIK3CD) 

NM_003629.2 256.6 482.4 1.9 0.0024 
Phosphoinositide-3-kinase, regulatory 
subunit, polypeptide 3 (p55, gamma) 
(PIK3R3) 

NM_003629.2 139.0 66.5 -2.1 0.0054 
Phosphoinositide-3-kinase, regulatory 
subunit, polypeptide 3 (p55, gamma) 
(PIK3R3) 

NM_014308.1 281.9 530.9 1.9 0.0057 Phosphoinositide-3-kinase, regulatory 
subunit, polypeptide p101 (P101-PI3K) 

BC028212.1 555.6 920.3 1.7 0.0002 
Phosphoinositide-3-kinase, regulatory 
subunit, polypeptide p101, mrna (cdna 
clone MGC:39947 IMAGE:5215094) 

NM_002784.2 122.1 191.1 1.6 0.0022 Pregnancy specific beta-1-glycoprotein 
9 (PSG9) 

NM_025239.2 68.8 135.3 2.0 0.0008 Programmed cell death 1 ligand 2 
(PDCD1LG2) 

NM_000958.2 174.0 289.9 1.7 0.0026 Prostaglandin E receptor 4 (subtype 
EP4) (PTGER4) 

NM_006404.3 931.5 1586.9 1.7 0.0015 Protein C receptor, endothelial (EPCR) 
(PROCR) 

NM_005608.1 24.4 76.4 3.1 0.0004 Protein tyrosine phosphatase, receptor 
type, C-associated protein (PTPRCAP) 

NM_002564.2 120.3 248.3 2.1 0.0032 
Purinergic receptor P2Y, G-protein 
coupled, 2 (P2RY2), transcript variant 
2 

NM_001002292.1 820.9 2079.1 2.5 0.0012 Putative nfkb activating protein 373 
(FLJ23091), transcript variant 2, mrna 
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X58529.1 153.2 512.8 3.3 0.0016 
Rearranged immunoglobulin mrna for 
mu heavy chain enhancer and constant 
region 

NM_133631.1 51.9 91.0 1.8 0.0051 
Roundabout, axon guidance receptor, 
homolog 1 (Drosophila) (ROBO1), 
transcript variant 2 

NM_016479.3 206.2 603.7 2.9 0.0052 Scotin (SCOTIN) 

NM_003004.1 82.0 125.6 1.5 0.0075 Secreted and transmembrane 1 
(SECTM1) 

NM_000655.2 125.0 60.7 -2.1 0.0038 Selectin L (lymphocyte adhesion 
molecule 1) (SELL) 

NM_006379.2 34.2 110.8 3.2 0.0005 
Sema domain, immunoglobulin domain 
(Ig), short basic domain, secreted, 
(semaphorin) 3C (SEMA3C) 

NM_173050.1 5.4 17.0 3.1 0.0017 Signal peptide, CUB domain, EGF-like 
1 (SCUBE1) 

NM_007315.2 825.9 1097.5 1.3 0.0008 
Signal transducer and activator of 
transcription 1, 91kda (STAT1), 
transcript variant alpha 

NM_005419.2 131.7 340.4 2.6 0.0063 Signal transducer and activator of 
transcription 2, 113kda (STAT2) 

NM_003150.3 339.0 739.8 2.2 0.0078 
Signal transducer and activator of 
transcription 3 (acute-phase response 
factor) (STAT3), transcript variant 2 

NM_003152.2 55.0 88.7 1.6 0.0077 Signal transducer and activator of 
transcription 5A (STAT5A) 

NM_012448.3 172.6 303.7 1.8 0.0037 Signal transducer and activator of 
transcription 5B (STAT5B) 

NM_003153.3 175.0 344.6 2.0 0.0021 
Signal transducer and activator of 
transcription 6, interleukin-4 induced 
(STAT6) 

NM_015915.2 39.7 119.9 3.0 0.0013 Spastic paraplegia 3A (autosomal 
dominant) (SPG3A) 

NM_003726.2 333.6 679.9 2.0 0.0012 Src family associated phosphoprotein 1 
(SCAP1) 

NM_006463.3 383.1 608.6 1.6 0.0065 STAM binding protein (STAMBP), 
transcript variant 1 

NM_003498.3 203.1 730.0 3.6 0.0073 Stannin (SNN) 

NM_003932.3 3255.6 5274.5 1.6 0.0018 
Suppression of tumorigenicity 13 
(colon carcinoma) (Hsp70 interacting 
protein) (ST13) 

NM_003932.3 2631.4 3794.9 1.4 0.0026 
Suppression of tumorigenicity 13 
(colon carcinoma) (Hsp70 interacting 
protein) (ST13) 

NM_198327.1 258.7 452.0 1.7 0.0099 Suppression of tumorigenicity 7 like 
(ST7L), transcript variant 5 
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NM_198327.1 111.0 177.0 1.6 0.0057 Suppression of tumorigenicity 7 like 
(ST7L), transcript variant 5 

NM_006289.2 64.4 97.9 1.5 0.0051 Talin 1 (TLN1) 

NM_006053.2 137.3 428.7 3.1 0.0002 

T-cell, immune regulator 1, atpase, H+ 
transporting, lysosomal V0 protein a 
isoform 3 (TCIRG1), transcript variant 
2 

NM_016151.2 300.8 569.9 1.9 0.0087 Thousand and one amino acid protein 
kinase (TAO1) 

NM_004783.2 260.7 448.8 1.7 0.0010 Thousand and one amino acid protein 
kinase (TAO1) 

NM_199356.1 75.2 167.7 2.2 0.0019 

Thrombopoietin (myeloproliferative 
leukemia virus oncogene ligand, 
megakaryocyte growth and 
development factor) (THPO), transcript 
variant 3 

NM_004620.2 453.8 790.1 1.7 0.0020 TNF receptor-associated factor 6 
(TRAF6), transcript variant 2 

NM_019009.2 1157.0 1840.9 1.6 0.0044 Toll interacting protein (TOLLIP) 
NM_003265.2 121.3 227.5 1.9 0.0021 Toll-like receptor 3 (TLR3) 

NM_017442.2 298.1 631.4 2.1 0.0036 Toll-like receptor 9 (TLR9), transcript 
variant A 

NM_021649.3 95.8 195.7 2.0 0.0016 Toll-like receptor adaptor molecule 2 
(TICAM2), mrna 

NM_007233.1 311.5 591.4 1.9 0.0016 TP53 activated protein 1 (TP53AP1) 

NM_005423.3 948.6 1587.7 1.7 0.0087 Trefoil factor 2 (spasmolytic protein 1) 
(TFF2), mrna 

NM_006670.3 358.5 1010.0 2.8 0.0002 Trophoblast glycoprotein (TPBG) 

NM_003809.2 203.6 350.0 1.7 0.0085 
Tumor necrosis factor (ligand) 
superfamily, member 12 (TNFSF12), 
transcript variant 1, mrna 

NM_003808.2 63.0 108.9 1.7 0.0013 
Tumor necrosis factor (ligand) 
superfamily, member 13 (TNFSF13), 
transcript variant alpha 

NM_003326.2 116.6 243.1 2.1 0.0057 

Tumor necrosis factor (ligand) 
superfamily, member 4 (tax-
transcriptionally activated glycoprotein 
1, 34kda) (TNFSF4) 

NM_000594.2 268.9 509.6 1.9 0.0073 Tumor necrosis factor (TNF 
superfamily, member 2) (TNF) 

NM_001243.2 264.9 510.4 1.9 0.0025 
Tumor necrosis factor receptor 
superfamily, member 8 (TNFRSF8), 
transcript variant 1 

NM_021137.3 555.0 1302.7 2.3 0.0003 Tumor necrosis factor, alpha-induced 
protein 1 (endothelial) (TNFAIP1) 
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NM_025218.1 1021.7 2060.3 2.0 0.0025 UL16 binding protein 1 (ULBP1) 

NM_003361.1 31.1 60.7 2.0 0.0008 Uromodulin (uromucoid, Tamm-
Horsfall glycoprotein) (UMOD) 

      
Cell structure/shape (136)    

      
NM_032432.2 85.8 203.0 2.4 0.0022 Actin binding LIM protein family, 

member 2 (ABLIM2) 
NM_001103.1 21.6 51.0 2.4 0.0104 Actinin, alpha 2 (ACTN2) 

NM_020445.1 2803.1 1921.5 -1.5 0.0017 Actin-related protein 3-beta 
(ARP3BETA) 

NM_001627.1 227.9 406.8 1.8 0.0030 Activated leukocyte cell adhesion 
molecule (ALCAM) 

NM_001119.3 1416.4 2459.8 1.7 0.0079 Adducin 1 (alpha) (ADD1), transcript 
variant 1 

NM_004319.1 61.5 149.5 2.4 0.0011 Astrotactin (ASTN), transcript variant 
1 

NM_031885.2 176.1 416.9 2.4 0.0053 Bardet-Biedl syndrome 2 (BBS2) 

NM_199173.2 164.6 303.7 1.8 0.0047 Bone gamma-carboxyglutamate (gla) 
protein (osteocalcin) (BGLAP) 

NM_014567.2 227.6 457.9 2.0 0.0033 Breast cancer anti-estrogen resistance 1 
(BCAR1) 

NM_004360.2 5445.5 9723.2 1.8 0.0008 Cadherin 1, type 1, E-cadherin 
(epithelial) (CDH1) 

NM_004933.2 277.6 511.8 1.8 0.0025 Cadherin 15, M-cadherin (myotubule) 
(CDH15) 

NM_004934.2 97.9 157.9 1.6 0.0020 Cadherin 18, type 2 (CDH18) 
NM_144985.2 50.8 117.0 2.3 0.0004 Cadherin-like 24 (CDH24) 

NM_033139.2 187.6 290.0 1.5 0.0081 Caldesmon 1 (CALD1), transcript 
variant 4 

NM_024734.2 192.5 461.9 2.4 0.0002 Calmin (calponin-like, transmembrane) 
(CLMN) 

NM_001746.2 2476.7 5527.0 2.2 0.0012 Calnexin (CANX) 

NM_001331.1 430.7 723.5 1.7 0.0040 Catenin (cadherin-associated protein), 
delta 1 (CTNND1) 

NM_001332.2 131.6 295.0 2.2 0.0077 
Catenin (cadherin-associated protein), 
delta 2 (neural plakophilin-related arm-
repeat protein) (CTNND2) 

NM_001771.1 92.7 153.2 1.7 0.0045 CD22 antigen (CD22) 

NM_001001389.1 219.9 369.2 1.7 0.0001 
CD44 antigen (homing function and 
Indian blood group system) (CD44), 
transcript variant 2 
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NM_001001389.1 151.8 370.5 2.4 0.0005 
CD44 antigen (homing function and 
Indian blood group system) (CD44), 
transcript variant 2 

NM_001777.2 125.8 267.9 2.1 0.0083 
CD47 antigen (Rh-related antigen, 
integrin-associated signal transducer) 
(CD47), transcript variant 1 

NM_004848.1 301.2 1359.7 4.5 0.0002 Chromosome 1 open reading frame 38 
(c1orf38) 

NM_020770.1 183.9 477.0 2.6 0.0003 Cingulin (CGN) 
NM_021101.3 89.4 172.4 1.9 0.0030 Claudin 1 (CLDN1) 

NM_005602.4 106.2 28.9 -3.7 0.0023 Claudin 11 (oligodendrocyte 
transmembrane protein) (CLDN11) 

NM_012129.2 447.7 829.1 1.9 0.0017 Claudin 12 (CLDN12) 
NM_020384.2 232.1 105.6 -2.2 0.0039 Claudin 2 (CLDN2) 
NM_194284.1 720.0 1425.8 2.0 0.0010 Claudin 23 (CLDN23) 
NM_001306.2 651.1 2295.6 3.5 0.0009 Claudin 3 (CLDN3) 
NM_001305.3 4658.2 12252.5 2.6 0.0007 Claudin 4 (CLDN4) 
NM_021195.3 43.8 73.9 1.7 0.0099 Claudin 6 (CLDN6) 
NM_001307.3 1176.0 3477.4 3.0 0.0028 Claudin 7 (CLDN7) 
NM_000089.3 44.7 19.6 -2.3 0.0058 Collagen, type I, alpha 2 (COL1A2) 

NM_020441.1 664.7 1878.2 2.8 0.0021 Coronin, actin binding protein, 1B 
(CORO1B) 

NM_012076.2 341.0 745.6 2.2 0.0056 Crumbs homolog 1 (Drosophila) 
(CRB1), transcript variant 1 

NM_194447.1 76.0 139.0 1.8 0.0049 

C-type (calcium dependent, 
carbohydrate-recognition domain) 
lectin, superfamily member 6 
(CLECSF6), transcript variant 3 

NM_024422.2 243.5 483.7 2.0 0.0075 Desmocollin 2 (DSC2), transcript 
variant Dsc2a 

NM_001943.1 1625.1 3702.8 2.3 0.0002 Desmoglein 2 (DSG2) 

NM_173674.1 30.1 44.9 1.5 0.0027 Discoidin, CUB and LCCL domain 
containing 1 (DCBLD1) 

NM_014992.1 225.3 488.1 2.2 0.0000 Dishevelled associated activator of 
morphogenesis 1 (DAAM1) 

NM_004395.2 1287.5 2345.4 1.8 0.0013 Drebrin 1 (DBN1), transcript variant 1 

NM_004010.1 154.6 456.7 3.0 0.0002 
Dystrophin (muscular dystrophy, 
Duchenne and Becker types) (DMD), 
transcript variant Dp427p2 

NM_003633.1 2528.5 4064.2 1.6 0.0010 Ectodermal-neural cortex (with BTB-
like domain) (ENC1) 

NM_032048.1 358.0 259.2 -1.4 0.0016 Elastin microfibril interfacer 2 
(EMILIN2) 
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NCBI Accession Control 
Average 

Indole 
Average 

Fold 
Change 

(ind/cont) 
p-value Description 

NM_000118.1 9.4 24.8 2.6 0.0066 Endoglin (Osler-Rendu-Weber 
syndrome 1) (ENG) 

NM_004429.3 161.9 282.0 1.7 0.0035 Ephrin-B1 (EFNB1) 

NM_005797.2 945.0 1591.6 1.7 0.0018 Epithelial V-like antigen 1 (EVA1), 
transcript variant 1 

NM_177996.1 142.1 312.8 2.2 0.0039 
Erythrocyte membrane protein band 
41-like 1 (EPB41L1), transcript variant 
2 

NM_001978.1 261.6 606.5 2.3 0.0068 Erythrocyte membrane protein band 49 
(dematin) (EPB49) 

NM_006691.2 30.8 59.1 1.9 0.0010 Extracellular link domain containing 1 
(XLKD1) 

NM_022549.2 175.2 287.0 1.6 0.0056 
Fasciculation and elongation protein 
zeta 1 (zygin I) (FEZ1), transcript 
variant 2 

NM_013281.2 76.7 178.3 2.3 0.0011 
Fibronectin leucine rich 
transmembrane protein 3 (FLRT3), 
transcript variant 1 

NM_001458.1 540.0 1056.0 2.0 0.0007 Filamin C, gamma (actin binding 
protein 280) (FLNC) 

AK074096.1 527.0 797.1 1.5 0.0036 FLJ00167 protein 
AK074177.1 13.1 49.1 3.7 0.0092 FLJ00250 protein 

NM_005267.2 109.0 214.3 2.0 0.0088 Gap junction protein, alpha 8, 50kda 
(connexin 50) (GJA8) 

NM_024009.1 29.1 71.6 2.5 0.0062 Gap junction protein, beta 3, 31kda 
(connexin 31) (GJB3) 

NM_153212.1 49.3 84.2 1.7 0.0029 Gap junction protein, beta 4 (connexin 
303) (GJB4) 

NM_181538.1 14.2 44.2 3.1 0.0059 Gap junction protein, epsilon 1, 29kda 
(GJE1) 

NM_000177.3 2045.1 4513.1 2.2 0.0046 Gelsolin (amyloidosis, Finnish type) 
(GSN), transcript variant 1 

NM_002149.2 145.8 342.6 2.3 0.0023 Hippocalcin-like 1 (HPCAL1), 
transcript variant 1 

NM_003959.1 34.5 64.1 1.9 0.0029 Huntingtin interacting protein-1-related 
(HIP1R) 

NM_003637.3 73.1 146.7 2.0 0.0104 Integrin, alpha 10 (ITGA10) 
NM_012211.2 765.7 1125.2 1.5 0.0102 Integrin, alpha 11 (ITGA11) 

NM_005501.1 3602.9 5966.2 1.7 0.0070 
Integrin, alpha 3 (antigen CD49C, 
alpha 3 subunit of VLA-3 receptor) 
(ITGA3), transcript variant b 

NM_000210.1 3308.6 6463.9 2.0 0.0053 Integrin, alpha 6 (ITGA6) 
NM_000213.2 539.0 1237.0 2.3 0.0070 Integrin, beta 4 (ITGB4) 
NM_000888.3 42.8 169.7 4.0 0.0015 Integrin, beta 6 (ITGB6) 
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Indole 
Average 

Fold 
Change 

(ind/cont) 
p-value Description 

NM_002214.1 51.0 80.6 1.6 0.0024 Integrin, beta 8 (ITGB8) 
NM_080878.2 137.6 270.0 2.0 0.0065 Intelectin 2 (ITLN2) 

NM_000873.2 503.2 773.9 1.5 0.0027 Intercellular adhesion molecule 2 
(ICAM2) 

NM_017415.1 58.9 132.8 2.3 0.0020 Kelch-like 3 (Drosophila) (KLHL3) 
NM_014718.1 120.5 293.3 2.4 0.0030 KIAA0726 protein, complete cds 
AB028952.1 1224.6 2813.1 2.3 0.0010 KIAA1029 protein 

NM_024003.1 99.4 339.4 3.4 0.0019 

L1 cell adhesion molecule 
(hydrocephalus, stenosis of aqueduct of 
Sylvius 1, MASA (mental retardation, 
aphasia, shuffling gait and adducted 
thumbs) syndrome, spastic paraplegia 
1) (L1CAM), transcript variant 2 

NM_000227.2 712.8 1310.4 1.8 0.0014 Laminin, alpha 3 (LAMA3), transcript 
variant 2 

NM_002292.2 233.8 457.3 2.0 0.0014 Laminin, beta 2 (laminin S) (LAMB2) 
NM_002345.2 20.1 49.3 2.5 0.0055 Lumican (LUM) 

NM_005581.2 114.5 379.8 3.3 0.0022 Lutheran blood group (Auberger b 
antigen included) (LU) 

NM_002348.1 32.4 50.3 1.6 0.0099 Lymphocyte antigen 9 (LY9) 

NM_002298.2 444.9 734.5 1.7 0.0073 Lymphocyte cytosolic protein 1 (L-
plastin) (LCP1) 

NM_013404.1 438.1 1402.4 3.2 0.0080 Mesothelin (MSLN), transcript variant 
2 

NM_005928.1 137.1 336.5 2.5 0.0006 Milk fat globule-EGF factor 8 protein 
(MFGE8) 

AB038784.1 940.6 2441.9 2.6 0.0019 MUC3A mrna for intestinal mucin 
NM_182741.1 202.3 378.1 1.9 0.0073 Mucin 1, transmembrane (MUC1) 

NM_033049.1 342.0 1516.5 4.4 0.0013 Mucin 13, epithelial transmembrane 
(MUC13) 

NM_152673.1 558.4 2013.4 3.6 0.0002 Mucin 20 (MUC20) 

NM_031265.1 44.5 110.7 2.5 0.0064 Mucin and cadherin-like (MUCDHL), 
transcript variant 4 

NM_005936.1 15.7 52.1 3.3 0.0000 

Myeloid/lymphoid or mixed-lineage 
leukemia (trithorax homolog, 
Drosophila); translocated to, 4 
(MLLT4) 

NM_004998.1 259.8 585.4 2.3 0.0034 Myosin IE (MYO1E) 
NM_006393.1 554.4 1262.2 2.3 0.0006 Nebulette (NEBL), transcript variant 1 

NM_015080.2 360.5 1001.8 2.8 0.0006 Neurexin 2 (NRXN2), transcript 
variant alpha-1 

NM_018977.1 15.7 41.0 2.6 0.0052 Neuroligin 3 (NLGN3) 
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U83115.1 171.3 418.6 2.4 0.0055 Non-lens beta gamma-crystallin like 
protein (AIM1) mrna 

NM_022141.3 493.9 957.3 1.9 0.0058 Parvin, gamma (PARVG) 
NM_005032.3 765.5 1281.9 1.7 0.0093 Plastin 3 (T isoform) (PLS3) 
NM_005761.1 95.4 207.4 2.2 0.0035 Plexin C1 (PLXNC1) 

NM_000296.2 82.1 146.3 1.8 0.0005 Polycystic kidney disease 1 (autosomal 
dominant) (PKD1) 

NM_000313.1 232.0 565.7 2.4 0.0003 Protein S (alpha) (PROS1) 

NM_080792.1 162.1 240.5 1.5 0.0037 Protein tyrosine phosphatase, non-
receptor type substrate 1 (PTPNS1) 

NM_080792.1 47.2 82.9 1.8 0.0043 Protein tyrosine phosphatase, non-
receptor type substrate 1 (PTPNS1) 

NM_032973.1 164.9 320.6 1.9 0.0076 Protocadherin 11 Y-linked 
(PCDH11Y), transcript variant c 

NM_033056.2 1557.0 2887.7 1.9 0.0099 Protocadherin 15 (PCDH15) 
NM_033100.1 36.9 77.0 2.1 0.0007 Protocadherin 21 (PCDH21) 

NM_031852.1 114.4 259.8 2.3 0.0072 Protocadherin alpha 7 (PCDHA7), 
transcript variant 2 

NM_013340.2 109.4 157.0 1.4 0.0001 Protocadherin beta 1 (PCDHB1) 
NM_018939.2 82.6 140.9 1.7 0.0008 Protocadherin beta 6 (PCDHB6) 
NM_019119.3 49.0 80.1 1.6 0.0076 Protocadherin beta 9 (PCDHB9) 

NM_018917.2 260.7 422.4 1.6 0.0021 Protocadherin gamma subfamily A, 4 
(PCDHGA4), transcript variant 1 

NM_032054.1 226.1 442.6 2.0 0.0027 Protocadherin gamma subfamily A, 5 
(PCDHGA5), transcript variant 2 

NM_002906.2 1027.9 553.3 -1.9 0.0033 Radixin (RDX) 
NM_014470.2 160.0 304.4 1.9 0.0066 Rho family gtpase 1 (RND1) 

NM_005506.2 3373.6 8365.3 2.5 0.0026 Scavenger receptor class B, member 2 
(SCARB2) 

NM_003005.2 140.1 220.0 1.6 0.0100 Selectin P (granule membrane protein 
140kda, antigen CD62) (SELP) 

NM_003966.1 76.5 175.8 2.3 0.0012 

Sema domain, seven thrombospondin 
repeats (type 1 and type 1-like), 
transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 5A 
(SEMA5A) 

NM_016543.1 273.2 435.8 1.6 0.0046 Sialic acid binding Ig-like lectin 7 
(SIGLEC7) 

NM_015385.1 89.1 166.8 1.9 0.0009 Sorbin and SH3 domain containing 1 
(SORBS1) 

NM_003127.1 1321.2 2456.5 1.9 0.0072 Spectrin, alpha, non-erythrocytic 1 
(alpha-fodrin) (SPTAN1) 
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NM_178313.1 884.1 1878.7 2.1 0.0002 Spectrin, beta, non-erythrocytic 1 
(SPTBN1), transcript variant 2 

NM_006307.2 123.4 183.6 1.5 0.0020 Sushi-repeat-containing protein, X-
linked (SRPX) 

Y11072.1 615.9 1047.6 1.7 0.0029 Synaptopodin 

NM_003098.2 148.1 365.8 2.5 0.0051 
Syntrophin, alpha 1 (dystrophin-
associated protein A1, 59kda, acidic 
component) (SNTA1) 

NM_003285.1 298.0 579.2 1.9 0.0010 Tenascin R (restrictin, janusin) (TNR) 
NM_003247.2 213.2 404.7 1.9 0.0034 Thrombospondin 2 (THBS2) 

NM_003257.2 1192.5 1667.4 1.4 0.0037 
Tight junction protein 1 (zona 
occludens 1) (TJP1), transcript variant 
1 

NM_014428.1 46.7 266.0 5.7 0.0080 Tight junction protein 3 (zona 
occludens 3) (TJP3) 

NM_080604.1 343.8 655.1 1.9 0.0037 Tight junction protein 4 (peripheral) 
(TJP4) 

NM_000358.1 101.7 295.6 2.9 0.0022 Transforming growth factor, beta-
induced, 68kda (TGFBI) 

NM_014548.2 16.9 43.7 2.6 0.0037 Tropomodulin 2 (neuronal) (TMOD2) 
NM_000368.2 642.4 1239.9 1.9 0.0065 Tuberous sclerosis 1 (TSC1) 

NM_017549.1 2465.2 3912.4 1.6 0.0090 Upregulated in colorectal cancer gene 1 
(UCC1) 

NM_007124.1 30.1 78.4 2.6 0.0076 Utrophin (homologous to dystrophin) 
(UTRN) 

NM_001078.2 79.7 101.0 1.3 0.0069 Vascular cell adhesion molecule 1 
(VCAM1), transcript variant 1 

NM_015873.1 153.4 344.6 2.2 0.0005 Villin-like (VILL) 

NM_014000.1 853.4 1308.2 1.5 0.0008 Vinculin (VCL), transcript variant 
meta-VCL 

      
Apoptosis (35)      

      
NM_014977.1 87.4 289.1 3.3 0.0002 Apoptotic chromatin condensation 

inducer 1 (ACIN1) 
NM_033027.2 1016.7 1747.7 1.7 0.0041 AXIN1 up-regulated 1 (AXUD1) 

NM_001166.3 438.1 685.0 1.6 0.0101 Baculoviral IAP repeat-containing 2 
(BIRC2) 

NM_001165.3 121.2 195.7 1.6 0.0006 Baculoviral IAP repeat-containing 3 
(BIRC3), transcript variant 1 

NM_016077.1 5901.6 3361.9 -1.8 0.0066 Bcl-2 inhibitor of transcription (Bit1) 

NM_004330.1 1475.1 1202.1 -1.2 0.0083 BCL2/adenovirus E1B 19kda 
interacting protein 2 (BNIP2) 
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NM_004331.2 656.3 1384.1 2.1 0.0033 BCL2/adenovirus E1B 19kda 
interacting protein 3-like (BNIP3L) 

NM_004324.3 1352.9 1898.3 1.4 0.0050 BCL2-associated X protein (BAX), 
transcript variant beta 

NM_138639.1 87.4 175.8 2.0 0.0084 BCL2-like 12 (proline rich) 
(BCL2L12), transcript variant 1 

NM_015367.2 495.4 951.9 1.9 0.0099 
BCL2-like 13 (apoptosis facilitator) 
(BCL2L13), nuclear gene encoding 
mitochondrial protein 

NM_030766.1 570.8 1042.7 1.8 0.0019 BCL2-like 14 (apoptosis facilitator) 
(BCL2L14), transcript variant 2 

NM_014959.1 42.4 96.5 2.3 0.0029 Caspase recruitment domain family, 
member 8 (CARD8) 

NM_014430.1 106.9 289.7 2.7 0.0002 Cell death-inducing DFFA-like effector 
b (CIDEB) 

NM_022336.1 98.7 220.8 2.2 0.0015 Ectodysplasin 1, anhidrotic receptor 
(EDAR) 

NM_032346.1 1247.5 714.0 -1.7 0.0077 Hypothetical protein MGC13096 
(MGC13096) 

NM_022151.3 135.3 289.9 2.1 0.0080 Modulator of apoptosis 1 (MOAP1) 

NM_002462.2 448.5 695.2 1.5 0.0023 
Myxovirus (influenza virus) resistance 
1, interferon-inducible protein p78 
(mouse) (MX1) 

BC028066.1 38.1 91.1 2.4 0.0078 
NACHT, leucine rich repeat and PYD 
containing 1, mrna (cdna clone 
IMAGE:5212243) 

NM_013436.3 2241.2 4173.6 1.9 0.0009 NCK-associated protein 1 (NCKAP1), 
transcript variant 1 

NM_014380.1 1884.4 2664.4 1.4 0.0016 
Nerve growth factor receptor 
(TNFRSF16) associated protein 1 
(NGFRAP1), transcript variant 3 

NM_013982.1 37.6 66.5 1.8 0.0077 Neuregulin 2 (NRG2), transcript 
variant 3 

NM_020529.1 770.4 1530.2 2.0 0.0026 
Nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 
inhibitor, alpha (NFKBIA) 

NM_007318.1 1238.4 2422.2 2.0 0.0033 Presenilin 1 (Alzheimer disease 3) 
(PSEN1), transcript variant I-463 

NM_003015.2 265.9 620.7 2.3 0.0016 Secreted frizzled-related protein 5 
(SFRP5) 

NM_020796.2 40.6 87.9 2.2 0.0049 
Sema domain, transmembrane domain 
(TM), and cytoplasmic domain, 
(semaphorin) 6A (SEMA6A) 

NM_018957.2 95.4 144.7 1.5 0.0055 SH3-domain binding protein 1 
(SH3BP1) 
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NM_006747.2 329.1 674.6 2.0 0.0011 Signal-induced proliferation-associated 
gene 1 (SIPA1), transcript variant 2 

NM_004295.2 1440.4 2616.3 1.8 0.0027 TNF receptor-associated factor 4 
(TRAF4), transcript variant 1 

NM_001252.2 29.7 97.9 3.3 0.0013 Tumor necrosis factor (ligand) 
superfamily, member 7 (TNFSF7) 

NM_003811.2 109.2 67.4 -1.6 0.0001 Tumor necrosis factor (ligand) 
superfamily, member 9 (TNFSF9) 

NM_003820.2 72.2 227.7 3.2 0.0001 
Tumor necrosis factor receptor 
superfamily, member 14 (herpesvirus 
entry mediator) (TNFRSF14) 

NM_001065.2 335.7 839.2 2.5 0.0057 Tumor necrosis factor receptor 
superfamily, member 1A (TNFRSF1A) 

NM_014452.3 9366.6 7032.8 -1.3 0.0065 Tumor necrosis factor receptor 
superfamily, member 21 (TNFRSF21) 

NM_004881.2 600.3 1163.4 1.9 0.0004 Tumor protein p53 inducible protein 3 
(TP53I3), transcript variant 1 

NM_006377.2 1291.4 2133.5 1.7 0.0081 Unc-13 homolog B (C elegans) 
(UNC13B) 
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Fig. 5.2. Changes in tight junction proteins and trans-epithelial resistance. (A) Pathways 
containing differentially-expressed genes involved in tight junction formation were adapted from 
Pathway Express using KEGG classifications. Red: up-regulation; blue: down-regulation, and 
gray: no change in expression; arrow: molecular interaction leading to activation; blunt line 
without an arrowhead: molecular interaction leading to inhibition. The pathway scheme shown is 
based on microarray data and does not include post-transcriptional regulation. (B) Changes in the 
TER of polarized HCT-8 cells exposed to either solvent (●) or indole (○) for 24 h. Data represent 
mean ± standard deviation from seven measurements at each time-point and two independent 
experiments. (C) Effect of indole pretreatment on adherence of EHEC to HCT-8 cells in the 
presence of 500 µM NE. Data represent mean ± standard deviation from three wells per 
experiment and three independent experiments. * denotes statistical significance using the 
Student’s T-test test at p < 0.05 and ** denotes significance at p < 0.005.  



118 
 

 

The trans-epithelial resistance (TER) of epithelial cells after indole exposure was 

measured to investigate the effect of indole on tight junction integrity and cell permeability. Fig. 

5.2B shows that indole increased the TER of HCT-8 cells within 4 h of exposure and by 1.6-fold 

after 24 h. Since increase in mucin production has been previously shown to attenuate pathogen 

colonization (154), we also investigated the effect of indole exposure on the colonization of 

HCT-8 cells by EHEC. Pretreatment of HCT-8 cells with 1 mM indole for 24 h decreased the 

NE-mediated EHEC colonization (26) by 1.4-fold (Fig. 5.2C). These phenotypic results are 

consistent with changes in gene expression and suggest that exposure to physiologically-relevant 

concentrations of indole strengthens intestinal epithelial cell barrier properties and increases 

resistance to pathogen colonization. 

 

5.4.3 Changes in Toll-like Receptor Signaling 

Exposure to 1 mM indole led to an increase in the expression of two TLR genes – TLR-

3 and TLR-9. TLRs respond to bacterial ligands and activate the host immune system; however, 

TLR-2, TLR-3, and TLR-9 have been reported to modulate intestinal inflammation and maintain 

homeostasis (91). More importantly, TLRs that play a significant role in responding to pathogens 

(e.g., TLR2, TLR4) were not altered in expression. Additionally, genes involved in the 

modulation of TLR signaling – TOLLIP, SIGIRR, and SOCS5 – were also induced by indole. 

Similarly, genes involved in the phosphoinositide-3-kinase (PI3K) pathway, that modulates TLR 

signaling (Fig. 5.3A) and leads to anti-inflammatory cytokine IL-10 induction (142), were also 

induced by indole. Three genes involved in PI3K signaling (PIK3CA, PIK3CB, and PIK3CD) 

were induced, as was the transcription factor AKT1 that is activated by signaling through the 

PI3K pathway. Downstream target genes of AKT1, including the cAMP response element-

binding protein (CREB) and IL-10, were also induced upon addition of indole. Thus, our data  
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Fig. 5.3. Changes in Toll-like receptor, IL-8 and IL-10 signaling. (A) Pathways containing 
differentially-expressed genes involved in tight junction formation were adapted from Pathway 
Express using KEGG classifications. Red: up-regulation; blue: down-regulation, and gray: no 
change in expression; arrow: molecular interaction leading to activation; blunt line without an 
arrowhead: molecular interaction leading to inhibition. The pathway scheme shown is based on 
microarray data and does not include post-transcriptional regulation. (B) Secretion of IL-8 in 
HCT-8 cells exposed to indole for 4 h or 24 h, in the presence or absence of 40 ng/mL TNF-α. 
Data represent mean ± standard deviation from three independent experiments. (C) Intracellular 
staining and flow cytometry of IL-10 in HCT-8 cells exposed to indole for 24 h. Two-color dot 
plots of number of PE-stained cells and forward scatter for solvent control, indole-treated and 
unstained cells are shown. Percentages in the boxed region indicate the proportion of HCT-8 
cells producing IL-10 in one representative experiment. (D) Average increase in IL-10 
expression data from three independent experiments. * denotes statistical significance using the 
Student’s T-test test at p < 0.05 and ** denotes significance at p < 0.005.  
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Fig. 5.3. Contd.  
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strongly suggest that indole modulates TLR signaling in HCT-8 intestinal epithelial cells, both 

through up-regulation of anti-inflammatory TLR, and through the PI3K-mediated down-

regulation of inflammatory TLR signaling. 

Since TLR3 and TLR9 are not present on the cell membrane but are internal (i.e., on the 

endosomal membrane), we determined if indole was internalized by HCT-8 cells. Measurement 

of extracellular indole (25) showed that indole was not significantly internalized by HCT-8 cells, 

as ~90% of the indole added (1 mM) was still detected in the culture medium after 24 h. 

 

5.4.4 Changes in inflammatory cytokine and chemokine gene expression 

Exposure to indole for 24 h coordinately altered the expression of several cytokines in 

HCT-8 intestinal epithelial cells. Genes that were increased in expression upon exposure to 1 

mM indole included the precursor to the pro-inflammatory cytokine IL-1 (pre-IL-1). In addition, 

the receptor for the pro-inflammatory cytokine IL-2, IL-4, IL-18 binding protein, IL-24, and IL-

28 were all induced; suggesting indole exposure leads to an increase in cytokine expression and 

signaling in HCT-8 intestinal epithelial cells. In addition to altering the expression of cytokines, 

indole also induced the expression of several chemokines (CCL25, CCL4, CCL16, CXCL3, 

XCL1 and CX3CL1) in HCT-8 cells.  

However, not all changes in expression were pro-inflammatory as the expression of 

receptors for anti-inflammatory cytokines (IL-10, IL-11) was also induced by indole. In addition, 

the expression of several other pro-inflammatory cytokines was decreased in HCT-8 cells upon 

exposure to indole. IL-8, an alarm cytokine that induces migration of neutrophils across the 

endothelium, basophil chemotaxis to the infection site, and enhances removal of microbes 

through neutrophil recruitment (74), was repressed (Fig. 5.3A) upon exposure to indole. CXCL5 

(or ENA-78), a chemokine that is structurally and functionally similar to IL-8 (155) and is highly 
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expressed in intestinal epithelial cells during chronic inflammation (155), was also repressed. IL-

12, which is one of the first cytokines to be released in response to detection of a pathogen 

through TLR signaling and is important in the initiation of the inflammatory response (84), was 

repressed. These changes in expression suggest that exposure to indole leads to coordinated 

changes in the expression of pro- and anti-inflammatory cytokines and chemokines. 

Changes in IL-8 expression upon 1 mM indole exposure were monitored using ELISA to 

corroborate changes observed with microarrays (Fig. 5.3B). Indole decreased basal IL-8 

production in HCT-8 cells at 4 h and 24 h by -1.9-fold and -1.8-fold respectively. Additionally, 

indole also decreased TNF-α-induced IL-8 production by -1.8-fold, which is consistent with 

microarray data on the down-regulation of IL-8 mRNA. Intracellular staining and flow 

cytometry was used to also monitor expression of the anti-inflammatory cytokine IL-10. Figures 

5.3C and 5.3D show that indole increased IL-10 expression by 1.5-fold, which together with the 

increase in IL-10 receptor mRNA expression further suggests that indole increases anti-

inflammatory signaling as well.  

  Downstream mediators of cytokine signaling (i.e., signaling kinases) such as the 

mitogen-activated protein kinase (MAPK) pathway, which is central to the inflammatory 

signaling, were differentially expressed. Specifically, the expression of dual specificity 

phosphatases (DUSPs) – Dusp1, Dusp3, Dusp10, Dusp16, Dusp18 and Dusp22 that function as 

inhibitors of MAPK signaling (156) – was increased in expression upon indole exposure. 

However, since several MAPK genes were also up-regulated, further analysis of the 

phosphorylation state of different pathway components is required to fully understand the 

changes in MAPK signaling upon indole exposure. Indole also induced the expression of genes 

in the Jak/STAT signaling pathway, which is activated by pro-inflammatory molecules such as 

IFN-γ leading to increased microbial killing and cytokine production (157). Jak-1, -2 and -3 were  
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Fig. 5.4. Modulation of NF-κB expression by indole. (A) Effect of indole on NF-κB activation 
by TNF-α in HCT-8 cells and the resultant GFP expression. (B) Quantification of NF-κB activity 
in (●) control cells, (○) cells treated with TNF -α to induce NF-κB expression, and (▼) cells 
treated with indole and TNF-α. Data shown are mean ± standard deviation from images obtained 
at four locations in three independent experiments.  
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induced along with STAT-1, -2, -3, -5 and -6 (Table 5.3). The interferon-stimulated transcription 

factor 3γ (ISGF3G), which is activated by STAT1 to regulate IFN-γ stimulated genes, was also 

induced in expression upon exposure to indole, along with SOCS, a repressor of Jak-STAT 

signaling. Therefore, in addition to inducing changes in pro- and anti-inflammatory mediators, 

exposure to indole also induced coordinated changes in the downstream signaling pathways 

utilized by these cytokines and chemokines. 

We also monitored activation of the prototypical pro-inflammatory transcription factor 

NF-κB, that has been shown to mediate the inflammatory response both in vitro and in vivo 

(158-159), using a HCT-8 GFP reporter cell line for NF-κB (148). Our data show that indole 

reduced the TNF-α-mediated increase in NF-κB activation in HCT-8 intestinal epithelial cells by 

3-fold over 18 h (Figs. 5.4A & 5.4B) and clearly indicate the ability of indole to attenuate TNF-

α-mediated inflammation in HCT-8 cells.  

 

5.4.5 Specificity of indole in attenuating NF-κB activation and promoting epithelial cell 

barrier properties 

 We investigated the effect of five indole-like molecules (Fig. 5.5) – 1H-indole-2,3-dione 

(isatin), 7-hydroxyindole (7-HI), 5-hydroxyindole (5-HI), 2-hydroxyindole (2-HI), and indole-3-

acetic acid (I3AA) – for establishing the specificity of indole in attenuating NF-κB activation 

and promoting TER. Fig. 5.6A shows that only 5-HI significantly repressed NF-κB activity in a 

manner similar to that observed with indole (Fig. 5.4), while the effectiveness of the other 

molecules varied from having no effect or marginal (7-HI, I3AA, and 2-HI) to actually 

increasing NF-κB activation (isatin). However, 5-HI did not cause a significant change in the 

TER of HCT-8 cells after 24 h (Fig. 5.6B), and among the molecules tested, only 7-HI increased 

the TER to levels comparable with indole (Fig. 5.2B). Thus, although indole-like molecules were 
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Fig. 5.5. Chemical structure of indole-like compounds used in the study. Indole, isatin, 7-
hydroxyindole (7-HI), 5-hydroxyindole (5-HI), 2-hydroxyindole (2-HI), and indole-3-acetic acid 
(I3AA).  
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Fig. 5.6. Changes in HCT-8 cell phenotypes with aromatic bicyclic molecules. (A) NF-κB 
expression in HCT-8 cells and the resultant GFP expression. Images shown are after 16 h of 
exposure to TNF-α and are representative of data from three independent experiments. (B) 
Changes in trans-epithelial resistance after exposure to indole-like molecules for 24 h. Data 
represent mean ± standard deviation from three independent experiments. ** denotes statistical 
significance using the Student’s T-test test at p < 0.005. 
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able to either attenuate NF-κB activation or increase TER at the concentrations tested, changes in 

both phenotypes were observed only with indole.  

In order to further establish that the beneficial effects of indole were not due to an 

increase in HCT-8 cell number or viability, we determined the change in HCT-8 cell density 

after exposure to indole for 24 h. Cells exposed to indole showed > 99% viability after 24 h (live 

cell density in control and indole treated cells was 3.1 x 106 ± 0.6 x 106 and 3.0 x 106 ± 0.7 x 106 

cells/ml, respectively), with a similar increase in the % of live cells as the solvent control. These 

data suggest that the beneficial effects of indole are not metabolic (i.e., due to an increase in cell 

numbers).  

  The whole-transcriptome data were substantiated with qRT-PCR where genes from 

inflammatory cytokines and signaling, and epithelial barrier function were profiled. ISGF3G was 

induced 4.1-fold in the microarrays and 5.1 ± 0.1 in qRT-PCR. Similar results were seen for 

CXCL5 (-5.2-fold in the arrays, -13.6 ± 0.6-fold in qRT-PCR), pre-IL-1 (5.6-fold in the arrays, 

5.9 ± 0.2-fold in qRT-PCR), IL-8 (-1.8-fold in the arrays, -1.4 ± 0.1-fold in qRT-PCR), cldn3 

(3.5-fold in the arrays, 4.9 ± 0.2-fold in qRT-PCR), TJP3 (5.7-fold in the arrays, 5.5 ± 0.2-fold in 

RT-PCR), and muc13 (4.4-fold in the arrays, 2.3 ± 0.2-fold in qRT-PCR). Thus, the expression 

results from whole-transcriptome analysis were in good agreement with the qRT-PCR results. 

 

5.5 DISCUSSION 

The recognition of host cell signaling molecules by pathogens through inter-kingdom 

communication and its role in pathogenesis has been recently documented (16, 26). However, 

little is known about recognition of bacterial signals by host cells. To-date, specific prokaryotic 

signals such as the P. aeruginosa quorum sensing molecules (AHLs) have been shown to be 

deleterious to host cells as they help pathogen infections. Here, we show for the first time that 
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the bacterial stationary phase signal indole is recognized by intestinal epithelial cells, and used to 

strengthen host cell-barrier properties and maintain controlled inflammation. This is supported 

by multiple lines of evidence showing that indole (i) increases the expression of genes involved 

in formation of tight junctions and actin cytoskeleton, as well as increases the trans-epithelial 

resistance of polarized HCT-8 intestinal epithelial cells, (ii) attenuates IL-8 secretion and TNF-α-

mediated NF-κB activation in HCT-8 cells, while increasing IL-10 secretion, (iii) increases 

resistance of HCT-8 cells to NE-mediated increase in EHEC colonization, and (iv) reduces 

expression of pro-inflammatory cytokines and chemokines while inducing expression of anti-

inflammatory cytokines. Therefore, we propose that indole can be a beneficial inter-kingdom 

signal that helps improve intestinal epithelial cell function, maintain controlled inflammation, 

and increase resistance to pathogen colonization.  

Several studies have shown that cell-free supernatants of probiotic bacterial cultures 

increase host epithelial cell barrier properties and resistance to pathogen colonization. However, 

the identity of specific molecule(s) that contribute to this protective effect and the mechanisms 

involved are not known, as culture supernatants are complex mixtures comprising of media 

components, metabolites, and signals secreted by different bacterial species. The data presented 

here show that indole elicits a response similar to probiotic strains by strengthening host cell 

barrier properties. Since indole is produced by several commensal bacteria (e.g., E. coli, 

Bacteroides ovatus, Clostridium bifermentans) that colonize the human GI tract (160), it is 

intriguing to speculate that the beneficial effects of some probiotic strains are mediated, in part, 

through indole.  

While 4,102 genes (or 8% of the transcriptome) were differentially regulated by indole, 

it is worth noting that only 83 genes were regulated by 4.0-fold or higher. A moderate response 

to indole is to be expected since especially indole is abundant in the human GI tract (~ 100 µM 
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in human feces) (44), and is less likely to perturb the epithelial cell transcriptome like a 

pathogen. In this regard, our data is similar to that reported by Hasegawa et al. (156) who 

showed that two different species of commensal bacteria, Streptococcus gordonii and 

Fusobacterium nucleatum, perturbed the gingival epithelial cell transcriptome to a lesser extent 

than the pathogens Poryphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, 

which elicited more widespread organism-specific changes in the transcriptome. Striking 

similarities are also evident between our data and changes in gene expression elicited by S. 

gordonii and F. nucleatum in gingival epithelial cells. For example, gene families that were 

differentially expressed in intestinal epithelial cells upon exposure to indole – tight junction 

proteins, actin cytoskeleton, cell cycle regulators, phosphatidylinositol signaling, MAP kinase 

signaling, TLR signaling, and Wnt signaling – were all altered in gingival epithelial cells as well 

when exposed to commensal bacteria.   

In addition to the similarities with commensal response in gingival epithelial cells, 

significant differences are also observed between the indole response in intestinal epithelial cells 

and pathogen-mediated changes in expression in gingival epithelial cells. One such example is 

the activation of caspase-1 by pathogenic bacteria (e.g. lipopolysaccharide, Salmonella 

typhimurium type III secretion), which leads to increased secretion of pro-inflammatory 

cytokines such as IL-1β and the induction of apoptosis. Hasegawa et al. (156) reported that 

commensal bacteria did not activate caspase-1 thus indicating physiologic balance between the 

host and the organism. Similarly, no caspase-1 gene expression was observed in HCT-8 

intestinal epithelial cells exposed to indole, which also suggests favorable recognition of indole 

by intestinal epithelial cells. Furthermore, the lack of activation of TLR signaling by indole, 

similar to that seen with oral commensal bacteria (156) and opposite to that of oral pathogens 
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(159), also strongly suggests indole is recognized as a beneficial signal and not detected as a 

pathogenic signal by intestinal epithelial cells. 

The attenuation of basal IL-8 secretion as well as the decrease in TNF-α-mediated 

increase in IL-8 secretion indicates that indole also exerts anti-inflammatory effects in intestinal 

epithelial cells. IL-8 is an alarm chemokine that is highly induced by pathogens in a wide variety 

of cells including human human colon adenocarcinoma cells. For example, a 4- to 30-fold 

increase in IL-8 and ENA-78 (CXCL5) has been observed in HT-29 and Caco-2 intestinal 

epithelial cells upon exposure to Salmonella dublin (161). However in our study, exposure to 

indole decreased the expression of ENA-78 and IL-8, which suggests that indole is not 

recognized as a pathogen signal by intestinal epithelial cells, and strongly proposes an anti-

inflammatory role for indole in GI tract inflammation.  

It has been proposed that bacteria (or molecules secreted by them) induce the expression 

of pro- and anti-inflammatory cytokines (162), which function coordinately (i.e., as a network) 

to regulate the host response to commensal bacteria (162). Disruption of this regulated cytokine 

response leads to sustained inflammation, as has been shown with IL-10 KO mice developing 

chronic enterocolitis even in the absence of pathogen colonization (82). In addition, this 

heightened level of alertness also enables host cells to respond rapidly to the presence of 

pathogens. Our data showing that indole upregulates the expression of both pro- and anti-

inflammatory cytokines is in good agreement with this hypothesis, and suggests that indole-

mediated communication between commensal bacteria and host cells controls the balance 

between pro- and inflammatory cytokine signaling in intestinal epithelial cells. 

The intestinal epithelial cell inflammatory response to pathogens is orchestrated, in part, 

through activation of NF-κB (158-159), which is well established. Our data showing that indole 

reduced TNF-α-mediated NF-κB activation in intestinal epithelial cells supports the anti-
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inflammatory role for indole. Since commensal bacteria reduce the S. typhimurium-induced NF-

κB activity (158) and inflammation in mice, it is intriguing to speculate that indole could be a 

signal through which probiotics reduce intestinal inflammation. 

The effect of indole on HCT-8 cells also extends beyond alterations in gene expression 

to changes in prototypical intestinal epithelial cell functions such as barrier integrity. First, the 

increase in tight junction protein expression and TER is significant, as an increase in tight 

junction resistance leads to decreased paracellular permeability and reduces the ability of 

pathogens to cross the epithelial cell barrier. Second, the induction of 50 cytoskeleton genes 

suggests increased resistance to pathogen colonization since pathogens like P. aeruginosa, 

Shigella flexneri, Listeria monocytogenes and enteropathogenic E. coli disrupt epithelial cell 

morphology during infection by interfering with the actin cytoskeleton (163-165). Third, the 

increase in the expression of several mucin genes is also likely to decrease pathogen 

colonization, as Kim et al. (154) recently reported that lactobacilli increased the production of 

mucin 2 (muc2) to inhibit EHEC attachment to epithelial cells in vitro. These three lines of 

evidence strongly support the hypothesis that indole elicits beneficial changes in intestinal 

epithelial cells.  

The alteration of TER and the regulation of inflammation by indole has significant 

implications in the treatment of chronic intestinal inflammatory diseases such as Crohn’s 

disease, which is an auto-immune disease characterized by sustained inflammation and 

deterioration of epithelial cell barrier function. Currently no drug-based or surgical cure for this 

disease exists. Based on the data showing indole elicits anti-inflammatory changes in expression 

and increases epithelial cell barrier properties, we propose that indole could represent a novel, 

yet safe (as it is naturally present in the human GI tract), modality for regulating intestinal 

inflammation and promoting epithelial cell function.  
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In summary, our in vitro studies indicate the importance of indole in favorable inter-

kingdom signaling interactions between the intestinal epithelial cells and commensal bacteria. 

Our results show coordinated control of inflammation in the presence of indole through the 

repression of several inflammatory cytokines and coordinated regulation of signaling pathways, 

along with fortification of cell structure through up-regulation of actin cytoskeleton and tight 

junction proteins. The recognition of indole as an inter-kingdom signal by human cells is also 

consistent with the recognition of the bacterial product indole-3-acetic acid, and provides an 

initial basis for understanding symbiotic inter-kingdom interactions at the molecular level, as 

well as insights into some GI-tract diseases and pathogenic infections.  
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CHAPTER VI 

A SECRETED FACTOR FROM HUMAN INTESTINAL EPITHELIAL CELLS 

INCREASES ENTEROHEMORRHAGIC ESCHERICHIA COLI VIRULENCE 

 

6.1 OVERVIEW 

EHEC is a food-borne pathogen that colonizes human GI tract and leads to infection. To 

understand the process of colonization and to decipher if any factors secreted by intestinal 

epithelial cells help EHEC during the infection process, we studied expression of EHEC 

virulence gene expression when exposed to intestinal epithelial cell conditioned medium. In our 

study, we observed that exposure to epithelial cell conditioned medium for 1 h and 3 h increases 

expression of 32 out of 41 EHEC LEE virulence genes. In addition, expression of the shiga toxin 

1 (Stx1) gene is up-regulated at 1 h of exposure. Also, 17 genes encoded by prophage 933W, 

including those for Stx2, are also upregulated at both time-points. The increase in 933W 

prophage expression is mirrored by a 2.7-fold increase in intracellular Stx2 phage titers. 

Consistent with the increase in virulence gene expression, we observed a 5-fold increase in 

EHEC attachment to epithelial cells when exposed to conditioned medium, suggesting that 

EHEC utilizes host cell molecules to increase virulence and infectivity. The molecule(s) 

responsible for increased EHEC virulence is heat-sensitive as heating the conditioned medium to 

95oC abolishes the increase in attachment to epithelial cells. A similar decrease was observed 

when the conditioned medium was treated with proteinase-K to degrade the proteins. The 

secreted molecule(s) was found to be larger than 3 kDa and strongly suggests that the HCT-8 

secreted molecule that increases EHEC virulence and colonization is a protein-based molecule.  
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6.2 INTRODUCTION 

The GI tract is colonized by approximately 1014 commensal bacteria consisting of 

hundreds of bacterial species, including the genus Escherichia (28). The introduction of 

pathogenic bacteria such as EHEC into the human GI tract results in colonization of host cells 

and leads to the onset of bloody diarrhea and hemolytic uremic syndrome. EHEC infections 

progress through a three-step mechanism, the first of which involves adhesion of bacteria to host 

cells and the formation of micro-colonies (12). EHEC infections pose a serious clinical problem 

as they are often associated with complications and permanent disabilities, including 

neurological defects, hypertension, and renal insufficiency (166). Understanding the mechanisms 

underlying EHEC pathogenicity could lead to better approaches for attenuating the deleterious 

consequences associated with GI tract infections. 

EHEC virulence is significantly affected by host molecules present in the GI tract 

microenvironment. Sperandio et al. (16) initially demonstrated that the eukaryotic hormone 

epinephrine restores the T3SS of EHEC in a EHEC luxS mutant, and suggested that some 

signaling occurs between epithelial cells and EHEC. Prior work from our lab has shown that 

phenotypes that affect EHEC infection – motility, chemotaxis, biofilm formation, gene 

expression, and attachment to epithelial cells – are increased in EHEC exposed to epi and NE 

(26). Similar observations have been made by Vlisidou et al. (98) who showed that NE increases 

adhesion of EHEC to cecal mucosa, colonic mucosa, and the ileum. These studies suggest that 

EHEC virulence and infectivity are enhanced by neuroendocrine hormones. 

Several reports discuss effects of host factors like TNF-α on virulence of other 

pathogens. Cho et al. (167) studied the effects of recombinant guinea pig TNF-α (rgpTNF-α) on 

alveolar and peritoneal guinea pig macrophages infected with Mycobacterium tuberculosis. They 

established that TNF-α plays a protective role in host resistance against M. tuberculosis 
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infection. However, Scheidegger et al. (168) report a contradicting observation. They observed 

that Toxoplasma gondii tachyzoites infected and proliferated in rat brain slices; and addition of 

TNF-α significantly increases proliferation of the parasite, while addition of IFN-γ is detrimental 

to growth of both the parasite and the host tissue. 

Several studies have suggested that presence of host cells enhance pathogen gene 

expression and virulence. Jandu et al. (169) investigated changes in the EHEC transcriptome 

when grown in presence of HEp-2 cells. They reported that, of the LEE virulence genes, only 

escRSTU are up-regulated in the presence of host epithelial cells. The authors also identified a 

new EHEC virulence factor, gene Z1787 in their study. However, since HEp-2 cells are not of 

intestinal origin and EHEC colonizes only the large intestine in humans, we hypothesized that 

epithelial cells of intestinal origin will be physiologically more relevant, and studied EHEC 

virulence and infection of HCT-8 cells, which are derived from enterocytes at the junction of the 

large and small bowel.  

McCormick and co-workers (170) identified a host factor, hepoxilin A3 (HXA3), which 

recruits polymorphonuclear leukocytes to the site of infection. They discovered that a T3SS 

protein, SipA, of S. typhimurium promotes a lipid signal transduction cascade that leads to 

production of HXA3 (171), and that lung epithelial cells produce HXA3 in response to P. 

aeruginosa infection. Similarly, Ju et al. (172) discovered a novel 40-kDa protein, named LPS 

recognition protein (LRP), purified from the plasma of larvae of the large beetle, Holotrichia 

diomphalia. They established that this protein helps in the clearance of E. coli in vivo but not S. 

aureus or Candida albicans. Sequence analysis revealed that LRP contains six repeats of an 

EGF-like domain that causes selective agglutination of E. coli.   

In this study, our goal was to establish whether cell secreted factors (e.g. proteins, 

metabolites, etc.) can act as an inter-kingdom signaling molecules and activate the virulence 
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machinery of EHEC in a manner similar to NE (since monolayers of HCT-8 cells were grown in 

vitro in Petri-dishes, we did not expect NE to be secreted in the conditioned medium). We 

hypothesized that EHEC infection is influenced by different eukaryotic molecules secreted by 

intestinal epithelial cells during growth and maintenance in the GI tract. The molecular basis of 

the alterations in EHEC physiology upon exposure to conditioned medium was investigated 

using DNA microarrays. EHEC colonization on exposure to fresh and conditioned media was 

also studied, along with changes in Stx2 production. Our results suggest an increase in EHEC 

virulence and colonization triggered by eukaryotic protein-based secretion molecules. Our future 

work includes identification of this secreted eukaryotic molecule(s) that increases EHEC 

pathogenesis, which can lead to novel strategies to counter EHEC infections. 

 

6.3 MATERIALS AND METHODS 

 

6.3.1 Growth and maintenance of eukaryotic cells and bacteria 

  The human colon-cancer cell line HCT-8 (ATCC, Manassas, VA), derived from 

enterocytes at the junction of the large and small bowel, was maintained in RPMI (Roswell Park 

Memorial Institute) 1640 medium with 10% horse serum, 1 mM sodium pyruvate, 10 mM 

HEPES, 100 U/ml penicillin and 100 µg/ml streptomycin, at 37°C in 5% CO2, according to 

standard ATCC protocols (henceforth referred to as RPMI medium).  

  Escherichia coli O157:H7 EDL933 (EHEC, ATCC 43895) was purchased from ATCC 

(Manassas, VA) and unless stated, was grown and maintained in LB medium at 37oC. 

 

6.3.2 Collection of fresh and conditioned medium 

   RPMI medium without antibiotics and with heat-inactivated (65oC, 1 h) horse serum was 
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used to prepare fresh and conditioned medium. Low-passage-number HCT-8 cells were cultured 

in 10 cm diameter Petri-dishes until ~ 80% confluence in normal RPMI medium. The cells were 

then washed twice with sterile PBS (9 g/l sodium chloride, 0.795 g/l sodium phosphate dibasic, 

and 0.144 g/l potassium phosphate monobasic) to remove traces of antibiotic containing medium 

and antibiotic-free RPMI medium with heat inactivated horse serum was added to the Petri-dish. 

An empty Petri-dish was similarly washed twice with PBS and antibiotic-free RPMI was added 

to it. The Petri-dishes were then incubated at 37°C in 5% CO2 for 24 h. Conditioned medium 

was thus collected from the HCT-8 cells in Petri-dishes and stored at 4oC until further use. 

Similarly, fresh medium was collected from Petri-dishes without HCT-8 cells and stored.  

 

6.3.3 Proteinase and heat inactivation of proteins  

  To degrade proteins present in fresh and conditioned media, 200 µg/ml proteinase K 

(Sigma-Aldrich, St. Louis, MO), a broad-spectrum serine protease, was added and the media 

were incubated for 1 h at 37oC. Proteinase K activity was then neutralized by adding 100 µg/ml 

Pefabloc (Sigma-Aldrich), which is a serine protease inhibitor, and incubating further at 37oC for 

16 h. The treated media were stored at 4oC, until use. 

  Proteins from fresh and conditioned media were also heat inactivated by incubating at 

95oC for 15 minutes. The heat denatured media were then cooled to room temperature and stored 

at 4oC, until use. 

 

6.3.4 Fractionation of media through centrifugal filters 

  Fractionation of fresh and conditioned media was achieved using Amicon Ultra-4 

centrifugal filter devices (Millipore, Billerica, MA) with a molecular weight cut-off of 3 kDa. 

Four ml fresh and conditioned media were loaded onto the top chamber of the devices and the 
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assembly was centrifuged at 4000 g for 30 minutes at 25oC. Fractions containing small 

molecules (< 3 kDa) were collected at the bottom. Serum-free RPMI was added to the resulting 

top fraction to make a final volume of 3 ml. The media were stored at 4oC until use. 

 

6.3.5 Fractionation of media using ammonium sulfate precipitation 

 Precipitation of proteins from the media was achieved through sequential addition of 

saturated ammonium sulfate solution (77% in water). To 1 ml fresh and conditioned media, 

ammonium sulfate was added to a final concentration of 25% and the solutions were shaken at 

room temperature for 1 h. The solutions were then centrifuged at 4000 g for 10 minutes to collect 

the precipitated proteins in a pellet. The supernatants were transferred to new tubes and 

additional ammonium sulfate was added to increase the final concentration to 30% and the above 

procedure was repeated. The precipitated proteins were resuspended in serum-free RPMI and 

were desalted using Amicon Ultra-4 centrifugal filters. Four protein fractions were collected 

using 25%, 30%, 40%, and 67% ammonium sulfate.  

 

6.3.6 RNA isolation and DNA microarrays 

Overnight cultures of EHEC were diluted in LB medium to a turbidity of 0.1 at 600 nm. 

The cells were allowed to grow to a turbidity of 1.0 at 600 nm at 37°C and the EHEC cells were 

then resuspended in either fresh or conditioned medium. The cultures were then allowed to grow 

for 1 h or 3 h before cell pellets were collected by centrifugation and stored at -80°C.  

Total RNA was isolated from the cell pellets (173) and RNA quality was assessed using 

gel electrophoresis. Escherichia coli Genome 2.0 arrays (Affymetrix, Santa Clara, CA, USA) 

containing 10,208 probe sets for all 20,366 genes present in four strains of E. coli, including 

EHEC, were used to profile changes in gene expression using RNA samples for each treatment. 
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Hybridization was performed for 16 h and the total cell intensity was scaled automatically in the 

software to an average value of 500. The data were inspected for quality and analyzed according 

to the procedures described by the manufacturer (Affymetrix Data Analysis Fundamentals), 

which include using premixed polyadenylated transcripts of the Bacillus subtilis genes (lys, phe, 

thr, and dap) at different concentrations. Genes were identified as differentially expressed if the 

expression ratio (between conditioned and fresh medium cells at different time-points) was 

greater than 1.5 (based on the standard deviation between values measuring relative changes in 

expression) and if the change in the p-value was less than 0.05. The differentially expressed 

genes were annotated using gene ontology definitions available in the Affymetrix NetAffx 

Analysis Center (http://www.affymetrix.com/analysis/index.affx). The expression data will be 

deposited in the National Center for Biotechnology Information Gene Expression Omnibus 

(GEO; http://www.ncbi.nlm.nih.gov/geo/).  

A total of four microarrays were used in this study at the two time points for samples in 

fresh and conditioned media. The genes were sorted into various functional categories, and the 

role of conditioned medium in regulation of these genes was analyzed.  

 

6.3.7 In vitro colonization assays  

   Adhesion of EHEC to HCT-8 cells was performed using a previously described protocol 

(26). Low-passage-number HCT-8 cells were cultured in standard 24-well tissue culture plates 

and grown at 37°C in 5% CO2 until ~ 80% confluence. Next, HCT-8 monolayers were washed 

two times with PBS to remove traces of antibiotics, and different media to be tested were added 

to individual wells. Approximately 107 cells of a freshly-grown EHEC culture (OD of ~ 0.8 at 

600 nm) were added to each well and incubated for 3 h at 37°C and 5% CO2. Loosely attached 

cells were removed by washing the wells two times with PBS, and the HCT-8 cells were lysed in 
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the wells using 0.2% Triton X-100 in PBS. The cell suspension in each well was vigorously 

vortexed, and serial dilutions of the bacteria were spread on LB plates. Colonies were counted 

after 24 h incubation at 37°C. 

 

6.3.8 Intracellular Stx2 plaque assay 

 Intracellular Stx2 plaque assay was adapted from a previously published study (174). 

Briefly, EHEC and E. coli DH5α were cultured overnight in LB medium. Next day, EHEC was 

re-inoculated in LB medium at starting turbidity of 0.1 at 600 nm and grown at 37oC till it 

reached a turbidity of 1.0. The cells were then collected through centrifugation and were 

resuspended in fresh and conditioned media. The cultures were further incubated at 37oC for 

additional 3 h. EHEC cells were again collected and were lysed using chloroform to collect the 

intracellular phage. At the same time, E. coli DH5α was freshly inoculated and grown till 

turbidity of 1.0. The EHEC phages were diluted 10-fold in 4-6 serial dilutions in 1 ml E. coli 

DH5α. One ml of the above dilutions was added to 5 ml of molten LB-top agar (8 g/l agar, 0.1% 

glucose, 5 mM CaCl2) and poured over LB-bottom plates (10 g/l agar, 0.1% glucose, 5 mM 

CaCl2). The plates were incubated at 37oC for 24 h. The next day, the resulting Stx2 plaques 

were counted. 

 

6.3.9 qRT-PCR 

DNA microarray data was corroborated using qRT-PCR (26). The primers were 

designed using PrimerQuest online software (Table 6.1). qRT-PCR was performed using iScript 

one-step RT- PCR kit with SYBR green (Bio-Rad Laboratories, CA) on a MyiQ single-color 

real-time PCR detection system (Bio-Rad Laboratories). The threshold cycles, as calculated by 
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Table 6.1. Sequences of primers used for qRT-PCR 
 

 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

escU CAAGCTCTTGTCGTTGTTGCCT TCCTTGGCTTCTCGTTTCACCT 

eae GCTGGCCCTTGGTTTGATCA GCGGAGATGACTTCAGCACTT 

fepE CGCAATTGTCGCATTGAGCGAA ACTCTTTCACCACCAACGCAGA 

rrsG TATTGCACAATGGGCGCAAG ACTTAACAAACCGCCTGCGT 
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Fig. 6.1. Number of genes differentially regulated by conditioned medium. EHEC cells were 
exposed to fresh and conditioned media for either 1 h or 3 h and the RNA was isolated. The 
number of genes differentially regulated in presence of conditioned medium is shown by the 
bars.  
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the MyiQ optical system software (Bio-Rad Laboratories), were used to determine the relative 

changes between samples. The experiments were run in triplicate in 20 µl reactions and 50 ng of 

total RNA was used for each reaction, with the final forward and reverse primer concentrations 

at 0.15 µM each. After amplification, template specificity was ensured through melting curve 

analysis. rrsG was used as the housekeeping gene for normalizing the data. 

 

6.4 RESULTS 

 

6.4.1 Gene expression profiling in EHEC exposed to conditioned medium 

Widespread changes in EHEC transcriptome were observed on exposure to conditioned 

medium, both at 1 h and 3 h. Approximately 1400 genes were up-regulated by conditioned 

medium at both 1 h and 3 h, while about 200 genes were down-regulated at both time-points. In 

addition, about 100 genes were up-regulated at 1 h and down-regulated at 3 h, or vice-versa (Fig. 

6.1). We mainly focused on the 1400 genes that were up-regulated at both time-points in our 

discussion since most of the virulence related genes are in this category. Examples are LEE, 

flagella, prophage 933W, iron-related, and biofilm-related genes (Fig. 6.2). Table 6.2 lists some 

of the important genes found to be differentially regulated in our study. 

The LEE Pathogenicity Island consists of 41 genes distributed in five operons (LEE1 

through LEE5) and is a primary cause of EHEC virulence. In our study, 32 of these 41 genes 

(78%) were up-regulated by conditioned medium. The eae gene, which encodes the adhesin 

intimin (166), was up-regulated 1.7-fold at 3 h. tir encodes a receptor for intimin that is secreted 

into host cells (166), and was induced by 1.5-fold at 3 h. espADF genes encode proteins that are 

involved in the type III secretion system of EHEC, of which, EspF is encoded at the far end of 

LEE. All these proteins were up-regulated significantly at both time-points. The highest induced  
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Fig. 6.2. Virulence-related genes regulated by conditioned medium. The bar graph represents 
important classes of virulence-related genes that were regulated by conditioned medium. Genes 
were classified based on molecular, cellular, or biological function. 78% of LEE genes, 67% of 
933W genes, and 75% of colanic acid biosynthesis genes were differentially regulated. 
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Table 6.2. Important genes up-regulated in the presence of conditioned medium. 
*Statistically significant change in expression at p-value < 0.05 
 
 

Probe Set ID 
Gene 

Symbol 

1h Fold 

Change 

3h Fold 

Change 
Description 

   
Virulence/LEE Genes 

  
1759158_s_at stx1B 2.1* -1.1 Hemolysis 

1768192_s_at stx1A 1.7* -1.1 Negative regulation of protein biosynthesis 

1760207_s_at tir 1.2 1.5* Cell adhesion 

1759472_s_at sepQ 1.2 1.7* 
 

1764730_s_at sepL 1.7* 1.7* 
 

1768968_s_at mviN 1.3 1.5* Pathogenesis 

1761587_s_at espF 1.5* 1.5* 
 

1761936_s_at espD 1.5* 1.7* Pathogenesis 

1769270_s_at espA 1.5* 1.7* 
 

1767609_s_at escU 1.9* 2.8* Transport 

1764491_s_at escT 2.3* 2.5* Protein targeting 

1763133_s_at escS 2.1* 2.5* Transport 

1762528_s_at escR 2.3* 2.3* 
Type III protein (virulence-related) secretor 

activity 

1761477_s_at escF 1.7* 1.7* Pathogenesis 

1767897_s_at escD 1.3 1.5* 
 

1767809_s_at escC 1.4 1.5* Transport 

1760011_s_at eaeH 1.6* 2.3* Attaching and effacing protein 

1764248_s_at eaeH 1.3 1.7* Cell adhesion 

1766942_s_at eae 1.3 1.7* Cell adhesion 

1763952_s_at ECs4480 2.0* 1.4 Pathogenesis 

1759147_at ECs3718 1.3 1.7* Pathogenesis 

1765580_s_at Z4196 1.6* 1.9* 
Type III protein (virulence-related) secretor 

activity 

1766891_s_at Z4190 1.5* 2.1* 
Type III protein (virulence-related) secretor 

activity 

1763006_s_at Z4189 1.5* 2.5* 
Type III protein (virulence-related) secretor 

activity 
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Table 6.2. Contd. 
   

     
Probe Set ID 

Gene 

Symbol 

1h Fold 

Change 

3h Fold 

Change 
Description 

     
1769199_s_at Z4180 1.0 1.5* 

Type III protein (virulence-related) secretor 

activity 

   
933W Prophage Genes 

  
1765575_s_at Z1459 1.4 1.9* Carbohydrate metabolism 

1766027_s_at c1433 1.3 1.9* 
Lysis protein S homolog from lambdoid 

prophage DLP12 

1763115_s_at c1555 1.5* 1.1 
Putative DNA N-6-adenine-methyltransferase 

of bacteriophage 

1768861_s_at Z1458 1.5* 1.9* Regulation of transcription 

1763468_s_at Z1495 1.9* 1.1 
 

1759811_s_at Z1494 1.7* 1.1 
 

1762616_s_at Z1493 1.7* 1.3 
 

1760240_s_at Z1490 1.6* 1.2 
 

1764484_s_at Z1487 1.6* 1.4 
 

1760789_s_at Z1486 1.6* 1.4 
 

1767326_s_at Z1482 1.6* 1.3 
 

1767349_s_at Z1480 1.6* 1.4 
 

1765250_s_at Z1478 1.5* 1.1 
 

1762000_s_at Z1476 1.5* 1.7* 
 

1760248_s_at Z1467 1.5* 1.7* 
 

1761222_s_at Z1469 1.4 1.9* 
 

1767360_s_at Z1468 1.3 1.5* 
 

     
Fimbrial Genes 

   
1766324_s_at sfmH 1.6* 1.6* Fimbrial assembly protein 

1763064_s_at sfmD 1.7* 1.1 Putative outer membrane protein 

1766811_s_at sfmC 1.9* 1.2 Putative chaperone 

1767430_s_at fliP 1.5* 1.7* Flagellar biosynthetic protein FliP precursor 

1765241_s_at fliN 1.6* 1.2 Flagellar motor switch protein FliN 
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Table 6.2. Contd.    

     
Probe Set ID 

Gene 

Symbol 

1h Fold 

Change 

3h Fold 

Change 
Description 

     1763750_s_at fliF 1.3 1.9* Flagellar M-ring protein 

1767873_s_at flhA 1.5* 1.3 Flagellar biosynthesis protein FlhA 

1761716_s_at fimZ 1.7* 1.4 

Fimbiral protein Z, putative transcriptional 

regulator of fimbrial expression (LuxR/UhpA 

family) 

1762546_s_at fimC 1.6* 1.3 Chaperone protein FimC precursor 

1767098_s_at fimA 1.1 1.7* Major type 1 subunit fimbrin (pilin) 

1767422_s_at ppdD 1.6* 1.5* 
Prepilin peptidase dependent protein D 

precursor 

1763745_s_at ycbV 1.5* 1.5* Putative fimbrial-like protein 

   
Multidrug Resistance 

  
1759593_s_at emrK 1.7* 1.6* Multidrug resistance protein K 

1761644_s_at emrD 1.3 1.6* Multidrug resistance protein D 

1762168_s_at emrB 1.1 1.9* 
Multidrug resistance; probably membrane 

translocase 

   
Iron-related Genes 

  
1765511_s_at fixX 1.4 1.9* Ferredoxin-like protein 

1762110_s_at fixC 1.5* 1.7* FixC protein 

1760251_s_at fixB 1.2 1.7* 
Probable flavoprotein subunit, carnitine 

metabolism 

1762922_s_at fhuD 1.2 1.9* 
Ferrichrome-binding periplasmic protein 

precursor 

1761740_s_at fhuC 1.1 1.6* 
Ferrichrome transport ATP-binding protein 

fhuc 

1766821_s_at fhuB 1.2 1.9* 
Ferrichrome transport system permease 

protein FhuB 

1760499_s_at fepG 1.1 1.6* Ferric enterobactin transport protein 
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Table 6.2. Contd.    

     
Probe Set ID 

Gene 

Symbol 

1h Fold 

Change 

3h Fold 

Change 
Description 

     1768501_s_at fepE 1.9* 2.0* Ferric enterobactin (enterochelin) transport 

1768432_s_at fepB 1.6* 1.1 
Ferric enterobactin-binding periplasmic 

protein precursor 

1769044_s_at chuY 2.1* 1.2 
 

1765359_s_at chuW 3.5* 1.7* 
 

1760730_s_at chuU 2.6* 1.5* 
Putative permease of iron compound ABC 

transport system 

1768770_s_at chuT 2.6* 1.2 
 

1763313_s_at chuS 2.8* 1.9* Putative heme/hemoglobin transport protein 

1762260_s_at chuA 2.1* 1.7* 
 

     

Colanic Acid Genes   

1761929_s_at wcaJ 1.6 2.6 Putative colanic biosynthesis UDP-glucose 
lipid carrier transferase 

1759709_s_at wcaI 1.1 2.8 Putative colanic acid biosynthesis glycosyl 
transferase wcaI 

1759993_s_at wcaH 1.2 3.0 GDP-mannose mannosyl hydrolase 
1765792_s_at wcaG 1.7 2.8 GDP-4-keto-6-L-galactose reductase 

1766922_s_at wcaF 1.5 3.0 Putative colanic acid biosynthesis 
acetyltransferase wcaF 

1759224_s_at wcaE 1.1 2.3 Putative colanic acid biosynthesis glycosyl 
transferase wcaE 

1763157_s_at wcaD 1.4 1.5 Putative colanic acid polymerase 

1763999_s_at wcaC 1.0 2.0 Putative colanic acid biosynthesis glycosyl 
transferase wcaC 

1768788_s_at wcaA 1.1 1.5 Putative colanic acid biosynthesis glycosyl 
transferase wcaA 
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genes in LEE belonged to the esc operon, which also encodes type III secretion system in EHEC, 

and escCDFRSTU were all up-regulated at both time-points (Table 6.2). 

Shiga toxin 1 (Stx1) of EHEC is responsible for cleavage of host ribosomal RNA, thus 

disrupting protein synthesis and killing infected cells (8). In our study, conditioned medium 

induced stx1A and stx1B gene expression at 1 h; suggesting an increase in EHEC pathogenicity. 

EHEC also contains Stx2, which is encoded by the 933W prophage. While we did not 

see any change in stx2A and stx2B genes at any of the time-points, 17 out of 27 (63%) 933W 

prophage genes were up-regulated at both time-points (Table 6.2). Thus, conditioned medium 

also caused a direct or indirect increase in toxin production by EHEC.  

Several genes associated with fimbriae and flagella were up-regulated by conditioned 

medium (Table 6.2), and induction of these genes is associated with increase in virulence (137). 

Colanic acid is a capsular exopolysaccharide that is involved in colonization (134), and we 

observed an increase in nine out of 12 genes (75%) of the wca operon (Table 6.2), which is 

involved in colanic acid biosynthesis, at both time-points. Increase in motility and biofilm 

formation of EHEC is directly related to increased virulence, and demonstrates the consistency 

in our data.    

Iron has been reported to increase E. coli virulence through increased production of 

cytotoxins and leukotoxins (138), and in our study, several of these genes were up-regulated 

(Table 6.2). Together, the transcriptome data strongly suggest that EHEC is able to recognize 

some epithelial cell secreted factor in the conditioned medium, and up-regulate its virulence 

machinery. 
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Fig. 6.3. EHEC virulence assays. (A) EHEC cells were colonized on HCT-8 cells in presence of 
fresh and conditioned media, and (B) formation of Stx2 plaques in fresh and conditioned media. 
Data represent mean ± standard deviation from three independent experiments. ** denotes 
statistical significance using the Student’s T-test test at p < 0.005. 

 

  

(A) (B) 
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6.4.2 EHEC virulence assays 

To determine the effect of epithelial cell secreted molecules on EHEC, colonization 

assay was performed with fresh and conditioned media. Conditioned medium increased EHEC 

attachment by 4.9-fold over fresh medium controls (Fig. 6.3A), suggesting recognition of some 

epithelial cell secreted product by EHEC through inter-kingdom signaling.  

Since we observed an increase in expression of Stx2 genes through microarrays, we 

confirmed these observations with a phenotypic assay for Stx2 production. In the presence of 

conditioned medium, the intracellular titer of Stx2 phage increased by 2.7-fold (Fig. 6.3B), 

suggesting an increase in EHEC virulence. Thus, genotypic data were corroborated with 

phenotypic assays.  

 

6.4.3 Identification of HCT-8 secreted molecule 

The molecule(s) responsible for increased EHEC virulence are heat-sensitive as heating 

the conditioned medium to 95oC abolished the increase in virulence (Fig. 6.4A). When the 

attachment assay was repeated with proteinase K-treated media, the ability of the conditioned 

medium to increase EHEC attachment to HCT-8 cells was lost (Fig. 6.4B). We concluded that a 

protein-based secreted molecule is responsible for the increase in EHEC colonization. In order to 

determine if a serum component contributes to the increase in colonization, the attachment 

experiment was repeated using conditioned medium from serum-free and 1% serum-containing 

media. However, exposure to these media did not lead to enhanced EHEC colonization (Figs. 

6.4C and 6.4D), suggesting the importance of serum components in generation of the active 

molecule. The media were also fractionated using a commercially available centrifugal filter to 

further characterize the active protein-based molecule. The fraction that contained small 

molecules (< 3kDa) showed no increase in EHEC colonization (data not shown), while the 
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fraction containing large molecules (> 3 kDa) showed a 1.9-fold increase (Fig. 6.4E), suggesting 

that the active molecule is protein-based, and not an organic molecule or a small peptide. 

However, further fractionation using filters with different molecular weight cut-offs was not 

successful as high abundance proteins in horse serum (e.g., albumin which accounts for ~ 55% 

of serum (175)) clogged the membrane and prevented fractionation. 

 As an alternative to centrifugal filtration, we also used ammonium sulfate precipitation 

to fractionate the conditioned medium. However, none of the four fractions of conditioned 

medium increased EHEC colonization. We attributed this loss of activity to possible changes in 

protein structure during precipitation. Thus, we were unable to simplify the conditioned medium 

to help us identify the unknown active molecule(s). 

 

6.4.4 qRT-PCR 

  The whole-transcriptome data were substantiated with qRT-PCR where genes from LEE 

Pathogenicity Island and iron uptake were profiled. escU was induced 2.8-fold in the 

microarrays and 3.2 ± 0.1 in qRT-PCR. Similar results were seen for eae (1.7-fold in the arrays, 

3.7 ± 0.1-fold in qRT-PCR), and fepE (2-fold in the arrays, 2.5 ± 0.1-fold in qRT-PCR). Thus, 

the expression results from whole-transcriptome analysis were in good agreement with the qRT-

PCR results. 

 

6.5 DISCUSSION 

 It is becoming increasingly evident that cell-cell signaling inside the GI tract plays a key 

role in commensal survival, pathogen colonization, and host defense. Inter-kingdom signaling 

includes recognition of eukaryotic signaling molecules by commensal bacteria and pathogens, as 

well as prokaryotic signaling molecule recognition by host cells. Our lab has previously 
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Fig. 6.4. EHEC colonization assay. EHEC cells were colonized on HCT-8 cells in presence of 
fresh and conditioned media that were (A) heat-denatured, (B) Proteinase K-degraded, (C) 
serum-free, (D) containing 1% serum, and (E) fractionated and contained molecules greater than 
3 kDa. Data represent mean ± standard deviation from three independent experimental wells. ** 
denotes statistical significance using the Student’s T-test test at p < 0.005. 
  

(A) (B) 
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Fig. 6.4. Contd.   
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demonstrated the inter-kingdom signaling interactions from both perspectives (26, 176). We 

have shown that EHEC recognize human hormones epi and NE to detect the host cell 

environment and up-regulate virulence gene expression (26). Additionally, we have 

establishedthat the commensal bacterial signal indole up-regulates trans-epithelial resistance and 

reduces pro-inflammatory cytokine expression in human intestinal epithelial cells (176). In the 

current study, we demonstrate that intestinal epithelial cell secreted protein(s) are detected by 

EHEC and that those secreted proteins increase EHEC virulence gene expression and 

colonization.   

 We studied changes in EHEC gene expression in fresh and conditioned media at 

different time-points to obtain information about temporal variation in gene expression. The 

coordinated increase in expression of 32 out of 41 LEE genes strongly suggests a “global” 

increase in EHEC virulence upon exposure to conditioned medium. In addition, Stx phage genes 

are also induced, suggesting an increase in EHEC infectivity. Induction of flagellar and fimbrial 

genes has been associated with virulence (137) and, in current study, we observed that 12 of 

these important genes were up-regulated (Table 6.2). Iron increases virulence of pathogenic E. 

coli, Vibrio, Neisseria etc. through induction of cytotoxins and neurotoxins (138), and 

conditioned medium also increased expression of 15 such genes (Table 6.2). Thus, our data 

suggest that the EHEC virulence machinery is significantly induced upon exposure to epithelial 

cell-secreted factors that are accumulated in the conditioned medium over a 24 h time-period in 

our study.     

 In addition to changes in gene expression, differential regulation of EHEC virulence 

phenotypes was observed, as colonization of host cells by the pathogen is significantly induced 

in presence of conditioned medium. Shiga toxins are important markers of EHEC virulence, and 

we observed that conditioned medium increases intracellular Stx2 titers. Increased expression of 
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Stx2 along with up-regulation of LEE genes makes EHEC more virulent. It has been proposed 

that EHEC only expresses its virulence genes after specific recognition of the intestinal 

environment, as these sets of genes are not expressed in rich media like LB (177). Based on our 

data, it is intriguing to speculate that such “sensing” of its outside environment is achieved, in 

part, through these epithelial cell secreted molecules.  

 Although we attempted to identify the secreted molecule(s), complete characterization 

was difficult due to several reasons. The HCT-8 cell growth medium contained 10% heat-

inactivated horse serum, and this increased the complexity of the sample significantly. 

Fractionation by size exclusion (gel filtration) chromatography or differential centrifugation was 

not successful due to an abundance of serum proteins (e.g., albumin, transferrin) that either block 

the centrifugal filter membranes and/or prevent migration of smaller molecules. The abundance 

of serum proteins also made protein-based methods (e.g. 2-dimensional gel electrophoresis) 

difficult. Precipitation of protein fractions was successful; however, none of the fractions showed 

any activity after resuspension. It is possible that the structure of the molecule(s) were affected 

during the precipitation and resuspension process; thereby, affecting activity. Additionally, 

conditioned medium that contained either 1% serum or was serum-free failed to activate EHEC 

virulence, suggesting the presence of a pre-cursor protein component in the serum.      

 In summary, we show that intestinal epithelial cell secreted factors are important 

determinants of EHEC virulence and infection. Phenotypic assays for host cell colonization and 

shiga toxin production suggest activation of the EHEC infection process. Gene expression data, 

where we observe the up-regulation of LEE and other virulence related genes, further support 

this conclusion. It is important to identify the host cell-secreted proteins so that therapies can be 

developed to target these communication pathways to hinder EHEC infection without adversely 

affecting the commensal microbiota.  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 CONCLUSIONS 

In the work above, we have successfully shown that prokaryotic (AI-2 and indole) and 

eukaryotic (epi and NE) GI tract signals are important in EHEC colonization and virulence. We 

found that eukaryotic hormones epi and NE increase expression of EHEC virulence-related 

phenotypes, namely chemotaxis, motility, biofilm formation and colonization (Chapter III). 

Additionally, gene expression studies, where we observed an increase in expression of genes that 

are associated with virulence and infection, agreed with the phenotypic data. In the case of 

prokaryotic signals, we observed that while AI-2 also increased these phenotypes (Chapter IV), 

the stationary phase signal indole attenuated them (Chapter III), indicating the complexity of 

signaling pathways in bacteria. Once again, genotypic data were in complete agreement with the 

phenotypic data and demonstrate the robustness of this study. Based on our data, we conclude 

that the signaling environment in the GI tract impacts the extent of EHEC colonization.  

We investigated the effects of the bacterial signal indole on the epithelial cell 

transcriptome and phenotypes (Chapter V). Since indole is secreted by the commensal bacteria, 

we hypothesized that indole could be one signal involved in inter-kingdom signaling interactions 

between commensal bacteria and the host epithelia. Our data show that indole reduces 

inflammation in host cells, through down-regulation of pro-inflammatory cytokines and factors, 

like IL-8 and NF-κB, and by up-regulation of anti-inflammatory cytokines, like IL-10. 

Additionally, indole increases the trans-epithelial resistance of host cells, suggesting an increase 

in barrier properties and resistance to pathogen colonization that was confirmed by reduced 

EHEC colonization of indole-pre-treated host cells. We established that these changes in host 
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cells are indole-specific, as several indole derivatives fail to induce coordinated changes in trans-

epithelial resistance and NF-κB production.  

The changes in EHEC virulence on exposure to human intestinal epithelial cell-secreted 

factors were studied (Chapter VI). Transcriptome studies revealed an increase in the expression 

of LEE Pathogenicity Island genes as well as an increase in production of shiga toxins. EHEC 

colonization is also induced by 5-fold with conditioned medium. We were able to establish that 

the molecule causing an increase in EHEC virulence is a protein-based molecule with size 

greater than 3 kDa.  

 

7.2 RECOMMENDATIONS 

There are several opportunities to build on the results obtained. First, one can study the 

mechanisms of EHEC virulence by changing environmental conditions (e.g. inducing stress) and 

by constructing EHEC mutants. Second, one can develop experimental strategies to identify the 

human intestinal epithelial cell-secreted molecule(s) that increases EHEC virulence and 

colonization (first described in Chapter VI). Third, one can increase the complexity of the 

experimental setup such that human GI tract environment is mimicked more closely, through the 

observation of dual species (non-pathogenic and EHEC) colonization of epithelial cells. Fourth, 

the changes in gene expression of human epithelial cells when exposed to different kinds of 

bacteria (pathogen vs. non-pathogen) can be investigated. Together, these experiments along 

with our previous results shall provide a fundamental understanding of the host-pathogen 

interactions in GI tract infections. 
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7.2.1 Study the mechanism of EHEC virulence 

As discussed earlier, EHEC elicits an SOS response under stress that sends the cells into 

lytic phase (15), releasing shiga toxins into the environment. Environmental stress can be 

induced through several factors, including the presence of antibodies and extreme pH and 

temperatures. One can expose EHEC to such stressful conditions (e.g. highly acidic pH to mimic 

the conditions in the stomach) and study the changes in intra- and extracellular Stx phage titers. 

Additionally, colonization of human intestinal epithelial cells with these stressed EHEC cells can 

help one understand the role of stress in the infection process.   

In chapters III, IV and VI, we identified several genes and pathways that are important 

for EHEC virulence. Hence, the next step could be to create EHEC mutants and study the 

changes in virulence phenotype, in presence of eukaryotic and prokaryotic signaling molecules. 

We have recently deleted hha gene from the EHEC wildtype strain. It has been established that 

hha is a negative regulator of the LEE operon (178) and deleting it should derepress the LEE 

operon and make EHEC more virulent. Similarly, one can over-express hha to repress the LEE 

operon and develop strategies to counter EHEC infections. 

 

7.2.2 Identification of human intestinal epithelial cell-secreted factor(s) that increase EHEC 

virulence and colonization 

  In Chapter VI, we determined that human epithelial cell-secreted factor(s) increase 

EHEC virulence. We established that the active molecule is protein-based and larger than 3 kDa 

in size. However, we were unable to identify the molecule due to the complexity of conditioned 

medium. The future experiments can include extraction of lipids to confirm that the active 

molecule is indeed protein-based and not lipid-based. Extraction of lipids can be achieved 

through liquid-liquid extraction using a chloroform-methanol mixture as described in a previous 
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study (179). The organic layer shall contain lipids, and subsequently the organic solvents can be 

evaporated in the presence of N2. The extracted lipids can then be resuspended in serum-free 

RPMI and tested for activity.  

  Cycloheximide is an inhibitor of protein biosynthesis in eukaryotic animals that blocks 

translational elongation. We can add cycloheximide to HCT-8 cells during preparation of the 

conditioned medium such that no additional eukaryotic proteins will be collected in the medium. 

Such conditioned medium should not exhibit any activity, confirming that a cell-secreted protein 

is indeed responsible for increased virulence of EHEC.  

  Fractionation of proteins can be achieved through density gradient ultra-centrifugation 

(DGU) as described by Bhaskar and Reid (180). Here, cesium chloride (CsCl) provides 

separation of glycoproteins/proteoglycans from pure proteins. The media can be diluted in 

phosphate buffer and the amount of CsCl should be 0.38 w/v of the total mixture. Using ultra-

centrifugation at 100,000 g, several fractions of proteins ranging in density 1.3-1.6 g/ml can be 

obtained. Albumin has a density of 1.378, in solution (181), and can be separated from other 

proteins. One can then test all these fractions for activity, and since the complexity of sample has 

been greatly reduced in this case, mass spectrometry can be employed to identify the active 

protein. 

  Since the HCT-8 growth medium contains 10% horse serum, most of the proteins in the 

medium are of equine origin. Another method, which can potentially be employed, is to calibrate 

the mass spectrometer such that it only detects human proteins. This experimental design will 

inherently eliminate all the equine proteins, rendering the sample simpler to analyze. Since fresh 

medium contains no human proteins, the detection of any proteins in conditioned medium will 

lead us to the potential active molecule candidates. Identification of the active molecule will help 

researchers design strategies to counter the EHEC infection process, possibly through the design 
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of inactive homologs.  

 

7.2.3 Dual species (EHEC and non-pathogenic E. coli) colonization of human epithelial cells 

  An important aspect of EHEC infection is its colonization of the colonic mucosa in the 

GI tract to initiate infection. The presence of commensal bacteria in the mucosa is extremely 

important, since signals produced by these bacteria manipulate EHEC virulence phenotypes (25-

26). Similarly, the presence of commensal E. coli has been shown to inhibit Salmonella infection 

in mice (182) and several studies have pointed out the importance of probiotics in treating 

infections (140). However, the mechanisms, aside from the role of indole outlined in Chapter V, 

through which commensals inhibit pathogen infection and the signaling molecules involved in 

this process are not well understood (141).  

In these experiments, the GI tract can be mimicked by developing a HCT-8 monolayer 

in standard tissue culture and growing non-pathogenic E. coli on top. Adding various hormones 

like NE and dopamine to the experiment will result in simulation of the in vivo milieu that EHEC 

encounters during colonization. Several variables that can be studied are – different strains of 

commensal bacteria, various mutant strains of E. coli (e.g. tnaA mutant that lacks indole 

production) and different relative concentrations of commensal bacteria and EHEC.  

Although the above experimental design is robust, it still is not able to capture the in 

vivo environment in totality due to the lack of flow. Flow inside the GI tract leads to spatial bias 

where host cells in different regions in a flow profile could be differentially colonized. This 

aspect of colonization can be investigated through the use of microfluidic devices (183-184). A 

microfluidic system allows cells to be exposed to an environment that more closely resembles 

the natural surroundings that they encounter (185). Its biggest advantage over traditional tissue-

culturing methods is that flow can be generated, as is the case inside the GI tract, and enables the 



162 
 

 

generation of gradients of signals, of different strengths and profiles, thereby simulating an in 

vivo environment (185). The results will help interpret the role of commensal bacteria in 

infection prevention as some studies have reported (182). 

 

7.2.4 Changes in intestinal epithelial cell gene expression during colonization with diverse 

strains of bacteria (pathogen vs. non-pathogen)  

  One can study changes in epithelial cell gene expression when exposed to different kinds 

of bacteria, which will help elucidate the mechanisms that are unique to EHEC pathogenesis. To 

study changes in HCT-8 gene expression during colonization, HCT-8 cells can be exposed to 

EHEC for different periods of time (3 to 12 hours). The infective dose of EHEC is 100 cfu but 

this low number of EHEC cells will not be enough to cover all the HCT-8 cells in the flask. 

Hence, we will need to infect HCT-8 cells with 106-108 cfu of EHEC to ensure that entire HCT-8 

surface is colonized by EHEC ensuring reliable gene expression studies. These studies should be 

repeated with non-virulent EHEC (Δstx) and commensal E. coli to determine pathways and 

processes that are unique to EHEC colonization that leads to infections. The data generated on 

HCT-8 gene expression after these microarrays will consist of approximately 38,000 genes and 

the analysis can be conducted using PathwayAssist software (Stratagene, CA). To our 

knowledge, a genome-wide study of epithelial cell transcription during colonization with EHEC 

and non-pathogens; and in presence of various signals has not been previously reported.  

  Since commensal E. coli is present in the vicinity of epithelial cells in the GI tract, we 

expect divergent HCT-8 gene expression during commensal colonization as compared to EHEC, 

due to its foreign nature and its release of toxins. These studies will help us elucidate the 

mechanism of pathogen recognition employed by epithelial cells to counter their deleterious 

effects.  
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