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ABSTRACT

On Parametric and Nonparametric Methods for Dependent Data. (August 2010)

Soutir Bandyopadhyay, B.Sc., St. Xavier’s College;

M.Stat., Indian Statistical Institute

Chair of Advisory Committee: Dr. Soumendra N. Lahiri

In recent years, there has been a surge of research interest in the analysis of time series

and spatial data. While on one hand more and more sophisticated models are being

developed, on the other hand the resulting theory and estimation process has become

more and more involved. This dissertation addresses the development of statistical

inference procedures for data exhibiting dependencies of varied form and structure.

In the first work, we consider estimation of the mean squared prediction error

(MSPE) of the best linear predictor of (possibly) nonlinear functions of finitely many

future observations in a stationary time series. We develop a resampling methodology

for estimating the MSPE when the unknown parameters in the best linear predictor

are estimated. Further, we propose a bias corrected MSPE estimator based on the

bootstrap and establish its second order accuracy. Finite sample properties of the

method are investigated through a simulation study.

The next work considers nonparametric inference on spatial data. In this work

the asymptotic distribution of the Discrete Fourier Transformation (DFT) of spa-

tial data under pure and mixed increasing domain spatial asymptotic structures are

studied under both deterministic and stochastic spatial sampling designs. The de-

terministic design is specified by a scaled version of the integer lattice in IRd while

the data-sites under the stochastic spatial design are generated by a sequence of in-

dependent random vectors, with a possibly nonuniform density. A detailed account

of the asymptotic joint distribution of the DFTs of the spatial data is given which,
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among other things, highlights the effects of the geometry of the sampling region and

the spatial sampling density on the limit distribution. Further, it is shown that in

both deterministic and stochastic design cases, for “asymptotically distant” frequen-

cies, the DFTs are asymptotically independent, but this property may be destroyed if

the frequencies are “asymptotically close”. Some important implications of the main

results are also given.
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CHAPTER I

INTRODUCTION

We consider analysis of dependent data in which interest focuses on developing dif-

ferent inference procedures for the population-level quantities. In the first work a

parametric approach has been adopted for the estimation of the mean squared pre-

diction error of the best linear predictor of (possibly) nonlinear functions of finitely

many future observations in a stationary time series.

A random field or a spatial process is a generalization of a stochastic process

such that the underlying parameter need no longer be a simple real, but can instead

be a multidimensional vector space or even a manifold. Due to advances in science

and technology, high-throughput spatial data from neuroscience and environmental

(among other) applications are being generated at a rapid pace. This has created an

urgent need for methodology and tools for analyzing regularly as well as irregularly

spaced spatial data. In biological applications, advances in microscope automation

are yielding an abundance of data on spatial patterns of neuronal activation. Using

digital imaging modalities, it is now possible to collect replicated patterns over large

areas of the brain. Another important application in epidemiology is the geographical

disease surveillance using scan statistics. Spatial scan statistics are widely used for

count data to detect geographical disease clusters of high or low incidence, mortal-

ity or prevalence and to evaluate their statistical significance. In the environmental

and climate sciences, measurements are often recorded at different locations on many

variables. Formulating correct statistical models that make sense of all the many com-

This dissertation follows the style of the Journal of the Royal Statistical Society.
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plex relationships and multivariate dependencies that are in the data, investigating

the properties of these models and developing inferential procedures have provided

major challenges for statisticians, probabilists and others working in this field. In

the next work we concentrate on developing a nonparametric inference method for

regularly as well as irregularly spaced spatial data.

In recent years, there has been a surge of research interest in the analysis of spa-

tial data using the frequency domain approach. At a heuristic level, the popularity

of the frequency domain approach lies in the fact that for equi-spaced time series

data, the discrete Fourier transform (DFT) of the observations are asymptotically

independent. As a result, it allows one to avoid accounting for the dependence in

the data explicitly. However, validity of the asymptotic independence of the DFTs

for spatial data remains largely unexplored. In contrast to the time series case where

observations are usually taken at a regular interval of time and asymptotics is driven

by the unidirectional flow of time, for random processes observed over space, several

different types of spatial sampling designs and spatial asymptotic structures are rele-

vant for practical applications. For example, image data are equi-spaced in the plane,

but locations of the drilling-sites for mineral ores in a mine are usually irregularly

spaced. Thus, the type of asymptotics that are appropriate in these applications

are inherently different. We investigated in detail the asymptotic properties of the

DFT for equi-spaced as well as irregularly spaced spatial data under different types

of spatial asymptotic structures.
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CHAPTER II

RESAMPLING-BASED BIAS-CORRECTED TIME SERIES PREDICTION

II.1. Introduction

Let {Xt}∞t=−∞ be a second order stationary time series with auto-covariance function

γ(·) and spectral density f(·). Suppose that a finite stretch, X1, . . . , Xn of the series

is observed. In many applications, it is important to predict an unobserved future

value Xn+k in the time series or more generally, a suitable functional of a set of future

values Xn+1, . . . , Xn+k:

Ψ = ψ(Xn+1, . . . , Xn+k)

where ψ : IRk → IR is a known function and k ∈ IN . Here and in the following, IN

and ZZ respectively denote the set of all positive integers and the set of all integers.

A popular predictor of Ψ is given by the best linear predictor (BLP) Ψ̃n = α1X1 +

. . .+ αnXn, where

(λ1, . . . , λn) = argmina1,...,anE
(

Ψ− [a1X1 + . . .+ anXn]
)2

. (II.1.1)

The co-efficients λ1, . . . , λn can be found by standard optimization arguments from

calculus; See (II.2.1), Section II.2 below for an explicit expression for λ1, . . . , λn.

Typically, λ1, . . . , λn in Ψ̃n depend on the auto-covariance function γ(·) and, for a

nonlinear ψ(·), on other population parameters of the {Xt}-process and hence, are

typically unknown in practice. Here we restrict attention to parametric time series

models and highlight the dependence of the BLP on the underlying parameters by

writing

Ψ̃n = Ψ̃n(θ)
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where θ ∈ IRp (p ∈ IN) is the vector of unknown parameters of the {Xt}-process.

Since Ψ̃(θ) depends on unknown θ, it is not usable in practice. A common approach

is to plug-in an estimator θ̂n of the unknown parameter θ in Ψ̃n(θ), yielding the

estimated best linear predictor (EBLP):

Ψ̂n = Ψ̃n(θ̂n). (II.1.2)

An important problem in time series analysis is to accurately estimate the mean

squared prediction error (MSPE) of the EBLP:

M(θ) ≡ E
(

Ψ̂n −Ψn(θ)
)2

. (II.1.3)

Like the BLP Ψ̃n(θ), the MSPE also depends on the unknown parameter vector θ.

Note that the function M(θ) ≡Mn(θ) can be represented as

M(θ) = E
(

Ψ̃n(θ)−Ψ
)2

+ 2E
[
{Ψ̂n − Ψ̃n(θ)}{Ψ̃n(θ)−Ψ}

]
+ E

(
Ψ̂n − Ψ̃n(θ)

)2

≡ M1(θ) +M2(θ) +M3(θ), say. (II.1.4)

The first term M1(θ) ≡ M1n(θ) is the MSPE of the ideal predictor Ψ̃n(θ), the third

term M3(θ) ≡M3n(θ) is the estimation error due to the substitution of θ̂n in place of

θ in Ψ̃n(·), and the second one is a cross-product term. Thus, the MSPE of the EBLP

depends on the MSPE of the ideal predictor as well as on the particular estimator θ̂n

used for estimating the unknown parameter vector θ. Except for some very specific

cases, analytic expressions for the functions Mi(θ), i = 1, 2, 3 (particularly, M2(θ) and

M3(θ)) are not available in the literature, making the estimation of the MSPE M(θ)

difficult by the traditional plug-in approach. In this chapter, we propose a bootstrap

based method to derive an estimator of the MSPE M(θ). The key advantage of the

bootstrap methodology is that it produces an estimator of the MSPE of the EBLP
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for any given estimator θ̂n of θ, without requiring any analytical computation of the

functions M2(θ) and M3(θ) which critically depend on the choice of θ̂n. We show that

under fairly mild regularity conditions on the {Xt}-process and on the estimators θ̂n,

the bootstrap MSPE estimator is consistent.

Next we consider higher order accuracy of the resulting bootstrap estimator.

Typically, of the three terms Mi(θ), i = 1, 2, 3, the first one is O(1), while the second

and the third terms are typically O(n−1), as the sample size n goes to infinity. As

a result, usual consistency of the “ordinary” bootstrap MSPE estimator of M(θ) is

not adequate in many applications where the sample size only moderately large and

the effects of the O(n−1) terms can not be ignored. Indeed, it can be shown that the

bootstrap MSPE estimator has a bias of the order O(n−1), which is of the same order

as the orders of the terms Mi(θ), i = 2, 3. Thus, the “ordinary” bootstrap MSPE

estimator masks the contributions coming from parameter estimation in Ψ̃n(θ) to the

overall MSPE of Ψ̂n. What is needed is an estimator of the MSPE of Ψ̂n that has

a bias of order o(n−1) and still retains the standard order of convergence; Following

Prasad and Rao (1990), we call such estimators of the MSPE M(θ) second order

correct. A common way to construct a second order correct MSPE estimator is to

use the explicit bias correction to a plug-in estimator of M(θ). However, this is

impractical and undesirable in our situation mainly because of two reasons, namely,

(i) explicit analytical expressions for Mi(θ), i = 1, 2, 3 are very rarely available in

the literature (only in some simple toy models) as these are very difficult to derive in

reasonable generality, and (ii) the explicit bias correction leads to a negative estimator

of the MSPE with a positive probability. An important contribution of this work is

to develop a new method for constructing a second order correct MSPE estimator

that is non negative with probability one. The key idea is to “tilt” the estimator θ̂n

suitably so that it balances out the bias of the “ordinary” bootstrap MSPE estimator
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to the order O(n−1). The tilting factor used here is based on certain iterations

of the bootstrap step and on a simple formula to combine them. As a result, the

computation of the proposed second order correct MSPE estimator is very much

feasible with today’s computing power, and the methodology works any choice of

the estimator θ̂n satisfying the mild regularity conditions of the main result. Most

importantly, the proposed method does not require any analytical derivation on the

part of the user.

The rest of the chapter is organized as follows. We conclude this section with a

brief literature review. In Section II.2, we describe the “ordinary” bootstrap estimator

of the MSPE and prove its consistency. The tilted version of the MSPE estimator

and its theoretical properties are stated in Section II.3. In Section II.4, we develop

some bootstrap based approximations for different functions appearing in the tilted

MSPE estimator, for which exact analytical expressions are either unavailable or

intractable. In Section II.5, we report the results from a simulation study on finite

sample properties of the proposed tilted MSPE estimator. Proofs of the main results

are presented in Section II.6.

The literature on time series prediction is huge and is well documented in the

case where the target variable Ψ = Xn+k for some k; See Brockwell and Davis (1991),

Priestley (1981). For standard stationary time series models, like the autoregressive

(AR) processes and autoregressive and moving average (ARMA) processes, explicit

expressions for M1(θ) is known (cf. Brockwell and Davis (1991)), although expres-

sions for M2(θ) and M3(θ) are not common. The masking-effect of the naive plug-in

approach on MSPE estimation was pointed out by Prasad and Rao (1990), who

also introduced the concept of second order bias corrected MSPE estimators, in the

context of small area estimation. For a detailed account of the literature on issues

and solutions in the small area estimation problem until 2003, see Rao (2003). In
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the time series context, Ansley and Kohn (1986) and Quenneville and Singh (2000)

proposed different MSPE estimators based on analytical considerations for the state-

space model. More recently, Pfeffermann and Tiller (2005) proposed a bootstrap

based method for MSPE estimation of the best linear unbiased predictor (BLUP),

also for the state-space model under a Gaussian assumption. The second order cor-

rect MSPE estimation methodology presented here is different from the earlier work

on the problem in the time series literature; It is based on the approach developed

by Lahiri and Maiti (2003) and Lahiri et al. (2007) in the context of small area

estimation.

II.2. Bootstrap estimation of the MSPE

II.2.1. Preliminaries

In this section, we formalize the basic framework for bootstrap estimation of the

MSPE. As in Section II.1, let {Xt}∞t=−∞ be a second order stationary time series with

an absolutely summable auto-covariance function γ(·) and spectral density f(·), and

for a known function ψ : IRk → IR let

Ψ = ψ(Xn+1, . . . , Xn+k)

is to be predicted using the observations X1, . . . , Xn. For the ease of exposition and

as it is customary in the time series literature (see Chapter 5, Brockwell and Davis

(1991)), for the rest of this chapter, we shall suppose that the variables Xt’s and

Ψ have mean zero. Thus, the focus of the work is on the prediction of the random

part; The deterministic mean part, if any, can be estimated by any of the standard

methods, such as (quasi-)maximum likelihood, method of moments, etc., which in

turn, can be used for mean correction. Under the zero-mean assumption, it is easy

to derive an explicit expression for the BLP Ψ̃n using standard arguments. Thus, by
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differentiating the expression on the right side of (II.1.1), it is easy to show that the

vector λn ≡ (λ1, . . . , λn)′ of co-efficients in Ψ̃n are given by

λn ≡ λn(θ) = Γ−1
n γn, (II.2.1)

where Γn ≡ Γn(θ) is the n× n matrix with (i, j)th element cov(Xi, Xj), 1 ≤ i, j ≤ n,

and where γn ≡ γn(θ) = (cov(Ψ, X1), . . . , cov(Ψ, Xn))′. Here and in the following,

we drop θ from population quantities, except when it is important to highlight the

dependence on θ and similarly, often drop n from subscript, for simplicity of exposi-

tion. Note that by the Pythagorus theorem, the MSPE of the ideal predictor Ψ̃n is

given by

M1n(θ) = var(Ψ)− γ ′nΓ−1
n γn.

However, exact expressions for the second and the third terms in (II.1.4) are not

easy to write down and both of these terms depend on the particular estimator θ̂n is

used. In the next section, we describe a resampling method for estimating all three

components of the MSPE of the EBLP Ψ̂n.

II.2.2. Ordinary bootstrap estimator of the MSPE

Let θ̃n be an estimator of θ based on X1, . . . , Xn. We shall use θ̃n to produce the

bootstrap estimator of the MSPE M(θ). In principle, one may take θ̃n = θ̂n, but a

different choice of θ̂n may be more appropriate in a specific application. The main

steps in the ordinary bootstrap estimation procedure are as follows:

A. Generate a bootstrap sample X∗1 , . . . , X
∗
n under the θ = θ̃n. Let θ∗n denote the

bootstrap version of θ̂n obtained by replacing X1, . . . , Xn by X∗1 , . . . , X
∗
n.

B. Compute Ψ̂∗n = Ψ̃n(θ∗n) by replacing θ in λ(θ) (see (II.2.1)) by θ∗n.
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C. The bootstrap estimator of M(θ) is given by

m̂spe
or
n = E∗

(
Ψ̂∗n −Ψ∗n

)2

, (II.2.2)

where Ψ∗n = ψ(X∗1 , . . . , X
∗
n) is the bootstrap version of the predictand Ψ and

where E∗ denotes conditional expectation given X1, . . . , Xn.

In practice, evaluation of the conditional expectation is done by the Monte-Carlo

method. For this, steps A-C are repeated a large number (say, B) of times and the

resulting bootstrap replicates are combined. Specifically, for each b = 1, . . . , B, one

generates the bth resample X∗b1 , . . . , X
∗b
n under the θ = θ̃n (independently of the other

replicates) and then computes θ∗bn , Ψ̂∗bn = Ψ̃n(θ∗bn ) and Ψ∗bn = ψ(X∗b1 , . . . , X
∗b
n ) based

on X∗b1 , . . . , X
∗b
n as in steps A-C. The Monte-Carlo approximation to m̂spe

or
n is given

by

m̂spe
or:mc
n = B−1

B∑
b=1

(
Ψ̂∗bn −Ψ∗bn

)2

. (II.2.3)

The following result shows that the ordinary bootstrap estimator of the MSPE

is consistent under mild conditions on the underlying time series {Xt}∞t=−∞ and on

the estimator sequences {θ̂n}n≥1 and {θ̃n}n≥1.

Theorem II.2.1. Let θ0 denote the true value of the parameter θ and let Θ0 = {θ ∈

Θ : ‖θ− θ0‖ ≤ δ0} for some δ0 ∈ (0,∞). Suppose that θ̃n− θ0 = op(1) as n→∞ and

that the following conditions hold:

(A.1) There exists δ ∈ (0, 1] such that

(i) sup{EθΨ2 : θ ∈ Θ0} < δ−1, and

(ii) δ < fθ(ω) ≤ δ−1 for all ω ∈ (−π, π) and θ ∈ Θ0.

(A.2) (i) For each j ≤ 0, gj(θ) is continuous at θ = θ0 and |gj(θ)| ≤ aj for all θ ∈ Θ0,

where
∑0

j=−∞ aj <∞.

(ii) fθ(·) is continuous at θ = θ0 in the ‖ · ‖∞-norm.



10

(A.3) sup{M3n(θ) : θ ∈ Θ0} → 0 as n→∞.

Then

m̂spe
or
n −Mn(θ0)→p 0 as n→∞. (II.2.4)

Conditions (A.1)-(A.3) are local uniformity conditions on various second order

population quantities (moments) related to the time series {Xi}∞i=−∞, and essentially

requires continuity of the parametric model at θ = θ0. Condition (A.1)(i) requires

that the second moment of the predictand Ψ be bounded in a neighborhood of the true

parameter value θ0, which would hold if Eθ0Ψ2 <∞ and EθΨ
2, as a function of θ, is

continuous at θ = θ0. Condition (A.1)(ii) is a crucial condition that is used all through

the chapter. It is used to obtain some bounds on the spectral norm of the matrix

Γn(θ) and its inverse. This condition is satisfied when {Xi}∞i=−∞ is an ARMA(p, q)-

process where all roots of the corresponding characteristic polynomial lie outside the

unit circle (see Brockwell and Davis (1991)). Next consider (A.2). Continuity of gj(·)

at θ = θ0 is tied down to the continuity of the model parametrization at θ = θ0.

The local uniform summability of gj(θ)’s can be replaced by requiring finiteness and

continuity of the absolute sum
∑

j≤0 |gj(θ)| on Θ0, in which case aj corresponds to

|gj(θ1)| for all j ≤ 0, for a common θ1 ∈ Θ0. Alternatively, it is guaranteed if some

standard mixing and moment conditions hold. More specifically, suppose that the

process {Xi}∞i=−∞ is strongly mixing with the mixing co-efficient

α(n; θ) ≡ sup{|Pθ(A ∩B)− Pθ(A)Pθ(B)| : A ∈ F j−∞,F−∞j+n , j ∈ ZZ}, (II.2.5)

where F ba = σ〈Xt : t ∈ [a, b] ∩ ZZ〉, −∞ ≤ a ≤ b ≤ ∞. Let α0(n) = supθ∈Θ0
α(n; θ),

n ≥ 1. If E|Ψ|2+δ < ∞ and
∑∞

n=1 α0(n)
δ

2+δ < ∞, then (A.2)(i) holds. Condition

(A.2)(ii) requires a form of continuity of the parametric model at θ = θ0, and is

satisfied in many examples, including the class of ARMA (p, q)-models mentioned
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above. It can be further ascertained if the function EθX0Xj is continuous at θ = θ0

for each j ≥ 0, and for some δ > 0, E|X1|2+δ <∞ and
∑∞

n=1 α0(n)
δ

2+δ <∞. Finally,

consider (A.3). As pointed out before, the function M3n(θ) quantifies the effect of

replacing the unknown true value of the parameter by the estimator θ̂n in the (ideal)

BLP, and hence, it critically depends on the properties of the estimator sequence

{θ̂n}n≥1. Typically, for a sequence of consistent estimators {θ̂n}n≥1, M3n(θ0) → 0.

Condition (A.3) requires the convergence to be uniform in a neighborhood of θ0. We

impose the condition directly on M3n(·) to keep the statement of Theorem II.2.1

simple, which only claims consistency of the ordinary bootstrap estimator of the

MSPE. A set of sufficient conditions for (A.3) is given in Section II.3, where a more

precise bound (namely, O(n−1)) on the order of M3n(·) is obtained.

II.2.3. Limitations of the ordinary bootstrap estimator

It is easy to see that the ordinary bootstrap estimator of the true MSPE Mn(θ0)

is equivalent to the plug-in estimator Mn(θ̃n), and has the added advantage that it

does not require an explicit expression for the three components Min(θ0), i = 1, 2, 3

(see (II.1.4)). However, as explained earlier, of the three terms in (II.1.4), only the

leading term M1n(θ0) = O(1) while the terms Min(θ0), i = 2, 3 are typically of the

order O(n−1). Therefore, Theorem II.2.1 asserts consistency of bootstrap estimator

m̂spe
or
n for M1n(θ0), the MSPE of the ideal predictor Ψ̃n, only and fails to capture

the effects of estimating the unknown θ0 by θ̂n, leading to the terms Min(θ0), i = 2, 3

in the overall MSPE Mn(θ0) of the EBLP Ψ̂n. For a better approximation, effects

of the terms Min(θ0), i = 2, 3 must be taken into account. In the next section, we

describe an implicit bias-correction method based on the bootstrap that achieves this

goal.



12

II.3. Second order accurate estimation of the MSPE

II.3.1. The tilting method

We first describe the tilting method in our MSPE estimation problem. The basic idea

behind the tilting method is to replace the original estimator θ̂n with a suitably tilted

(or perturbed) estimator of θ that annihilates the bias contribution of θ̂n to M1n(·),

up to the second order accuracy. Suppose that

p∑
j=1

|M (j)
1n (θ0)| > ε0, (II.3.1)

for some ε0 > 0, where for a smooth function f : IRp → IR, f (i), f (i,j) and f (i,j,k) denote

the first, the second and the third order partial derivatives with respect to the i-th

co-ordinate, the (i, j)-th co-ordinates, and the (i, j, k)-th co-ordinates, respectively,

i, j, k = 1, · · · , p. Condition (II.3.1) says that M
(i)
1n (θ0) 6= 0 for some i. For notational

simplicity, we suppose that M
(1)
1n (θ0) 6= 0. Next let βn ≡ βn(θ) and Σn = Σn(θ)

respectively denote the the bias and variance of θ̂n. We shall also suppose that some

consistent estimators β̂n and Σ̂n of βn and Σn, respectively, are available. For example,

under mild conditions on θ̂n and {Xt}, such estimators can be generated using the

bootstrap method (see Lahiri (2003a)). Then the preliminary tilted estimator of θ is

defined as θ̂n + rn, where rn is given by,

rn = −

[
p∑
i=1

M
(i)
1n (θ̂n)β̂n,i +

1

2

p∑
i=1

p∑
j=1

M
(i,j)
1n (θ̂n)Σ̂n(i, j)

]{
M

(1)
1n (θ̂n)

}−1

e1, (II.3.2)

where, β̂n,i and Σ̂n(i, j) denote the ith component of β̂n and (i, j)th component of

Σ̂n, respectively, and where the vector e` ∈ IRp has one in the `th position and

zeros elsewhere, 1 ≤ ` ≤ p. Thus, the preliminary tilted estimator is obtained

from the initial estimator θ̂n by adding a correction factor to the first component of

θ̂n only. Note that if, instead of M
(1)
1n (·), a different partial derivative M

(i)
1n (·) were
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nonzero, then we would define the preliminary tilted estimator by replacing the factor{
M

(1)
1n (θ̂n)

}−1

e1 in (II.3.2) with
{
M

(i)
1n (θ̂n)

}−1

ei.

To make the MSPE estimator well-defined and to ensure its consistency, we need

to modify the preliminary tilted estimator θ̂n+rn. The modifications are needed either

if θ̂n + rn falls outside Θ, in which case Mn(θ̂n + rn) is not well defined, or if M
(1)
1i (θ̂n)

becomes too small, in which case, it scales up the variability of the correction factor

rn. Under appropriate regularity conditions, the probability of getting a preliminary

estimator θ̂n+ rn outside Θ or that of getting a value of M
(1)
1n (θ̂n) below the threshold

(1 + log n)−2 tends to zero rapidly as n → ∞. As a consequence, the perturbed

estimator θ̌n coincides with the preliminary perturbed estimator θ̂n + rn with high

probability.

The tilted estimator of the MSPE is now defined as

m̂spen = Mn(θ̌n) (II.3.3)

where θ̌n is the tilted estimator of θ, defined by

θ̌n =

 θ̂n + rn if θ̂n + rn ∈ Θ and |M (1)
1n (θ̂n)|−1 ≤ (1 + log n)2

θ̂n otherwise.
(II.3.4)

Although an explicit expression for the function Mn(·) is typically unknown, it is not

difficult to see that the tilted estimator m̂spen is equivalently given by (II.2.2) with

θ̃n = θ̌n; The latter can be computed using the algorithm given in Section II.2.2.

In the next section, we state the regularity conditions and show that the tilted

estimator of the MSPE in (II.3.3) achieves second order bias accuracy.
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II.3.2. Theoretical properties

As before, let θ0 denote the true value of the parameter θ and let Θ0 = {θ ∈ Θ :

‖θ−θ0‖ ≤ δ0} denote a open neighborhood of θ0. Let Pθ and Eθ denote the probability

and expectation under θ. For notational simplicity, we set Pθ0 = P and Eθ0 = E. For

j ∈ ZZ, define

gj(θ) = Eθ[ψ(X1, . . . , Xk)Xj], θ ∈ Θ.

Note that gj(θ) is the covariance between Xn+j and Ψ = ψ(Xn+1, . . . , Xn+k) under

θ, which decreases to zero as j → −∞ under suitable weak dependence and moment

conditions on {Xi}∞i=−∞. Let ∆λn(θ) be the p× n matrix, with ith column given by

the p× 1 vector of partial derivatives of the ith component of λn(θ) = γn(θ)Γn(θ)−1.

Define

µ2n(θ) ≡ nEθ

(
[θ̂n − θ]′∆λn(θ)Xn{λn(θ)Xn −Ψ}

)
µ3n(θ) ≡ Eθ

(
n1/2[θ̂n − θ]′∆λn(θ)Xn

)2

,

which respectively give approximations to the functions M2n(θ) and M3n(θ), upto an

error of order o(n−1). We shall use the following regularity conditions to prove the

results.

(C.1) Suppose that there exists a δ ∈ (0,∞) such that

lim inf
n→∞

M
(1)
1n (θ0) ≥ δ.

(C.2) Suppose that there exists κ, c0 ∈ (0,∞) such that for all θ ∈ Θ:

(i) EθΨ
2 < c0,

(ii) Eθ|X1|4+κ < c0,

(iii) lim supn→∞Eθ

{√
n‖θ̂n − θ‖

}8

< c0.
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(C.3) Suppose that gj(θ) and fθ are twice differentiable on Θ, and that there exist a

constant c1 ∈ (0,∞) and a sequence {an}n≥1 ⊂ (0,∞) with
∑∞

n−1 aj <∞ such

that for all k, l ∈ {1, . . . , p},

(i) max{gj(θ), |g(k)
j (θ)|, |g(k,l)

j (θ)|} < aj for all θ ∈ Θ,

(ii) max{‖fθ‖∞, ‖f−1
θ ‖∞, ‖f

(k)
θ ‖∞, ‖f

(k,l)
θ ‖∞} < c1 for all |a| ≤ 2 and for all

θ ∈ Θ, and

(iii) ‖f (k,l)
θ − f (k,l)

θ0
‖ ≤ c1‖θ − θ0‖δ, for all θ ∈ Θ0 for some δ > 0.

(C.4) Suppose that there exists a c2 ∈ (0,∞) such that sup{|µkn(θ)| : θ ∈ Θ} < c2 for

all n ≥ c2, and µkn(·) is equi-continuous at θ = θ0, k = 2, 3.

(C.5) Suppose that βn(θ) = n−1β0(θ)+o(n−1) and Σn(θ) = n−1Σ0 +o(n−1) uniformly

in θ ∈ Θ and ∆0 ≡ sup{‖β0‖+ ‖Σ0(θ)‖ : θ ∈ Θ} <∞.

Condition (C.1) is a specialized version of (II.3.1) for the given formula for the

correction factor rn, which says that the function M1n(·) has a non-zero derivative

along one of the directions i ∈ {1, . . . , p} at the true value θ0, and is typically sat-

isfied in most applications. See the discussion following (II.3.1) for implications and

alternative versions of this. Condition (C.2)(i) is needed to make M1n(·) well-defined

while Conditions (C.2)(ii) and (iii) are used to establish exact orders of the func-

tions Mkn(·) for k = 2, 3 (see Lemma II.6.2 below). Condition (C.3) is a smoothness

condition on the spectral density of the process {Xt} and on the cross-covariances

gj(θ) = covθ(Ψ, Xj), which would hold if the underlying model-parametrization is

suitably smooth. The same comment applies to Condition (C.4), which requires

boundedness and equi-continuity of the approximating functions µkn, k = 2, 3. Fi-

nally, Condition (C.5) is a condition on the bias and the variance of the estimator

sequence {θ̂n}n≥1. We have decided to state Conditions (C.4) and (C.5) in terms of



16

the original sequence {θ̂n}n≥1 to allow for generality. For a specific choice of θ̂n, these

conditions have to be checked directly. To indicate the type of arguments one would

need to verify (suitable variants) of these conditions, consider the class of estimator

sequences {θ̂n}n≥1 that admit a representation of the form:

θ̂n − θ =
β0(θ)

n
+ n−1

n∑
i=1

ξi +Rn (II.3.5)

for some function β0(·) : Θ → IRp, zero mean random vectors ξi ∈ σ〈Xi〉, i ≥ 1

and a remainder term Rn. Suppose that there exist constants δ, c3 ∈ (0,∞) and

a sequence {dn}n≥1 satisfying dn = o(n−1/2) such that ‖β(θ)‖ < c3, Eθ‖ξi‖8 < c3,

Eθ‖d−1
n Rn‖8 < c3 and

∑∞
n=1 n

3α(n; θ)
δ

8+δ < c3 for all θ ∈ Θ. Then, it is easy to check

that Conditions (C.2)(iii) and (C.5) hold. Under (II.3.5), it can be shown that a

variant of Condition (C.4) holds where the factor n1/2(θ̂n − θ) in the functions µkn

are replaced by the leading to terms from (II.3.5). For example, for k = 3, it can be

shown that under (C.3),

sup
{∣∣∣µ3n(θ)− µ̃3n(θ) : θ ∈ Θ

}
= o(1). (II.3.6)

where

µ̃3n(θ) ≡ Eθ

([
n−1/2

n∑
i=1

ξi

]′
∆λn(θ)Xn

)2

.

As a result, one can use µ̃3n(θ) in place of µ3n(θ) as an approximation to M3n(θ)

to establish Theorem II.3.1 (retracing the steps given in Section II.6). Note that the

equi-continuity of µ̃3n(θ) at θ = θ0 can now be proved under a continuity condition on

the individual lag-covariance functions Eθ[X1, ξ1][Xk+1, ξk+1]′, k ≥ 0 (as functions of

θ) as in Condition (A.2) and the discussion following the statement of Theorem II.2.1.

We give a proof of (II.3.6) in Section II.6. A similar treatment is possible also for

the term µ2n(θ). Hence, it follows that for an estimator sequence {θ̂n}n≥1 satisfying
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(II.3.5), Conditions (C.2) - (C.5) hold under mild moment conditions on the variables

Xt’s and ξt’s and under mild weak dependence conditions on the underlying process.

With this, we are now ready to state the main result of this section.

Theorem II.3.1. Suppose that Conditions (C.1) - (C.5) hold. Then

E
(
m̂spen −Mn(θ0)

)
= o(n−1) (II.3.7)

var(m̂spen −Mn(θ0)
)

= O(n−1). (II.3.8)

Theorem II.3.1 shows that under suitable regularity conditions, the tilted MSPE

estimator attains second order bias accuracy. Further, the variance of the tilted esti-

mator continues to be of the same order as the untiled (naive) MSPE estimator, and

is guaranteed to be non-negative. Thus, the tilted MSPE estimator may be preferred

over the ordinary MSPE estimator that fails to capture the effects of parameter es-

timation in the EBLP on the overall MSPE. In the next section, we describe some

important issues related to the implementation of the titling method in practice.

II.4. Practical implementation based on the bootstrap

Note that the tilting method described above involves computing the functions Min(·),

i = 1, 2, 3, and its first and second order partial derivatives, for which explicit expres-

sions are not always available. In this section, we develop bootstrap based approxima-

tions to these quantities, so that the tilted MSPE estimator can be used in practice,

without any analytical derivations. To that end, first we define a bootstrap-based

approximation to the function M1n(·) at a given value θ = θ1 (which may depend

on the data). The steps are similar to those used for generating the Monte-carlo

approximation to m̂spe
or
n in (II.2.3). Specifically, for b = 1, · · · , B,

A. Generate bootstrap samples (X∗b1 , · · · , X∗bn+k) under θ1,
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B. Compute Ψ̃∗bn and Ψ∗b by replacing X1, . . . , Xn with X∗b1 , · · · , X∗bn+k. The Monte-

carlo approximation to M1n(θ1) is given by

M∗
1n(θ1) = B−1

B∑
b=1

(Ψ̃∗bn −Ψ∗b)2. (II.4.1)

Next we construct estimates of the partial derivatives of the function M1n(·) for

computing the correction factor rn. To motivate the construction, first consider a

smooth function g : IR→ IR. Then, for any x ∈ IR, using Taylor series expansion,

g(x+ ε)− g(x− ε) = 2εg
′
(x) + o(ε),

as ε→ 0, where g
′
(x) denotes the derivative of g(x) at x. Hence we can use the scaled

difference (2ε)−1{g(x + ε) − g(x − ε)} as an approximation to g
′
(x) for small values

of ε > 0. Relying on this fact, we can now define suitable bootstrap approximations

to the first order partial derivatives of M1n(·) at θ̂n. Let {an}n≥1 be a sequence of

positive real numbers converging to zero. Then, with M∗
1n as in (II.4.1), we define the

bootstrap approximation to the first order partial derivatives as,

M
∗(j)
1n (θ̂n) = (2an)−1

[
M∗

1n(θ̂n + anej)−M∗
1n(θ̂n − anej)

]
, (II.4.2)

j = 1, · · · , p. Similarly, we can define the bootstrap approximations to the second

order partial derivatives as:

M
∗(j,j)
1n (θ̂n) = a−2

n

[
M∗

1n(θ̂n + anej) +M∗
1n(θ̂n − anej)− 2M∗

1n(θ̂n)
]
, 1 ≤ j ≤ p,

M
∗(i,j)
1n (θ̂n) = 2a−2

n

[{
M∗

1n(θ̂n + anei,j) +M∗
1n(θ̂n − anei,j)− 2M∗

1n(θ̂n)
}

−a2
n

{
M
∗(i,i)
1n (θ̂n) +M

∗(j,j)
1n (θ̂n)

}]
, 1 ≤ i 6= j ≤ p. (II.4.3)

where, ei,j = ei + ej.
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Then, we have the following result on the accuracy of the bootstrap estimates of

the partial derivatives:

Proposition II.4.1. Suppose Conditions (C.2) and (C.3) hold. Then,

E∗

∣∣∣M∗(j)
1n (θ̂n)−M (j)

1n (θ̂n)
∣∣∣2 = O(B−1a−2

n + a2
n) almost surely

for all 1 ≤ j ≤ p and

E∗

∣∣∣M∗(i,j)
1n (θ̂n)−M (i,j)

1n (θ̂n)
∣∣∣2 = O(B−1a−4

n + a2
n) almost surely

for all 1 ≤ i, j ≤ p.

Thus, by choosing an small and then choosing the number of bootstrap replicates

B suitably large, we can generate accurate approximations to the first and second

order partial derivatives of the function M1n(·). Analytical derivations of the partial

derivatives, therefore, can be completely bypassed by using the bootstrap (and hence,

necessary computing resources).

Next, we define the bootstrap estimators of the bias and variance of θ̂n by,

β∗n =
1

B

B∑
b=1

θ̂∗bn − θ̂n,

Σ∗n =

{
1

B

B∑
b=1

θ̂∗bn (θ̂∗bn )′

}
−

(
1

B

B∑
b=1

θ̂∗bn

)(
1

B

B∑
b=1

θ̂∗bn

)′
(II.4.4)

respectively, where θ̂∗bn denote the bth bootstrap replicate of θ̂n, obtained by replacing

X1, . . . , Xn with X∗b1 , · · · , X∗bn and {(X∗b1 , · · · , X∗bn ) : b = 1, . . . , B} are independent

bootstrap replicates under θ = θ̂n.

Proposition II.4.2. Suppose Conditions (C.2), (C.3) and (C.5) hold. Then,

E∗

∥∥∥β∗n − βn∥∥∥2

= O(B−1n−2) + o(n−2) almost surely
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and

E∗

∥∥∥Σ∗n − Σn

∥∥∥2

= O(B−1n−2) + o(n−2) almost surely.

Combining (II.4.2), (II.4.3) and (II.4.4) , we now define the bootstrap based correction

factor as

r∗n = −

[
p∑
i=1

M
∗(i)
1n (θ̂n)β∗n,i +

1

2

p∑
i=1

p∑
j=1

{M∗(i,j)
1n (θ̂n)}{Σ∗n(i, j)}

]
(II.4.5)

× e1{
M
∗(1)
1n (θ̂n)

} ,
where β∗n,i and Σ∗n(i, j) respectively denote the ith component of β∗n and the (i, j)th

element of Σ∗n, 1 ≤ i, j ≤ p. The bootstrap-based bias-corrected MSPE estimate is

given by

m̂spe
∗
n = m̂spe

or:mc
n (θ̌∗n) (II.4.6)

where m̂spe
or:mc
n (θ̌∗n) is defined by (II.2.3) with θ̃n = θ̌∗n, and θ̌∗n is defined by

replacing rn and M
(1)
1n (θ̂n) in (II.3.4) by r∗n and M

∗(1)
1n (θ̂n), respectively.

In view of Theorem II.3.1 and Propositions 4.1 and 4.2, m̂spe
∗
n gives an accurate

approximation to the bias-corrected estimator of the MSPE that can be evaluated

without any analytical work, provided Conditions (C.1)-(C.5) hold. However, finite

sample performance of the MSPE estimator depends on the choice of different factors,

such as an, B, etc. In the next section, we explore these issues further through a

simulation study.

II.5. Simulation study

For the simulation study, we consider one-step-ahead best linear prediction, i.e., we

take the predictand Ψ to be Xn+1. We shall consider the the following time series

models.
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Model 1: In the linear autoregressive model of order 2, AR(2),

Xt = φ1Xt−1 + φ2Xt−2 + εt, (II.5.1)

for t ∈ Z, where {εt} are independent and identically distributed N(0, σ2). Values of

φ1, φ2 are chosen to be (0.2, 0.5) and the value of σ2 is 4.

Model 2: In the linear autoregressive moving-average model of order (1,1), ARMA

(1,1),

Xt = φ1Xt−1 + εt + ψ1εt−1, (II.5.2)

for t ∈ Z, where {εt} are independent and identically distributed N(0, σ2). Here we

take the parameter values to be φ1 = 0.2, ψ1 = 0.5 and we take σ2 = 4.

In this simulation study, we will perturb the estimator in the direction of σ2.

In implementing the method, we use B = 1000 bootstrap samples to estimate the

bias, variances and for all other approximations. All simulation results are based on

N = 500 replications. The simulations are done for n = 50, 120 and 500. Table 1

reports the empirical measures of bias and root mean squared error (RMSE) for both

bias-corrected and not bias-corrected estimators m̂spe
∗
n and m̂spe

or:mc
n of MSPE

for three different values of n. The bias and mean squared error (MSE) are estimated

empirically by taking the average over the replicates of the bias and MSE for each

dataset. From Table 1 we can see that the bias correction method gives us significantly

better results for different values of n under the models (II.5.1) and (II.5.2). However,

it is worth mentioning that due to the bias correction, the RMSE’s of the bias-

corrected estimators are seemed to be slightly higher than the not bias-corrected
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Table 1. Bias and root mean squared error (RMSE) for the estimators (with and without bootstrap based bias

correction) of the mean squared prediction errors for models in (II.5.1)-(II.5.2) for sample size(n) =

50, 120 and 500, number of replications(N) = 500 and number of bootstrap samples(N0) = 1000.

Not bias-corrected Bias-corrected

n Model Mean RMSE Mean RMSE

50 1 0.966 0.976 0.547 1.216
2 0.534 0.940 0.488 0.964

120 1 0.317 0.564 0.103 0.568
2 0.169 0.547 0.135 0.604

500 1 0.043 0.297 0.003 0.353
2 0.098 0.311 0.049 0.377

estimators. This is expected, as the randomness in the various approximation steps in

the construction of the bias-corrected estimators adds to its total variability. Boxplots

for RMSE’s of the two estimators of MSPE over N = 500 simulations under different

models are presented in Figure 1. The boxplots also support the conclusions obtained

from Table 1. In these boxplots we can see that due to the bias correction the RMSE’s

of the tilted estimators seem to be higher than the unperturbed estimators.

II.6. Proofs

For a l × l matrix A, let ‖A‖ = sup{‖Ax‖ : x ∈ IRl, ‖x‖ = 1} denote the spectral

norm, where 1 ≤ l ≤ ∞ and where ‖ · ‖ denotes the `2 norm on IR2. Let ZZ+ =

{0, 1, 2, . . .}. For a = (a1, . . . , ap)
′ ∈ ZZp

+, let |a| = |a1| + . . . + |ap|, a! =
∏p

i=1 ai! and

Da = Da1
1 . . . D

ap
p , where Dj denotes the partial derivative w.r.t. the jth co-ordinate,

1 ≤ j ≤ p. Let C,C(·) denote generic constants with values in (0,∞) that depend

on their arguments, if any, but not on n. Unless otherwise specified, limits in order

symbols are taken by letting n→∞.
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Fig. 1 Boxplots of RMSE values of the estimators (with bias-correction (b.c.) and without bias correction

(n.b.c.)) of the mean squared prediction errors for n=50, 120 and 500 under the three models as in

(II.5.1)-(II.5.2)
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II.6.1. Auxiliary lemmas

Lemma II.6.1. Suppose that gj(θ) and fθ are twice differentiable on Θ, and that

there exists a constant C0 > 0 such that

(i)
∑

j≤0 |Dagj(θ)|2 < C0 for all θ ∈ Θ,

(ii) ‖fθ‖∞ + ‖f−1
θ ‖∞ + ‖Dafθ‖∞ < C0 for all |a| ≤ 2 and for all θ ∈ Θ, and

(iii) ‖Dafθ −Dafθ0‖ ≤ C0‖θ − θ0‖δ, for all θ ∈ Θ0 for some δ > 0.

Then, there exists a constant C1 ∈ (0,∞) such that |M (j)
1n (θ)| + |M (i,j)

1n (θ)| < C1 for

all θ ∈ Θ and for all n ≥ C1, where 1 ≤ i, j ≤ p. Further,
∑

1≤i,j≤p |M
(i,j)
1n (θ0) −

M
(i,j)
1n (θ)| ≤ C1‖θ0 − θ‖δ for all θ ∈ Θ0 and for all n ≥ C1.

Proof It is easy to check that for θ1, θ2 ∈ Θ,

γn(θ1)′Γn(θ1)−1γn(θ1)− γn(θ2)′Γn(θ2)−1γn(θ2)

=
(
γn(θ1)− γn(θ2)

)′
Γn(θ1)−1γn(θ1) + γn(θ2)Γn(θ1)−1

(
γn(θ1)− γn(θ2)

)
+γn(θ2)′Γn(θ2)−1

[
Γn(θ2)− Γn(θ1)

]
Γn(θ1)−1γn(θ2),

which, in view of conditions (i), (ii) and (II.6.4), readily implies that

DjM1n(θ) = [Djγn(θ)]′Γn(θ)−1γn(θ) + γn(θ)′Γn(θ)−1[Djγn(θ)]

−γn(θ)′Γn(θ)−1[DjΓn(θ)]Γn(θ)−1γn(θ).

Next using similar arguments for the second derivation (which is now given by nine

terms), one can complete the proof of the lemma. We omit the details.

Lemma II.6.2. Suppose that there exists κ,C ∈ (0,∞) such that

(i) Eθ|X1|4+κ < C,

(ii) lim supn→∞Eθ‖θ̂n − θ‖8 < C
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(iii) lim supn→∞ ‖γn(θ)‖ < C, and

(iv) ‖f−1
θ ‖∞ < C

for all θ ∈ Θ. Then, supθ∈Θ

[∣∣∣M3n(θ)−n−1µ3n(θ)
∣∣∣+ ∣∣∣M2n(θ)−n−1µ2n(θ)

∣∣∣] = o(n−1).

Proof Note that on the set An ≡ {‖θ − θ̂n‖ ≤ ε},

[λn(θ̂n)− λ(θ)]Xn

= [θ̂n − θ]′[∆λn(θ)]Xn +
∑
|a|=2

[θ̂n − θ]aDaλ(θ1)Xn/a!

where θ1 is a point in An. Hence,∣∣∣M3n(θ)− Eθ
(

[θ̂n − θ]′∆λn(θ)Xn

)2∣∣∣
≤ C(p) sup{|Daλ(t)||‖t− θ‖ ≤ ε, |a| = 2}Ėθ‖θ̂n − θ‖4‖Xn‖211(An)

+Eθ

(
[|λn(θ̂n)Xn|+ |λn(θ)Xn|] · 11(‖θ̂n − θ‖ ≥ δ)

)2

≡ I1 + I2 + I3, say.

First consider I2. Let Xn,i = (X1,i, . . . , Xn,i)
′, i = 1, 2 where Xj,1 = Xj11(|Xj| ≤ cn)

and Xj,2 = Xj −Xj,1, 1 ≤ j ≤ n, where cn = n1/2−κ/16. By (iii) and (iv), there exists

c0 ∈ (0,∞) such that ‖λn(θ)‖2 = γn(θ)′Γ(θ)−2γn(θ) < c2
0 for all θ ∈ Θ, for n large.

Hence, we have, for any ε > 0,

Eθ

(
[λn(θ̂n)Xn] · 11(‖θ̂n − θ‖ ≥ ε)

)2

≤ 2Eθ

(
[λn(θ̂n)′Xn,1] · 11(Acn)

)2

+ 2Eθ

(
λn(θ̂n)′Xn,2

)2

≤ 2c2
0

[∣∣∣Eθ( n∑
i=1

[X2
i,1 − EθX2

1,1]11(Acn)
)∣∣∣+ nEθX

2
1,1Pθ(A

c
n)
]

+ 2c2
0Eθ‖Xn,2‖2

≤ Cc2
0

[(
n
∞∑
i=1

|cov(X2
1,1, X

2
i,1)|
)1/2(

Pθ(A
c
n)
)1/2

+ nEθX
2
1Pθ(A

c
n)

+EθX
2
1 11(|X1| > cn)

]
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≤ Cc2
0n
−1−ε

for some ε = ε(κ) > 0. By similar arguments, I3 ≤ Cc2
0n
−1−ε. Also,

I1 ≤ CEθ‖θ̂n − θ‖4‖bfXn‖211(An)

≤ Eθ

(
‖θ̂n − θ‖4

[ n∑
i=1

(X2
i,1 − EθX2

i,1) + nEθX
2
1,1 +

n∑
i=1

(X2
2,1

]
11(An)

)
≤ CEθ

(
‖θ̂n − θ‖811(An)

)1/2(
n
∞∑
i=1

|cov(X2
1,1, X

2
i,1)|
)1/2

+CnEθX
2
1Eθ‖θ̂n − θ‖411(An) + Cn(EθX

4
2,1)1/2(Eθ‖θ̂n − θ‖811(An))1/2

≤ Cc2
0n
−1−ε

for some ε = ε(κ) > 0.

The proof of the second relation follows by repeating the same arguments, and there-

fore, it is omitted.

Lemma II.6.3. For j ≥ 1 and 1 ≤ k ≤ 4, let ξkj be a σ〈Xj〉-measurable zero-mean

random variable such that for some δ, c1 ∈ (0,∞), Eθ|ξkj|4+δ < c1 for all j, k and∑∞
n=1 n

3α(n; θ)
δ

4+δ < c1 for all θ ∈ Θ. Let {ekjn : 1 ≤ j ≤ n}n≥1 ⊂ IR be such that∑n
j=1 e

2
kjn = O(1) for 1 ≤ k ≤ 4. Then there exists a constant C1 (depending on c1,

but not on θ) such that

lim sup
n→∞

{∣∣∣Eθ[( n∑
i=1

ξ1i

) 3∏
k=2

( n∑
i=1

ekjnξki

)]∣∣∣+ Eθ

[ 4∏
k=1

( n∑
i=1

ekjnξki

)]}
< C1

for all θ ∈ Θ.

Proof We shall give a proof of the bound on the second term only; the proof of

the bound on the first term is similar (and somewhat simpler). Clearly, for any

1 ≤ k, l ≤ 4,

Eθ

( n∑
i=1

ekinξki

)( n∑
j=1

eljnξlj

)
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≤
n−1∑
|m|=0

∑
{(i,j): i−j=m,1≤i,j≤n}

ekineljnEθξkiξlj

≤
n−1∑
|m|=0

∑
{(i,j): i−j=m,1≤i,j≤n}

|ekineljn|
(
Eθ|ξki|2+δ

) 1
2+δ
(
Eθ|ξlj|2+δ

) 1
2+δ
α(|m|; θ)

δ
2+δ

≤
n−1∑
|m|=0

[ n∑
i=1

e2
kin

]1/2[ n∑
i=1

e2
lin

]1/2

C(c1, δ)α(|m|; θ)
δ

2+δ

≤ C(c1, δ)
n−1∑
m=0

α(m; θ)
δ

2+δ .

Let K4(V1, V2, V3, V4) denote the fourth order (mixed) cumulant of a set of random

variables V1, V2, V3, V4 under θ, defined by

K4(V1, V2, V3, V4; θ) =
∂

∂v1

∂

∂v2

∂

∂v3

∂

∂v4

Eθ exp(
√
−1[v1V1+v2V2+v3V3+v4V4])

∣∣∣
v1=...=v4=0

.

Then, by using multi-linearity of K4(·), it follows that

Eθ

[ 4∏
k=1

( n∑
i=1

ekjnξki

)]
≤

∣∣∣K4(
n∑
i=1

e1jnξ1i, . . . ,
n∑
i=1

e4jnξ4i)
∣∣∣

+
∑

I⊂{1,2,3,4},|I|=2

∣∣∣K2(
n∑
i=1

ekjnξki, k ∈ I)(
n∑
i=1

ekjnξki, k ∈ Ic)
∣∣∣.

Note that

|K2(
n∑
i=1

ekjnξ1i, k ∈ I)|

≤
∏
k∈I

[
var
( n∑
i=1

ekinξki

)]1/2

≤
∏
k∈I

[ n∑
i=1

e2
kinEθ(ξki)

2 + 2
n−1∑
j=1

( n−j∑
i=1

e2
kin

)1/2( n∑
i=j+1

e2
kin

)1/2

|cov(ξki, ξk(i+j))|
]1/2

= O(1) uniformly in θ ∈ Θ.
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Next writing ěin = max{|ekin| : k = 1, 2, 3, 4}, 1 ≤ i ≤ n, and writing
∑

b for the sum

over all i1, . . . , i4 ∈ {1, . . . , n} with maximal gap b, 0 ≤ b ≤ n− 1, we have,∣∣∣K4(
n∑
i=1

e1jnξ1i, . . . ,

n∑
i=1

e4jnξ4i)
∣∣∣

≤ C

n−1∑
b=0

∑
b

4∏
k=1

|ekikn||K4(ξ1i1 , . . . , ξ4i4)|

≤ C

n−1∑
b=0

∑
b

4∏
k=1

|ekikn|c
4

4+δ

1 α(b; θ)
δ

4+δ

≤ C(c1, δ)
n−1∑
b=0

[ n∑
i=1

ěin

{ ∑
|ik−i|≤b,k=1,2,3

3∏
k=1

ěikn

}]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
n−1∑
b=0

[ n∑
i=1

ěin

3∏
k=1

b1/2
( ∑
|ik−i|≤b

ě2
ikn

)1/2]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
n−1∑
b=0

b3/2
[{ n∑

i=1

ě2
in

}1/2{ n∑
i=1

3∏
k=1

( ∑
|ik−i|≤b

ě2
ikn

)}1/2]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
n−1∑
b=0

b3/2
[{ n∑

i=1

ě2
in

}1/2{(
b

n∑
i=1

ěin

)(
bmax{ě2

in : 1 ≤ i ≤ n}
)2

}
]
α(b; θ)

δ
4+δ

≤ C(c1, δ)
[ n−1∑
b=0

b3α(b; θ)
δ

4+δ

]
×
[ ∞∑
n=1

n3α(n; θ)
δ

4+δ

]
×
[

max{ě2
in : 1 ≤ i ≤ n}

)2

}
]

= O(1) uniformly in θ ∈ Θ.

II.6.2. Proofs of the main results

Proof of Theorem II.2.1 It is enough to show that,

|M1n(θ̃n)−M1n(θ0)|+
3∑
i=2

(
|Min(θ̃n)|+ |Min(θ0)|

)
= op(1). (II.6.1)

Note that by (C.2) and the condition θ̃n
p→ θ0, |M1n(θ̃n)−M1n(θ0)| = op(1) if,

γn(θ̃n)
′
Γ−1
n (θ̃n)γn(θ̃n)− γ(θ0)

′
Γ−1
n (θ0)γn(θ0) = op(1). (II.6.2)



29

It is easy to check that the absolute value of the right side of (II.6.1) is bounded above

by

|γn(θ̃n)
′
(Γ−1

n (θ̃n)− Γ−1
n (θ0))γn(θ̃n)|

+2‖γn(θ̃n)− γn(θ0)‖‖Γ−1
n (θ0)‖

(
‖γn(θ̃n)‖+ ‖γn(θ0)‖

)
≡ I1n + I2n, say. (II.6.3)

By using the standard isometric isomorphism between `2(ZZ) and L2(0, 2π) through

the Fourier-Plancherel transform (see Bhatia (2003), Rudin (1987)), we have,

‖Γ−1
n (θ)‖ ≤ C‖f−1

θ ‖∞

‖Γn(θ1)− Γn(θ2)‖ ≤ C‖fθ1 − fθ2‖∞, for all θ1, θ1 ∈ Θ, n ≥ 1. (II.6.4)

By (II.6.4) and conditions (C.2) and (C.3),

I1n = |γn(θ̃n)
′
Γ−1
n (θ0)(Γn(θ̃n)− Γn(θ0))Γ−1

n (θ̃n)γn(θ̃n)|

≤ ‖γn(θ̃n)‖2‖Γ−1
n (θ0)‖‖Γn(θ̃n)‖‖Γn(θ̃n)− Γn(θ0)‖

= op(1).

By similar arguments, on the set {‖θ̃n − θ0‖ < ε}, (0 < ε < δ),

I2
2n ≤ C‖γn(θ̃n)− γn(θ0)‖2

= C

[
M−1∑
j=0

|gj(θ̃n)− gj(θ0)|2 +
n−1∑
j=M

|gj(θ̃n)− gj(θ0)|2
]

≤ C

[
M−1∑
j=0

sup
‖x‖≤ε

|gj(θ0 + x)− gj(θ0)|+
∞∑
j=M

sup
θ∈Θ0

|gj(θ)|

]
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Given any η > 0, there exist M ≥ 2, such that,
∑∞

j=M supθ∈Θ0
|gj(θ)| < η

[3C]
. Next,

given M ≥ 1 and η > 0, there exists ε ∈ (0, δ) such that

sup
‖x‖≤ε

|gj(θ0 + x)− gj(θ0)| < η

3MC
, for all j = 0, . . . ,M.

Hence,

P (I2
2n > η) ≤ P (‖θ̃n − θ0‖ > ε) + P (I2

2n > η, ‖θ̃n − θ0‖ < δ)

≤ P (‖θ̃n − θ0‖ > ε) + 0 for large n

= o(1).

By similar arguments,

P (M3n(θ̃n) > ε) ≤ P (sup{M3n(θ) : θ ∈ Θ0} > ε, θ̃n ∈ Θ0 + P (θ̃n 6∈ Θ0)

= o(1).

Since M2n(θ) ≤ 2
[
M1n(θ)M3n(θ)

]1/2

for all θ, the theorem is proved.

Proof of (II.3.6) Note that by Lemma II.6.3, sup{|µ̃3n(θ)| : θ ∈ Θ} = O(1). Hence,

noting that sup{(Eθ‖Rn‖8)1/8 : θ ∈ Θ} = O(dn) = o(n−1/2), it is enough to show that

sup
{∣∣∣µ̃3n(θ)−Eθ

([
n−1/2β0(θ)+n−1/2

n∑
i=1

ξi

]′
∆λn(θ)Xn

)2∣∣∣ : θ ∈ Θ
}

= o(1). (II.6.5)

Now expanding the second term and applying the first part of Lemma II.6.3, one can

conclude that the left side of (II.6.5) is in fact O(n−1). This completes the proof of

(II.3.6).

Proof of Theorem II.3.1 By (C.1), there exists C ∈ (0,∞) such that sup{|M (1)
1n (θ)|−1

: θ ∈ Θ0, j, l = 1, · · · , p;n ≥ 1} < C. Let

D̂n =

p∑
j=1

M
(j)
1n (θ̂n)β̂n,j +

p∑
j=1

p∑
l=1

w(j, l)M
(j,l)
1i (θ̂n)Σ̂n(j, l)
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D̃n =

p∑
j=1

M
(j)
1i (θ0)β̂n,j +

p∑
j=1

p∑
l=1

w(j, l)M
(j,l)
1i (θ0)Σ̂n(j, l),

n ≥ 1, where w(j, l) = 1/2 for j 6= l and w(j, l) = 1 for j = l. Then by Taylor’s

expansion, it follows that there exists a constant C ∈ (0,∞) such that on the set

{θ̂ ∈ Θ0},

D̂n = D̃n +R1n, and rn = − D̃n

M
(1)
1n (θ0)

e1 +R2ne1 (II.6.6)

where |R1n| ≤ C
{
‖β̂n‖.‖θ̂n− θ0‖+ ‖θ̂n− θ0‖γ‖Σ̂n‖

}
and |R2n| ≤ C

{
|D̂n|.‖θ̂n− θ0‖+

|R1n|
}

.

Let A1n ≡ {θ̂n ∈ Θ0} ∩ {θ̂n + rn ∈ Θ}. Using similar arguments, on the set A1n,

for all u ∈ [0, 1], we have

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1n (θ̂n + urn)

(
[θ̂n + rn]− θ0

)ej+el
=

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1n (θ0)

(
θ̂n − θ0

)ej+el
+R3n(u)

where supu∈[0,1] |R3n(u)| ≤ C
[
‖(θ̂n + rn)− θ0‖2+γ + ‖ (θ̂n + rn)− θ0‖ · ‖θ̂n − θ0‖

+‖rn‖2] for some C ∈ (0,∞).

Next define the set A2n = A1n ∩ {θ̂n + rn ∈ Θ0}. Then, on A2n = {θ̂n, θ̂n + rn ∈

Θ0}, by Taylor’s expansion, there exists a point θ†n on the line joining θ̂n + rn and θ0

such that

M1i(θ̂n + rn)−M1i(θ0)

=

p∑
j=1

M
(j)
1n (θ0)

{
[θ̂n + rn]− θ0

}ej
+

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1i (θ†n)

{
[θ̂n + rn]− θ0

}ej+el
=

p∑
j=1

M
(j)
1n (θ0)

(
θ̂n − θ0

)ej
+M

(1)
1n (θ0)

(
− D̃n

M
(1)
1n (θ0)

+R2n

)

+

p∑
j=1

p∑
l=1

w(j, l)M
(jl)
1n (θ0)

{
θ̂n − θ0

}ej+el
+R†3n



32

=

p∑
j=1

M
(j)
1n (θ0)

{(
θ̂n − θ0

)ej
− β̂n,j

}

+

p∑
j=1

p∑
l=1

w(j, l)M
(j,l)
1i (θ0)

{(
θ̂n − θ0

)ej+el
− Σ̂n(j, l)

}
+M

(1)
1n (θ0)R2n +R†3n

≡ Q1n +M
(1)
1n (θ0)R2n +R†3n, say (II.6.7)

where R†3n = R3n(u) with the u corresponding to θ†n.

Hence, on the set A3n ≡ {|M (1)
1n (θ̂n)|−1 ≤ (1 + log n)2},

M1n(θ̌n)−M1n(θ0)

= [M1n(θ̂n + rn)−M1n(θ0)]11
({

θ̂n + rn ∈ Θ
}
∩ A3n

)
+[M1n(θ̂n)−M1n(θ0)]11

({
θ̂n + rn /∈ Θ

}
∪ Ac3n

)
= [M1n(θ̂n + rn)−M1n(θ0)]

{
11(A2n) + 11(θ̂n + rn ∈ Θ)− 11(A2n)

}
11(A3n)

+[M1n(θ̂n)−M1n(θ0)]11
({

θ̂n + rn /∈ Θ
}
∪ Ac3n

)
≡

[
Q1n +M

(1)
1n (θ0)R2n +R†3n

]
11(A2n ∩ A3n) +R4n, say

≡ Q1i +R5n, say, (II.6.8)

where |R5n| ≤ |R4n|+ |R2n +R†3n|11(A2n) + |Q1n|11(Ac2n ∩ Ac3n) and

|R4n| ≤
∣∣∣M1n(θ̂n + rn)−M(θ0)

∣∣∣ · ∣∣∣11(θ̂n + rn ∈ Θ)− 11(A2n)
∣∣∣11(A3n)

+
∣∣∣M1n(θ̂n −M1n(θ0)

∣∣∣11({θ̂n + rn /∈ Θ0} ∪ Ac3n)

≡ R41n, say.

Note that by definition,∣∣∣11(θ̂n + rn ∈ Θ)− 11(A2n)
∣∣∣

≤ 11(θ̂n + rn ∈ Θ)11(Ac2n) + 11(θ̂n + rn /∈ Θ)11(A2n)

≤ {11(θ̂n /∈ Θ0) + 11(θ̂n + rn ∈ Θ \Θ0)}+ 11(∅).
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Hence, with Ac4n ≡ {θ̂n + rn /∈ Θ0} ∩ A3n,

R41n ≤
∣∣∣M1n(θ̂n + rn)−M1n(θ̂n)

∣∣∣11(A3n){11(θ̂n /∈ Θ0) + 11(θ̂n + rn ∈ Θ \Θ0)}

+2
∣∣∣M1n(θ̂n)−M1n(θ0)

∣∣∣{11(θ̂n /∈ Θ0) + 11
(
{θ̂n + rn /∈ Θ0} ∩ A3n

)
+11(Ac3n)

}
≤ C‖rn‖11(A3n)

{
11(θ̂n /∈ Θ0) + 11(θ̂n + rn ∈ Θ \Θ0)

}
+C‖θ̂n − θ0‖

{
11(θ̂n /∈ Θ0) + 11(Ac4n) + 11(Ac3n)

}
≤ C · (log n)2{‖β̂n‖+ ‖Σ̂n‖}{11(θ̂n /∈ Θ0) + 11(Ac4n)}

+C · ‖θ̂n − θ0‖
{

11(θ̂n /∈ Θ0) + 11(Ac4n) + 11(Ac3n)
}
. (II.6.9)

By condition, there exist C ∈ (0,∞) and ε1 ∈ (0, ε0
2

) such that

Ac4n ⊂ {‖θ̂n − θ0‖ >
ε0
2
} ∪ {‖rn‖ >

ε0
2
}

⊂ {‖θ̂n − θ0‖ > ε1} ∪ {(log n)2(‖β̂n‖+ ‖Σ̂n‖) > C} (II.6.10)

and Ac3n ⊂ {‖θ̂n − θ0‖ > ε1} for all n ≥ 1. Hence, it follows that

R41n ≤ C · (log n)2{‖β̂n‖+ ‖Σ̂n‖}
[
11(‖θ̂n − θ0‖ > ε1)

+11
(

[log n]2(‖β̂n‖+ ‖Σ̂n‖) > C
)]

+ C · ‖θ̂n − θ0‖
[
11(‖θ̂n − θ0‖ > ε1)

+11
(

[log n]2(‖β̂n‖+ ‖Σ̂n‖) > C
)]

(II.6.11)

for all n ≥ 1. Let Wn = (n‖β̂n‖ + n‖Σ̂n‖). Note that by uniform integrability of

{(
√
n‖θ̂ − θ‖)2}m≥1 and the fact that E | Wn |1+η= O(1),

E(R41n)

≤ Cn−1(log n)2
[(
E | Wn |1+η

) 1
1+η
(
P (‖θ̂n − θ0‖ > ε1

) η
1+η

+E | |Wn |1+η {n−1(log n)2}η
]

+C
[
ε−1

1 E‖θ̂n − θ0‖211(‖θ̂n − θ0‖ > ε1)
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+
(
E‖θ̂n − θ0‖2

)1/2{
P (n−1(log n)2|Wn| > C)

} 1
2
]

= o(n−1) as m→∞. (II.6.12)

This proves the first part of Theorem II.3.1.

Next we consider the bound on the variance of the tilted MSPE estimator. Since

sup{|Mkn(θ)|2 : θ ∈ Θ} = O(n−2) for k = 2, 3, by Cauchy-Schwarz inequality, it is

enough to show that

Var
(
M1n(θ̌n)

)
= O(n−1). (II.6.13)

By Taylor’s expansion,

M1n(θ̌n) = M1n(θ0) +

p∑
j=1

M
(j)
1n (θ0)[θ̌n − θ0]ej +R6n

where |R6n| ≤ C(p)∆‖θ̌n − θ0‖2 and ∆r = lim supn→∞ sup{|Mα
1n(θ)| : θ ∈ Θ, |α| =

r}, r = 1, 2. Also, let A5n = {θ̂n + rn ∈ Θ, |M (1)
1n (θ̂n)|−1 ≤ (1 + log n)2}. Thus, it

follows that

ER2
6n ≤ C(p,∆2)E‖θ̌n − θ0‖4

= C(p,∆2)
[
E‖θ̂n + rn − θ0‖411(A5n) + E‖θ̂n − θ0‖411(Ac5n)

]
≤ C(p,∆2)23

[
E‖θ̂n − θ0‖4 + E‖rn‖411(A5n)

]
≤ C(p,∆0,∆1,∆2)

[
E‖θ̂n − θ0‖4 + (1 = log n)8n−4

]
= O(n−2). (II.6.14)

By similar arguments and Cauchy-Schwarz inequality,

E
[
θ̌n − θ0

]ei+ej
= E

[
θ̂n − θ0

]ei+ej
+O

(
E‖rn‖211(A5n) +

{
E‖θ̂n − θ0‖2

}1/2{
E‖rn‖211(A5n)

}1/2

= O(n−1) +O(n−3/2[log n]2].
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Hence, it follows that

Var
( p∑
j=1

M
(j)
1n (θ0)[θ̌n − θ0]ej

)
=

p∑
i=1

p∑
j=1

M
(i)
1n (θ0)M

(j)
1n (θ0)cov

(
[θ̌n − θ0]ei , [θ̌n − θ0]ej

)

=

p∑
i=1

p∑
j=1

M
(i)
1n (θ0)M

(j)
1n (θ0)cov

(
[θ̌n − θ0]ei , [θ̌n − θ0]ej

)
= O(n−1). (II.6.15)

Hence, by (II.6.14), (II.6.15), and Cauchy-Schwarz inequality, (II.6.13) follows. This

completes the proof of Theorem II.3.1.

Proof of Proposition II.4.1 For b = 1, . . . , B, let Υ∗b1j = Ψ̃∗bn (θ̂n + anej)−Ψ∗bn (θ̂n +

anej) and let Υ∗b2j be defined by replacing θ̂n + anej by θ̂n − anej in Υ∗b1j, 1 ≤ j ≤ p.

Then, by Taylor’s expansion∣∣∣E∗M∗(j)
1n (θ̂n)−M1n(θ̂n)

∣∣∣
=

∣∣∣(2an)−1
[
M1n(θ̂n + anej)−M1n(θ̂n − anej)

]
−M1n(θ̂n)

∣∣∣
≤ Can sup{M1n(θ) : θ ∈ Θ}.

Next, by (conditional) independence of {Υ∗bkj : b = 1, . . . , B}, k = 1, 2,

var∗([2Ban]−1

B∑
b=1

[Υ∗b1j −Υ∗b2j]) = O(a−2
n B−1), k = 1, 2.

This proves the first part of Proposition II.4.1. The proof of the second part is similar

and hence, is omitted.

Proof of Proposition II.4.2 Similar to the proof of Proposition II.4.1 and hence is

omitted.
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CHAPTER III

ASYMPTOTIC PROPERTIES OF DISCRETE FOURIER TRANSFORMS FOR

SPATIAL DATA

III.1. Introduction

In recent years, there has been a surge of research interest in the analysis of spatial

data using the frequency domain approach; see for example, Hall and Patil (1994), Im

et al. (2007), Fuentes (2002, 2005, 2007), and the references therein. At a heuristic

level, the popularity of the frequency domain approach lies in the fact that for equi-

spaced time series data, the discrete Fourier transform (DFT) of the observations are

asymptotically independent (see Kawata (1966,1969), Fuller (1976) and Brockwell and

Davis (1991), Lahiri (2003c)). As a result, it allows one to avoid accounting for the

dependence in the data explicitly. However, validity of the asymptotic independence

of the DFTs for spatial data remains largely unexplored. In contrast to the time

series case where observations are usually taken at a regular interval of time and

asymptotics is driven by the unidirectional flow of time, for random processes observed

over space, several different types of spatial sampling designs and spatial asymptotic

structures are relevant for practical applications. For example, image data are equi-

spaced in the plane, but locations of the drilling-sites for mineral ores in a mine are

usually irregularly spaced. Thus, the type of asymptotics that are appropriate in

these applications are inherently different. In this chapter, we investigate in detail

the asymptotic properties of the DFT for equi-spaced as well as irregularly spaced

spatial data under different types of spatial asymptotic structures.

For spatial data, there are two basic types of spatial asymptotic structures (see
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Cressie (1993)): (i) pure increasing domain (PID) and (ii) infill. When the neigh-

boring data-sites remain separated by a minimum positive distance (in the limit)

and the sampling region becomes unbounded with the sample size, one gets the PID

asymptotic structure. This is the most common framework used for studying the large

sample properties in the spatial case and may be considered as the spatial analogue of

the asymptotic structure used in the time-series case. In contrast, when the sampling

region remains bounded and the data-sites fill in the sampling region increasingly

densely, one gets the infill asymptotic structure. This kind of asymptotic framework

is mainly used in Mining and other Geostatistical applications. In some situations,

a combination of these two frameworks, called the mixed increasing domain (MID)

asymptotic structure is used (see Hall and Patil (1994)). Under MID asymptotics,

the sampling region becomes unbounded and at the same time, the distances between

the neighboring sampling sites tend to zero, as the sample size increases.

In this work, we study the asymptotic joint distribution of a finite collection of

DFTs of spatial data under the PID and MID asymptotic structures. It has been

noted that the large sample behaviors of many standard inference procedures under

the infill asymptotics are noticeably different from what can be obtained under the

PID or MID asymptotic frameworks; See, for example, Cressie (1993), Lahiri (1996),

Loh (2005), Stein (1999), Ying (1993) and the references therein. Indeed, unlike the

PID and MID cases, the asymptotic distributions of the DFTs under infill asymptotics

are typically non-normal and the DFTs are typically asymptotically dependent for

the general class of underlying spatial processes considered here. As a result, we do

not consider the case of pure infill asymptotics here and concentrate only on the PID

and MID asymptotic structures for regularly (gridded) and irregularly spaced spatial

data.

To describe the main results of the chapter, let {Z(s) : s ∈ IRd} be a zero
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mean stationary random field which is observed at finitely many locations SN =

{si : i = 1, . . . , N} in the sampling region D ⊂ IRd. We shall assume that in the equi-

spaced case, the data-sites {si : i = 1, . . . , N} lie on a scaled version of the integer

grid (call it Zd), while in the irregularly spaced spatial data case, the data-sites are

generated by a stochastic sampling scheme. The Discrete Fourier Transform (DFT)

of {Z(s1), . . . , Z(sN)} is given by,

dN(ω) = N−1/2

N∑
j=1

Z(sj) exp
(
ιω
′
sj

)
, ω ∈ IRd, (III.1.1)

where ι =
√
−1 and B

′
denote the transpose of a matrix B. For ω ∈ IRd, also define

CN(ω) = N−1/2

N∑
j=1

cos(ω
′
sj)Z(sj),

SN(ω) = N−1/2

N∑
j=1

sin(ω
′
sj)Z(sj), (III.1.2)

the cosine and the sine transforms of the data. Then, dN(ω) = CN(ω) + ιSN(ω). In

the deterministic case, the main findings of our work are:

(i) As in the time series case, under suitable regularity conditions, the asymptotic

joint distributions of finite collections of the sine and cosine transforms are

multivariate Gaussian.

(ii) DFTs at unequal nonzero limiting frequencies are asymptotically independent.

(iii) For sampling regions of a general shape and for DFTs at ordinates converging

to a common limiting frequency, asymptotic independence holds if and only if

the ordinates are asymptotically distant. In the PID case, we say that {ωjn}

and {ωkn} are asymptotically distant if N1/d‖ωjn − ωkn‖ → ∞ as N →∞.

(iv) For two discrete Fourier frequency sequences {ω1n} and {ω2n} converging to
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the zero frequency, the corresponding sine and cosine transforms may exhibit

different behavior depending on whether the frequency sequences approach zero

at the same rate (asymptotically symmetrically close case) or at a different rate

(asymptotically close case). See Section III.3.1.3 for details.

(v) For sampling sites located on the d-dimensional integer grid, DFTs at all discrete

Fourier frequencies are asymptotically independent when the sampling region is

cubic. However, this is false for a sampling region of a general shape (including

spheres, hyper-rectangles, etc.).

(vi) For sampling sites on a scaled version of Zd and a rectangular sampling region,

asymptotic independence holds, provided the grid-increment in each direction

is inversely proportional to the sides of the sampling region.

Thus, although in the deterministic case the sampling sites are located on a

regular grid, it turns out that the geometry of the sampling region plays an important

role in determining the asymptotic independence of the DFTs. The main tool used

in the regular-grid case is a discrete version of the Riemann-Lebesgue Lemma (see

Section III.6) that may be of some independent interest. For more details on the

properties of the DFTs based on regularly spaced spatial data, see Section III.3.

Next we consider the case of DFTs based on irregularly spaced data-locations,

specified by a stochastic design. The main findings in this case are:

(i) As in the deterministic case, under suitable regularity conditions, the asymp-

totic joint distributions of finite collections of the sine and cosine transforms are

multivariate Gaussian. However, the asymptotic covariance critically depends

on the spatial sampling density and the spatial asymptotic structure (PID vs

MID); We give a complete description of their effects on the resulting limit

distributions.
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(ii) DFTs at unequal nonzero limiting frequencies are asymptotically independent,

but for a general sampling density, DFTs at ordinates converging to a common

limiting frequency, asymptotic independence holds if and only if the ordinates

are asymptotically distant. Thus, although the data-sites are irregularly spaced,

the asymptotic behavior of the DFTs remains similar to that for regularly spaced

spatial data. This is rather surprising and contrary to the folklore about lack

of independence of DFTs for irregularly spaced time series data.

(iii) For a hyper-rectangular sampling region and a uniform sampling density, asymp-

totic independence of DFTs holds even for asymptotically close frequency se-

quences. See Section III.4 for more details.

There are several important implications of the main results on asymptotic in-

dependence of the DFTs in the context of statistical inference for spatial data in the

frequency domain, particularly under PID in the stochastic design case. For exam-

ple, the usual formulation of the frequency domain bootstrap (FDB) (see Franke and

Hardle (1992)), which makes use of the asymptotic independence of the full set of

DFTs, may not work for spatial data when the sampling region is non-rectangular.

Similarly, the popular nonparametric estimator of the covariance function of Hall and

Patil (1994) for irregularly spaced spatial data will have a nontrivial bias under PID

asymptotic structure and hence, will be inconsistent. See Section III.5 for further

discussion and details.

The rest of the chapter is organized as follows. In Section III.2, we introduce

the theoretical framework for studying the asymptotic distributions of the DFTs for

equi-spaced and irregularly spaced spatial data. In Section III.3, we present the main

results for the equi-spaced case under the PID and MID asymptotic structures, while

in Section III.4, we do the same for the stochastic design case. In Section III.5, we
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discuss various implications of the main results in the context of frequency domain

statistical inference for spatial data. Proofs of the two cases require qualitatively

different arguments and are presented in Sections III.6 and III.7, respectively.

III.2. Theoretical framework

We will follow the spatial asymptotic framework of Lahiri (2003b). Denote the vari-

able driving the asymptotics by n. In Section III.2.1, we give a formulation for the

sampling region which is common to both deterministic and stochastic design cases.

The descriptions of the two spatial designs for the regularly- and irregularly-spaced

data-sites are next given in Sections III.2.2 and III.2.3, respectively. Regularity con-

ditions on the random field {Z(·)} are given in Section III.2.4.

III.2.1. Sampling region

Let D0 be the prototype set for the sampling region D ≡ Dn, satisfying D̃0 ⊂ D0 ⊂

closure(D̃0) for some open connected subset D̃0 of (−1/2, 1/2]d containing the origin.

The sampling region {Dn : n ≥ 1} is obtained by multiplying the prototype set D0

by λn, where {λn}n≥1 ⊂ [1,∞) is a sequence of real numbers such that λn ↑ ∞ as

n→∞, i.e.,

Dn = λnD0.

It may be noted that under this formulation of the sampling region, we can consider

sampling regions of a variety of shapes, such as polygonal, ellipsoidal, and star-shaped

regions that can be non-convex. Also to avoid pathological cases, we suppose that for

any sequence of real numbers {bn}n≥1 such that bn → 0+ as n → ∞, the number of

cubes of the form bn(j + [0, 1)d), j ∈ Zd that intersects both D0 and Dc0 is of the order

O([bn]−(d−1)) as n→∞. This boundary condition holds for most regions of practical
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interest.

III.2.2. Sampling design for regularly-spaced data-sites

To describe the deterministic design case, we define first a d × d diagonal matrix ∆

with finite positive diagonal elements δk, k = 1, · · · , d and let Zd = {∆i : i ∈ Zd}.

Thus, the lattice Zd has an increment δk in the kth direction, k = 1, · · · , d. For

the PID, we suppose that the random process Z(s) is observed at the sampling sites

{s1, · · · , sNn} defined by

{s1, · · · , sNn} = {s ∈ Zd : s ∈ Dn} = Dn ∩ Zd.

Note that under the PID, the sampling sites are separated by a minimum distance

δ0 ≡ min{δk : k = 1, . . . , d} for all n, the sampling region Dn grows to IRd as n→∞

and the sample size Nn satisfies the relation

Nn ∼ vol.[∆−1D0]λdn, (III.2.1)

where vol.[A] denotes the volume (i.e., the Lebesgue measure) of a set A in IRd and

for two positive sequences {sn} and {tn} we write, sn ∼ tn if limn→∞ sn/tn = 1.

Next we describe the MID structure in the fixed design case. Let {ηn}n≥1 be a

sequence of non-increasing positive real numbers such that ηn ↓ 0 as n → ∞. We

suppose that the random process Z(s) is observed at the sampling sites {s1, · · · , sNn},

defined by

{s1, · · · , sNn} = {s ∈ ηnZd : s ∈ Dn} = Dn ∩ ηnZd.

Thus, the data-sites {s1, · · · , sNn} are given by the points on the scaled lattice ηnZd

that lie in the sampling region Dn. In MID, the lattice ηnZd becomes finer as n→∞

and thus, fills any given region of IRd (and hence, of Dn) with an increasing density.
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Note that in MID case,

Nn ∼ vol.[∆−1D0]λdnη
−d, (III.2.2)

implying that under the MID structure, the sample size Nn is of a larger order of

magnitude than the volume of Dn, given by vol.[∆−1D0]λdn.

III.2.3. Stochastic sampling design - irregularly spaced case

Let f(x) be a continuous probability density function on D0 such that the support of

f(·) is the closure of D0. Let {Xk}k≥1 be a sequence of independent and identically

distributed (iid) random vectors with probability density f(x). In the stochastic

design case, for simplicity of notation, we will denote the sample size by n (Note that

in the fixed design case, sample size equals the size of Dn ∩ Zd which need not be

equal to n for a given prototype set D0 and for a given sequence {λn}, leading to

the notation Nn. But, due to the absence of a regular grid structure, this problem

does not appear in stochastic design case and we may simply use n to denote the

sample size). We suppose that in the stochastic design case, the sampling sites si’s

are obtained by the following relation

si ≡ sin = λnxi, 1 ≤ i ≤ n.

This formulation improves upon the standard approach to modeling the irregu-

larly spaced sampling sites {s1, · · · , sn} using the homogeneous Poisson point process.

For such process, the expected number of points in a region is proportional to the

volume of the region and given the total number of points in any region, the points

are independent and form a random sample from the uniform distribution over the

region. However, our formulation allows the number of sampling sites to grow at a

different rate than the volume of the sampling region and also allows the sampling

sites to have a non-uniform density over the sampling region.
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In the stochastic design case, the concepts of the PID and the MID structures

are determined by the relative growth rates of the sample size n and the volume of

the sampling region Dn (see Cressie (1993), Lahiri (2003b)). When n/λdn → c∗ for

some finite positive constant c∗, it is regarded as the PID asymptotic structure (see

(III.2.1)) under the stochastic design. On the other hand, if n/λdn → ∞ as n → ∞,

it corresponds to the MID case (see (III.2.2)).

III.2.4. Regularity conditions on the random field

Let IN = {1, 2, . . .} denote the set of all positive integers. For p ∈ IN , let Ip denote the

identity matrix of order p. In addition to the standard `2-distance ‖·‖, let ‖·‖1 denote

the `1 distance on IRd. We assume that {Z(s) : s ∈ IRd} is a weakly dependent random

field with an integrable autocovariance function ρ(s) = cov(Z(s), Z(0)). Then, the

Z(·)-process has a spectral density ψ on IRd satisfying

ρ(s) =

∫
exp(ιs′ω)ψ(ω)dω, s ∈ IRd. (III.2.3)

We also suppose that the random field Z(·) satisfies a spatial version of the strong

mixing condition, which is defined as follows: For E1, E2 ⊂ IRd, let

α1(E1, E2) = sup
Ai∈σZ(Ei),i=1,2

|P (A1 ∩ A2)− P (A1)P (A2)|,

where σZ(E) denotes the σ-algebra generated by the random variables {Z(s) : s ∈ E}.

Let δ(E1, E2) = inf{‖x− s‖1 : x ∈ E1, s ∈ E2}. For a > 0, b > 0, the mixing

coefficient of the random field {Z(·)} is defined as

α(a; b) = sup{α1(E1, E2) : Ei ∈ Cb, i = 1, 2, δ(E1, E2) ≥ a},

where Cb is the collection of d-dimensional sets with volume b or less. Note that in

the definition above, the sets E1, E2 are of finite volumes. For d ≥ 2, this is important
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(see Bradley, 1989, 1993); unbounded E1’s and E2’s in the definition of the strong

mixing coefficient makes the random field ρ-mixing (which is a smaller class). For

simplicity of exposition, we shall further assume that

α(a, b) ≤ γ1(a)γ2(b), a, b ∈ (0,∞), (III.2.4)

where, without loss of generality (w.l.g.), γ1(·) is a left continuous, non increasing

function satisfying limm→∞ γ1(m) = 0 and γ2(·) is a right continuous, non decreasing

function that is bounded for d = 1 (but it may be unbounded for d > 1) (see Lahiri

(2003b)). We shall use the following regularity conditions to prove the results.

(A.1) There exists a τ ∈ (0,∞) such that E|Z(s)|2+τ <∞ and
∫∞

1
ad−1γ1(a)τ/(2+τ)da

<∞ for some τ > 0.

(A.2) For d ≥ 2, γ2(b) = o (bκ) as b→∞, where, with τ is as in (A.1), κ = 2/3(τ − 1)

for τ ∈ (2,∞) and κ = 2/3 for τ ∈ (0, 2].

III.3. Results in the regularly-spaced case

III.3.1. Results under PID

III.3.1.1. Definition of the DFTs

For the PID asymptotic structure in the equi-spaced case, the discrete Fourier trans-

form (DFT) of {Z(s1), . . . , Z(sNn)} is given by,

dPn (ω) ≡ N−1/2
n

Nn∑
i=1

Z(si) exp
(
ιω
′
si

)
= N−1/2

n

∑
j∈Jn

Z(∆j) exp
(
ιω
′
∆j
)
, (III.3.1)
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where Jn = {j ∈ Zd : ∆j ∈ Dn} and where recall that ι =
√
−1 and B

′
denote the

transpose of a matrix B. Similarly, for ω ∈ IRd, we define

CP
n (ω) = N−1/2

n

∑
j∈Jn

Z(∆j)cos
(
ω
′
∆j
)
,

SPn (ω) = N−1/2
n

∑
j∈Jn

Z(∆j)sin
(
ω
′
∆j
)
, (III.3.2)

the cosine and the sine transforms of the data. Then, dPn (ω) = CP
n (ω) + ιSPn (ω).

Under the fixed design case with the PID asymptotic structure, the process Z(·) is

observed at regularly spaced locations on the grid Zd. In such a case, the spectrum

of the observations is concentrated within the frequency band

Π∆ ≡ ∆−1(−π, π]d = (−πδ−1
1 , πδ−1

1 ]× . . .× (−πδ−1
d , πδ−1

d ].

The whole frequency space IRd is partitioned into (hyper-)rectangles of volume (2π)d∏d
i=1 δ

−1
i , and the spectrum at a given point in the “principal band” Π∆ is obtained by

superimposing the spectra at congruent points from the partition {(i1πδ−1
1 ± πδ−1

1 ]×

. . .× (i1πδ
−1
d ± πδ

−1
d ] : (i1, . . . , id)

′ ∈ Zd}. Thus, it is easy to check that the spectral

density ψ∆ (say) of the Z(·)-process on the lattice Zd can be expressed in terms of

the spectral density ψ of the continuous stationary process Z(·) as

ψ∆(ω) =
∑
k∈Zd

ψ
(
ω + 2π∆−1k

)
, ω ∈ Π∆. (III.3.3)

It turns out that the asymptotic distribution of the DFTs in the fixed design PID case

depends on the spatial dependence structure of the random field Z(·) only through

ψ∆.
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III.3.1.2. Asymptotic distribution at nonzero frequencies

Next we investigate the asymptotic joint distribution of (dPn (ω1n), · · · , dPn (ωrn)) for a

finite collection of frequencies ω1n, . . . ,ωrn, 1 ≤ r <∞. In analogy to the equi-spaced

observations in the time series case, here we shall suppose that the ωjn’s are of the

form

ωjn = 2πλ−1
n ∆−1kjn, kjn ∈ Zd, and ωjn → ωj ∈ Π∆ as n→∞. (III.3.4)

The first result concerns the asymptotic joint distribution of the cosine and sine

transforms at ω1n, . . . ,ωrn in the case where ±ωj’s are distinct and nonzero elements

of Π0
∆, where Π0

∆ = (−πδ−1
1 , πδ−1

1 )× . . .× (−πδ−1
d , πδ−1

d ), is the interior of Π∆.

Theorem III.3.1. Suppose that, {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying assumptions (A.1) and (A.2). Also suppose that for j = 1, . . . , r,

r ∈ IN , {ωjn} are sequences of the form (III.3.4) such that ωj ∈ Π0
∆ \ {0} and

ωj ± ωk ∈ Π0
∆ \ {0} for all 1 ≤ j 6= k ≤ r. Then,

[CP
n (ω1n), SPn (ω1n), · · · , CP

n (ωrn), SPn (ωrn)]
′

d−→ N

0,


A1I2 02×2 · · · 02×2

· · · · · · · · · · · ·

02×2 02×2 · · · ArI2


 ,

where, with c0 = (1/2)(2π)d/[
∏d

i=1 δi], Aj = c0ψ∆(ωj) for j = 1, · · · , r and where

02×2 is the 2× 2 matrix of zeros.

Theorem III.3.1 implies that for each single sequence {ωjn} converging to a non-

zero frequency ωj ∈ Π0
∆, the corresponding sine and cosine transforms are asymp-

totically independent. Further, since the co-variance matrix of the limiting Gaussian

distribution is diagonal, any collection of disjoint subsets of the 2r cosine and sine
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transforms are also asymptotically independent. In particular, under the conditions

of the theorem, the DFTs (dPn (ω1n), · · · , dPn (ωrn)) are asymptotically independent

and their asymptotic distribution depends on the dependence structure of the spatial

process {Z(·)} only through the folded spectral density ψ∆(·).

Next we consider the case when the limit frequencies are not necessarily distinct.

In this case, the joint asymptotic normality continues to hold under the regularity

conditions of Theorem III.3.1 on the random field {Z(·)}. However, the asymptotic

independence of the DFTs may no longer hold. To state the main results in a trans-

parent manner, we shall restrict our attention to the case r = 2 with a common

nonzero limit frequency, although the conclusions do generalize to the case r > 2

in an obvious manner. Accordingly, consider the asymptotic joint distribution of

(dPn (ω1n), dPn (ω2n))
′
, with ωjn → ωj for j = 1, 2, where ω1 = ω2 = ω 6= 0. Let ω

(p)
1n

and ω
(p)
2n denote the p-th ordinate of the respective vectors ω1n and ω2n, p = 1, · · · , d.

The limit behavior of the DFTs can be different depending on the closeness of the

sequences {ω1n} and {ω2n}, as specified below:

Definition (i) We say that {ω1n} and {ω2n} are asymptotically distant if

|λn(ω
(p)
1n − ω

(p)
2n )| → ∞ as n→∞ for at least one p = 1, . . . , d. (III.3.5)

(ii) We say that {ω1n} and {ω2n} are asymptotically close if

λn(ω
(p)
1n − ω

(p)
2n )→ 2π∆−1`p as n→∞ for all p = 1, · · · , d

with ` = (`1, . . . , `d)
′ ∈ Zd and

∑d
p=1 |`p| 6= 0.

 (III.3.6)

Then we have the following result.

Theorem III.3.2. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1) and (A.2). Also, suppose that {ω1n} and {ω2n}

are two sequences satisfying (III.3.4) with ω1 = ω2 = ω where ω 6= 0 and 2ω ∈ Π0
∆.
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(a) (Asymptotically distant frequencies): Suppose that {ω1n} and {ω2n} satisfy

(III.3.5). Then,

[CP
n (ω1n), SPn (ω1n), CP

n (ω2n), SPn (ω2n)]
′ d−→ N [0,Σ] , (III.3.7)

where Σ = c0ψ∆(ω)I4, with c0 = 2−1[(2π)d/
∏d

i=1 δi].

(b) (Asymptotically close frequencies): Suppose that {ω1n} and {ω2n} satisfy

(III.3.6). Then, (III.3.7) holds with

Σ =


A1 0 A2 A3

A1 −A3 A2

A1 0

A1

,

where A1 = c0ψ∆(ω), A2 = c0ψ∆(ω)φ1(2π`), and A3 = c0ψ∆(ω)φ2(2π`).

Here, φ1(·) and φ2(·) respectively denote the real and the imaginary parts of the

characteristic function of the uniform distribution on ∆−1D0.

Theorem III.3.2 shows that for any two asymptotically distant sequences {ω1n}

and {ω2n} of frequencies, all four sine and cosine transforms are asymptotically inde-

pendent and hence, the corresponding DFT’s are asymptotically independent. How-

ever, for asymptotically close frequencies in the neighborhood of a nonzero frequency

ω, this may no longer be true. Theorem III.3.2 reveals some interesting behavior of

the sine and the cosine transforms in this case. From the form of the asymptotic

covariance matrix, it is clear that the sine and the cosine transforms along a given se-

quence of ordinates ωjn (with a fixed j ∈ {1, 2}) are asymptotically independent, but

any combination of sine and cosine transforms corresponding to different ordinates

(say, one at ωjn and the other at ωkn for j 6= k) may have a non-zero correlation in the

limit. Note that if ∆−1D0 is symmetric around zero (in the sense x ∈ ∆−1D0 implies

−x ∈ ∆−1D0), then the function φ2(·) is identically zero and the cross-correlation
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between the sine and cosine transforms vanish (A3 = 0). However, for sampling re-

gions of a general shape, the correlation between the two cosine transforms need not

vanish, and therefore, the DFTs along ω1n and ω2n are typically not asymptotically

independent.

Next consider the important special case, where ∆−1D0 is an integer multiple

of (−1/2, 1/2]d. In this case, both A2 = 0 and A3 = 0, and therefore, the cross-

correlation between the sine and the cosine transforms vanish in the limit. As a

result, the corresponding DFTs are asymptotically independent. Some instances of

this special case are:

(i) δi = 1 for all i = 1, . . . , d, and D0 = (−1/2, 1/2]d.

(ii) The prototype set D0 = (−a1, a1]× . . .× (−ad, ad] for some a1, . . . , ad ∈ (0, 1/2)

and δi = a−1
i for all i = 1, . . . , d.

Under (i), the spatial sampling sites lie on the integer grid Zd and the sampling

region is a (hyper-)cube in IRd. Here, the DFTs are asymptotically independent

even when the frequency sequences {ω1n} and {ω2n} are asymptotically close. The

behavior of the DFTs in this case is analogous to that for time series data observed

over equispaced time points. However, it turns out that the asymptotic independence

of the DFTs at asymptotically close frequencies can also hold for non-cubic regions

and for non-equispaced spatial data-sites. Instance (ii) above corresponds to a hyper-

rectangular sampling region. Here, the same conclusions as in Instance (i) are possible,

if for each i = 1, . . . , d, we set the grid increment δi in the ith direction as the inverse

of the length of the rectangular prototype set in the that direction.

To summarize the main implications of Theorem III.3.2, DFTs at asymptotically

distant frequencies are asymptotically independent, and the asymptotic independence

of DFTs may also hold for asymptotically close frequencies in certain special cases.
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However, for a non-rectangular sampling region, asymptotic independence of DFTs

at asymptotically close ordinates typically fails in the spatial case, even for regularly

spaced sampling sites. Thus, the shape of the sampling region and the sampling grid

plays an important role in determining the behavior of the DFTs in the spatial case,

which sets it apart from the familiar weakly dependent time series set up.

Remark There is a dual to Theorem III.3.2, where ω1 = −ω2 = ω and 2ω ∈

Π0
∆ \ {0}. In this case, conclusions similar to part (a) of Theorem III.3.2 hold if

‖λn(ω1n + ω2n)‖ → ∞. For λn(ω1n + ω2n) → 2π∆−1` for some ` ∈ ZZd \ {0}, the

asymptotic normality of the cosine and sine transforms as in (III.3.7) continues to

hold under (A.1) and (A.2), but with the following limiting covariance matrix:

Σ =


A1 0 A2 A3

A1 A3 −A2

A1 0

A1

 , (III.3.8)

where A1, A2, A3 are as in part (b) of Theorem III.3.2. In particular, for the spe-

cial cases (i) and (ii) of cubic and rectangular sampling regions considered above,

the asymptotic independence of the DFTs holds even for the asymptotically close

frequencies, but not necessarily for sampling regions of a general shape.

III.3.1.3. Asymptotic distribution for the zero limiting frequency

Next we consider the case where ωjn’s converge to the zero frequency. Here, some

extra care must be taken while studying the asymptotic behavior of the DFTs due to

the special role played by the zero frequency in the definitions of the sine and cosine

transforms. For the zero frequency limit, we shall suppose that the discrete Fourier
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ordinates ωn = 2πλ−1
n ∆−1kn satisfy the following regularity condition:

ωn = 2πλ−1
n ∆−1kn, kn ∈ Zd \ {0}, and ωn → 0 as n→∞. (III.3.9)

We rule out the choice kn = 0 in (III.3.9) in order to avoid some nonstandard asymp-

totic behavior of the DFTs. To appreciate why, suppose that kn = 0 along a sub-

sequence and kn 6= 0 along a different subsequence, but ωn → 0. Then the sine

transform is (identically) equal to zero along the first subsequence, but it has a non-

degenerate limit distribution along the other subsequence, thereby destroying the

convergence of the full sequence.

As before, for clarity of exposition, we restrict attention to the asymptotic dis-

tribution of the DFTs along two sequences of frequencies {ωjn}, j = 1, 2 satisfying

(III.3.9). The case of an arbitrary finite number of such frequency sequences can be

handled in a straightforward manner, with added notational complexity. In compar-

ison to a non-zero limit frequency, here we need to consider three situations arising

from the relative orders of magnitude of the sequences {ωjn}, j = 1, 2:

(i) ‖λn(ω1n ± ω2n)‖ → ∞

(ii) Exactly one of the sequences {‖λn(ω1n +ω2n)‖} and {‖λn(ω1n −ω2n)‖} tends

to infinity and the other has a finite limit.

(iii) Both sequences {‖λn(ω1n + ω2n)‖} and {‖λn(ω1n − ω2n)‖} have finite limits.

The first two cases are the analogs of the “asymptotically distant” and “asymp-

totically close” cases considered in the last section. However, the situation covered in

the third part can occur only for the zero limit frequency case, as both ω1n and −ω1n

can be close to ω2n simultaneously. We will refer to this as the “asymptotically sym-

metrically close” case. The asymptotic behaviors of the cosine- and sine-transforms

of spatial data under PID in these three cases are given by the following theorem.
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Theorem III.3.3. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1) and (A.2). Also, suppose that {ω1n} and {ω2n}

are two sequences satisfying (III.3.9).

(a) If ‖λn(ω1n + ω2n)‖ → ∞ and ‖λn(ω1n − ω2n)‖ → ∞, then

[CP
n (ω1n), SPn (ω1n), CP

n (ω2n), SPn (ω2n)]
′ d−→ N

[
0,Σ(a)

]
, (III.3.10)

where Σ(a) = c0ψ∆(0)I4.

(b) Suppose that ‖λn(ω1n + ω2n)‖ → ∞ but λn(ω1n − ω2n) → z12 ∈ IRd. Then,

(III.3.10) holds with Σ(a) replaced by Σ(b), where

Σ(b) =


A

[0]
1 0 A

[0]
2 A

[0]
3

A
[0]
1 −A[0]

3 A
[0]
2

A
[0]
1 0

A
[0]
1

,

with A
[0]
1 = c0ψ∆(0), A

[0]
2 = c0ψ∆(0)φ1(∆z12), and A

[0]
3 = c0ψ∆(0)φ2(∆z12).

(c) Suppose that λn(ω1n+ω2n)→ y12 ∈ IRd and λn(ω1n−ω2n)→ z12 ∈ IRd. Then,

(III.3.10) holds with Σ(a) replaced by Σ(c), where

Σ(c) =

σ2
∞


[1 + φ̃1(2y1)] φ̃2(2y1) [φ̃1(y12) + φ̃1(z12)] [φ̃1(y12) + φ̃1(z12)]

[1− φ̃1(2y1)] [φ̃2(y12)− φ̃2(z12)] [φ̃1(z12)− φ̃2(y12)]

[1 + φ̃1(2y2)] φ̃2(2y2)

[1− φ̃1(2y2)]


with σ2

∞ = c0ψ∆(0), y1 = (y12 + z12)/2, y2 = (y12 − z12)/2, and φ̃j(ω) =

φj(∆ω), ω ∈ IRd, j = 1, 2.

Thus, from Theorem III.3.3, it follows that the sine and the cosine transforms at

non-zero ordinates converging to the zero frequency have very similar asymptotic be-

havior as in the case of a non-zero limit frequency for the “asymptotically distant” and
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“asymptotically close” parts (see parts (a) and (b) of Theorems III.3.2 and III.3.3).

In particular, asymptotic independence of the DFTs continues to hold for “asymp-

totically distant” discrete Fourier ordinates converging to zero. For “asymptotically

close” ordinates converging to zero, DFTs are typically asymptotically dependent;

For such sequences of ordinates, asymptotic independence of the DFTs holds in the

special case where ∆−1D0 is an integer multiple of the d-cube (−1/2, 1/2]d, as noted

in the discussion of Theorem III.3.2 above. Finally, for the “asymptotically symmetri-

cally close” ordinates, it is clear that every possible pairs of sine and cosine transforms

may have nontrivial asymptotic correlations for sampling regions of a general shape

and hence, the DFTs typically are not asymptotically independent.

Next consider the special case where ∆−1D0 is d-cubic. Note that, in this case,

φ̃k(yj) = φk(2π`j) for some `j ∈ Zd \ {0}, for all j, k ∈ {1, 2} and thus, all off-

diagonal terms in Σ(c) vanish. In this special case, asymptotic independence of the

DFTs hold even for ‘asymptotically symmetrically close” ordinates converging to the

zero frequency, as in the time series case. But, for sampling regions of a general

shape, the DFTs are typically dependent in the limit in the ‘asymptotically close’

and ‘asymptotically symmetrically close’ cases.

Remark As in the last section, there is a dual to part (b) of Theorem III.3.3. For

‖λn(ω1n − ω2n)‖ → ∞ but λn(ω1n + ω2n)→ z12 ∈ IRd, asymptotic normality of the

cosine- and sine-transforms holds where the limiting covariance matrix is given by

(III.3.8) with Ai’s replaced by A
[0]
i ’s, i = 1, 2, 3.

Remark For completeness, consider the case where ωn = 0 for all n ≥ 1. In the

case, Sn(ωn) = 0 for all n ≥ 1, while Cn(ωn) = N
−1/2
n

∑Nn
i=1 Z(si) and Cn(ωn) →d

N(0, 2c0ψ∆(0)) solely under Assumption (A.1) and (A.2) (see Theorem 4.3, Lahiri

(2003b))
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III.3.1.4. Results for mean-corrected DFTs

In many applications, the random field {Z(s)} has a mean µ = EZ(0) that is un-

known. In such situations, the DFT defined in Section III.3.1.1 is often replaced by

its mean corrected version:

d̃Pn (ω) ≡ N−1/2
n

∑
j∈Jn

[Z(∆j)− Z̄n] exp
(
ιω
′
∆j
)

(III.3.11)

where, as before, Jn = {j ∈ Zd : ∆j ∈ Dn} and Z̄n = N−1
n

∑
j∈Jn Z(∆j) is the sample

mean. Similarly, we define

C̃P
n (ω) = N−1/2

n

∑
j∈Jn

[Z(∆j)− Z̄n]cos
(
ω
′
∆j
)
,

S̃Pn (ω) = N−1/2
n

∑
j∈Jn

[Z(∆j)− Z̄n]sin
(
ω
′
∆j
)
, (III.3.12)

the mean corrected versions of the cosine and the sine transforms of the data. Then,

d̃Pn (ω) = C̃P
n (ω) + ιS̃Pn (ω). The following result gives the asymptotic behavior of the

DFTs in different cases treated in Theorems III.3.1-III.3.3.

Theorem III.3.4. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1) and (A.2). Also, suppose that {ω1n}, . . . , {ωrn}

are sequences satisfying (III.3.4).

(a) If the limiting frequencies ω1, . . . ,ωr satisfy the conditions of Theorem III.3.1,

then

[C̃P
n (ω1n), S̃Pn (ω1n), . . . , C̃P

n (ωrn), S̃Pn (ωrn)]
′

has the same limit distribution as that of the mean uncorrected version [CP
n (ω1n),

SPn (ω1n), . . . , CP
n (ωrn), SPn (ωrn)], given by Theorem III.3.1.

(b) Suppose that r = 2 and the sequences {ω1n}, {ω2n} satisfy the conditions of

one of the two parts of Theorem III.3.2. Then, [C̃P
n (ω1n), S̃Pn (ω1n), C̃P

n (ω2n),
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S̃Pn (ω2n)]
′ →d N [0,Σ], with Σ as in the respective part of Theorem III.3.2.

(c) Suppose that r = 2 and the sequences {ω1n}, {ω2n} satisfy the conditions of

any one of the three parts Theorem III.3.3. Then,

[C̃P
n (ω1n), S̃Pn (ω1n), C̃P

n (ω2n), S̃Pn (ω2n)]
′ →d N [0, Σ̃],

where Σ̃ = Σi − Σ0 for the ith part, i = (a), (b), (c) and

Σ0 = σ2
∞


φ̃2

1(y1) 2φ̃1(y1)φ̃2(y1) 2φ̃1(y1)φ̃1(y2) 2φ̃1(y1)φ̃2(y2)

φ̃2
2(y1) 2φ̃1(y2)φ̃2(y1) 2φ̃2(y1)φ̃2(y2)

φ̃2
1(y2) 2φ̃1(y2)φ̃2(y2)

φ̃2
2(y2)

 .

Thus, the asymptotic distributions of the sine and cosine transforms remain un-

changed in all cases where the discrete Fourier frequencies converge to a nonzero limit.

However, for frequency sequences converging to the zero frequency, the asymptotic

covariance is different.

III.3.2. Results under the MID case

For the MID case, we define the discrete Fourier transform (DFT) of {Z(s1), . . . ,

Z(sNn)} by

dMn (ω) = N−1/2
n

∑
j∈Zd:∆jηn∈Dn

Z(∆jηn) exp
{
ιω
′
∆jηn

}
(III.3.13)

and we can define the corresponding cosine and sine transforms CM
n (ω) and SMn (ω)

in a similar way. Although for each fixed n, the observations in the deterministic MID

case lie on a grid, the asymptotic distribution of the DFT depends on the dependence

structure of the random field {Z(·)} through the full spectral density function ψ(ω);

knowledge of the folded spectral density ψ∆ is no longer adequate as in the PID case.
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This is mainly due to the fact that the asymptotic variances of the relevant transforms

in the MID case are given by certain integrals of the auto-covariance function over IRd

as compared to infinite sums in the PID case. Further, we also drop the restriction

on the limiting frequencies to lie in the set Π∆, as it is now possible to infer about

the full spectral density ψ(·) by considering the DFT at any given ω ∈ IRd.

For the MID case, we will make use of the following additional assumption:

(A.3) λnηn → ∞, i.e., the sites fill in any given region at a slower rate than the

inflating factor λn.

The following result gives the asymptotic joint distribution of the sine and cosine

transforms in the case of distinct nonzero limits.

Theorem III.3.5. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1) and (A.2) and that

(A.3) λnηn →∞.

Also suppose that for r ∈ IN , {ω1n}, . . . , {ωrn} are frequency sequences of the form

ωjn = 2πkjn/λn for kjn ∈ ZZd \ {0} such that kjn → ωj ∈ IRd \ {0} and ωj ±ωk 6= 0

for all 1 ≤ j 6= k ≤ r. Then,

ηd/2n [CM
n (ω1n), SMn (ω1n), · · · , CM

n (ωrn), SMn (ωrn)]
′

d−→ N

0,


B1I2×2 02×2 · · · 02×2

· · · · · · · · · · · ·

02×2 02×2 · · · BrI2×2


 ,

where, B` = (1/2)(
∏n

i=1 δi)
−1(2π)dψ(ω`) for ` = 1, · · · , r.

Theorem III.3.5 implies that for ω1n, · · · ,ωrn converging to different non-zero

limits, the corresponding DFTs are also asymptotically independent and the asymp-
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totic variances depend on the spectral density function of the process at the limiting

frequencies ω1, . . . ,ωr. Note that the conditions on the frequency sequences {ωjn}

in Theorem III.3.5 are weaker than those required in the PID case (see Theorem

III.3.1). Also note that the DFTs defined in (III.3.13) do not have a nondegenerate

limit unless they are rescaled by the damping factor η
d/2
n . As the spacing of the grid

goes to zero, observations at neighboring locations tend to have very strong corre-

lations, and as a result, the variances of the sine and cosine transforms SMn (·) and

CM
n (·) grow at a rate faster than the sample size. As a result, the natural scaling by

the inverse-square root of the sample size is not adequate under the MID, and the

additional multiplicative factor η
d/2
n is needed to make the sine and cosine transforms

converge to a nondegenerate normal limit.

Remark Conclusions on the asymptotic independence of the DFTs do not change

in the other scenarios covered by Theorems III.3.2-III.3.4. Specifically, with the ad-

ditional η
d/2
n multiplicative factor, the sine- and the cosine- transforms in the MID

case continue to have the same limits as their PID counterparts in the set ups of

Theorems III.3.2-III.3.4, where the folded spectral density ψ∆ in the limit is replaced

by ψ in every occurrence. We do not restate the theorems for each of these cases to

save space.

III.4. Results under the stochastic design

III.4.1. Definition of the DFT and some preliminaries

In the stochastic design case, the observations are given by {Z(s1), . . . , Z(sn)}, under

both the PID and the MID asymptotic structures. Thus, we define the (scaled) DFT

of the sample {Z(s1), . . . , Z(sn)} under the stochastic design as

ďn(ω) = λd/2n n−1

n∑
j=1

Z(sj) exp
(
ιω
′
sj

)
, ω ∈ IRd (III.4.1)
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for both PID and MID cases. Note that under both asymptotic structures, we use

a common scaling λ
d/2
n , which is asymptotically equivalent to the square root of the

sample size under the PID, but grows at a slower rate (than n1/2) in the MID case.

That this is the correct scaling sequence for a non-degenerate limit in both cases will

be clear in the next section where we state the main results. In analogy to (III.4.1),

also define the (scaled) cosine and the sine transforms of {Z(s1), . . . , Z(sn)} as

Čn(ω) = λd/2n n−1

n∑
j=1

cos(ω
′
sj)Z(sj),

Šn(ω) = λd/2n n−1

n∑
j=1

sin(ω
′
sj)Z(sj), (III.4.2)

ω ∈ IRd. Then, ďn(ω) = Čn(ω) + ιŠn(ω).

Note that under the stochastic design, the sampling sites are generated by a

realization of the sequence {Xn}. As a consequence, the distributions of the DFTs

discussed in this section actually refer to their conditional distribution given {Xn} and

the CLTs under the stochastic design assert weak convergence of these conditional

distributions to respective normal limits for almost all realizations of the sequence

{Xn} under PX, PX denotes the joint distribution of the Xi’s. Also, for brevity, we

shall use the convention that (∞)−1a = 0 for all a ∈ IR. Thus, in the statements of

the theorems below, the condition n/λdn → c∗ ∈ (0,∞], will cover both the cases, c∗ ∈

(0,∞) for the PID asymptotic structure and c∗ = ∞ for the MID, in a unified way,

and for an expression of the form c−1
∗ a where a ∈ IR, we would interpret c−1

∗ a as zero

in the MID (i.e., c∗ =∞) case. Finally, set K =
∫
f 2(x)dx and Iψ =

∫
IRd
ψ(ω)dω.

With this, we are now ready to state the main results for the stochastic design

case in the sections below.
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III.4.2. Asymptotic distribution at nonzero frequencies

In this section, we investigate the asymptotic joint distribution of the sine and cosine

transforms at a finite collection of frequencies ω1n, · · · ,ωrn, 1 ≤ r <∞, where

ωjn → ωj ∈ IRd as n→∞. (III.4.3)

Since under the stochastic design the data-sites are randomly distributed, we do

not require the sequences {ωjn}’s to satisfy (III.3.4). The first result concerns the

asymptotic joint distribution at ω1n, · · · ,ωrn in the case where ±ωj’s are distinct and

nonzero.

Theorem III.4.1. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying (A.1), (A.2) and that it satisfies Assumption (A.4):

(A.4) λn � nε for some ε > 0 and limn→∞ n/λn = c∗ ∈ (0,∞].

Also suppose that for j = 1, · · · , r, r ∈ IN , {ωjn} are sequences satisfying ωjn →

ωj ∈ IRd \ {0} and ωj ± ωk 6= 0 for all 1 ≤ j 6= k ≤ r. Then,

[Čn(ω1n), Šn(ω1n), · · · , Čn(ωrn), Šn(ωrn)]
′

d−→ N

0,


Ǎ1I2 02×2 · · · 02×2

· · · · · · · · · · · ·

02×2 02×2 · · · ǍrI2


 , a.s. (PX),

where 2Ǎj = c−1
∗ Iψ + K · (2π)dψ(ωj) and where, recall that, K =

∫
f 2(x)dx, Iψ =∫

IRd
ψ(ω)dω, and 02×2 is the 2× 2 matrix of zeros.

As in the fixed design case, Theorem III.4.1 implies that any collection of disjoint

subsets of the 2r cosine and sine transforms are also asymptotically independent.

However, the asymptotic distribution of the DFTs (ďn(ω1n), · · · , ďn(ωrn)) under the

stochastic design depends on three factors, namely, (i) on the dependence structure
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of the spatial process {Z(·)}, through the spectral density ψ(·), (ii) on the design

density f(·), through the constant K, and (iii) on the spatial asymptotic framework

(PID vs. MID). Note that the asymptotic variance has a somewhat simpler form

under the MID (i.e., c∗ =∞) case where the first term in Ǎj drops out.

Next we consider the case where the limit frequencies are not necessarily distinct.

As before, to state the main results in a transparent manner, we shall restrict our

attention to the case r = 2; The conclusions can be generalized to the case r > 2 in

an obvious manner. For z ∈ IRd, define∫
cos(z

′
x)f(x)dx = K1(z) ,

∫
sin(z

′
x)f(x)dx = K2(z),∫

cos(z
′
x)f 2(x)dx = K3(z) ,

∫
sin(z

′
x)f 2(x)dx = K4(z).

Then we have the following results.

Theorem III.4.2. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1), (A.2)and (A.4). Also, suppose that {ω1n} and

{ω2n} are two sequences satisfying (III.4.3) with ω1 = ω2 = ω ∈ IRd \ {0}.

(a) (Asymptotically distant frequencies): Suppose that ‖λn(ω1n − ω2n)‖ → ∞.

Then,

[Čn(ω1n), Šn(ω1n), Čn(ω2n), Šn(ω2n)]
′ d−→ N [0,Σ] a.s. (PX). (III.4.4)

where Σ = ǍI4, with 2Ǎ = c−1
∗ Iψ +K · (2π)dψ(ω).

(b) (Asymptotically close frequencies): Suppose that

λn(ω
(p)
1n − ω

(p)
2n )→ zp as n→∞ for all p = 1, · · · , d

with z = (z1, . . . , zd)
′ ∈ IRd \ {0}.

 (III.4.5)

Then, (III.4.4) holds with
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Σ =


Ǎ1 0 Ǎ2 Ǎ3

Ǎ1 −Ǎ3 Ǎ2

Ǎ1 0

Ǎ1

,

where 2Ǎ1 = c−1
∗ Iψ + K · (2π)dψ(ω), 2Ǎ2 = c−1

∗ IψK1(z) + K3(z)(2π)dψ(ω),

2Ǎ3 = c−1
∗ IψK2(z) +K4(z)(2π)dψ(ω).

Theorem III.4.2 gives the asymptotic distribution of the DFTs when both fre-

quency sequences converge to a common non-zero frequency. Note that the limiting

covariance matrix for for the asymptotically close frequencies depends on the spatial

sampling density f(·) through all four functionals K1(·)-K4(·), and the constant K.

This typically makes the corresponding DFTs asymptotically dependent. In contrast,

DFTs along asymptotically distant frequency sequences are asymptotically indepen-

dent.

Next, consider the special case, where the sampling region D0 is of the form

D0 = (−a1, b1)× . . .× (−ad, bd), (III.4.6)

for some 0 < aj, bj ≤ 1/2, j = 1, . . . , d and the sampling density f(·) is uniform over

D0. In this case, Ki(z) = 0 for all i = 1, . . . , 4, whenever z is of the form

z =
(
(2π`1)(a1 + b1)−1, . . . , (2π`d)(ad + bd)

−1
)′
, (III.4.7)

for some `1, . . . , `d ∈ ZZ with
∑d

j=1 |`j| 6= 0. As a result, asymptotic independence of

the DFTs holds even for asymptotically close frequency sequences {ω1n} and {ω2n},

provided {ω1n} and {ω2n} satisfy (III.4.5) for some z of the form (III.4.7). The

asymptotic independence property of the DFTs can be guaranteed for all distinct

asymptotically close sequences if one restricts attention to DFTs based on frequency
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sequences of the form

ωn =
(
2πk1n)(a1 + b1)−1, . . . , (2πkdn)(ad + bd)

−1
)′
, (III.4.8)

with k1n, . . . , kdn ∈ ZZ,
∑d

j=1 |kjn| 6= 0.

Remark It is worth noting that for a rectangular sampling region (with D0 as in

(III.4.6)), a similar conclusion on asymptotic independence of the DFTs holds for a

more general class of sampling densities that can be expressed as a convolution of

a general probability distribution with a suitable uniform density. Specifically, the

class of such sampling densities is given by F =
{
f : f has support D0, and f(·) =∫

g`(· − y)dG`(y) for some probability distribution G` and for some ` ∈ N
}

where

g` is the density of the uniform distribution on (−a1/`1, b1/`1)× . . .× (−ad/`d, bd`d)

and N = {(`1, . . . , `d)
′ ∈ ZZd : `j ≥ 2 for all j = 1, . . . , d}.

Remark As in the deterministic case, there is a dual to Theorem III.4.2, where

ω1 = −ω2 = ω 6= 0. The formulation of the dual parallels that in the deterministic

case with the Aj’s in (III.3.8) replaced by Ǎj’s from Theorem III.4.2.

III.4.3. Asymptotic distribution for the zero limiting frequency

In this section we consider the case where the fourier frequencies converge to the zero

frequency. The asymptotic behavior of the cosine and sine transforms of spatial data

under the PID and the MID asymptotic structures in the stochastic design case are

given by the following theorem.

Theorem III.4.3. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1), (A.2) and (A.4). Also, suppose that {ω1n} and

{ω2n} are two sequences in IRd \ {0}, converging to 0.
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(a) If ‖λn(ω1n + ω2n)‖ → ∞ and ‖λn(ω1n − ω2n)‖ → ∞, then

[Čn(ω1n), Šn(ω1n), Čn(ω2n), Šn(ω2n)]
′ d−→ N

[
0,Σ(a)

]
, a.s. (PX) (III.4.9)

where Σ(a) = Ǎ[0]I4, with 2Ǎ[0] = c−1
∗ Iψ +K · (2π)dψ(0).

(b) Suppose that ‖λn(ω1n + ω2n)‖ → ∞ but λn(ω1n − ω2n) → z12 ∈ IRd. Then,

(III.4.9) holds with Σ(a) replaced by Σ(b), where

Σ(b) =


Ǎ

[0]
1 0 Ǎ

[0]
2 Ǎ

[0]
3

Ǎ
[0]
1 −Ǎ[0]

3 Ǎ
[0]
2

Ǎ
[0]
1 0

Ǎ
[0]
1

 ,

with 2Ǎ
[0]
1 = c−1

∗ Iψ +K · (2π)dψ(0), 2Ǎ
[0]
2 = c−1

∗ IψK1(z12) +K3(z12)(2π)dψ(0),

2Ǎ
[0]
3 = c−1

∗ IψK2(z12) +K4(z12)(2π)dψ(0)].

(c) Suppose that λn(ω1n+ω2n)→ y12 ∈ IRd and λn(ω1n−ω2n)→ z12 ∈ IRd. Then,

(III.4.9) holds with Σ(a) replaced by Σ(c), where the elements of Σ(c) are given

by

Σ
(c)
11 = (c−1

∗ Iψ/2){K1(2y1) + 1}+ (2π)d(ψ(0)/2){K3(2y1) +K},

Σ
(c)
12 = c−1

∗ IψK2(2y1) + (2π)dψ(0)K4(2y1),

Σ
(c)
13 = c−1

∗ Iψ{K1(y12) +K1(z12)}+ (2π)dψ(0){K3(y12) +K3(z12)},

Σ
(c)
14 = c−1

∗ Iψ{K2(y12)−K2(z12)}+ (2π)dψ(0){K4(y12)−K4(z12)},

Σ
(c)
22 = (c−1

∗ Iψ/2){1−K1(2y1)}+ (2π)d(ψ(0)/2){K −K3(2y1)},

Σ
(c)
23 = c−1

∗ Iψ{K2(y12) +K2(z12)}+ (2π)dψ(0){K4(y12) +K4(z12)},

Σ
(c)
24 = c−1

∗ Iψ{K1(z12)−K1(y12)}+ (2π)dψ(0){K3(z12)−K3(y12)},

Σ
(c)
33 = (c−1

∗ Iψ/2){K1(2y2) + 1}+ (2π)d(ψ(0)/2){K3(2y2) +K)},
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Σ
(c)
34 = c−1

∗ IψK2(2y2) + (2π)dψ(0)K4(2y2),

Σ
(c)
44 = (c−1

∗ Iψ/2){1−K1(2y2)}+ (2π)d(ψ(0)/2){K −K3(2y2)},

where y1 = (y12 + z12)/2 and y2 = (y12 − z12)/2.

As in Theorem III.3.3, Theorem III.4.3 shows that asymptotic independence of

DFTs continues to hold for “asymptotically distant” Fourier frequency sequences con-

verging to zero. For “asymptotically close” frequencies converging to zero, DFTs are

typically asymptotically dependent. In the special case of the rectangular sampling

region with a sampling design f ∈ F , asymptotic independence of every pair of dis-

tinct sine and cosine transforms continues to hold, provided the frequency sequences

are of the form (III.4.8).

Remark As in the last section, there is a dual to part (b) of Theorem III.4.3, which

is straight-forward to formulate. Also, if ωn = 0 for all n ≥ 1, Šn(ωn) = 0 for all

n ≥ 1, while Čn(ωn) = n−1/2
∑n

i=1 Z(si) →d N(0, c−1
∗ Iψ + K(2π)dψ(0)), a.s. (PX).

(see Lahiri (2003b)).

III.4.3.1. Results for mean-corrected DFTs

For stochastic design, the mean corrected DFT is defined as follows:

d̃n(ω) ≡ λd/2n n−1

n∑
j=1

[Z(sj)− Z̄n] exp
(
ιω
′
sj

)
, ω ∈ IRd (III.4.10)

where, Z̄n = n−1
∑n

j=1 Z(sj) is the sample mean. Similarly, we define,

C̃n(ω) = λd/2n n−1

n∑
j=1

[Z(sj)− Z̄n]cos
(
ω
′
sj

)
,

S̃n(ω) = λd/2n n−1

n∑
j=1

[Z(sj)− Z̄n]sin
(
ω
′
sj

)
, (III.4.11)
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the mean corrected version of the cosine and the sine transforms of the data. The

following result gives the asymptotic behavior of the DFTs in different cases treated

in Theorems III.4.1-III.4.3.

Theorem III.4.4. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying Assumptions (A.1), (A.2) and (A.4). Also, suppose that {ω1n}, . . . ,

{ωrn} are sequences satisfying (III.4.3).

(a) If {ω1n}, . . . , {ωrn} satisfy the conditions of Theorem III.4.1, then [C̃n(ω1n),

S̃n(ω1n), . . ., C̃n(ωrn), S̃n(ωrn)] has the same limit distribution as that of the

mean uncorrected version given by Theorem III.4.1.

(b) Suppose that the sequences {ω1n} and {ω2n} satisfy the conditions of one of

the two parts of Theorem III.4.2. Then [C̃n(ω1n), S̃n(ω1n), C̃n(ω2n), S̃n(ω2n)]

has the same limit distribution as its mean uncorrected version given by the

respective part of Theorem III.4.2.

(c) Suppose that the sequences {ω1n} and {ω2n} satisfy the conditions of any one

of the three parts Theorem III.4.3. Then,

[C̃n(ω1n), S̃n(ω1n), C̃n(ω2n), S̃n(ω2n)]→d N [0, Σ̃], a.s. (PX)

where Σ̃ = Σi − Σ0 for the ith part, i = (a), (b), (c) and

Σ0 = σ2
∞


K2

1(y1) 2K1(y1)K2(y1) 2K1(y1)K1(y2) 2K1(y1)K2(y2)

K2
2(y1) 2K1(y2)K2(y1) 2K2(y1)K2(y2)

K2
1(y2) 2K1(y2)K2(y2)

K2
2(y2)

 ,

with 2σ2
∞ = c−1

∗ Iψ +K · (2π)dψ(0).

Thus, as in the fixed design case, the asymptotic distributions of the sine and

cosine transforms with mean correction remain unchanged in all cases where the
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Fourier frequencies converge to a nonzero limit. However, for frequency sequences

converging to the zero frequency, the asymptotic covariance can be different; the

correction factor Σ0 in the stochastic design case depends on the spatial sampling

density f(·).

III.5. Some implications of the main results

The results on asymptotic joint distribution of the DFTs have some important impli-

cations for various frequency domain statistical inference methodologies. For example,

the formulation of the frequency domain bootstrap (FDB) (see Franke and Härdle

(1992)) critically depends on the asymptotic independence of the full set of DFTs.

The results of Sections III.3 and III.4 show that for a sampling region of a general

shape and/or for a general sampling density, the DFTs at asymptotically close ordi-

nates are asymptotically correlated. As a result, formulation of the spatial version

of the FDB must take into account the geometry of the sampling region under both

the designs (i.e., fixed and stochastic) and, in addition, the non-uniformity of the

sampling density in the stochastic design case.

Next consider the problem of non-parametric estimation of the spectral den-

sity and the auto-covariance function of the spatial process {Z(·)}. In the regularly

spaced data-sites case, the analogs of the standard time series formulas and bounds

on the covariance between the DFTs (which is O(n−1) where n is the sample size;

See Priestley (1981)) no longer holds for a sampling region of a general shape, as

the asymptotic correlation between neighboring DFTs do not vanish. As a result,

consistency of the standard spectral density estimators based on kernel-smooth of

the sample periodograms need not hold. The situation gets worse in the case of ir-

regularly spaced data-sites, as in this case, not only the geometry of the sampling

region plays a crucial role, but the sampling density f(·) has a nontrivial effect on
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the asymptotic distribution. For consistent estimation of the spectral density in the

stochastic design case, one must also explicitly estimate various functionals of f(·)

(e.g., the constant K, and the functions K1(·), . . . , K4(·)) appearing in the asymptotic

covariance matrix of the DFTs (see Theorems III.4.2 and III.4.3). Further, between

the two asymptotic structures under the stochastic design case, the problem of esti-

mating the spectral density and the auto-covariance function of the Z(·)-process is

trickier in the PID case. This is because under PID, n/λn → c∗ ∈ (0,∞) and the

term c−1
∗ Iψ in the asymptotic covariance matrices must be explicitly estimated. This

observation has important implications for the popular nonparametric estimator of

the auto-covariance function given by Hall and Patil (1994). Indeed, consistency of

Hall and Patil (1994)’s estimator under the stochastic design is proved only under

the MID asymptotic structure. Because of the presence of the extra term c−1
∗ Iψ, its

consistency is no longer guaranteed under the PID case.

III.6. Proofs of the results from Section III.3

III.6.1. Preliminaries

Let U = [0, 1)d denote the unit cube in IRd. Let the autocovariance function of the

stationary random field {Z(s) : s ∈ IRd} be given by ρ(s) = cov(Z(s), Z(0)), s ∈ IRd.

Then,

ρ(s) =

∫
IRd

exp (ιs
′
ω)ψ(ω)dω, s ∈ IRd, and

ρ(∆i) =

∫
Π∆

exp (ι[∆i]
′
ω)ψ∆(ω)dω, i ∈ Zd.

Let ν∆(·) denote the uniform distribution on ∆−1D0. Recall that the characteristic

function of ν∆(·) is given by,∫
exp (ιt

′
x)dν∆(dx) = φ1(t) + ιφ2(t), t ∈ IRd.
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Let e1, . . . , ed denote the standard basis of IRd. Thus, e1 = (1, 0, . . . , 0)′, e2 =

(0, 1, 0, . . . , 0)′, etc. Let C,C(·) denote generic positive constants that depend on

their arguments (if any), but not on n. Also, unless otherwise specified, limits in the

order symbols are taken by letting n→∞.

The first lemma is a CLT for weighted sums of the form
∑n

i=1wn(si)Z(si) under

the deterministic spatial asymptotic framework as discussed earlier, where wn(·) is a

non-random weight function.

Lemma III.6.1. Let {Z(s) : s ∈ IRd} be a zero mean stationary random field sat-

isfying (A.1) and (A.2) and let wn(·) : Dn → IR be a non-random bounded weight

function. Suppose that there exists a function Q : IRd → IR such that for any hn → h

in IRd,

lim
n→∞

c−2
n

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn) = Q(h). (III.6.1)

where c2
n =

∑Nn
i=1wn(si)

2. Let {ηn}n≥1 ⊂ (0,∞) be a nonrandom sequence of real

numbers such that ηn ≡ 1 for all n ≥ 1 in the PID case and ηn ↓ 0 as n→∞ in the

MID case. Suppose that

max{w2
n(s) : s ∈ Dn}λdnη−dn c−2

n = O(1). (III.6.2)

Then, with Nn ≡ |{j : j ∈ Zd, ηnj/λn ∈ ∆−1D0}|,

ηd/2n c−1
n

Nn∑
i=1

wn(si)Z(si)
d−→ N(0, σ2

∞) (III.6.3)

where σ2
∞ =

∑
i∈Zd ρ(∆i)Q(∆i) for the PID case and σ2

∞ = (
∏d

i=1 δi)
−1
∫
IRd
ρ(x)Q(x)dx

for the MID case.

Proof To prove the lemma, we will verify the conditions of Theorem 4.3 of Lahiri

(2003b) for the PID case and Theorem 4.2 of Lahiri (2003a) for the MID case. First
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note that under Assumption (A.1), since γ1(·) is monotone (and left-continuous),

there exists a t0 ∈ (0,∞) such that

γ1(t) ≤ t−d(2+τ)/τ for all t ≥ t0.

Write γ0
1(t) ≡ t−d(2+τ)/τ for all t > 0. Since the weight function wn(·) is bounded, by

Remark 4.1 and Proposition 4.1 of Lahiri (2003b), it is enough to verify that

γ2(t) = o
(

[f−1
1 (t)]d/[tγ0

1(t)f−1
1 (t)]

)
as t→∞, (III.6.4)

where f1(t) = td
∫ t

1
y2d−1γ0

1(y)dy, t ∈ [1,∞).

Write τ0 = d(2 + τ)/τ . Then, τ0 > 2d for 0 < τ < 2, τ0 = 2d for τ = 2, and

d < τ0 < 2d for τ ∈ (2,∞). For τ ∈ (2,∞), (III.6.4) follows from relation (4.4)

of Lahiri (2003b) (with τ replaced by τ0 and a = 0 therein). Next, check that for

0 < τ < 2,

f1(t) = Ctd(1 + o(1)) as t→∞.

and for τ = 2,

f1(t) = [td log t](1 + o(1)) as t→∞.

Consider τ = 2 first. In this case, f−1
1 (t) = d1/d[t/ log t]1/d(1 + o(1)) as t → ∞ and

hence,

[f−1
1 (t)]d/[tγ0

1(t)f−1
1 (t)] = t2[log t]−3(1 + o(1)) as t→∞.

Hence, (III.6.4) holds. One can similarly establish (III.6.4) for the case 0 < τ < 2

using the growth rate of f1(·) above, as in (4.5) of Lahiri (2003b). The lemma now

follows from Theorems 4.2 and 4.3 of Lahiri (2003b).
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Lemma III.6.2. Suppose that D0 be a Borel subset of (−1/2, 1/2]d such that the

d-dimensional Lebesgue measure of its boundary ∂D0 is zero. Let {ηn}n≥1 and Nn be

as in Lemma III.6.1. Also let Jn = {j : j ∈ Zd, ηnj/λn ∈ ∆−1D0} and Nn = |Jn|.

Then

(a) For any K ∈ (0,∞),

sup
‖z‖≤K

∣∣∣ηdnλ−dn ∑
j∈Jn

exp(ι2πz′jηn/λn)−
∫

∆−1D0

exp(ι2πz′x)dx
∣∣∣→ 0 as n→∞.

(b) (A discrete version of the Reimann-Lebesgue lemma in d-dimension): Let

{zn}n≥1 ⊂ IRd be a sequence satisfying ‖zn‖−1 = o(1) and lim supn→∞ |e′iznηn|

/λn < 1/2 for all i = 1, . . . , d. Then,∣∣∣N−1
n

∑
j∈Jn

exp(ι2πz′nj/λn)
∣∣∣→ 0 as n→∞.

Proof For simplicity, first consider the PID case. Then, ηn ≡ 1. Let J1n = {j :

(j + U)λ−1
n ⊂ ∆−1D0} and let J2n = Jn \ J1n. Also for k = 1, 2, write

∑
k for

summation over j ∈ Jkn. Part (a) is a uniform version of the Riemann sum approxi-

mation to integrals and can be proved easily. Here we give an outline of the proof for

completeness. For any z ∈ IRd with ||z|| ≤ K,∣∣∣∣∣λ−dn ∑
j∈Jn

exp (ι2πz
′
j/λn)−

∫
∆−1D0

exp (ι2πz
′
x)dx

∣∣∣∣∣
≤
∑

1

∣∣∣∣∫
(j+U)/λn

[
exp (ι2πz

′
j/λn)− exp (ι2πz

′
x)
]
dx

∣∣∣∣
+
∑

2

∣∣∣∣∫
[(j+U)/λn]∩∆−1D0

exp (ι2πz
′
x)dx

∣∣∣∣+ λ−dn |J2n|

≤
∑

1

∫
(j+U)/λn

(2π||z||
√
d/λn)dx + 2λ−dn |J2n|

≤ K(2π
√
d)|J1n|λ−d−1

n + 2λ−dn |J2n|.

Part (a) follows from this.
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Nest consider part (b). Let φ(·) denote the characteristic function of the uniform

distribution on the unit cube U . Then, it is easy to check that for any ε ∈ (0, 1/2),

inf {|φ(t)| : t ∈ [−π + ε, π − ε]d} ∈ (0, 1]. (III.6.5)

Also,

λ−dn
∑
j∈J1n

exp (ι2πz
′

nj/λn)φ(2πzn/λn)

= λ−dn
∑
j∈J1n

∫
U

exp (ι2πz
′

n[j + x]/λn)dx

=
∑
j∈J1n

∫
(j+U)/λn

exp (ι2πz
′

nx)dx. (III.6.6)

Hence by (III.6.5) and (III.6.6) and the Riemann Lebesgue lemma, for any {zn}n≥1

satisfying the conditions of part (b), we have,∣∣∣∣∣λ−dn ∑
j∈Jn

exp (ι2πz
′

nj/λn)

∣∣∣∣∣
≤ λ−dn

∣∣∣∣∣∑
j∈J1n

exp (ι2πz
′

nj/λn)

∣∣∣∣∣+ |J2n|λ−dn

≤
∣∣φ(2πznλ

−1
n )
∣∣−1
{∣∣∣∣∫

∆−1D0

exp (ι2πz
′

nx)dx

∣∣∣∣+ |J2n|λ−dn
}

+ |J2n|λ−dn

= o(1).

In the MID case, both parts of Lemma III.6.2 can be proved by retracing the above

steps with λn replaced by η−1
n λn in every occurrence. We omit the routine details.

Remark Note that the conditions imposed on the boundary of D0 in Section III.2.1

implies that the d-dimensional Lebesgue measure of its boundary ∂D0 is zero.

Remark For the MID case, analogs of parts (a) and (b) hold, provided in each

appearance, λn is replaced by λnη
−1
n . Thus, Jn should be replaced by J

[1]
n ≡ {j ∈ ZZd :

ηj/λn ∈ ∆−1D0} and λ−dn in part (a) is replaced by λ−dn ηdn. In addition, for part (b),
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Nn is now the sample size under MID.

III.6.2. Proof of Theorem III.3.1

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

i=1(a2
i + b2

i ) 6= 0. Then, we may write,

r∑
p=1

[apC
P
n (ωpn) + bpS

P
n (ωpn)]

=
∑
j∈Jn

Z(∆j)

[
N−1/2
n

r∑
p=1

{apcos(ω
′

pn∆j) + bpsin(ω
′

pn∆j)}

]
=
∑
j∈Jn

Z(∆j)wn(∆j), (say). (III.6.7)

Hence, to prove Theorem III.3.1, it is enough to establish the asymptotic distribution

of the weighted sum in (III.6.7). Note that, by (III.3.4), ω
′
jn∆j = 2πλ−1

n k
′
jnj and

hence,

∑
j∈Jn

w2
n(∆j)

= (2Nn)−1

r∑
p=1

r∑
q=1

[
apaq

∑
j∈Jn

{
cos(2π(kpn + kqn)

′
j/λn) + cos(2π(kpn − kqn)

′
j/λn)

}
+apbq

∑
j∈Jn

{
sin(2π(kpn + kqn)

′
j/λn)− sin(2π(kpn − kqn)

′
j/λn)

}
+aqbp

∑
j∈Jn

{
sin(2π(kpn + kqn)

′
j/λn) + sin(2π(kpn − kqn)

′
j/λn)

}
+bpbq

∑
j∈Jn

{
cos(2π(kpn − kqn)

′
j/λn)− cos(2π(kpn + kqn)

′
j/λn)

}]
. (III.6.8)

Since under the conditions of Theorem III.3.1, 2π(kpn±kqn)/λn converges to a point

in Π0
∆ \ {0} for all 1 ≤ p 6= q ≤ r, by Lemma III.6.2, part (b), it follows that

∑
j∈Jn

w2
n(∆j)→ (1/2)

r∑
p=1

(a2
p + b2

p).



74

Also, for any hn → h ∈ IRd, by Lemma III.6.2, part (a) and arguments similar to

(III.6.8),

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn) = (1/2)
r∑
p=1

(a2
p + b2

p)cos(ω
′

ph). (III.6.9)

Hence, by (III.6.8) and (III.6.9), condition (III.6.1) of Lemma III.6.1 holds with

Q(h) = [
r∑
p=1

(a2
p + b2

p)cos(ω
′

ph)]
/ r∑

p=1

(a2
p + b2

p).

Further, by (III.6.8) and the boundedness of cos(·) and sin(·), condition (III.6.2) of

Lemma III.6.1 holds. Next note that by the inversion formula,

ψ∆(ω) = [vol(Π∆)]−1
∑
j∈Zd

ρ(∆j) exp (−2ω
′
∆j), ω ∈ Π∆. (III.6.10)

Hence, by Lemma III.6.1, it follows that,

r∑
p=1

[apC
P
n (ωpn) + bpS

P
n (ωpn)]

→d N

0,
∑
j∈Zd

ρ(∆j)Q(∆j)[(1/2)
r∑
p=1

(a2
p + b2

p)]

 ,

= N

(
0, (1/2)

r∑
p=1

(a2
p + b2

p)ψ∆(ωp) vol(Π∆)

)
.

This completes the proof of Theorem III.3.1.

III.6.3. Proof of Theorem III.3.2

Fix a1, a2, b1, b2 ∈ IR with
∑2

i=1(a2
i + b2

i ) 6= 0. Then, as in (III.6.7) we have,

2∑
p=1

[apC
P
n (ωpn) + bpS

P
n (ωpn)] =

∑
j∈Jn

Z(∆j)wn(∆j), (III.6.11)
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where, wn(s) = N
−1/2
n

∑2
p=1{apcos(ω

′
pns)+bpsin(ω

′
pns)}. Note that for any hn → h ∈

IRd,

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn)

= (2Nn)−1

2∑
p=1

2∑
q=1

[
apaq

∑
j∈Jn

{
cos(2π(kpn + kqn)

′
jλ−1
n + ω

′

qnhn)+

cos(2π(kpn − kqn)
′
jλ−1
n − ω

′

qnhn)
}

+apbq
∑
j∈Jn

{
sin(2π(kpn + kqn)

′
jλ−1
n + ω

′

qnhn) + sin(2π(kqn − kpn)
′
jλ−1
n + ω

′

qnhn)
}

+aqbp
∑
j∈Jn

{
sin(2π(kpn + kqn)

′
jλ−1
n + ω

′

qnhn)− sin(2π(kqn − kpn)
′
jλ−1
n + ω

′

qnhn)
}

+bpbq
∑
j∈Jn

{
cos(2π(kqn − kpn)

′
jλ−1
n + ω

′

qnhn)

−cos(2π(kpn + kqn)
′
jλ−1
n + ω

′

qnhn)
}]

(III.6.12)

Note that, under the conditions of the theorem, for every pair p, q ∈ {1, 2}, {2π[kpn+

kqn]} converges to a non-zero element in (−π/2, π/2)d. Thus, when the frequency

sequences {ω1n} and {ω2n} are asymptotically distant (see (III.3.5)), by Lemma

III.6.2(b),

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn) = (1/2)
2∑
p=1

(a2
p + b2

p)cos(ω
′
h).

On the other hand, when {ω1n} and {ω2n} satisfy (III.3.6), by Lemma III.6.2, (both

parts (a) and (b)),

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn)

= (1/2)
2∑
p=1

2∑
q=1

[
apaq

∫
cos(2π`

′

pqx− ω
′
h)dν∆(x) + apbq

∫
sin(2π`

′

21x + ω
′
h)

dν∆(x)− aqbp
∫

sin(2π`
′

21x + ω
′
h)dν∆(x) + bpbq

∫
cos(2π`

′

21x + ω
′
h)dν∆(x)

]
,
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where, `12 = ` = −`21 and `11 = `22 = 0. The proof of Theorem III.3.2 can now be

completed using Lemma III.6.1, the inversion formula (III.6.10) and the arguments

in the proof of Theorem III.3.1.

III.6.4. Proof of Theorem III.3.3

Fix a1, a2, b1, b2 ∈ IR with
∑2

p=1(a2
p + b2

p) 6= 0. Then,
∑2

p=1[apC
P
n (ωpn) + bpS

P
n (ωpn)]

can be expressed in the from (III.6.11) and the corresponding weight function wn(·)

satisfies (III.6.12). For part (c), using Lemma III.6.2 in (III.6.12), for any hn → h ∈

IRd, we get

lim
n→∞

∑
i:si,si+hn∈Dn

wn(si)wn(si + hn)

= 2−1

2∑
p,q=1

[
apaq

{∫
cos(2π(kp + kq)

′
x)dν∆(x) +

∫
cos(2π(kp − kq)

′
x)dν∆(x)

}
+apbq

{∫
sin(2π(kp + kq)

′
x)dν∆(x) +

∫
sin(2π(kq − kp)

′
x)dν∆(x)

}
+aqbp

{∫
sin(2π(kp + kq)

′
x)dν∆(x)−

∫
sin(2π(kq − kp)

′
x)dν∆(x)

}
+bpbq

{∫
cos(2π(kq − kp)

′
x)dν∆(x)−

∫
cos(2π(kp + kq)

′
x)dν∆(x)

}]
,

where, ki = limn→∞ [λn∆ωin/2π] , i = 1, 2 (which exist as limn→∞ λnωin exist for

both i = 1, 2 and are finite). The proof of part (c) now can be completed by applying

the inversion formula (III.6.10) and the central limit theorem of Lemma III.6.1. Parts

(a) and (b) can be proved by repeating the steps in the proofs of parts (a) and (b) of

Theorem III.3.2 respectively, setting ω = 0. We omit the details to save space.
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III.6.5. Proof of Theorem III.3.4

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

i=1(a2
i + b2

i ) 6= 0. Note that,

r∑
p=1

[apC̃
P
n (ωpn) + bpS̃

P
n (ωpn)] =

r∑
p=1

[apC
P
n (ωpn) + bpS

P
n (ωpn)]−N1/2

n Z̄nβn

=
Nn∑
i=1

Z(si)[wn(si)−N−1/2
n βn] (III.6.13)

where wn(s) = N
−1/2
n

∑r
p=1{apcos(ω

′
pns) + bpsin(ω

′
pns)} and βn = N−1

n

∑Nn
i=1

∑r
p=1{ap

cos(ω
′
pnsi)+ bpsin(ω

′
pnsi)}. Now suppose, ωpn → ω ∈ Π0

∆ \{0}, for all p = 1, 2, · · · , r.

Then by Lemma III.6.2(b), βn → 0. On the other hand, if λnωpn → yp ∈ IRd for all

p = 1, 2, · · · , r, then by Lemma III.6.2(b),

βn → β ≡
r∑
p=1

{ap
∫

cos(y
′

p∆x)dν∆(x) + bp

∫
sin(y

′

p∆x)dν∆(x)}. (III.6.14)

For any hn → h ∈ IRd, let Q(h) = limn→∞
∑

i:si,si+hn∈Dn wn(si)wn(si+hn). From the

proofs of theorems III.3.1-III.3.3, it follows that under the hypothesis of each of the

parts (a)-(c) of Theorem III.3.4, Q(h) exists. Hence, for any hn → h ∈ IRd,

lim
n→∞

∑
i:si,si+hn∈Dn

(
wn(si)−N−1/2

n βn
) (
wn(si + hn)−N−1/2

n βn
)

=

 Q(h) : ωpn → ω ∈ Π0
∆ \ {0}, for all p = 1, · · · , r,

Q(h)− β2 : ωpn → 0, for all p = 1, · · · , r.
(III.6.15)

Note that,

β2 =
r∑
p=1

r∑
q=1

[
apaqφ̃1(yp)φ̃1(yq) + apbqφ̃1(yp)φ̃2(yq)

+aqbpφ̃1(yq)φ̃2(yp) + bpbqφ̃2(yp)φ̃2(yq)
]

(III.6.16)

The result now follows from (III.6.13)-(III.6.16) and Lemma III.6.1.



78

III.6.6. Proof of Theorem III.3.5

The proof follows by retracing the above steps and employing Lemma III.6.1 and

III.6.2 for the MID case along with the inversion formula,

ψ(ω) = (2π)−d
∫
ρ(x) exp (−ιω′x)dx, ω ∈ IRd. (III.6.17)

We omit the routine details.

III.7. Proofs of the results from Section III.4

III.7.1. Preliminaries

Lemma III.7.1. Suppose that {Z(s) : s ∈ IRd} is a zero mean stationary random

field satisfying (A.1), (A.2) and (A.4) and

max {w2
n(s) : s ∈ Dn}s−2

n = O(1), (III.7.1)

where s2
n = Ew2

n(λnX1). Also, suppose that there exists a function Q1(·) such that

for all h ∈ IRd,[∫
w2(λnx)f(x)dx

]−1 ∫
w(λnx + h)w(λnx)f 2(x)dx→ Q1(h) as n→∞.

(III.7.2)

(i) If n/λdn → c∗ ∈ (0,∞) as n→∞, then,

(ns2
n)−1/2

n∑
i=1

wn(si)Z(si)
d−→ N

(
0, ρ(0) + c∗

∫
IRd
ρ(x)Q1(x)dx

)
a.s. (PX).

(ii) If n/λdn →∞ as n→∞, then,

(n2λ−dn s2
n)−1/2

n∑
i=1

wn(si)Z(si)
d−→ N

(
0,

∫
IRd
ρ(x)Q1(x)dx

)
a.s. (PX).

Proof : See Lahiri (2003b).
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Lemma III.7.2. (Multivariate Riemann-Lebesgue Lemma): Let f ∈ L1(IRd). Then,

lim
‖t‖→∞

∫
IRd
f(x)cos(t

′
x)dx = 0 = lim

‖t‖→∞

∫
IRd
f(x)sin(t

′
x)dx.

Proof Follows by approximating f by a sequence of finite linear combinations of

indicator functions of rectangular sets in IRd (which are dense in L1(IRd)) as in the

one-dimensional case.

III.7.2. Proof of Theorem III.4.1

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

p=1(a2
p + b2

p) 6= 0. Let Ĉn(ω) = n−1/2
∑n

j=1

cos(ω
′
sj)Z(sj) and Ŝn(ω) = n−1/2

∑n
j=1 sin(ω

′
sj)Z(sj), ω ∈ IRd. Note that

r∑
p=1

[apĈn(ωpn) + bpŜn(ωpn)] =
n∑
j=1

Z(sj)wn(sj), (III.7.3)

where, wn(sj) = n−1/2
∑r

p=1{apcos(ω
′
pnsj) + bpsin(ω

′
pnsj)}. Proceeding similarly as

(III.6.8), we may write∫
w2
n(λnx)f(x)dx

= (2n)−1

r∑
p=1

r∑
q=1

[
apaq

∫ {
cos(λn(ωpn + ωqn)

′
x) + cos(λn(ωpn − ωqn)

′
x)
}
f(x)dx

+apbq

∫ {
sin(λn(ωpn + ωqn)

′
x)− sin(λn(ωpn − ωqn)

′
x)
}
f(x)dx

+aqbp

∫ {
sin(λn(ωpn + ωqn)

′
x) + sin(λn(ωpn − ωqn)

′
x)
}
f(x)dx

+bpbq

∫ {
cos(λn(ωpn − ωqn)

′
x)− cos(λn(ωpn + ωqn)

′
x)
}
f(x)dx

]
. (III.7.4)

Hence under the conditions of Theorem III.4.1 and Lemma III.7.2, it follows that

n

∫
w2
n(λnx)f(x)dx→ (1/2)

r∑
p=1

(a2
p + b2

p).
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Also, for any h ∈ IRd, by Lemma III.7.2 and arguments similar to (III.7.4),

lim
n→∞

n

∫
wn(λnx + h)wn(λnx)f 2(x)dx = (K/2)

r∑
p=1

(a2
p + b2

p)cos(ω
′

ph). (III.7.5)

Hence, by (III.7.4) and (III.7.5), condition (III.7.2) holds with

Q1(h) = [K
r∑
p=1

(a2
p + b2

p)cos(ω
′

ph)]
/ r∑

p=1

(a2
p + b2

p).

Further, by (III.7.4) and the boundedness of cos(·) and sin(·), condition (III.7.1) of

Lemma III.7.1 holds. Next by the inversion formula as in (III.6.17), it follows that

r∑
p=1

[apČn(ωpn) + bpŠn(ωpn)]

→d N

(
0, (c−1

∗ Iψ/2)
r∑
p=1

(a2
p + b2

p) + (K/2)(2π)d
r∑
p=1

ψ(ωp)(a
2
p + b2

p)

)
.

This completes the proof of Theorem III.4.1.

III.7.3. Proof of Theorem III.4.2

Fix a1, a2, b1, b2 ∈ IR with
∑2

i=1(a2
i + b2

i ) 6= 0. Then, as in (III.7.3) we have,

2∑
p=1

[apĈn(ωpn) + bpŜn(ωpn)] =
n∑
j=1

Z(sj)wn(sj), (III.7.6)

where, wn(s) = n−1/2
∑2

p=1{apcos(ω
′
pns) + bpsin(ω

′
pns)}. Then for any h ∈ IRd,∫

wn(λnx + h)wn(λnx)f 2(x)dx

= (2n)−1

2∑
p=1

2∑
q=1

[
apaq

∫ {
cos(λn(ωpn + ωqn)

′
x + ω

′

qnh)

+cos(λn(ωqn − ωpn)
′
x + ω

′

qnh)
}
f 2(x)dx

+apbq

∫ {
sin(λn(ωpn + ωqn)

′
x + ω

′

qnh) + sin(λn(ωqn − ωpn)
′
x + ω

′

qnh)
}
f 2(x)dx



81

+aqbp

∫ {
sin(λn(ωpn + ωqn)

′
x + ω

′

qnh)− sin(λn(ωqn − ωpn)
′
x + ω

′

qnh)
}
f 2(x)dx

+bpbq

∫ {
cos(λn(ωqn − ωpn)

′
x + ω

′

pnh)− cos(λn(ωpn + ωqn)
′
x + ω

′

qnh)
}

f 2(x)dx
]
.

When the frequency sequences {ω1n} and {ω2n} are asymptotically distant, by Lemma

III.7.2,

lim
n→∞

∫
wn(λnx + h)wn(λnx)f 2(x)dx = (K/2)cos(ω

′
h)

2∑
p=1

(a2
p + b2

p).

On the other hand, when {ω1n} and {ω2n} satisfy (III.4.5), then by Lemma III.7.2

and proceeding similarly as in Theorem III.3.2, we get the required result.

III.7.4. Proof of Theorem III.4.3

Fix a1, a2, b1, b2 ∈ IR with
∑2

p=1(a2
p + b2

p) 6= 0. Then,
∑2

p=1[apĈn(ωpn) + bpŜn(ωpn)]

can be expressed in the from (III.7.6) and the corresponding weight function wn(·)

satisfies (III.7.7). For part (c), for any h ∈ IRd, we get

lim
n→∞

n

∫
wn(λnx + h)wn(λnx)f 2(x)dx

= (1/2)
2∑
p=1

2∑
q=1

[
apaq

{∫
cos((yp + yq)

′
x)f 2(x)d(x) +

∫
cos((yp − yq)

′
x)f 2(x)

d(x)}+ apbq

{∫
sin((yp + yq)

′
x)f 2(x)d(x) +

∫
sin((yq − yp)

′
x)f 2(x)d(x)

}
+aqbp

{∫
sin((yp + yq)

′
x)f 2(x)d(x)−

∫
sin((yq − yp)

′
x)f 2(x)d(x)

}
+bpbq

{∫
cos((yq − yp)

′
x)f 2(x)d(x)−

∫
cos(yp + yq)

′
x)f 2(x)d(x)

}]
,

where, yi = limn→∞ λnωin, i = 1, 2. The proof of part (c) now can be completed

by applying the inversion formula (III.6.17) and the central limit theorem of Lemma

III.7.1. Parts (a) and (b) can be proved by repeating the steps in the proofs of parts
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(a) and (b) of Theorem III.4.2, respectively, setting ω = 0. We omit the details to

save space.

III.7.5. Proof of Theorem III.4.4

Fix a1, · · · , ar, b1, · · · , br ∈ IR with
∑r

i=1(a2
i + b2

i ) 6= 0. With an obvious definition of

˜̂
Cn(ω) and

˜̂
S(ω), we have

r∑
p=1

[ap
˜̂
Cn(ωpn) + bp

˜̂
S(ωpn)] =

n∑
i=1

Z(si)[wn(si)− n−1/2βn] (III.7.7)

where wn(s) = n−1/2
∑r

p=1{apcos(ω
′
pns) + bpsin(ω

′
pns)} and βn = n−1

∑n
i=1

∑r
p=1{ap

cos(ω
′
pnsi) + bpsin(ω

′
pnsi)}. Now suppose, ωpn → ω 6= 0, for all p = 1, 2, · · · , r. Then

by SLLN, βn →a.s. 0. On the other hand, if λnωpn → yp ∈ IRd for all p = 1, 2, · · · , r,

then,

βn →a.s. β0 ≡
r∑
p=1

{ap
∫

cos(y
′

px)f(x)d(x) + bp

∫
sin(y

′

px)f(x)d(x)}. (III.7.8)

Now,

r∑
p=1

[ap
˜̂
Cn(ωpn) + bp

˜̂
S(ωpn)] =

n∑
i=1

Z(si)[wn(si)− n−1/2β0] +Rn (III.7.9)

where, Rn = (βn − β0)n−1/2
∑n

i=1 Z(si) = op(1), a.s. (PX). Therefore, it is enough

to find the asymptotic distribution for
∑n

i=1 Z(si)[wn(si) − n−1/2β0]. Let w∗n(s) =

wn(s)− n−1/2β0. Then,

n

∫
w∗2n (λnx)f(x)dx

= n

∫
w2
n(λnx)f(x)dx− β2

0 + op(1), a.s. (PX). (III.7.10)
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and,

n

∫
w∗n(λnx + h)w∗n(λnx)f 2(x)dx

= n

∫
wn(λnx + h)wn(λnx)f 2(x)dx−Kβ2

0 + op(1), a.s. (PX).

(III.7.11)

The results now follow from (III.7.7)-(III.7.11) and Lemma III.7.1.
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CHAPTER IV

CONCLUSION

In the first work, we propose a bootstrap based method to derive an estimator of the

mean squared prediction error M(θ) due to the prediction of a suitable functional

of a set of future values Xn+1, . . . , Xn+k based on observed time-series X1, . . . , Xn.

The key advantage of the bootstrap methodology is that it produces an estimator

of the MSPE of the estimated best linear predictor for any given estimator θ̂n of θ,

without requiring any analytical computation of the functions M2(θ) (a cross-product

term) and M3(θ) (the estimation error due to the substitution of θ̂n in place of θ in

Ψ̃n(·)) which critically depend on the choice of θ̂n. We show that under fairly mild

regularity conditions on the {Xt}-process and on the estimators θ̂n, the bootstrap

MSPE estimator is consistent.

An important contribution of this work is to develop a new method for construct-

ing a second order correct MSPE estimator that is non negative with probability one.

The key idea is to “tilt” the estimator θ̂n suitably so that it balances out the bias

of the “ordinary” bootstrap MSPE estimator to the order O(n−1). The tilting factor

used here is based on certain iterations of the bootstrap step and on a simple formula

to combine them. As a result, the computation of the proposed second order cor-

rect MSPE estimator is very much feasible with today’s computing power, and the

methodology works any choice of the estimator θ̂n satisfying the mild regularity con-

ditions of the main result. Most importantly, the proposed method does not require

any analytical derivation on the part of the user.

In the next work, we study the asymptotic joint distribution of a finite collection
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of DFTs of regularly and irregularly spaced spatial data under the pure and mixed

increasing domain asymptotic structures. The main findings of our paper under both

deterministic and stochastic sampling designs are:

(i) As in the time series case, under suitable regularity conditions, the asymptotic

joint distributions of finite collections of the sine and cosine transforms are mul-

tivariate Gaussian under both deterministic and stochastic designs. However, in

the stochastic design case, the asymptotic covariance critically depends on the

spatial sampling density and the spatial asymptotic structure (PID vs MID); A

complete description of their effects on the resulting limit distributions is given.

(ii) DFTs at unequal nonzero limiting frequencies are asymptotically independent.

(iii) In the fixed design case, for sampling regions of a general shape and for DFTs at

ordinates converging to a common limiting frequency, asymptotic independence

holds if and only if the ordinates are asymptotically distant. {ωjn} and {ωkn}

are called asymptotically distant if (vol.(D))1/d‖ωjn − ωkn‖ → ∞ as N → ∞.

In the stochastic design case, similar result holds for a general sampling density.

Thus, although the data-sites are irregularly spaced, the asymptotic behavior

of the DFTs remains similar to that for regularly spaced spatial data. This

is rather surprising and contrary to the folklore about lack of independence of

DFTs for irregularly spaced time series data.

(iv) For two discrete Fourier frequency sequences {ω1n} and {ω2n} converging to

the zero frequency, the corresponding sine and cosine transforms may exhibit

different behavior depending on whether the frequency sequences approach zero

at the same rate (asymptotically symmetrically close case) or at a different rate

(asymptotically close case). See Section III.3.1.3 and Section III.4.3 for details.
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(v) For sampling sites located on the d-dimensional integer grid, DFTs at all discrete

Fourier frequencies are asymptotically independent when the sampling region is

cubic. However, this is false for a sampling region of a general shape (including

spheres, hyper-rectangles, etc.). Also for sampling sites on a scaled version of

Zd and a rectangular sampling region, asymptotic independence holds, provided

the grid-increment in each direction is inversely proportional to the sides of the

sampling region.

(vi) Under the stochastic design, for a hyper-rectangular sampling region and a uni-

form sampling density, asymptotic independence of DFTs holds even for asymp-

totically close frequency sequences. See Section III.4 for more details.

Thus, in contrast to the time series case, the geometry of the sampling region

plays an important role in determining the asymptotic independence of the DFTs of

spatial data.
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