

Tabu Search for Bus and Train

Driver Scheduling

With Time Windows

by

Yindong Shen

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Computing

May 2001

The candidate confirms that the work submitted is her own and that appropriate

credit has been given where reference has been made to the work of others.

Acknowledgements

I would like to thank my supervisors, Dr. Raymond S. K. Kwan and Professor Anthony Wren,

for their help, guidance and encouragement. I am also grateful to Dr. Ann S. K. Kwan, for her

assistance and providing me with the test problems. I would like to thank Dr. Angseng Li for

his advice on the mathematical presentations. I would also like to thank Dr. Sarah Fores for her

comments on and suggestions to the thesis.

I would like to thank my mother Mrs. Siying Shen; she loves me deeply and is always ready to

provide me with help.

Finally, my thanks go to my husband Mr. Daniel Jiahong Xia, for his support and patience. I am

most grateful to my lovely son, Ben, who is nine years old. His accompany has provided me

enormous comfort, happiness and support.

I dedicate this thesis to Ben.

Abstract

The bus and train driver scheduling problem involves assigning bus or train work to drivers in

such a way that all the bus or train work is covered and the number of drivers and duty costs are

minimised. This is complicated by the fact that there are many restrictions on the duty

generation.

The generate-and-select approach is at present the most successful for bus and train driver

scheduling. It involves generating a set of legal potential driver duties from which a minimal

and most efficient subset is selected. Filtering rules are often applied so that the set of potential

duties generated would not be prohibitively large. Moreover, windows of relief opportunities

(WROs), which provide ranges of opportunities for relieving drivers, are beyond the capability

of being handled by the existing systems. The usual practice is to consider one, sometimes two,

discrete times within each time window. Optimality of solution is therefore compromised.

The research presented in this thesis focuses on solving the driver scheduling problem with

WROs using a constructive approach, which builds and refines a single schedule iteratively.

Filtering rules are unnecessary under the approach. The 2-opt heuristic approach is first

investigated, during which the potential of constructive heuristics is explored. Based on the

experience, the Tabu Search meta-heuristic approach is then investigated. Multi-

neighbourhoods and an appropriate memory scheme, which are essential elements of Tabu

Search are designed and tailored for the driver scheduling problem with WROs. Alternative

designs have been tested and compared with best known solutions drawn from real-life data

sets. The tabu search approach is very fast, can handle WROs, and has achieved results

comparable to those based on mathematical programming approaches. Taking advantage of

WROs, it can improve best known solutions obtained by the existing systems. Consequently, it

could be incorporated into existing systems to improve the solution by taking advantage of

WROs.

Declarations

Some parts of the work presented in this thesis have been published or will appear in the

following articles:

Shen, Y. and Kwan, R.S.K. (2001). Tabu Search for Driver Scheduling. To appear in: Voß, S.

and Daduna, J.R. (eds.) Computer-Aided Scheduling of Public Transport, Springer Verlag.

Shen, Y. and Kwan, R.S.K. (2001). A constructive approach to bus and train driver

scheduling. In: Proceedings of the IIE Annual Conference 2001, May 20-23, 2001, Dallas,

Texas.

Shen, Y. and Kwan, R.S.K. (2000). A Tabu Search algorithm with 2-opt moves for bus and

rail driver scheduling. Presented in: the Eleventh Young Operational Research Conference,

28th-30th March, 2001, Fitzwilli am College, Cambridge.

Shen, Y. and Kwan, R.S.K. (2000). Tabu Search for time windowed public transport driver

scheduling. Technical Report 2000.14, School of Computing, University of Leeds.

Contents

Acknowledgements i

Abstract ii

Declarations iii

Contents iv

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Bus and train driver scheduling problems ... 1

1.1.1 Vehicle work ... 2

1.1.2 Vehicle work with windows of relief opportunities 4

1.1.3 Driver scheduling .. 5

1.1.4 Duty types .. 6

1.1.5 Labour agreement rules ... 7

1.1.6 Objectives of driver scheduling ... 10

1.2 Computerised driver scheduling approaches ... 10

1.3 Purpose of the research .. 11

1.4 Organisation of the thesis ... 12

2 Review of Bus and Train Driver Scheduling Approaches 15

2.1 Introduction ..15

2.2 Early heuristic approaches ...16

2.2.1 Elias’ scheduling systems ..17

2.2.2 Weaver and Wren’s work ..19

2.2.3 The TRACS system ...21

2.2.4 RUCUS and RUCUS II ...23

2.2.5 The COMPACS system ...25

2.2.6 Overview of the early heuristic approaches ...25

2.3 Mathematical programming approaches ..26

2.3.1 Mathematical model of set covering and set partitioning26

2.3.2 The IMPACS system ...28

2.3.3 The TRACS II system ...30

2.3.4 The Crew-opt method of the HASTUS system ...33

2.3.5 Overview of the mathematical programming approaches35

2.4 Meta-heuristic approaches ...36

2.4.1 A Tabu Search approach - Cavique et al ...36

2.4.2 Genetic Algorithms ...38

2.4.2.1 Kwan et al ..38

2.4.2.2 Li and Kwan ...39

2.4.3 A Simulated Evolution algorithm – Li and Kwan40

2.4.4 An Ant System - Forsyth and Wren ..41

2.4.5 Overview of the meta-heuristic approaches ..42

2.5 Constraint programming approaches ...42

2.5.1 Layfield et al ..42

2.5.2 Curtis et al ..43

2.5.3 Overview of the constraint programming approaches44

2.6 Recent transport scheduling packages ...44

2.7 Conclusions – generate-and-select approach vs. constructive approach46

3 Neighbourhood Search Heuristics for Driver Scheduling 49

3.1 Introduction ..49

3.2 Neighbourhood Search ..51

3.3 2-opt heuristics ...53

3.3.1 Vehicle scheduling versus driver scheduling ..54

3.3.2 A bus vehicle scheduling system – BOOST ..55

3.3.3 2-opt heuristics for driver scheduling ..55

3.4 Simpli fied driver scheduling problem ...59

3.5 Outline of the 2-opt driver scheduling approach ...63

3.5.1 Modelling driver activities and duty ..63

3.5.2 General scheme of the 2-opt driver scheduling approach64

3.6 Formation of an initial schedule ..65

3.7 Swapping links ...68

3.7.1 2-opt swapping links ..68

3.7.2 Link swapping rules ..70

3.7.2.1 Swapping for improving the current schedule71

3.7.2.2 Swapping for creating favourable conditions for improvement . 71

3.7.3 Experiments on 2-opt swapping ..73

3.7.4 K-opt swapping links ...74

3.7.5 Summary ..77

3.8 Replacing AROs .. 77

3.8.1 Principle of replacing AROs .. 77

3.8.2 Strategies of replacing AROs .. 79

3.8.3 Hybrid of swapping links and replacing AROs ... 82

3.9 Adding duties ... 83

3.10 Implementation and results .. 85

3.10.1 Greater Manchester Buses ... 85

3.10.2 Merseyside Transport .. 86

3.10.3 Regional Railways North East ... 87

3.10.4 Summary .. 88

3.11 Conclusions .. 88

4 Modelling the Driver Scheduling Problem and Overview of HACS 91

4.1 Introduction .. 91

4.2 A formal model for driver scheduling ... 92

4.2.1 Vehicle work ... 92

4.2.2 A driver schedule ... 93

4.2.3 Labour agreement rules and costing functions .. 96

4.2.3.1 Duty types .. 97

4.2.3.2 Costing a duty .. 98

4.2.3.3 Costing a link ... 101

4.2.3.4 Costing a schedule .. 101

4.2.4 Objectives .. 102

4.3 An alternative model of a driver schedule ... 103

4.4 Spell-model versus piece-model .. 105

4.5 Overview of the HACS approach .. 106

4.5.1 Construction of an initial schedule .. 107

4.5.2 Refinement of the schedule ... 107

4.6 Conclusions .. 108

5 Tabu Search Technique Tailored for the

 Driver Scheduling Problem with WROs 109

5.1 Introduction .. 109

5.2 Tabu Search ... 111

5.3 Objective functions .. 112

5.4 Multi-neighbourhoods based on the spell-model ... 113

5.4.1 Swapping two links ... 113

5.4.2 Swapping two spells .. 115

5.4.3 Inserting one spell .. 116

5.4.4 Recutting block .. 117

5.4.4.1 Definition of the potential alternatives of a given ARO 117

5.4.4.2 Definition of the predecessor and successor of

an ARO without considering WROs .. 118

5.4.4.3 Conversion of a time window into discrete times 119

5.4.4.4 Enhanced definitions of the predecessor and successor

of an ARO .. 120

5.4.4.5 Definition of recutting-block operation 121

5.4.5 Summary .. 123

5.5 Multi-neighbourhoods with combined utilisation of the spell model

 and the piece-model ... 123

5.6 Memory schemes ... 125

5.6.1 Move representation and move attribute ... 126

5.6.2 Move value .. 126

5.6.3 Tabu tenure and tabu status ... 127

5.6.4 Candidate list and tabu list ... 128

5.6.4.1 Elite candidate list .. 129

5.6.4.2 An efficient memory scheme for driver scheduling 132

5.7 Tabu Search algorithms in HACS .. 134

5.8 Conclusions .. 138

6 Evaluation and Computational Experiments 139

6.1 Introduction .. 139

6.2 Test problems and the best known solutions ... 140

6.3 HACS based on spell-model .. 143

6.3.1 Experiments on different neighbourhood structures 143

6.3.2 Experiments on a steepest descent method .. 145

6.3.3 Evaluation of the swapping processes ... 146

6.3.4 Summary .. 150

6.4 HACS with combined utilisation of the spell-model and the piece-model 151

6.5 Demonstration of handling WROs ... 152

6.5.1 The TEST problem and the HACS solution .. 153

6.5.2 TRACS II solutions to the TEST problem and analyses 154

6.5.3 Summary .. 158

6.6 Experiments on real-life problems with WROs ... 158

6.7 Experiments to improve best known solutions .. 160

6.8 Conclusions .. 162

7 Conclusions 164

7.1 Summary .. 164

7.2 Research Contributions .. 166

7.3 Future Work ... 168

Bibliography 170

Glossary 181

List of Tables

1.1 Example of PNB rules in train operation ... 9

3.1 Neighbourhood Search Method ... 51

3.2 Descent Method 52

3.3 Steepest Descent Method ... 52

3.4 Comparison between 2-opt and TRACS II solutions to the GMB problem 86

3.5 Comparison between 2-opt and TRACS II solutions to the GMBmini problem 86

3.6 Comparison between 2-opt and TRACS II solutions to the MTLD problem 86

3.7 Comparison between 2-opt and TRACS II solutions to the MTLDmini problem 87

3.8 Comparison between 2-opt and TRACS II solutions to the RRNE problem 88

5.1 Tabu Search 112

6.1 Properties and best known solutions of test problems ... 141

6.2 Results obtained by HACS with different single swapping

 neighbourhood structure... 144

6.3 The solutions obtained by HACS with multi-neighbourhoods 144

6.4 Results obtained by a Steepest Descent method .. 145

6.5 The starting solutions and the corresponding final solutions to D6

 obtained by HACS based on the spells in the TRACS II solutions 148

6.6 The starting solutions and the corresponding final solutions to D7

 obtained by HACS based on the spells in the TRACS II solutions 149

6.7 The starting solutions and the corresponding final solutions to D9

obtained by HACS based on the spells in the TRACS II solutions 150

6.8 Results obtained by the HACS approach with the spell-based

and piece-based operations combined ... 152

6.9 HACS solutions involving WROs ... 159

6.10 HACS solutions based on the best known solutions .. 160

List of Figures

1.1 Example of a block in a vehicle schedule .. 3

1.2 Example of a vehicle block with relief opportunities .. 4

1.3 Example of a vehicle block with windows of relief opportunities 5

1.4 Illustration of a driver schedule ... 6

2.1 Workbench main window of TRACS II .. 30

2.2 Different levels of RO reduction .. 33

2.3 Different levels of potential duty reduction ... 33

3.1 Hierarchy of driver activities ... 64

3.2 Illustration of a duty with two spells .. 64

3.3 The major functional components of the 2-opt heuristics .. 66

3.4 Illustration of 2-opt swapping-link (standard) ... 69

3.5 Illustration of 2-opt swapping-link (a) ... 69

3.6 Illustration of 2-opt swapping-link (b) ... 70

3.7 Illustration of 2-opt swapping-link (c) ... 70

3.8 Illustration of the possible effect of the WideBR swap ... 72

3.9 Illustration of 3-opt swapping-link .. 75

3.10 Illustration of 4-opt swapping-link .. 75

3.11 Illustration of 5-opt swapping-link .. 76

3.12 Illustration of replacing AROs ... 78

3.13 Types of invalid duties and the relevant AROs for replacement 80

3.14 Illustration of replacing AROs on three links .. 82

3.15 Example of two-link-adding-duty .. 84

4.1 Illustration of a driver duty .. 94

4.2 Relationship between blocks and duties .. 96

4.3 Classification of driver duties .. 98

5.1 Illustration of swapping two links .. 114

5.2 Example of turning a spell into an end spell .. 114

5.3 Illustration of swapping two spells .. 116

5.4 Illustration of inserting one spell ... 117

5.5 Duty with a selected link and its WROs .. 120

5.6 Illustration of recutting blocks ... 122

5.7 Illustration of three invalid links involved in move(i,j) and move(i,x) 130

5.8 Illustration of the new links after two elite candidate moves 130

6.1 The TEST problem and the HACS solution .. 153

6.2 Blocks in the TEST problem after shrinking each WRO into a RO 154

6.3 TRACS II solution to the TEST problem after shrinking each WRO into a RO 155

6.4 TRACS II solution to the TEST problem after expanding each time window

 into individual minutes ... 157

6.5 Illustration of a vehicle work with WROs

 in the London Underground Metropolitan Line ... 161

Chapter One

Introduction

__

1.1 Bus and train driver scheduling problems

The bus and train driver scheduling problem involves finding the most efficient way of

assigning notional drivers to the daily operations of a fleet of vehicles. Bus driver scheduling

and train driver scheduling are different aspects of the same problem (Kwan et al., 2000). All

the features that are in the bus operation can be found in the train operation but not vice versa

(Kwan, 1999). In both cases, driver duties are made up of spells of work on one or more

vehicles, and all the vehicle work must be covered by such duties. The term vehicle shall be

used to denote a bus or a train throughout this thesis.

The precursor to the driver scheduling problem is the vehicle scheduling problem, in which

vehicles are allocated to the journeys to be operated (the service is fixed in advance, and will

remain unchanged for usually months at a time). Since both the vehicle scheduling problem and

the driver scheduling problem are individually hard, the usual practice is to compile schedules

separately for the vehicles and for the drivers. When all daily driver duties for a schedule or set

of schedules (sometimes weekday and weekend have different schedules) have been complied it

is necessary to combine them into sets of work for actual drivers on a weekly basis. In the

United Kingdom, the weekly duties are usually organised by the management into a rotating

roster, and the drivers work through all the weekly rotas in turn.

The driver scheduling problem presented here is concerned with the assignment of notional

drivers to a predetermined bus or train schedule. The number of possible combinations for

partitioning the vehicle work in a schedule is usually astronomical. There is a set of restrictions

on the driver schedules. For example, daily working time for a driver has to be limited to a

certain number of hours; a driver is normally required to have a break if the continuous driving

time has reached a certain limit. These restrictions are called labour agreement rules, which

vary a great deal between different operators. The most common rules are listed in Section

1.1.5. These rules governing the legality of a driver duty affect profoundly the complexity of

duty compilation. The driver schedule must be legal according to the rules. It should use the

minimum number of duties and/or have the lowest total cost.

1.1.1 Vehicle work

In a vehicle schedule, the work is usually presented as a set of blocks. A block presents a

sequence of journeys to be operated by one vehicle during one day, beginning with a pull-out

from, and ending with a pull-in, to a depot. The journeys of a vehicle that leaves and returns to

the depot more than once in a day make up several blocks. Figure 1.1 displays an example of a

block in a vehicle schedule, where layover denotes the time allowance during which a vehicle

waits at a stop after its arrival and before starting its next journey; empty run denotes

unproductive vehicle work, during which a vehicle runs from one location to another without

carrying passengers.

 Block 1:
 Start from Depot at GNFDRL 05:31
 Location Arrival Time Departure Time Layover (minutes)
 GNFDRL 05:31
 BULBTS 06:03 06:07 :4
 GNFDRL 06:46 06:59 :13
 BULBTS 07:33 07:37 :4
 GNFDRL 08:23 08:26 :3
 HVKEHR 08:54 08:55 :1
 GNFDRL 09:33 09:42 :9
 HVKEHR 10:10 10:11 :1
 GNFDRL 10:46 10:56 :10
 BULBTS 11:32 11:37 :5
 GNFDRL 12:21 12:27 :6
 HVKEHR 12:55 12:56 :1
 GNFDRL 13:31 13:36 :5
 BULBTS 14:12 14:17 :5
 GNFDRL 15:01 15:12 :11
 HVKEHR 15:40 15:41 :1
 GNFDRL 16:21 16:27 :6
 HVKEHR 16:55 16:56 :1
 GNFDRL 17:36 17:36 :0
 BULBTS 18:12 18:17 :5
 GNFDRL 18:59 19:16 :17
 BULBTS 19:48 19:53 :5
 GNFDRL 20:32 20:35 :3
 HVKEHR 20:54 20:55 :1
 GNFDRL 21:20 21:35 :15
 HVKEHR 21:54 21:55 :1
 GNFDRL 22:20 22:35 :15
 HVKEHR 22:54 22:55 :1
 GNFDRL 23:20 23:20 empty run :4
 SMFMHR 23:24 23:25 :1
 EALCKR 23:55 24:00 :5
 SMFMHR 24:32 24:32 empty run :4
 GNFDRL 24:36
 Arrival back Depot at GNFDRL 24:36

For driver scheduling purposes, a block is usually represented in a graphical format (see Parker

and Smith, 1981) showing the vehicle number (i.e. block number) and all the vehicle work

(including empty runs) in the block while identifying a sequence of relief opportunities (RO for

short). A RO is a time/location pair, at which drivers can be relieved. The time is called a relief

time, while the location is called a relief point and coded by a single alphabet in a block graph.

Figure 1.1: Example of a block in a vehicle schedule

Not all the places where a vehicle stops in a vehicle schedule are feasible places for relieving

drivers. Only some of the places are designated as relief points by transport operators. Figure

1.2 shows an example, which represents the block in Figure 1.1 in a graphical format

identifying relief opportunities. In this example, we suppose that only GNFDRL and BULBTS

are designated as relief points, which are denoted as G and B respectively in Figure 1.2.

 0531 0603 0646 0733 0823 0933 1046 1132 1221 1331 1412 1501 1621 1736 1812 1859 1948 2032 2120 2220 2320 2436

 1 G----B----G----B----G----G----G----B----G----G----B---G----G----G----B---G----B----G----G---G-----G----G

In Figure 1.2, only the arrival times at relief points (plus the starting time at the depot) are

selected as relief times. This is at present the most common practice in bus and train driver

scheduling. However, a more comprehensive representation that takes into account the gaps

between the arrivals and the departures at relief points is provided in the next section.

1.1.2 Vehicle work with windows of relief opportunities

In practice, when a vehicle stops at a location, there is often a gap between the arrival time and

the departure time, which is called a time window. In bus vehicle scheduling, the time window

is called a layover (see Figure 1.1). A time window at a particular relief point constitutes a

window of relief opportunities (WRO for short), during which drivers can be relieved at any

time within the window. Some WROs are called attended WROs (A-WRO for short), during

which the vehicle must be attended by one driver. The others (normally long time gaps) are

called unattended WROs (U-WRO for short), during which the vehicle can be left without a

driver. For train operations, extra time has to be allowed for the driver to power off and on the

engine before and after an U-WRO. Figure 1.3 exemplifies a vehicle block with WROs, where

Figure 1.2: Example of a vehicle block with relief opportunities

A-WRO RO U-WRO

7909 is the block number; the thick line denotes vehicle work while the rectangles denote

WROs; above these are their time ranges while below are the codes of their relief points. A-

WROs and U-WROs are distinguished by whether the thick line passes through their

corresponding rectangles. A RO, denoted by a small circle, is a special case of a WRO, in

which the arrival time is the same as the departure time. This special case of WROs will be

distinguished and indicated in this thesis only when necessary. Any time in a time window

together with the relief point constitutes a time-point pair and is also called a RO. When WROs

are considered, a RO denotes a time-point pair in a WRO. The work between two consecutive

WROs on a block is defined as a piece of work, which is not permitted to be broken up.

 0805 0649-0659 0949 - 0959 1149 - 1215 1349-1359 1519 - 1527 1815

 7909

 D N N S N N D

1.1.3 Driver scheduling

Driver scheduling is a process of partitioning vehicle work into a set of legal driver duties, the

schedule, such that the total number of duties and/or the total duty costs are minimised.

A duty is the work to be performed by a driver during one day from signing on until signing off

at a depot. Each duty consists of a sequence of driver activities, i.e. a sign-on activity, a set of

spells, and a sign-off activity. A spell is a section of continuous vehicle work to be operated by

a driver without a break. Each spell includes at least two ROs, the first and the last ROs are

called active relief opportunities (AROs for short), during which the drivers are actually

relieved. Figure 1.4 illustrates a driver schedule, where ‘+’ denotes an ARO, while G and H are

Figure 1.3: Example of a vehicle block with windows of relief opportunities

relief point codes. Driver scheduling without considering windows of relief opportunities can

be regarded as a special case.

 0812 0950-0955 1152-1157 1332-1337 1455-1459 1655

vehicle 1

 G H H H H G

 +-------Duty 1--------+-------------------Duty 2--------------------------+

 1240 1330-1332 1430-1435 1550-1555 1710-1715 1855

vehicle 2

 G H H H H G

 +----------------Duty 1----------+----------Duty 3----------+

 0920 1112-1117 1230-1235 1350-1405 1505

vehicle 3

 G H H H G

 +--Duty 2--+-----------------Duty 3-------------------+

1.1.4 Duty types

Duties can be classified into two principal types: split duties and straight duties. A split duty is

one with a longer spreadover than standard duties, e.g. up to 12 hours or more, plus a long

break in the middle. The other duties are called straight duties, which may be further divided

into different types according to which time period the duty covers or to which range of

spreadover length the duty falls in. For instance, in bus operations, straight duties can be

divided into early duties (taking early buses out of the depot and covering part of the morning

peak), late duties (taking late buses into the depot and covering part of the afternoon peak), and

middle duties. In UK organisations, straight duties usually contain two stretches separated by a

Figure 1.4: Illustration of a driver schedule

meal break. There may also be a few straight duties containing two or more meal breaks, and

some, which are usually only two to five hours long containing a straight run without

mealbreak. In North America, straight bus runs without mealbreak are common.

The above is a general classification; other classifications exist. In practice, the classification

for a particular problem is defined by the operator and each type of duty often has a set of

labour agreement rules to govern its legality. A duty satisfying all the governing rules is called

a valid duty, a legal duty or a feasible duty; otherwise it is called an invalid duty, an illegal duty

or an infeasible duty.

1.1.5 Labour agreement rules

A feasible schedule must be legal according to labour agreement rules determined by the

government, the transport operators and the union. Some other local unwritten rules may also

have to be enforced. Labour agreement rules vary considerably between operators. The

common rules for bus drivers are listed in (Smith and Wren, 1988) and are included in the

following list for both bus and train drivers.

1) A driver starts work by signing on and finishes work by signing off at the same depot.

2) There is a limit on spreadover, i.e. the length of a duty, which is the length of time from

first signing on to finally signing off, and usually no more than twelve hours. Each kind

of duty has a maximum length of spreadover, while some have a limit on the minimum

length of spreadover.

3) There is a maximum spell, i.e. length of driving time that a driver can work

continuously without a break on one vehicle. There may be periods within a spell when

the vehicle stops and attendance by a driver is optional. Some operations stipulate two

different rules to restrict the maximum length of a spell with or without a stop. The

maximum spell with a stop is always equal or longer than those without a stop.

4) There is a maximum stretch, i.e. length of time that a driver can work without a meal

break, say four to five hours. A stretch (e.g., from signing on to the start of the first

meal break, or from the end of the last meal break to signing off, or between two

successive meal breaks) consists of one or more successive spells in a duty. Between

two successive spells in a stretch there is an intervening short break, called a join-up.

This break must be long enough for the driver to travel to take over the following spell

of work.

5) Meal break (i.e. the time allowance between two spells of work for the driver to travel

to the canteen, have a meal and then take over the next vehicle) must be a minimum

length of time. In bus operations, there is usually one meal break in a duty of say at least

30 or 40 minutes. For a split duty, the longest gap between two consecutive spells must

not be shorter than the due minimum length of time. In UK train operation, a meal break

is usually called a PNB (Physical Needs Break) and there may be one or more PNBs in

a duty. The rules governing when PNBs should occur and how long they should at least

be are complicated. Table 1.1 shows the PNB rules in a train operation, where PNB-

PERIODS denotes the time ranges when PNBs can occur, while LENGTH denotes the

minimum length of a PNB. Both PNB-PERIODS and LENGTH depend on the

spreadover of a duty. For instance, the first row in Table 1.1 means: one PNB of at least

30 minutes must occur between the third and fifth hour relative to the start of the duty if

the spreadover of the duty is equal to or less than eight hours. The last row means: two

PNBs of 20 minutes each must occur between the second and the seventh hour if the

spreadover of the duty is greater than eight hours and less than or equal to nine hours.

Table 1.1: Example of PNB rules in train operation

No. PNBS LENGTH Spreadover-RANGE PNB-PERIODS

1 :30 000 800 300 500

1 :30 801 900 200 600

2 :20 000 800 200 600

2 :20 801 900 200 700

6) There is a maximum working time for a duty. The calculation of working time of a duty

depends on the operator and the type of the duty. For some duties, the time from signing

on to signing off is fully counted as working time; for some duties, non-driving time,

e.g. mealbreak and the signing on and off allowances before and after a long meal

break, is not counted as working time; for some duties, part of non-driving time is

counted as working time.

7) There are usually restrictions on the time of earliest sign-on/sign-off, earliest start

on/finish off, latest sign-on/sign-off, and latest start on/finish off dependent on the duty

types.

The above rules govern the legality of a duty and must be adhered to in a feasible driver

schedule. In addition to the labour agreement rules, some operators may have other

requirements governing the legality of a duty. For instance, a driver must have knowledge of

the type of vehicle he/she drives. We shall use the term labour agreement rules to denote any

rules and requirements governing the legality of a duty throughout this thesis.

1.1.6 Objectives of driver scheduling

Although objectives of driver scheduling may vary, forming a feasible schedule covering all the

vehicle work is the most essential objective for all operators and must be fulfilled. (In practice,

operators may accommodate some infeasibility by bending the rules or adjusting the vehicle

trips when considerable saving can be made). Minimising the number of duties required and the

total duty cost are primary objectives for most operators. These two objectives sometimes

confli ct and a trade-off may be needed. In the UK, minimising the total number of duties

usually has priority over minimising total duty cost.

1.2 Computerised driver scheduling approaches

Early computerised driver scheduling approaches were purely heuristic. They were heavily

reliant on domain knowledge, and often needed large amounts of manual intervention such that

the algorithms were not readily portable to different transport operators. By the 1980’s it was

generally recognised that heuristics alone were not suitable for general use (Wren and

Rousseau, 1995). The purely heuristic approach was therefore abandoned in favour of

mathematical programming approaches aided by heuristics. The principle mathematical

programming approach, e.g. TRACS II (Fores and Proll, 1998; Kwan et al., 1999 and 2000;

Fores et al., 2001), first generates all the ‘good’ valid potential driver duties according to labour

agreement rules, then if necessary reduces the very large potential duty set using heuristics, and

lastly uses a set covering or set partitioning formulation to select the cheapest subset of duties

that covers each piece of vehicle work. This approach can be labelled as a generate-and-select

approach. The mathematically based generate-and-select approach has been successful in many

practical systems (e.g. Rousseau and Desrochers, 1995; Fores et al., 1999 and 2001), and is still

dominant in commercial application of driving scheduling. The advances in the mathematical

programming solvers, such as column generation techniques (Rousseau and Desrochers, 1995;

Fores, 1996; Fores et al., 1998 and 1999), have made the mathematically-based approaches

more powerful in solving large problems. The column generation technique can reduce the

burden of duty generation if further potential duties are generated as required during the

selection process (Rousseau and Desrochers, 1995).

Despite their successes, the current systems can neither be regarded as black boxes that produce

working schedules completely automatically nor guarantee to yield optimal solutions. As one of

the most successful systems, TRACS II (Fores et al., 1999; Kwan et al., 2000) has, through long

development working with many operators, reached a level of generality such that it can fit with

many companies’ requirements. Filtering rules are often applied as parameters so that the set of

potential duties generated would not be prohibitively large. These parameters have to be

manipulated to compile driver schedules for different transport operators. Such manipulation

can be frustrating to schedulers who do not appreciate the practical limitations of the

mathematical programming approach. Moreover, windows of relief opportunities are beyond

the capability of the current systems. The reason is that WROs greatly enlarge the sizes of

problems. The existing systems only handle relief opportunities as discrete times, and it would

be impractical to expand explicitly each time window into individual minutes. The usual

practice is to consider one, or sometimes a few, discrete times within each time window.

Optimality of the schedule is therefore compromised.

1.3 Purpose of the research

The bus and train driver scheduling problem is of great practical importance as efficient

schedules can make huge monetary savings. Building efficient schedules is one of the best ways

for the transportation industry to maximise profit. This problem has attracted much research

interest since the 1960’s (Elias, 1964; Wren, 1968; Wilson, 1999; Voß and Daduna, 2001).

Although a great deal of progress has been made, the problem (known as a hard combinatorial

optimisation problem) still has scope for new research and improvements.

This research aims to investigate a constructive heuristic approach that can tackle the driver

scheduling problem with windows of relief opportunities. The proposed approach aims:

1) To handle windows of relief opportunities;

2) To produce solutions not requiring the use of any artificial rules as necessitated in the

generate-and-select approach.

A constructive heuristic approach builds and refines a single schedule. We use the term

“constructive” to contrast with the term generate-and-select. The term “constructive approach”

is used throughout this thesis. Under the class of the constructive approaches, artificial rules are

unnecessary. Obviously for the constructive approach, the fewer rules that are imposed on the

validity of a driver duty, the easier it is to construct a solution. Moreover, the more relief

opportunities that are provided in the blocks, the more chance it has to refine the schedule.

Windows of relief opportunities provide ranges of opportunities for drivers to change over. The

constructive approach could benefit from the windows of relief opportunities to refine

schedules with more flexibilit y in recutting blocks.

1.4 Organisation of the thesis

Following this introduction, Chapter two reviews a number of computerised approaches to the

driver scheduling problem. The other chapters, except the Conclusions, present the research in

stages by investigating and building a suitable approach to solve the driver scheduling problem

with WROs.

Chapter three presents some initial research on a 2-opt heuristic approach for driver scheduling.

The driver scheduling problem was simplified, in which up to two spells were allowed in a duty

and the WROs were reduced to one or two ROs. The main aims of this initial research were to

investigate the potential of constructive heuristics, which were anticipated to be able to handle

WROs for driver scheduling and to obtain some experience in building the proposed approach

of this research.

Chapter four shows two models: spell-model and piece-model, which aim to represent the real-

life driver scheduling problem with WROs. Spell-model is first built by a natural presentation of

the problem, in which a spell is the basic unit of driving work in a duty. During the scheduling

process, the compositions of spells are variable. For the sake of developing the new algorithm, a

piece-model is also built, in which fixed pieces of work are the basic units. It is anticipated that

a combined utilisation of the two models would be needed. Based on the models, a driver

scheduling approach called HACS is developed, an overview of which is presented.

Chapter five describes in detail the Tabu Search technique tailored for the driver scheduling

problem with WROs, constituting the core of the HACS approach. Tabu Search is a general

scheme that must be tailored to the details of the problem at hand. This tailoring process is non-

trivial. Strategic use of memory and design of neighbourhood structures are critical. The driver

scheduling problem without WROs is a special case of that with WROs.

Chapter six presents a series of experiments and computational results compared with best

known solutions drawn from real-life data sets. Some components of HACS are evaluated while

the ability of handling WROs is assessed by experiments.

Finally, Chapter seven sums up the contributions of the research and considers options for

future research.

Chapter Two

Review of Bus and Train Driver

Scheduling Approaches
__

2.1 Introduction

Scheduling public transport drivers using computers began in the 1960’s. Since then a great

deal of progress has been made and many approaches have been developed. Wren and

Rousseau (1995) gave an overview of the approaches, many of which have been reported in a

series of proceedings of the eight international conferences on Computer-Aided Scheduling of

Public Transport (edited by Bodin and Bergman, 1975; Wren, 1981; Rousseau, 1985; Daduna

and Wren, 1988; Desrochers and Rousseau, 1992; Daduna, et al., 1995; Wilson, 1999; Voß and

Daduna, 2001). Research into bus and train driver scheduling approaches has been aided by the

continuing rapid growth in computer technology. The approaches may be roughly divided into

four groups: earlier heuristics, mathematical programming approaches, meta-heuristics and

constraint programming approaches. The classification is not distinctive because mathematical

programming approaches often involve heuristics while meta-heuristics often incorporate some

simple heuristics. Constraint programming approaches model practical problems as constraint

satisfaction problems, which are solved by heuristics or mathematical programming techniques.

Some earlier heuristic systems are described in Section 2.2 while some successful systems

based on mathematical programming approaches are in Section 2.3. Sections 2.4 and 2.5

describe some recent work on meta-heuristics and constraint programming. Section 2.6 briefly

reports three recent transport scheduling packages exhibited in the latest international

conference on Computer-Aided Scheduling of Public Transport. A concluding comparison

between the generate-and-select approach and the constructive approach is given at the end of

this chapter.

2.2 Early heuristic approaches

The earliest attempts (up till the 1970s) to solve driver scheduling problems used heuristics.

The reasons were that the computer was not powerful enough for running the mathematical

solvers, and the techniques employed by the mathematical programming solvers were not as

advanced as nowadays. Most heuristic systems at that time constructed a schedule using

methods similar to those used by manual schedulers. The refinement of the schedule was made

either by the schedulers interactively or by automatic heuristic procedures making limited

alterations.

This section reviews the early attempts made by Elias and by Weaver and Wren, the more

sophisticated TRACS and RUCUS systems, and an interactive system called COMPACS. The

review of other heuristic systems in this period can be found in the theses of Smith (1986),

Willers (1995), Fores (1996), Kwan (1999) and Curtis (2000)). These early heuristic

approaches are summarised at the end of this section.

2.2.1 Elias’ scheduling systems

Elias applied the computer to aid manual schedulers to compile bus driver schedules in the

early 1960’s (Elias, 1964). The situation that Elias’ aid system dealt with was common in the

United States, in which many duties were straight runs, i.e. a single spell of bus work of about 8

hours in length. The remaining work was combined into two-bus duties with an intervening

break, and some might be left as ‘ trippers’, which were single spells of work to be covered as

overtime.

Elias’ aid system includes three phases:

1) Form straight runs

A straight run is first cut from the beginning of the blocks, the duration of which is

longer than 8 hours. If there are no relief opportunities giving a straight run exactly 8

hours long, the nearest previous or next relief opportunity is selected depending on the

cost of the duty. The remaining work of the block is left as a spell if it is less than 8

hours; otherwise, another straight run is cut from the end of the block. Once every

block is cut, the above process will be repeated, by cutting the straight runs from the

end of each block. Lastly, a subset of the straight runs is selected by human schedulers.

2) Form 2-bus duties

Combine the remaining spells into a set of all possible two-spell duties, from which

a scheduler then chooses a subset.

3) Form remaining duties

The scheduler can also split up some straight runs generated in the first step and combine

them with the remaining spells. The system provides little help to the scheduler beyond

calculating the cost of the candidate duties.

The goal of this system is just to aid human schedulers to compile a schedule. It only builds a

set of potential valid duties for schedulers to select from and further compile a schedule.

Later Elias attempted to develop an automatic driver scheduling system (Elias, 1966). He first

developed a mathematical model, but found that the scheduling problem was too large to be

solved by the model. He then turned to heuristic approaches instead.

The heuristic approach includes the following steps:

1) Cut each block into a set of spells

The first pieces of work in each block are cut into a spell with a duration of approximate 3,

4 or 5 hours. Then the rest of the block is partitioned into spells of about 3 hours each or a

maximum length if it is less than 3 hours.

2) Form all possible 2-spell duties based on the set of spells

3) Construct many different schedules by selecting a different starting duty for each schedule

All the duties are ranked in order of cost, and at each stage the cheapest remaining

duty that does not conflict with those already selected is added into the schedule

until no more duties can be added. The spells of work not covered are compiled

into single-spell duties.

4) Output the cheapest schedule.

The method is generate-and-select based, which involves generating a large set of potential

duties from which a subset, constituting a solution, is selected. In Elias’ method the duty

generation process could only generate duties with up to two-spells. The duty selection process

employed a greedy heuristic, which could obtain a solution quickly but the quality of the

solution would usually be unsatisfactory. Although this system was only used on a test basis,

the idea underlying this generate-and-select method may have influenced the development of

other driver scheduling systems, in which the selection process employs more powerful

approaches, e.g. Integer Linear Programming and meta-heuristics.

2.2.2 Weaver and Wren’s work

Experience of using heuristics for driver scheduling at the University of Leeds started in 1967

(Wren, 1968; Weaver, 1968; Weaver and Wren, 1970 and 1972; Weaver, 1972; Manington and

Wren, 1975). At the early days, it was hoped that heuristics could be developed which could

improve any feasible schedule to a good final schedule. However, it became evident that the

refining techniques were not sufficiently powerful to convert a poor initial schedule into a good

final schedule, and they were frequently trapped in local optima. Therefore, the major effort

was turned to finding a good initial schedule while the optimisation programs were still applied.

This work led to the TRACS system (see Section 2.2.3) in the 1970’s.

The first attempt of Weaver (1968) was to develop a driver scheduling program using the

labour agreement in Leeds City Transport. The program only used a typical route of 33 buses

from the Leeds schedule, and the route had only one relief point. Weaver claimed that the

program would easily be extended to a route with more than one relief point. This program first

estimated the least number of driver duties that would be needed to cover all the work in the

schedule, and split all the work between the duties in some arbitrary way. This initial schedule

usually was infeasible. Then, the program was divided into two parts, the first of which aimed

to produce a feasible schedule, and the second of which aimed to reduce the total cost. A

similar algorithm was used in the two parts of the program.

The pieces of work were considered in pairs, and they attempted to change between the two

duties all the work which came after the two pieces under consideration. That was, each of the

two duties was first divided into two at the end of the pieces of work being considered, and

then, the first part of work in each duty would be linked by the second part of work in the other

duty. This operation was done only when the total infeasibility or the total cost was reduced. If

the infeasibility could not be removed after no improvement could be made by the first part of

the program, another duty would be introduced and the process was repeated.

Weaver (1968) claimed that this algorithm had two main disadvantages. One of these was that

this algorithm was time-consuming, and the other was that the algorithm had the tendency to

split up a continuous stretch of work into several short pieces of work.

Later, Weaver and Wren (1970 and 1972) modified the approach to build a good feasible initial

schedule first and then to refine the schedule. Only limited tests were carried out on the

approach, and no better schedules than the manual schedules were reported. Weaver (1972)

summarised that the program was likely to produce good results if there was flexibility in both

data (vehicle work) and labour agreements, and less good results otherwise. This work was

superseded by TRACS.

2.2.3 The TRACS system

The TRACS (Technique for Running Automatic Crew Scheduling) system (Parker and Smith,

1981) was developed in the University of Leeds in the 1970’s based on the work by Weaver

and Wren (1970, 1972). It consisted of an initial program and a series of optimisation programs.

The initial program constructed a good initial schedule, while the optimisation programs refined

it. TRACS aimed to form a good initial schedule with the assumption that the refining process

was unlikely to transform a poor initial schedule into a good one. An initial schedule is

constructed as follows:

1) Early duties are constructed, which satisfy all the constraints.

First mark the latest relief time, by which the driver who takes the bus out of the depot must

be relieved for a meal break. Then the bus with the earliest remaining marked time is

considered to form a duty by taking over another bus at or before its marked time. The

marked time that must be used is said to be fixed when it is at the end of the bus work or it

has already been selected to start the second part of a duty for another driver. If a marked

time is not fixed, an additional driver will have to take over the bus at that time. It is better

to have the additional drive starting as early as possible so that the marked time may be

fixed earlier.

Throughout the process of forming early duties, sufficient first spells of work are left

unallocated to provide the desired number of split duties.

2) Late and middle duties are constructed by a similar process, but working backwards from

the end of the day into the afternoon. Evening peak parts of the bus work that are suitable

for the second part of split duties are not allocated.

3) Split duties are constructed by coupling the first and second halves of split duties.

4) Any remaining morning peak work is assigned to an extra early duty while the other

unallocated work is attached to existing duties if possible.

The refinement process contains two sets of routines. One set attempts to reduce the number of

duties or unallocated spells of work. Each duty is considered in turn to determine whether the

work in it can be redistributed among the other duties. The duties with longer spreadovers are

extended to be allocated more work, while the shorter duties become shorter and are hopefully

removed altogether. Unassigned spells of work are reduced in length if possible. Another set of

routines attempts to reduce the cost of the schedule, including any notional cost of

undesirability. There are several routines to achieve this. One is to split up the duties at the meal

break and to re-combine them as an assignment problem. The others are to exchange the links

between spells if the cost is reduced.

The system was successfully used to compile schedules for several different bus companies.

Since the heuristics used for constructing an initial schedule were sophisticated and customised

for a specific problem, it could fully meet specific requirements but it usually took several

months to adapt the heuristics to a new problem.

The TRACS approach assumed that duties with long spreadovers were ‘good’ duties. Hence, it

tried to form long spreadover duties as far as possible. After compili ng such ‘good’ duties, there

would be short spells of work remaining and the schedule might be inefficient as a whole.

While many early heuristics could only compile duties with up to two-spells, TRACS could

generate the duties containing two or three spells. However, the generation of multi-spell duties

was dependent of the refinement process, which did not seem to have a means of escaping from

local optima.

2.2.4 RUCUS and RUCUS II

RUCUS (RUn CUtting and Scheduling) (Wilhelm, 1975) is a bus and crew scheduling system

developed by the MITRE Corporation under the sponsorship of the U.S. Urban Mass

Transportation Administration in the early 1970’s. This system was installed in a number of bus

companies in the USA and Canada from 1975.

RUCUS had many similarities with TRACS, which constructed an initial schedule and then

heuristically refined it. In the process of the construction of an initial schedule, RUCUS first

formed one-spell straight duties without a mealbreak, and then formed two-spell early and late

straight duties with an upper limit on the length of the intervening mealbreak, and two-spell

early and late duties with mealbreaks of any length. Finally any unallocated work was added to

the schedule as ‘trippers’, i.e. short one -spell duties.

Besides labour agreement rules, RUCUS required some soft rules to help cut the blocks.

Different soft rules affected significantly the quality of the initial schedule. Therefore

sometimes the system was run several times with different soft rules to get an acceptable initial

schedule.

Having formed an initial schedule, several improvement algorithms were applied to eliminate

the trippers by incorporating them into two-spell duties, and to reduce the cost of the schedule

by shifting the spells between pairs of duties and by adjusting duties to use the preceding or

succeeding relief opportunities. These algorithms were called shifts and switches respectively.

RUCUS was field-tested in 1972 and 1973, and released to the industry in 1974 (Schmidt and

Knight, 1981). The system was found hard to control and considerable experimentation with the

parameters was required to get a good schedule. Since its launch, there were many

modifications made by consulting firms and users at various transit authorities, which led to

several versions of RUCUS. SAGE’s interactive package was one derivation (Hildyard and

Wallis, 1981). SAGE did not modify the RUCUS algorithms. It just added natural language

interfaces at different stages of system, which allowed schedulers to set parameter values

between stages.

Later, RUCUS was substantially revised (Luedtke, 1985). The new generation of RUCUS,

called RUCUS II, was released in 1982. The main change was similar to that made in SAGE,

which made it easier to specify and modify parameters during the process of forming the

schedule. The scheduling process was interactive instead of operating in batch mode.

Ball et al (1985) enhanced RUCUS II by replacing the shifts and switches algorithms with a

graph-matching algorithm. The enhanced RUCUS II was applied to two test problems and

better results were produced.

The RUCUS II system only automatically formed duties with up to two-spells. It was mainly

designed for North American operators and might not be good for European operators. This

system has now been abandoned.

2.2.5 The COMPACS system

COMPACS (COMPuter Assisted Crew Scheduling) is an interactive system developed in the

early 1980’s by a commercial company (Wren et al., 1985). It originated in an interactive crew

scheduling system called TRICS (Techniques for Running Interactive Crew Scheduling), which

was developed at the University of Leeds in the late 1970s. COMPACS also incorporated some

heuristics used in TRACS for generating an initial schedule, but not the refinement programs.

In the earlier 1980’s it was incorporated into the BUSMAN sche duling package (Chamberlain

and Wren, 1992).

COMPACS, as an interactive system, could help schedulers in a range of ways. It allowed the

schedulers to build up the schedule one or more duties at a time; at any stage, the duties already

formed could be unassigned or modified. COMPACS could also form a complete schedule

automatically, but the quality of schedules was generally poor because it did not have any

refining functions.

2.2.6 Overview of the early heuristic approaches

The heuristic systems were successful on some applications. The reason is that they were

customised for individual companies; hence, they could be fully tailored to meet the company’s

requirement. However, they were heavily reliant on domain knowledge and specific company

needs and therefore they were not easily portable to other companies and had to be considerably

modified in order to fit new conditions.

By the 1980’s it was generally recognised that heuristics alone were not suitable for general use

(Wren and Rousseau, 1995). The purely heuristic approach was therefore abandoned in favour

of mathematical programming approaches aided by heuristics.

2.3 Mathematical programming approaches

In the late 1970s, research in driver scheduling methods has stepped into the second period, in

which mathematical programming approaches were popular. Most currently successful driver

scheduling systems are based on mathematical programming approaches, in which the driver

scheduling problem is commonly modelled as either a set covering or a set partitioning

problem. In this section, three systems IMPACS, TRACS II and HASTUS are reviewed.

TRACS II and HASTUS are probably the most successful driver scheduling systems in the

world. IMPACS is the precursor of TRACS II. The TRACS II system will be used for

benchmarking results in this research.

2.3.1 Mathematical model of set covering and set partitioning

The following description of the set covering problem is taken from Reeves (1996).

A family of m subsets collectively contains n items such that subset Si contains ni (≤ n)

items. Select k (≤ m) subsets {Si1, Si2 …, Sik} such that | �k
1j i jS= | = n so as to minimise

∑
=

k

1j

i jc

where ci is the cost of selecting subset S i.

Here the solution is represented by the family of subsets {Si1, Si2 …, Sik}.

If, in addition, the subsets {Si1, Si2 …, Sik} are mutually exclusive, the above problem becomes a

set partitioning problem.

The driver scheduling problem with n pieces of work and m previously generated duties can be

modelled as a set covering problem and expressed as the Integer Linear Programming (ILP)

problem:

Minimise ∑
=

m

1j

jjxc (2.1)

subject to ∑
=

m

1j

jijxa ≥ 1 for i = 1,2,…,n (2.2)

 where,

 xj =

otherwise 0

used is duty if 1 j

aij =

otherwise

 work of piece covers duty if

0

ij1

cj is the cost associated with the j th duty.

By changing the constraint (2.2) into the following form, it becomes a set partitioning problem:

subject to ∑
=

m

1j

jijxa = 1 for i = 1,2,…,n (2.3)

In the set covering model, each piece of work must be covered by at least one duty; in a set

partitioning model, each piece of work must be covered by exactly one duty. In theory, the

solution to the ILP is the schedule with minimum cost. However, in practice, the total number

of all possible duties is usually very large, and the resulting ILP cannot be practically solved.

The very large potential duty set therefore has to be reduced to a manageable size by heuristics

or some other means, or else the problem has to be decomposed into several sub-problems and

solved separately.

2.3.2 The IMPACS system

IMPACS (Integer Mathematical Programming for Automatic Crew Scheduling) is a driver

scheduling system developed in University of Leeds in the late 1970’s. It was originally

developed for bus operation. Parker and Smith (1981) presented the prototype version and the

full description of the system was described by Smith (1986 and 1988), and Wren and Smith

(1988).

IMPACS is based on a set covering model. As mentioned above, the number of variables and

constraints can be enormous; reduction heuristics are therefore employed by IMPACS. The

system solves the driver scheduling problem by the following steps:

1) Add some soft rules

The number of variables, i.e. the number of candidate duties considered, depends on the

rules governing the legality of a duty. The more tightly set rules are applied, the less

possible legal duties are formed. IMPACS adds some extra rules, known as soft rules, such

as the minimum length of spells, and the minimum work content, etc. The soft rules, whose

parameters are usually specified by the scheduler, prevent generating inefficient duties, and

duties that are unlikely to contribute to forming a good schedule.

2) Reduce the number of pieces of bus work using heuristics

There are two optional modules in this step. EST identifies a list of relief opportunities that

may be critical to forming a good schedule. SELECT analyses the remaining relief

opportunities and de-selects those not likely to be used, thereby reducing the number of

pieces of work.

3) Generate a large set of legal duties according to the labour agreement rules and the soft

rules using heuristics

4) Reduce the number of duties using heuristics

Some duties, which are considered less crucial (e.g. every piece of work in the duties is

covered by a specified number of other duties) than the others for forming a good schedule,

are eliminated from the large duty set.

5) Select a subset of duties using ILP

The driver scheduling problem is now expressed as a set covering problem. IMPACS

solves this problem by first obtaining a relaxed LP solution and then looking for an integer

solution using a Branch-and-Bound (B&B) algorithm. The B&B algorithm searches for

integer solutions through a tree structure. The search terminates when a sufficiently good

solution is found or a certain pre-defined search depth has been reached.

IMPACS also provides a decomposition module for solving large problems. After

decomposition and the first sub-problem has been solved, the work of inefficient duties in the

schedule are carried forward to the next sub-problem. Finally, the results of all sub-problems

are combined into a complete schedule.

In 1990, IMPACS was adapted to estimate the effects of changing train driver scheduling

requirements (Parker et al., 1995). Since train driver scheduling problems are usually larger and

more complicated than bus driver scheduling problems, it is difficult to apply the IMPACS

system, which was designed for bus driver scheduling problems. IMPACS is now superseded

by TRACS II.

2.3.3 The TRACS II system

TRACS II (Techniques for Running Automatic Crew Schedules, Mark II) has been developed

since 1994 specifically to satisfy the needs of rail operations, while still being capable of

producing bus driver schedules. TRACS II follows almost the same approach as IMPACS, but

the components have largely been redesigned to cope with the complexity of rail operations and

to incorporate new algorithmic advances.

From Figure 2.1, it can be seen that TRACS II consists of seven modules in three stages. The

first stage is called shift generation, which constructs many potential duties. VALIDATE

Figure 2.1 Workbench main window of TRACS II

checks first the validity of data sets. Then TRAVEL calculates all possible opportunities for

drivers to travel as passengers on scheduled services or taxis between relief opportunities.

BUILD finally generates a large set of possible valid duties (a set of filtering parameters is used

to limit the generation of too many duties). The heuristics in BUILD are different from

IMPACS. The second stage contains a module called SIEVE, which ranks the duties generated

by BUILD and eliminates those deemed to be inferior. The set of duties generated by BUILD is

trimmed down to a desired size before it is passed to the mathematical solver called

SCHEDULE. Recently, SIEVE is often only used to remove duplicated duties because the

integration of a column generation method into SCHEDULE now allows it to accept larger duty

sets. MERGE is only used when BUILD is run more than once. It merges sets of duties

generated according to different parameters or different decomposed sub-problems. The

mathematical process called SCHEDULE is the main module in the third stage, which is

originated from the ILP process used in IMPACS. IMPACS could handle up to 30,000 input

duties, but there is virtually no limit for TRACS II. SCHEDULE has two main choices of

optimisation routines, which are that of a primal column generation approach and a dual

steepest edge approach. Fores et al (2001) recommended that the dual steepest edge approach

be executed on problems containing at most 30,000 duties, where all duties can be explicitly

considered within the limits imposed for storage and efficiency. However, users can select the

column generation approach to run any size of problem. SCHEDULE consists of four

processes. The first process builds an initial integer solution using heuristics if column

generation is selected as the solution algorithm. This process also selects an initial duty set of

up to 30,000 duties from the large set of potential duties generated by BUILD. The second

process uses a set covering model and obtains a LP relaxation. The second process will be

repeated if it is necessary to add new columns of duties. The third process called REDUCE is

introduced by Smith and Wren (1988) and enhanced by Willers (1995). It selects the duties that

start or end at an RO that is used in the LP solution. The other duties are removed and pieces of

work not using a selected RO are combined. This is an optional process, but reduction in

problem size decreases solution time and does not seem to inhibit the quality of the schedule.

The fourth process searches for an integer solution using a Branch and Bound method. If a

solution is found, DISPLAY will print the schedule in a condensed format.

TRACS II has been successfully installed in several transport companies. Over the period 1995-

1996 TRACS II satisfactorily produced schedules for about twelve of the privatised British

train companies (Kwan et al., 1999). It is now being installed in the 26 companies of First

Group, the largest bus company in the UK.

TRACS II is also used for benchmarking by a number of researches in Leeds University. Parts

of the system are utilised in some other driver scheduling approaches, e.g. Forsyth’s ant system,

Kwan’s and Li’s genetic algorithms, Li’s simulated evolution algorithm, and La yfield’s and

Curtis’s constraint programming approaches (see Sections 2.4 and 2.5).

Since TRACS II uses a set covering model, the schedule generated may (and usually) contains

overlapping driving work (over-cover), which creates unproductive time for drivers. Over cover

is eliminated manually before a schedule is operated.

Also, because of the use of ILP, a series of techniques to reduce the number of variables

(potential duties) and constraints (ROs) have to be operated according to the capability of the

ILP solver. Figures 2.2 and 2.3 illustrate the processes of reduction, where A, B, C, D denote

the sets of relief opportunities at different levels, while E, F, G, H, I denote the sets of duties at

different levels. The reduction at each level decreases the possibility of producing an optimal

solution.

A: Full set of windows of relief opportunities.

B: Reduced set of relief opportunities after shrinking a WRO into one or two selected ROs.

C: Reduced set of relief opportunities after removing the ROs not used in LP relaxation.

 (This is optional so might not be reduced).

D: Set of active relief opportunities.

E: Set of all possible valid duties according to labour agreement rules

F: Set of all possible valid duties based on tightened governing rules and the reduced set of

 ROs in level B, i.e. not considering windows of relief opportunities.

G: Reduced set of potential duties selected by the column generation method.

H: Reduced set of potential duties selected based on the set of ROs in level C.

I: Set of duties in a schedule, which may contain overlapping duties.

2.3.4 The Crew-opt method of the HASTUS system

HASTUS is a commercial package that deals with all the scheduling issues: bus vehicle

scheduling, driver scheduling, and rostering. It was originally developed by the University of

Figure 2.2 Different levels of RO reduction

Figure 2.3 Different levels of potential duty reduction

E
F

G
H

A
B

C
D

 I

Montreal in the 1970’s and later jointly with Giro Inc., Canada. The work on the HASTUS

system has been reported in a number of papers (e.g. Lessard et al., 1981; Carraresi and

Rousseau, 1982; Rousseau et al., 1985; Rousseau and Blais, 1985; Blais and Rousseau, 1988).

The latest version of HASTUS was exhibited in the international conference on Computer-

Aided Transit Scheduling held in June 2000, Berlin. A concise description is provided in

Section 2.6.

A crew scheduling method called Crew-opt is part of the HASTUS system (see Desrochers and

Soumis, 1988, 1989; Desrochers et al., 1992; Rousseau and Desrochers, 1995), which has been

used in a wide range of problems including a train company (East Japan Railway). The Crew-

opt approach solves the driver scheduling problem using a set covering (or set partitioning)

method incorporating a column generation technique.

Crew-opt generates a large set of legal potential duties based on a set of ‘useful’ ROs from

which a set of ‘good’ duties is heuristically selected. It then solves the driver scheduling

problem modelled as a set covering/partitioning problem with LP. The LP process will be

repeated if new columns of interest are added. After this has been done, a Branch and Bound

method is used to find an integer solution.

Similar to TRACS II, HASTUS is an ILP-based approach, which selects a subset from the set

of duties generated. The difference is that HASTUS does not generate all possible legal duties

beforehand but a ‘good’ set of potential duties instead. After each LP solution, the dual

variables are used to generate new duties with negative reduced costs susceptible to improving

the current LP solution. The column generation method in HASTUS is used to generate new

columns of duties; however, in TRACS II it is used to select new columns of duties from the

previously generated set.

Despite the use of column generation, filtering labour rule parameters are still employed to

eliminate ‘useless’ relief opportunities and to limit the set of feasible duties generated. These

parameters might guide the duty generation throughout the scheduling process. The column

generation process might not be able to generate the duties with newly introduced constraints

because it is based on the LP relaxation. This approach solves a number of LP problems until it

becomes impossible to find a feasible duty satisfying its criteria (i.e. with a negative reduced

cost). The whole process is likely to be time-consuming.

2.3.5 Overview of the mathematical programming approaches

The mathematical approaches based on a set covering or a set partitioning method have been

successfully used in many practical systems with the aid of heuristics. However, optimal

solutions still cannot be ensured and the systems cannot be treated as black boxes that produce

working schedules. The limitations might be summarised as follows:

• More easily adapted to different problems than early heuristics, but some adaptation is

still needed sometimes, and this adaptation may be considerable;

• Filtering rules are often applied so that the set of potential duties generated would not

be prohibitively large, so the optimality of solutions would be compromised. The

manipulation of the parameterised filtering rules may appear obscure to schedulers not

versed in scientific disciplines;

• Generation of all possible legal duties may be very time consuming if slack scheduling

rule parameters are used;

• Some reduction on problem size or in the scheduling process is inevitable;

• It is likely that there will always be problems for which decomposition is necessary on

size grounds;

• It is possible that for some problem instances no solution can be found within a

reasonable time;

• Windows of relief opportunities cannot be handled practically.

2.4 Meta-heuristic approaches

While the mathematical methods continue to be improved, several strands of research into

meta-heuristics for driver scheduling have begun in the 1990’s.

2.4.1 A Tabu Search approach - Cavique et al

Cavique et al (1999) have presented a Tabu Search approach for crew scheduling. The approach

constructs an initial schedule using a method similar to that used by TRACS, which is called a

run-cutting algorithm by Cavique et al (1999). The initial schedule is feasible according to a set

of rules, and covers a pre-defined timetable. Tabu-crew, a refining algorithm embedded in a

Tabu Search framework, is applied to reduce the number of duties. Tabu-crew iteratively

removes some ‘inefficient duties’ (with only a single spell of work) as well as their ‘adjacent’

duties from the current solution, and then applies the run-cutting algorithm to construct duties

to cover the broken schedule. The ‘adjacent’ duty of an inefficient duty was not defined in

(Cavique et al., 1999). A frequency-based memory was used. The frequency values indicated

the number of times that each trip was assigned to a single-spell duty. Two-spell duties

containing trips with high frequencies, were evaluated favourably. This strategy provided

‘difficult trips’ more chances to be combined with others at an early stage of the algorithm.

Cavique et al (1999) claimed that this algorithm was very efficient at improving the initial

solution after a few iterations, but thereafter it took a significant amount of time to find a better

solution.

Cavique et al (1999) also presents another Tabu Search algorithm called Run-ejection, which

considers compound moves based on a subgraph ejection chain method. Ejection chain

(Glover, 1996) is a type of approach in Tabu Search for creating compound moves. It results

from a succession of steps in which an element is assigned to a new state, with the outcome of

ejecting some other element from its current state. The ejected element is then assigned to a

new state, in turn ejecting another element, and so forth, creating a chain of such operations.

The Run-ejection algorithm first divides each block of vehicle work into feasible spells of work

and creates the node set P containing all spells. It then links pairs of spells building all possible

duties and forms the edge set D = {(pi, pj)| pi, pj∈P}. The matching graph G = (P, D) is

therefore built. The left spells form single-spell duties, which are unmatched nodes. Since there

is a large number of possible graphs G, a tabu search framework with compound moves is used

to explore this enormous number of alternatives. The compound moves contain three

elementary operations: ‘shift operation’ which shifts the endings of a spell to the right or to the

left; ‘cut operation’ which cuts one spell into two spells; and ‘merge operation’ which combines

two spells into a single spell. For each block divided as above, these three operations are

considered in sequence and constitute an ejection chain. The matching graph is revised after

each operation, during which some new feasible edges are built while the infeasible edges

caused by the operation are removed. A feasible solution can be obtained at each step of the

ejection chain process.

The tabu search algorithms were designed as a part of a decision support system for the crew

scheduling management of the Lisbon Underground. Cavique et al (1999) only evaluated the

algorithms using data provided by Lisbon Underground. The computational results represent a

reduction of up to 3.6% (in terms of number of duties) on the manual solutions produced by the

Lisbon Underground planners, and the Run-ejection algorithm is superior to the Tabu-crew

algorithm.

These algorithms only construct one- or two-spell duties. The complexity will increase

dramatically when duties with three or more spells are allowed. Duty costs are not considered,

the objective is only to minimise the number of duties. Whereas these restrictions may be fine

for Lisbon Underground, they may not be satisfactory for other bus or rail operations.

2.4.2 Genetic Algorithms

Genetic Algorithm (GA) is originated from Holland (1975) for solving hard combinatorial

optimisation problems. It simulates the genetic evolution process to produce a ‘fit’ (high

quality) solution, in which the fitter individuals have a better chance of survival while the

weaker individuals are replaced by new generations. A chromosome is presented as a string of

genes defining the characteristics of a solution to a problem. GA improves the current

population by replacing weaker parents with fitter offsprings by the operation of selection,

crossover and mutation.

2.4.2.1 Kwan et al

The approach presented in Kwan et al (1999a) and Kwan (1999) uses a Genetic Algorithm

approach to schedule bus and train drivers. This work built on experience of the earlier attempt

by Wren and Wren (1995). The main purpose of this approach is to replace the Branch and

Bound method in the ILP process in TRACS II. The potential duties as well as the relaxed LP

solution produced by TRACS II are used. The GA process only represents in the chromosomes

preferred duties, whose fractional values in the relaxed LP solution generated by TRACS II are

higher than a pre-defined constant, e.g. 0.2. The reason why only these duties are chosen as

genes is that Kwan (1999) finds by experiments that an average of 74% of the duties in the best

integer solutions obtained by TRACS II have fractional values higher than 0.2 in the

corresponding relaxed solutions. These preferred duties form the backbone of a schedule. A

solution set is completed by using a greedy repair technique.

For some problems the approach has produced schedules as good as TRACS II solutions in

terms of number of duties. In some other cases, one or two more duties are needed. For one

large problem instance, which was decomposed by TRACS II at the time of the experiment, the

number of duties is reduced, but the schedule is more expensive in terms of total cost.

2.4.2.2 Li and Kwan

Li and Kwan (2000) have presented a genetic algorithm with fuzzy comprehensive evaluation

for driver scheduling. This research has the same objective as that of Kwan et al presented in

the previous section. Both are intended to replace the Branch and Bound process in TRACS II.

Similarly, Li and Kwan also make use of the potential duties and the LP relaxation solution

produced by TRACS II. The difference is that a genetic algorithm is employed in this work to

produce a near-optimal weight distribution amongst fuzzified criteria of evaluating individual

potential duties instead of finding a schedule directly. The fuzzified criteria are expressed as

five fuzzy membership functions, the weights of which are encoded as a chromosome. Each

chromosome is a 30-bit string divided into six bits per weight. A greedy heuristic makes use of

the fuzzy comprehensive evaluation to select duties to construct a schedule, the total cost of

which is used to evaluate the fitness of the chromosome in the evolutionary process. The best

schedule results as a by-product.

This approach has been tested on eleven real-world problems and the results are comparable to

the best known solutions.

2.4.3 A Simulated Evolution algor ithm – L i and Kwan

The latest research of Li and Kwan (2001) is on applying a Simulated Evolution (SE) algorithm

for the driver scheduling problem modelled as a set covering problem. A SE algorithm is a

general optimisation technique originally proposed by Kling and Banerjee (1987) based on

analogy with the natural selection process in biological environments. The biological solution

to the adaptation process is the evolution from one generation to the next one by eliminating

inferior components and keeping superior ones for subsequent states. SE contains four main

steps: initialisation, evaluation, selection and reconstruction. The first step initialises some

parameters, e.g. stopping condition and a valid starting solution. The following three steps are

applied iteratively. Evaluation calculates the goodness for each component of the current

solution. Selection probabilistically selects components. Components with low goodness have a

higher probability of being discarded. Reconstruction applies special heuristics to derive a new

and complete solution from the former partial solution. Then the three steps are repeated until

the stopping condition is reached. Throughout these iterations, the best solution is retained and

finally returned as the final solution.

In the SE algorithm for driver scheduling, the steps of Evaluation and Reconstruction have been

fuzzified. Having generated an initial solution using a greedy method, the Evaluation step

evaluates each duty in the solution based on its coverage status and five fuzzified criteria

similar to those in their previous work (see Section 2.4.2.2). These criteria are represented by

fuzzy membership functions, which would lead to a quantitative formulation of the structural

goodness of this duty by the method of fuzzy comprehensive evaluation. The Reconstruction

step applies a greed-based heuristic with the above derived fuzzy evaluation function to form a

complete solution from a partial solution.

This is the first time that the SE algorithm has been applied to the driver scheduling problem.

The experimental results are better than the previous solutions generated by the Genetic

Algorithm but generally not as good as the TRACS II solutions.

2.4.4 An Ant System - Forsyth and Wren

Forsyth and Wren (1997) have applied a combinatorial optimisation method called Ant System

for driver scheduling. Ant system was developed by Dorigo et al (1996) from the study of the

behaviour of ants searching for food. The basic idea is that ants leave pheromone trails that can

be detected by other ants. When ants set off to look for food, they move at random. Once food

is found, the ant returns to the nest with highest probability along its own pheromone trail. The

ants which find the shortest path are likely to return back soonest and their pheromone trails are

therefore strongest. Subsequent ants are most likely to follow the shortest path because the ants

have an in-built bias towards following strong pheromone trails. Therefore the shortest path will

be strengthened more and more and it becomes the dominant trail.

The ant system for driver scheduling defines a network of nodes based on the potential duties

generated by TRACS II. Each ant creates a solution by traversing the network from a selected

relief opportunity. Relief opportunities are selected by a probabilistic heuristic and then the ant

chooses a duty (node) from the set that starts at the relief opportunity. This is repeated until all

the work is covered. The quality of solution corresponds to the pheromone level. As the process

progresses, the old trails slowly evaporate over time unless the trail is visited by more ants. The

strongest pheromone trail represents the best solution. Unfortunately, this system does not

generate schedules comparable to the TRACS II solutions.

2.4.5 Overview of the meta-heuristic approaches

The tabu search approach by Cavique et al was developed for a particular problem and was not

able to compile duties with three or more spells. It might not be easily adaptable to different bus

or rail operations. Amongst the other approaches reviewed, the evolutionary algorithms by

Kwan et al and by Li and Kwan are promising; however they take advantage of TRACS II to

obtain a large set of potential duties and the relaxed LP solution. They at best can only replace

the final phase of TRACS II. Therefore they inherit parts of the drawback of the mathematical

approach. As reported by Kwan et al (2000) and Kwan (1999), a pure genetic algorithm without

using the relaxed LP solution did not produce acceptable solutions except for very small

problems.

2.5 Constraint programming approaches

Constraint programming approaches for solving combinatorial optimisation problems are

becoming widely used. They provide a powerful and easy system for modelling restrictions and

use these restrictions to search for a solution. In recent years, attempts have been made to use

them for solving driver scheduling problems.

2.5.1 Layfield et al

Layfield et al (1999) used constraint programming to produce a component that could be slot

into the TRACS II system before building all potential duties. The aim of the work is to reduce

the number of relief opportunities such that the problem size is cut down. This has been done by

removing the relief opportunities that are unlikely to be used in good schedules. This program

initially works on forming the morning part of the schedule imitating the manual scheduling

process. The formed part of the schedule contains efficient handing over between drivers (good

‘mealbreak chains’), in which Layfield et al suggested that potentially useful relief

opportunities existed. Several morning schedules are constructed, then the relief opportunities

that are not used in these schedules are removed. This process can also be applied to the

evening part of the schedule. A constraint programming tool ILOG Solver is used to solve the

problem formulated as a constraint satisfaction problem.

2.5.2 Curtis et al

Curtis et al (1999) presented a constraint programming approach for forming bus driver

schedules. They modelled the bus driver scheduling problem as a constraint satisfaction

problem, where variables were defined as pieces of work and the domain of each variable was

the set of indices of the duties that covered the piece of work. They then solved this constraint

satisfaction problem as a set partitioning problem. This work also benefited from the TRACS II

duty generation phase to obtain a large set of potential duties. The relaxed LP solution

generated by TRACS II was used as a ‘variable ordering’ guide. The approach was tested on

relatively small problems and produced schedules with the same number of duties as those in

TRACS II solutions.

Later, Curtis et al (2000) provided an iterative repair process for constructing driver schedules.

A local search method was used to solve the problem modelled as a constraint satisfaction

problem. A comprehensive description is presented in Curtis (2000).

2.5.3 Overview of the constraint programming approaches

Two constraint programming approaches for bus driver scheduling have been reviewed in this

section. Only the Curtis et al’s approach can produce full bus driver schedules. Their approach

is heavily dependent of the use of the relaxed LP solutions to guide variable and value ordering.

Therefore, it inherits the limitation of mathematical programming approaches on solving large

problem instances.

2.6 Recent transport scheduling packages

The latest international conference on computer-aid scheduling of public transport was held in

June 2000 in Berlin, Germany. During the conference, several transport scheduling packages

were exhibited. The following are some examples:

• GIST

GIST (Dias et al., 2000; Lourenço et al., 2000) is a decision support system to assist the

planning department of transportation companies or transit authorities in operations

management. GIST is designed as a modular system, including the following processes:

network information management, route information management, timetabling management,

vehicle scheduling, crew scheduling, and crew rostering. GIST gives special attention to

interactive faciliti es and friendly interfaces, combined with optimisation tools.

GIST models the crew scheduling problem as a single objective linear programming problem to

minimise the cost. Lourenço et al (2000) indicate that the bus companies involved in the GIST

project have not been satisfied with the bus-driver module based on the single-objective LP,

even though the optimal solution could be obtained. Therefore, Lourenço et al (2000) present a

multi -objective meta-heuristic approach for the bus-driver scheduling problem. Lourenço’s

approach aims to solve the driver scheduling problem in a user-friendly environment. The

approach has been incorporated in GIST and can obtain many alternative solutions in a short

time, but the detail has not been published yet.

• Trapeze

Trapeze (see http://www.trapezesoftware.com/index.html) is a commercial package of Trapeze

Software Group, Canada. It provides transport software for public transport, dial-a-ride, student

transport, medical transport, and other community transport services. It includes a function for

scheduling public transport drivers. In the exhibition, a demonstration of driver scheduling was

given. Trapeze produced a solution very quickly but the quality of the solution was difficult to

judge and no information on the technique used was made available.

• HASTUS

HASTUS (see http://www.giro.ca/) is the result of over 20 years of ongoing research and

development at GIRO, in collaboration with the University of Montreal’s Centre for Research

on Transportation. The latest version of HASTUS, called HASTUS 5, offers an integrated transit

database and a set of application modules, e.g., HASTUS-Vehicle, which generates vehicle

timetables and vehicle schedules; HASTUS-Crew, which produces crew schedules, and

HASTUS-Roster, which automatically generates multi-day operator assignment. The approach

used in the crew scheduling component is described in (Rousseau and Desrochers, 1995) (see

Section 2.3.4).

2.7 Conclusions - generate-and-select approach vs. constructive

approach

This chapter has reviewed the driver scheduling approaches, which can be roughly divided into

two groups: generate-and-select approach and constructive approach.

The generate-and-select approach is at present the most successful for bus and train driver

scheduling. It involves generating a set of legal potential duties from which a minimal and most

efficient subset is selected. The generation process is problem-oriented while the selection

process can be algorithm-oriented. After generating a set of duties, a solution may be found by

a variety of selection methods, such as mathematical programming, evolutionary algorithms,

constraint programming, etc. This makes the approach adaptable to different situations although

the generation algorithm is likely to be adjusted depending on the situations. Most approaches

used in present commercial systems such as TRACS II and HASTUS can be regarded or

implicitly regarded as generate-and-select approaches. The recent researches of Kwan et al, Li

and Kwan, and Curtis et al are also based on the generate-and-select approach (see Sections 2.4

and 2.5). Unfortunately, the number of potential duties is usually enormous, which precludes

the selection methods from finding an optimal solution in practical time. It is therefore

inevitable that some restrictions have to be imposed to limit the set of potential duties to within

an acceptable size or search depth, etc. Optimality is therefore compromised. Moreover,

manipulation of the parameterised restrictions is usually hard for non-experienced users.

In contrast, a constructive approach, which constructs an initial schedule and then refines it

iteratively, has no need of artificial rules or explicit reduction in problem size. Obviously for

constructive approaches, the fewer rules that are imposed on the validity of a driver duty, the

easier it is to construct a solution. Moreover, the more relief opportunities that are provided in

the blocks, the more chance it has to refine the schedule. Windows of relief opportunities

provide ranges of opportunities for drivers to change over. The constructive approach could

take benefit of windows of relief opportunities to refine schedules with more flexibility in

recutting blocks. This opens up the opportunity of building a realistic model with a chance of

obtaining ‘good’ solutions.

The early heuristic systems (see Section 2.2) are based on the constructive approach.

Unfortunately, the refinement functions, where one was used, were very weak. They relied on

good initial schedules constructed based on human schedulers’ knowledge, such as in TRACS

and RUCUS, and hoped to get a good final solution by simple refinement. This is the reason

that the early heuristics tended to require much effort to be adapted to new situations. Also,

extensive final manual adjustments to the schedule were needed. Possibly none of the early

heuristics are still in use. Cavique et al’s tabu search approach (see Section 2.4.1) is of a

constructive type. The refining algorithms Cavique et al used are more powerful than those in

the early heuristic systems because a tabu search technique is applied, which can help escape

from local optima. However, Cavique et al’s algorithms only construct duties with up to two

spells, aim to minimise only the number of duties but not the cost, and are only evaluated for

Lisbon Underground. The algorithms may not be suitable for most other practical situations.

The early constructive approaches have been abandoned. Instead, the generate-and-select

approach is at present the most successful for bus and train driver scheduling. However, the

advantages of constructive approaches can overcome some limitations inherent in generate-and-

select approaches. Furthermore, the modern computing power and modern searching methods

make good refining algorithms possible. Unfortunately, the solution quality of a constructive

heuristic approach is difficult to guarantee.

The research presented in this thesis will investigate a constructive approach to tackle the bus

and train driver scheduling problem with windows of relief opportunities, which the generate-

and-select approach cannot handle. The initial research is on 2-opt heuristics presented in

Chapter 3, based on which further research into a tabu search meta-heuristic approach is

presented from Chapter 4 onwards.

Chapter Three

Neighbourhood Search Heuristics for

Driver Scheduling

3.1 Introduction

Many hard combinatorial optimisation problems in areas such as resource allocation, packing

and scheduling have traditionally been tackled using mathematical programming methods

(Reeves, 1996). However, the mathematical framework restricts the form of the objective

function and/or the constraints. The assumptions in such models are often only approximately

true. Heuristic methods are usually more flexible and may have no need of such assumptions.

Capturing the salient features of the heuristic methods Rayward-Smith et al (1996, p.5) gives a

definition as follows:

‘‘A heuristic technique (or simply, a heuristic) is a method which seeks good (i.e. near-

optimal) solutions at a reasonable computational cost without being able to guarantee

optimality, and possibly not feasibility. Unfortunately, it may not even be possible to

state how close to optimality a particular heuristic solution is.’’

From this definition it seems that there are severe problems inherent in the use of heuristics.

However many heuristics, especially modern heuristics, do produce high-quality solutions in

practice. They can obtain near optimal solutions for many difficult real-world problems with

reasonable computational effort.

The driver scheduling problem is NP-hard (Wren, 1998). This research attempts to investigate

two heuristic approaches for the driver scheduling problem. One is a 2-opt heuristic (Lin,

1965), which is a simple Neighbourhood Search method. The other is a Tabu Search method

(Glover and Laguna, 1997), which may be considered as an elaborate Neighbourhood Search

method. A 2-opt heuristic approach is investigated in this chapter. A Tabu Search meta-

heuristic approach is investigated in Chapters 4 to 6.

This chapter presents first the basic idea of the Neighbourhood Search methods, and then

overviews some of the successful applications of 2-opt heuristics. Following this, a bus vehicle

scheduling system using 2-opt heuristics is introduced while the complexity of the driver

scheduling problem in applying the 2-opt heuristics is initially analysed. Some simplifications

to the problem have been made and are presented in Section 3.4. The aims of the research are:

• to investigate the applicability of 2-opt heuristics for driver scheduling;

• to design the neighbourhoods, which are potentially suitable for the driver scheduling

problem with WROs;

• to design the methods for escaping from local optima;

• to investigate the potential of the constructive heuristic approach.

The proposed 2-opt driver scheduling approach is outlined in Section 3.5 while its major

components are depicted in Sections 3.6 to 3.9. The implementation and some computational

results are presented in Section 3.10 before concluding remarks are given at the end of this

chapter. Some of the work in this chapter has been presented by Shen and Kwan (2000).

3.2 Neighbourhood Search

A fundamental concept of the heuristic methodology is that of neighbourhood search (NS)

(Aarts and Lenstra, 1997). Roughly speaking, a neighbourhood N(x) of a solution x is a set of

solutions that can be reached from x by an operation called a move. For example, in a

sequencing problem, the interchange of two elements in a solution is a common move. If a

solution x* is better than any other solutions in its neighbourhood N(x*), then x* is a local

optimum with respect to this neighbourhood. Table 3.1 outlines a neighbourhood search

method.

Table 3.1 Neighbourhood Search Method

Step 1 Initialisation (get an initial solution xnow, and record the current

best solution by setting xbest = xnow).

Step 2 Choose a solution xnext ∈N(xnow). If no solution qualifies to be

xnext or other termination criteria apply, then the method stops.

Step 3 Set xnow = xnext, and if xnow is better than the current best solution,

set xbest = xnow.

Go to Step 2.

The definition of the best solution is normally dependent on the objective function (e.g. the cost

of solution x), which is denoted by c(x). The choice criteria for selecting moves and the

termination criteria for ending the search are given by some external prescriptions. By

specifying these prescriptions in different ways, a variety of procedures can be generated.

One of the most popular neighbourhood search methods for finding an approximation to the

minimum cost is perhaps the descent method (Rayward-Smith et al., 1996). Descent Method

only allows moves that improve the current solution. If no improving solutions can be found,

the method terminates. Table 3.2 expresses the descent method by only showing Step 2 since

Step 1 and 3 are the same as those in Table 3.1.

Table 3.2 Descent Method

Step 2 Choose a solution xnext ∈N(xnow) such that c(xnext) < c(xnow) and

terminate if no improving solutions can be found.

There are two popular ways to choose the improving solution. One selects the first encountered

improving solution, while the other selects the best improving solution among the

neighbourhood of the current solution. The former is called Mild Descent Method, while the

latter is a greedy method called Steepest Descent Method and its Step 2 is expressed in Table

3.3 (Step 1 and Step 3 are the same as those in Table 3.1).

Table 3.3 Steepest Descent Method

Step 2 Choose a best solution xnext ∈ N(xnow) such that c(xnext) ≤ c(x) for

any x ∈N(xnow) and terminate if no such solution xnext exists.

Obviously the best solution generated by the descent method is only guaranteed to be a local

optimum. Therefore this is also often referred to as Local Search. In many combinatorial

problems there are usually many local optima while there are only one or few global optima.

The chance of a local optimum being a global optimum is usually very low. Various methods or

strategies are designed in applications to continue the search before or after being trapped at

local optima to find an improved solution, for example, the variable-depth search algorithms

introduced by Kernighan and Lin (1970) for the graph partitioning problem and for the

travelling salesman problem (Lin and Kernighan, 1973). Other recent methods, often labelled as

meta-heuristics (Rayward-Smith et al, 1996; Aarts and Lenstra, 1997), are designed to escape

from the local optima traps. Generally, they still do not guarantee an optimal solution nor

performance bounds. However, they are widely used in solving combinatorial optimisation

problems and give good quality results for a wide variety of problems in practice (see Glover et

al, 1993; Aarts and Lenstra, 1997).

3.3 2-opt heuristics

A 2-opt heuristic (Lin, 1965) is a kind of Mild Descent neighbourhood search method, in which

an improved solution is obtained by exchanging two distinct components in the current

solution. 2-opt heuristic is very simple but effective. This is why 2-opt is one of the most

popular heuristic methods for symmetric travelling salesman problems (TSP) (see Lin, 1965;

Lin and Kernighan, 1973; Verhoeven, Aarts and Swinkels, 1995; Okada, Jaji and Fukushima,

1998). 2-opt has also been successfully used in other combinatorial optimisation problems, such

as graph partitioning (Kernighan and Lin, 1970) and bus vehicle scheduling (Wren, 1972;

Smith and Wren, 1981; Kwan and Rahin, 1999). Amongst the successful applications, vehicle

scheduling is in the area whose problem characteristics are closest to driver scheduling. Driver

scheduling is generally more complex than vehicle scheduling. The common characteristics and

the differences are first summarised in this section, then a successful application of 2-opt in

vehicle scheduling is reviewed. The last part of this section will discuss the potential

applicability of 2-opt for driver scheduling.

3.3.1 Vehicle scheduling versus driver scheduling

Both vehicle scheduling and driver scheduling are concerned with the allocation of a set of

resources to timetabled activities in the public transport field.

In public bus and train transport, vehicle scheduling is to allocate a vehicle to each journey in

such a way that the total number of vehicles required operating all the journeys and the total

vehicle cost are minimised. Each journey is a timetabled activity that starts and ends at

specified times and locations. Vehicle scheduling involves making feasible and economic links

amongst these activities. Similarly, driver scheduling is to allocate drivers to each vehicle in

operation in such a way that the number of drivers and/or total cost are minimised. The pieces

or spells of vehicle work are also timetabled activities that start and end at specified times and

locations (i.e. ROs).

In vehicle scheduling, the feasibility of a solution depends mainly on whether there is enough

time for the vehicle to connect between two successive journeys. However, in driver

scheduling, the feasibility of a solution depends on not only the connection time between two

successive vehicles to be operated by a driver, but also a set of complex labour agreement rules

that governs the legality of the driver duties.

3.3.2 A bus vehicle scheduling system – BOOST

Applying 2-opt heuristics, a bus vehicle scheduling system VAMPIRES (Wren, 1972; Smith

and Wren, 1981) was developed using the traditional procedural approach and later was

superseded by BOOST (Kwan and Rahin, 1999) embracing the object oriented paradigm.

BOOST first forms a crude initial schedule using a target number of buses. The target is either

estimated by an automatic process or specified by the user. It is possible that some of the links

in the initial schedule are time infeasible, i.e. the bus arrives later than it is due to depart. The

schedule is then iteratively refined. In each iteration, a selected pair of links is broken up and

re-linked in the alternative way if the overall infeasibility and/or cost of the schedule are

reduced. At the end, BOOST returns either the lowest cost feasible solution it has found, or, if

the target number of buses is too low, pointers to critical bus journeys that might be retimed to

make the target bus number feasible.

BOOST has been tested using data from various bus companies and used in some feasibility

studies involving bus companies in the UK and Brazil. Wren and Kwan (1999) report an

application for one UK bus company, whose main depot in the city centre has been relocated to

a new site. They have satisfactorily used BOOST to re-schedule their entire new operation.

3.3.3 2-opt heur istics for dr iver scheduling

Corresponding to journeys in vehicle scheduling, spells in driver scheduling are timetabled

activities and can be linked to form an initial schedule. Similar to BOOST, the initial schedule

could be refined iteratively by breaking and re-linking pairs of links. It seems that the problem

could be solved by this method. However, further contemplation of the method has revealed the

following difficulties.

• Costing method

Using Neighbourhood Search, a large number of solutions have to be evaluated during

the scheduling process. The costing methods for vehicle and driver scheduling are

different.

In vehicle scheduling, a link has an associated cost, which may be expressed as a

function of idle time (i.e. waiting time of a vehicle after finishing a journey at a place

and before making another journey from the place), dead run (i.e. non-passenger-

carrying journeys) or depot return (i.e. a time gap long enough to justify temporarily

returning the vehicle to the depot before its next departure). The cost of operating the

actual journeys in most practical situations may be regarded as constant, and therefore

for the optimisation process the total cost of a vehicle schedule can be regarded as the

sum of the cost of all the individual links. This costing method is called a link-based

costing method, in which each link in a vehicle (a chain of links) has an independent

cost and the sum of the individual costs constitutes the cost of the chain. A revised

chain can be easily costed by re-costing only the revised or newly-added links involving

only simple addition and subtraction. For instance, in BOOST the cost difference

between a current schedule and the new schedule after a 2-opt exchange between two

links is just the same as the cost difference between the two pairs of links before and

after the exchange.

However, in driver scheduling, it is generally not easy to assess precisely how much a

link is contributing to optimality, and hence the cost of a duty. For example, all duties

under eight hours might be paid the same. A simplification could be to treat all the links

in the same duty as having the same cost as the whole duty. When any link in a duty is

changed, the duty has been transformed, the cost of which must be re-calculated

according to its constituent links and the labour agreement rules. This costing method is

called a chain-based costing method, which is more complicated and time-consuming

than the link-based costing method used in vehicle scheduling.

Costing a duty (i.e. a chain of links) is complex. There are usually different types of

duty (see duty types in Section 1.1.4), and each type has a corresponding set of rules

governing the legality and payment of the duties. For example, the cost of a duty can be

defined as the spreadover, or only the driving time, or the driving time plus partial

unproductive working time.

• Penalty costing

In BOOST, a link is infeasible only when there is not enough time to connect two

consecutive journeys. The quantitative penalty of a link is simply defined as the time

lacking for connection, and thus the total penalty of a vehicle is defined as the sum of

the penalties of all the individual links. The penalty of a feasible link is defined as zero.

However, in driver scheduling, it cannot be determined whether an individual link is

feasible without considering the whole duty. Hence, the chain-based costing method is

applied to treat all the links in the same duty as having the same penalty as the whole

duty. If a duty is legal according to labour agreement rules, the penalty of the duty is

defined as zero; otherwise, a quantitative penalty should be assigned to the duty. To add

penalty costs to infeasible duties, the infeasibility of duties must be classified according

to labour agreement rules, and then each type of infeasibility is assigned a

corresponding penalty function. The total penalty of a duty can be defined as the sum of

all the individual penalty functions. Penalty costing a duty is non-trivial (see examples

in Section 3.4 and Section 4.2.3).

• Terminal ends

In vehicle scheduling, journeys are continuous activities of fixed timing. Each journey

starts and ends at fixed time. Given an initial schedule, an optimal schedule could be

generated if an optimal set of links connecting all the journeys could be obtained by

breaking the links and re-linking the journeys. However, in driver scheduling, the

lengths of driving activities (i.e. spells) are determined by the optimisation process

subject to the availability of relief opportunities. Given an initial schedule, the set of

spells is fixed. Starting from a set of crudely determined spells, an optimal schedule

could not be guaranteed even though an optimal combination of the spells could be

obtained by breaking and re-building spell-links.

An alternative way is to use pieces of vehicle work (pieces for short) instead of spells as

timetabled activities and to form a driver schedule by linking all the pieces. A duty can

therefore be presented as a sequence of piece-links. Each piece-link connects two

consecutive pieces of work and each piece starts and ends at fixed times. However, the

number of links would be greatly increased, and the evaluation of duties and links

becomes more complex and time-consuming. Spells have to be determined whenever a

duty is formed.

To conclude, the BOOST system is a basis for the initial development of the 2-opt heuristic

approach for driver scheduling, but extensive adaptation is expected. The driver scheduling

problem is different from the vehicle scheduling problem and is generally more complex.

3.4 Simplified driver scheduling problem

The driver scheduling problem is a hard combinatorial problem. Compiling an effective driver

schedule is very complex and difficult since there are many rules governing the legality of

duties and the partition of blocks of vehicle work is restricted by the availability of relief

opportunities.

To make the driver scheduling problem simpler to solve, as a starting point, we simplify the

problem by only allowing the compilation of duties with up to two-spells according to a

reduced set of labour agreement rules.

• Compile only the duties containing up to two-spells

The driver scheduling problem, which allows duties with three or more spells is much more

complicated than only allowing duties with up to two-spells. In this initial research, we limit the

number of spells in a duty up to two. This simplification has practical significance and was

applied in most of the early heuristic driver scheduling approaches and in the Cavique et al’s

work reviewed in Section 2.4.1. The reason may be that two-spell duties are practically

preferable, especially in bus operations. Moreover, some organisations only require duties with

one or two spells, e.g. the Lisbon Underground situation reported by Cavique et al (1999).

• Enforce only some essential labour agreement rules on duties

The common labour agreement rules for both bus and train drivers have been outlined in

Section 1.1.5. These rules governing the legality of a driver duty affect profoundly the

complexity of duty compilation. For constructive approaches, the more rules that are imposed

on the validity of a duty, the more difficult it is to construct a solution. Hence, in this initial

research, we simplify the problem by enforcing only the following rules, which would meet the

essential requirements of most bus operators in the UK.

1) The total spreadover of a duty must be within a specified range.

2) The total daily working time of a duty must be limited to a certain number of hours.

3) The break between the two spells of work in a straight duty must be long enough for a

driver to have a meal and to travel to start the next piece of work, while the break in the

middle of a split duty must be longer than a certain amount of time.

4) There is a maximum length for a spell with or without a stop, and a maximum length for a

stretch.

5) For split duties, the starting time must fall within a specified period, and they must finish

before a specified time. They also have an earliest sign on and a latest sign off time.

If a duty obeys all the above rules, it is called a valid duty or a feasible duty; otherwise an

invalid duty or an infeasible duty.

• Duty types

As discussed in Section 1.1.4, duties can be classified into two principal types: split duties and

straight duties. Straight duties can be further divided into different types, e.g. early duties,

middle duties, late duties. Some straight duties contain mealbreaks while the others do not. In

this initial research, we classify duties into three types: split duties (having a long spreadover

with a long break in the middle), straight duties (having a mealbreak in the middle), and non-

mealbreak duties (i.e. straight duties with no mealbreak). Since only the duties with up to two-

spells are allowed, both split duties and straight duties contain two spells with a mealbreak in

between, while the non-mealbreak duties may contain either one spell or two spells with a join-

up in between. This classification can meet the requirement of many operators in the UK.

• Cost function and penalty function

Every duty has a corresponding payment, which is equal to the working time of the duty, and is

called a wage cost or simply cost. Whether and how much non-driving work is counted as part

of drivers’ working time depends on operators, and the way to calculate the working time varies

dependent on the type of the duty. The following gives an example of the cost functions:

 Wage cost of a straight duty = spreadover

 Wage cost of a split duty = sign-on-at-depot + start spell + end spell + sign-off-at-depot

 + sign-off before the long break + sign-on after the long break

 Wage cost of a non-mealbreak duty = spreadover

Some operators stipulate a minimum payment for duties. If the counted working time of a duty

is less than the specified minimum payment, the cost of the duty is assigned the minimum

payment.

Usually, drivers prefer straight duties to split duties and operators do not prefer non-mealbreak

duties. We treat the preferences as soft rules, which are catered for by means of some weighted

costs to be minimised. For example, in the optimisation process, the cost of a split duty can be

assigned twice its wage cost, the cost of a non-mealbreak duty can be assigned five times its

wage cost, while the cost of a straight duty is assigned its wage cost.

If a duty is invalid, a quantitative penalty should be calculated to reflect how much the duty

violates the labour agreement rules. Each rule has a corresponding kind of penalty, which is

defined as the difference between the actual time allowance and the due limit. If the difference

is negative, it means this kind of rule is satisfied and the penalty is defined as zero. The

following provides the formulae for calculating the penalty of a duty.

The penalties for an invalid straight duty:

Penalty-max-spreadover = spreadover – maximum spreadover

Penalty-working-time = working time – maximum working time

Penalty-mealbreak = minimum mealbreak – mealbreak

Penalty-stretch = stretch – maximum stretch

The penalties for an invalid split duty:

Penalty-max-spreadover = spreadover – maximum spreadover

Penalty-min-spreadover = minimum spreadover - spreadover

Penalty-working-time = working time – maximum working time

Penalty-mealbreak = minimum mealbreak – mealbreak

Penalty-stretch = stretch – maximum stretch

Penalty-earliest-start-on = earliest start on time – start on time

Penalty-latest-start-on = start on time – latest start on time

Penalty-latest-finish-off = finish off time – latest finish off time

Penalty-earliest-sign-on = earliest sign on time – sign on time

Penalty-latest-sign-off = sign off time – latest sign off time

The penalties for an invalid non-mealbreak duty:

Penalty-max-spreadover = spreadover – maximum spreadover

Penalty-working-time = working time – maximum working time

The total penalty of a duty is defined as the sum of the individual penalties. Validity of spells is

enforced all the time.

3.5 Outline of the 2-opt driver scheduling approach

The basic idea of 2-opt heuristics is simple but it is non-trivial to design an effective application

of the approach to solve a combinatorial optimisation problem such as the driver scheduling

problem. A series of intermediate solutions are created and destroyed. A good algorithm design

is necessary to prevent it from endless iterations. Many alternative designs are possible. Some

strategies for escaping from the local optima are also necessary. This section presents a model

and outlines a solution method to the simplified driver scheduling problem based on 2-opt

heuristics.

3.5.1 Modelling driver activities and duty

Blocks with relief opportunities provide the basis for forming driver activities. Spells (not

pieces) are essential activities in a driver duty. Links that connect successive spells are artificial

driver activities and are called spell-links (links for short when the concept is unambiguous).

Since there are at most two spells in a duty, whenever a pair of spells is linked a duty is formed.

Meanwhile, a sign-on activity is inserted before the start spell and a sign-off activity is added

after an end spell. Only spell and spell-link activities are explicitly modelled as driver activities.

The validity and type of a link is treated as the same as those of the duty it belongs to. Figure

3.1 shows a hierarchical classification of driver activities.

Driver-activity

 Spell Spell-link

Valid-link Invalid-link

Split- Straight- Non-mealbreak Invalid- Invalid- Invalid-non-
 link link link split-link straight-link mealbreak-link

Each driver activity is associated with a duty. A duty consists of two spells (a start-spell and an

end-spell) and a link in between (a one-spell duty is presented as a spell linked with a dummy

spell, the work content of which is nil) while every spell has an implicitly embedded sign-on or

sign-off activity. Figure 3.2 illustrates such a duty.

3.5.2 General scheme of the 2-opt driver scheduling approach

An initial solution is the starting point of a neighbourhood search method. A good initial

solution might be helpful, and therefore some heuristic approaches require a feasible initial

solution. However, an algorithm that ensures a very good initial schedule would itself be

complex and time-consuming. We use a very simple method to obtain a crude initial schedule.

The initial schedule is required to cover all the vehicle work, but some duties may be invalid

Figure 3.1: Hierarchy of driver activities

Figure 3.2: Illustration of a duty with two spells

(Sign on) + Start-spell Spell-Link End-spell + (sign off)

because either there is not sufficient time for the driver to connect between two successive

spells of work or the duty has violated some labour agreement rules. Then the initial schedule is

iteratively improved in a ‘mechanical’ way. In the 2 -opt heuristics, the refining process consists

of two phases: minimise-penalty and minimise-cost. The phase of minimise-penalty is built on

three major component processes: swapping-link, replacing-ARO and adding-duty. The phase

of minimise-cost is built on the two processes: swapping-link and replacing-ARO. Each of these

component processes consists of several operations, which together constitute multi-

neighbourhood structures in the 2-opt driver scheduling approach. Figure 3.3 illustrates the

general scheme of the approach. Further description is given in the following sections.

3.6 Formation of an initial schedule

A crude initial schedule is quickly constructed by the following steps.

a) Estimate a tight target number of duties N simply by the following formula:

N = V / (S – A – B – C)

where V denotes the total vehicle work. S denotes the maximum length of spreadover for a

normal duty stipulated in the labour agreement rules. A and B denote the time allowances

for drivers to sign on and sign off at depot respectively. C denotes the specified minimum

meal break.

This formula guarantees that the target number is not higher than that achievable. The

reason such a low target number is used is that the optimal number of duties could not be

known in advance. The low target leaves room for the refining process to improve the

solution by adding duties incrementally.

Form
Initial
Schedule

Minimise
Total
Penalty

Minimise
Total
Cost

Figure 3.3: The major functional components of the 2-opt heuristics

Read Input Files

Output Schedule

Retiming

Adding one duty

Swapping for reducing penalty

 Swapping for creating favourable
 conditions for improvement

Replacing AROs

Retiming

Swapping for reducing cost

Swapping for creating favourable
 conditions for improvement

Replacing AROs

Estimate the target number of duties

Form Spells (Yield initial AROs)

Form initial schedule

Begin

End

b) Partition blocks into a set of spells.

The number of spells is defined to be twice the target number of duties since only duties

with up to two-spells are considered. The average spell length can be calculated by

dividing the total vehicle work by the number of spells. According to the average spell

length, the blocks are partitioned into a set of spells without overlapping work. To ensure

all the spells are valid according to labour agreement rules and together cover all the

vehicle work, the number of spells required is allowed to be increased when necessary.

c) Sort the spells by starting time.

d) Form duties

Couple the spells in a simple manner to form driver duties such that the first spell has its

starting time earlier than the starting time of the succeeding spell, and an arbitrary depot

(the first depot in the data file) is assigned to each duty for the driver to sign on and sign

off. Some duties may be time infeasible or violate some labour agreement rules.

If the number of spells is odd, generate the last duty by linking the remaining uncoupled

spell to a dummy spell, the work content of which is nil. In this way, every duty can be

treated as a two-spell duty.

When a duty is formed, a sign-on activity is inserted before the start spell, and an end spell

is followed by a sign-off activity. Once a duty is formed, a spell-link between the two

spells (including any dummy spell) of the duty is established. The spell-links are generated

and deleted dynamically during the scheduling process.

The above method is very simple. An initial schedule can be quickly formed without

considering much specific domain knowledge. An initial schedule can be constructed in many

ways, such as those developed in the early heuristics. However, they are domain knowledge

dependent and not readily portable to different transport operators, although the quality of the

initial schedule may be better. The initial schedule constructed by the above method is very

likely to contain infeasible duties. Therefore, in order to get rid of the infeasibility and to

minimise the total cost of the schedule, a series of strategies is devised and included in the

following functions: swapping-link, replacing-ARO and adding-duty.

3.7 Swapping links

The swapping-link process aims to improve the schedule by exchanging the links while the

spells remain unchanged. 2-opt swapping-link to be presented in Section 3.7.1 plays a very

important role in the refining process, which is driven by a set of link-swapping rules (described

in Section 3.7.2). Link-swapping rules decide whether the selected links should be swapped

during the scheduling process, and are classified into two groups: one is essential to improve

the solution while the other is to help escape from local optima. Experiments on testing the

swapping-link process are presented in Section 3.7.3. To improve the performance, some k-opt

swapping-link processes have also been designed in Section 3.7.4.

3.7.1 2-opt swapping links

2-opt swapping-link constitutes the major part of the 2-opt heuristic approach, the principle of

which is depicted as follows:

A schedule has a set of spells S and a set of spell-links D. A spell-link in D connects a pair of

spells in S, which can be denoted as: D = S^S = { s1^s2: s1 and s2 are in S}. The 2-opt heuristics

select from D two distinct spell-links di and dj, where di = s1^s2 , dj = s3^s4, s1, s2, s3, s4 in S. It

then does a swapping trial by replacing the current two links with new links 'id = s1^s4 and

'jd =s3^s2. A swap is allowed if some link-swapping rule is satisfied. Figure 3.4 illustrates the

operation, where the depot for signing-on and signing-off in a duty must be the same. After

swapping the links, two new duties are formed. The best depot for the driver to sign on and sign

off is determined if more than one depot is used.

 D1 depot depot

 D2 depot depot

The above illustrates a typical scenario in applying the 2-opt method. However, in this way a

start-spell can never become an end-spell while an end-spell can never become a start-spell. To

ensure that any possible swapping scenarios are catered for, the 2-opt method is extended as

illustrated in Figures 3.5-3.7. After swapping links, new best depots are determined for the new

duties. The sign-on and sign-off activities are re-computed for the start-spell and end-spell

respectively.

 D1 depot depot

 D2 depot depot

Figure 3.4: Illustration of 2-opt swapping-link (standard)

Figure 3.5: Illustration of 2-opt swapping-link (a)

Spell 3 Spell 4

di

dj

Spell 2 Spell 1

'id 'jd

Spell 3 Spell 4

di

dj

Spell 2 Spell 1

'jd

'id

 D1 depot depot

 D2 depot depot

 D1 depot depot

 D2 depot depot

In an initial schedule, every duty contains two spells, except one may contain only one spell

with a dummy spell. Spells remain the same during the swapping process but may be reformed

by a process to be discussed in Section 3.8, which can give rise to more single-spell duties.

After swapping between two single-spell duties, a duty may result in having two dummy spells.

This means the number of duties may be reduced during the swapping process.

3.7.2 Link swapping rules

Link-swapping rules are developed to decide whether the selected links should be swapped

during the scheduling process. The rules can be divided into two groups, one of which is for

improving the current schedule; the other is for creating favourable conditions for

improvement, which helps escape from the local optima.

Figure 3.6: Illustration of 2-opt swapping-link (b)

Figure 3.7: Illustration of 2-opt swapping-link (c)

di

dj

Spell 2 Spell 1

'di
'jd

Spell

3

Spell

4

Spell 3 Spell 4

di

dj

Spell 2 Spell 1

'jd
 'id

3.7.2.1 Swapping for improving the current schedule

Swapping-link is applied in both refining phases: minimise-penalty and minimise-cost for

reducing penalty or cost respectively.

In the phase of minimise-penalty, swapping trials are carried out between two links, one of

which is invalid. The links are swapped if the total penalty is reduced, and amongst the four

ways of swapping-link the one that reduces total penalty most is chosen. Similarly, in the phase

of minimise-cost, a swap is allowed if it reduces total cost and is the best among the four ways

of swapping-link.

Obviously the best solution obtained, when the swapping-link process cannot lead to any

improvement, is only a local optimum, which may not be the global optimum. Special

swapping-link strategies are described in the next section, which may help escape from local

optima.

3.7.2.2 Swapping for creating favourable conditions for improvement

When no improving solution can be found, the rules called wideBR/EvenBR, same-cost-

wideBR/same-cost-EvenBR and wideSO/EvenSO, same-cost-wideSO/same-cost-EvenSO are

used to help escape from local optima.

WideBR and EventBR allow a swap between any two valid links if the new generated links are

still valid and have respectively a less even or a more even distribution of link lengths

compared to before the swap. The WideBR and EvenBR swapping criteria, instead of

decreasing the total penalty, are intended to create more opportunities for reducing penalty

later. We shall explain this by reference to Figure 3.8.

After the swap of widening break, we may form a duty D1 with a large gap between spell 1 and

spell 2. Suppose that there is an invalid duty D2 consisting of two spells: spell 3 and spell 4. The

swapping for reducing penalty operation may form the two new duties D'1 and D'2.

 D1 depot

 D2 depot

(a)

 D'1 depot

 D'2 depot

(b)

The EvenBR rule may help in forming preferable links for drivers. Both WidenBR and EvenBR

can also disturb the current schedule and further make the swapping for reducing penalty

operation work.

Similarly, same-cost-WideBR and same-cost-EvenBR are intended to create more opportunities

for reducing total cost. They allow a swap between two valid links if the new links are valid,

cost the same or less, and have respectively a less or more even distribution of link lengths.

Figure 3.8: Illustration of the possible effect of the WideBR swap

di

dj

Spell 2 Spell 1

Spell 3

Spell 4 depot

depot

d'i

d'j Spell 2

Spell 1

Spell 3

Spell 4

depot

depot

Having the same purpose as WideBR and EvenBR, the rules WideSO and EvenSO allow a swap

between any two valid links if the new generated links are valid and have respectively a less or

more even distribution of spreadover compared to before the swap. WideSO makes some duties

with longer spreadover while making the others with shorter spreadover. The duties with a long

spreadover are usually regarded as good duties while the duties with a short spreadover have

some chance of being merged or to improve other duties by swapping spell-links. Similarly,

same-cost-WideSO and same-cost-EvenSO are intended for assisting in reducing total cost by

adjusting the distribution of spreadover of any two selected duties without increasing the total

cost.

Other rules such as widening/narrowing the gap of the length of driving work or mealbreak can

be applied in a similar way. The more rules that are applied, the more opportunities it has to

improve the solution, however, the more computation is spent.

3.7.3 Experiments on 2-opt swapping

The 2-opt heuristic approach for driver scheduling has been implemented and tested. Two data

sets were used at this stage. One problem was from the former Greater Manchester Buses

(GMB), which contained 21 blocks and had a total bus working time of 227 hours and 52

minutes. The other was from Merseyside Transport (MTLD), which had a total working time of

508 hours and 35 minutes undertaken by 37 buses. The TRACS II system (in the latest version

at the time of the experiments) was used for benchmarking. Throughout this chapter, TRACS II

was run not allowing duties with three and four spells to be generated.

During the 2-opt swapping process, the spells never change. Therefore, the experiments were

designed as follows. First, take the spells in the TRACS II solutions as the set of spells for

forming an initial schedule; then apply the 2-opt swapping method to refine the initial schedule.

The expectation is to obtain schedules as good as the TRACS II solutions, which were believed

to be the best solutions to the test problems. Unfortunately, the results for both problems were

not, although comparable to, as good as expected. More powerful swapping functions were

needed, which led to the 3-opt, 4-opt, and even 5-opt swapping functions designed in the next

section.

During the experiments, it was also found that the swapping to create favourable conditions was

very helpful in improving the solution in the first few iterations, but thereafter it became

ineffective. Another finding was that when several types of swapping-rule for creating

favourable conditions were used, only the first one or two could profit. Moreover, each

additional swapping rule added increased the computational time considerably. However, later

experiments showed that the application of some of the rules was critical to some problems. We

cannot simply omit one of them. A compromise was made by ensuring flexible selection of the

rules for creating favourable conditions. Users can choose the rules to be used, the rules can

also be chosen automatically according to the size of problems. For example, when the

estimated target number of duties is less than 50, all the link-swapping rules are used, otherwise

only two rules WideBR/EvenBR and WideSO/EvenSO are used to create swapping

opportunities.

3.7.4 K-opt swapping links

To enhance performance, k-opt (k = 3, 4, or 5) methods are designed, which do swapping trials

among k links. They are illustrated in Figures 3.9-3.11, where a two-direction arrow denotes a

link with two possibilities, for example in the duty D1, the link could be either the spell s1

followed by the spell s2 or s2 followed by s1 depending on the starting times of the spells. The

spell that starts the work earlier becomes the start-spell. The dotted arrows denote the new links

to be generated.

 D1 depot depot

 D2 depot depot

 D3 depot depot

 D1 depot depot

 D2 depot depot

 D3 depot depot

 D4 depot depot

Figure 3.9: Illustration of 3-opt swapping-link

Figure 3.10: Illustration of 4-opt swapping-link

di S2 S1

'jd

'id

X2 E2

dj

dk

X1 E1

'kd

di S2 S1

'jd

'id

X2 E2

dj

dk

X1 E1

'kd

U2 U1 dl

'ld

 D1 depot depot

 D2 depot depot

 D3 depot depot

 D4 depot depot

 D5 depot depot

Applying the k-opt swapping functions, the experiments described in the previous section were

carried out again and the same results as the TRACS II solutions were obtained. It could be

concluded that near-optimal solutions would be achievable given a good set of spells (or AROs)

with intensive swapping algorithms.

A good swapping process is very important. However, it would be extremely hard, if at all

possible, to determine a good set of spells from raw data. Working from a crudely derived set of

spells, an optimal solution to the problem could not be guaranteed even if an optimal

combination of the spells could be obtained by swapping operations. Considering the whole

scheduling process, it is more crucial to attain high computational efficiency. The 3-opt

swapping method is therefore only used to reduce total penalty, and is optional because it takes

a long computational time. The 4-opt and 5-opt swapping methods took a considerably long

Figure 3.11: Illustration of 5-opt swapping-link

di S2 S1

'jd

'id

X2 E2

dj

dk

X1 E1

'kd

U2 U1 dl

'md

U2 U1 dm

'ld

time and were only tested for very small problems in which the numbers of duties was less than

15. Due to the low computational efficiency, the 4-opt and 5-opt swapping-link processes were

abandoned.

3.7.5 Summary

Each swap in the 2-opt or k-opt methods causes two or k links to be removed and replaced by

newly generated links while the spells remain the same. Once a link is generated, a new duty is

formed and the best depot is assigned. During the swapping process, it is possible to reduce the

total number of duties. The whole swapping process terminates when no more improvement can

be made.

3.8 Replacing AROs

As already mentioned, during the swapping-link process the spells are not changed, i.e. the

AROs are fixed. The selection of AROs depends on the first block cutting, which may be very

rough. It is therefore necessary to revise the selection of AROs, which leads to the function

replacing-ARO. Replacing-ARO attempts to use alternative relief opportunities to replace some

current AROs in order to reduce total penalty or total cost.

3.8.1 Principle of replacing AROs

The principle of replacing-ARO is explained by reference to the example illustrated in Figure

3.12.

We consider replacing the ARO a in the duty Di in Figure 3.12(a). Suppose that r is the nearest

next relief opportunity to a, and the replacement of a with r can reduce the penalty or the cost

of Di. After the replacement, the piece of work between a and r is left unassigned to any driver.

To solve this problem, another duty 'iD also using a, called the relevant duty, must be found and

extended to cover the unassigned piece of work. Figure 4.12(b) shows the new duties after the

replacement. Whenever a new duty is generated, a best depot is selected accordingly.

 a r
 Di Depot | | | | Depot

 a r
 'iD Depot |_______| |______| Depot

(a)

 a r
 Di Depot | | | | Depot

 a r
 'iD Depot | | | | Depot

(b)

Note that replacing-ARO might reduce the number of spells. Suppose the start-spell in Di in

Figure 4.12(a) contains only one piece of work, i.e. r is another ARO. After the operation, the

entire work between a and r is moved to the duty 'iD and the duty Di only contains the end-

spell. A one-spell duty is therefore generated while the start-spell becomes a dummy spell. If

 Figure 3.12: Illustration of replacing AROs

replacing-ARO is operated on a non-dummy spell in a one-spell duty that contains only one

piece of work, the duty will be removed after the operation.

3.8.2 Strategies of replacing AROs

A series of strategies are designed to replace AROs efficiently. In the phase of minimise-cost,

each ARO is considered for replacing ARO. A replacement is allowed when total cost is

reduced. However, in the phase of minimise-penalty, attempting replacement of each ARO is

not efficient. An obvious reason is that the replacement of an ARO related to two valid duties

would not reduce any infeasibility. Hence we stipulate that the replacement of AROs is limited

to invalid links and their relevant links. The efficiency of replacing AROs to reduce

infeasibility is also affected by how the replacement is conducted. Before addressing this, we

need to identify the types of infeasibility, which are listed below.

1. Invalid Spreadover, the spreadover is out of the range of spreadover.

2. Invalid Sign-on, the sign-on is earlier or later than the time stipulated.

3. Invalid Sign-off, the sign-off is earlier or later than the time stipulated.

4. Invalid Start-Stretch, the start-stretch is longer than the limit.

5. Invalid End-Stretch, the end-stretch is longer than the limit.

6. Invalid Mealbreak, for a two-spell straight link, there is insufficient time for the

driver to have a meal break and then to make the connection between two successive

spells of work; for a split duty, the gap between the two spells is less than the minimum

long mealbreak stipulated.

7. Invalid Working-time, the total counted working time exceeds the maximum daily

working time stipulated.

We define a relevant ARO to be an ARO whose replacement may reduce infeasibility. Different

types of infeasibility correspond to different relevant AROs, which are represented by black

circles in Figure 3.13. Other unclassified infeasibility is grouped as others, where all the AROs

in a duty are regarded as relevant AROs.

 a1 a2 a3 a4

1. Invalid Spreadover, depot depot.

2. Invalid Sign on/off, depot depot.

3. Invalid Start-Stretch, depot depot.

4. Invalid End-Stretch, depot depot.

5. Invalid Mealbreak, depot depot.

6. Invalid Working-time, depot depot.

7. Others depot depot.

For each invalid link, only the corresponding relevant AROs are considered in the replacing-

ARO operation in order to save computational time. It is suggested that the operation is carried

out on all the invalid links in the order as listed in Figure 3.13 rather than randomly, i.e., work

first on all the links with invalid spreadover, then on those with invalid sign on/off, and so on.

This order is based on the following reasons.

Limit on the spreadover of a duty is related to the duty’s type. Extending or shortening the

spreadover of an invalid duty might make its type change so that it would become valid

according to the rules associated with the new type. Moreover, it is hoped that an invalid duty

could be improved or made valid by replacing as few AROs as possible. Replacing-ARO

operation is therefore done first on the duties with spreadover infeasibility, and the last two

Figure 3.13: Types of invalid duties and the relevant AROs for replacement

types of infeasibility are assigned a low priority because they consist of more relevant AROs.

Below is the replacing-ARO process depicted by an example for the first case of where invalid

spreadover is first considered.

Take a duty and check if the spreadover is invalid. If not, take another one; otherwise do

replacing-ARO trials as follows by reference to Figure 3.13.

• First, consider a1 if it is not the first relief opportunity in the block. Replace a1 with the next

earlier relief opportunity and find the relevant duty and let it cover the left piece of work.

Two new duties are temporarily constructed.

• Then, consider a4 similarly if it is not the last relief opportunity in the block.

The replacement that leads to greater improvement is selected. If none of them refines the

schedule, take another duty until all the duties have been tried.

In the 2-opt heuristic approach, every link with its relevant links, if they exist, is considered one

by one to do the replacing-ARO operation.

The replacing-ARO method could be extended to apply recursively the operation on the

relevant duty if it is made invalid by the operation. However, a duty usually has four AROs,

each of which may have a corresponding relevant duty, making the alternative method

complicated.

Figure 3.14 provides an illustration of performing replacing-ARO on three links, where three

duties Di, Dj, Dk, are involved. A thick line denotes an original spell while a thick dotted line

denotes a new spell generated after replacing AROs. Such a replacing-ARO operation is

allowed if the total penalty or the total cost is reduced.

 a1 r1
 Di Depot | | | | | Depot

 a2 r2 a1 r1
 Dj Depot |_______| | | | Depot

 a2 r2
 Dk Depot | | | | Depot

To develop alternative strategies for replacing ARO requires a great deal of research, and it is

beyond the purpose of this initial research, which aims to investigate the potential of the 2-opt

heuristics to driver scheduling and to gain some experience for the future research.

3.8.3 Hybrid of swapping links and replacing AROs

In the 2-opt driver scheduling approach, replacing-ARO is iteratively applied to improve the

solution after the swapping process cannot lead to any improvement. When replacing-ARO

fails to improve the solution further, the swapping process is recalled. The swapping and

replacing-ARO operations are employed in turn until none of them makes any further

improvement.

Each swapping-link and replacing-ARO process is capable of refining the solution and

therefore has an impact on the final solution. However, how an individual operation affects the

final solution cannot be predicted. In the 2-opt heuristics, several neighbourhood structures such

as those illustrated in Figures 3.4-3.7, 3.9-3.12, and 3.14 are applied. It is impossible to prove

that any particular scheme of organising them would be optimal or better than another one. We

Figure 3.14: Illustration of replacing AROs on three links

can choose to execute swapping-link and replacing-ARO in turn as is done currently. We could

also choose other schemes such as a hybrid of swapping-link and replacing-ARO described

below.

Take a pair of links and do swapping trials first. If the swapping trial is not successful, try

replacing AROs on each link. If replacing-ARO is successful, do swapping-link trials again.

This can be called a compound swapping operation incorporating replacing-ARO operation.

Obviously it is very hard to consider all possible algorithmic design combinations. The above

discussion has highlighted the difficulty of designing a structure or a strategy in the 2-opt

heuristics.

3.9 Adding duties

So far, the number of duties used in the series of refining schedules does not exceed the target

number, which is set deliberately low and may be lower than achievable. The best schedule

obtained may still be infeasible. To obtain a feasible solution, more duties may need to be

introduced. A process called adding-duty is devised in which,

• One duty is added at a time when the swapping-link and replacing-ARO processes cannot

lead to any improvement;

• Some work from the current duties is taken out to form the extra duty, such that the overall

total penalty is reduced.

Two ways of adding a duty are developed: two-link-adding and one-link-adding. Two-link-

adding handles two invalid duties at a time. If two-link-adding fails, one-link-adding is applied,

which deals with one invalid link at a time. Figure 3.15 shows an example of two-link-adding.

| |

| |

| | |----invalid link--------| |
 a1 a1' a2 a3 a4

(a)

 | | |----invalid link-----------
 b1 b1' b2 b3 b4

(b)

 | |-----new link------
 a1 a1' b1 b1'

(c)

Figure 3.15 shows two invalid duties (a) and (b). Suppose both of them are spreadover

infeasible and each duty may be shortened by removing one piece of work at the beginning or

at the end. A new duty (c) is allowed to be added to cover the removed work if total penalty is

reduced.

One-link-adding is to improve an invalid duty in the following two ways. In the first way, one

or more consecutive pieces of work are first cut from the invalid duty such that the infeasibility

of the duty is removed or reduced, and then the cut work is linked with a piece of work cut from

a valid duty such that the total penalty is reduced. The other way is to separate the invalid duty

into two duties such that the total penalty is decreased.

As in the swapping-link and replacing-ARO processes, there may be other possible methods for

adding duties. However, the method described above seems to be adequate.

Figure 3.15: Example of two-link-adding-duty

3.10 Implementation and results

A computer program has been developed to implement the 2-opt heuristic approach using

Borland C++ (Version 5.02). Many experiments and tests have been undertaken. Results for

five of the test problems are presented below. For all the test problems, TRACS II was run by

disallowing the generation of the duties with three and more spells. During such runs, some

vehicle work remained uncovered in the duty generation process according to the labour

agreement rules. The uncovered pieces of work were removed, and then the problems were

solved by TRACS II and the 2-opt heuristic approach under the same conditions.

During a real-life problem solution process, TRACS II may encounter the situation, in which

some pieces of work remain uncovered according to the labour rule parameters, amongst which

some are filtering rules added by TRACS II to prevent the set of potential duties generated from

being prohibitively large. It is not allowed to simply remove the uncovered pieces of work. The

usual practice is to adjust the parameters to cover all the pieces of work. This may be

unachievable or may be achieved by many adjustments. Another practice is to make a special

run, after the previous runs, to generate duties covering specially the uncovered pieces of work

based on a set of relaxed rule parameters. It may need several special runs to cover all pieces of

work, and finally the duties generated by all the runs are merged. The 2-opt heuristic approach

does not have such a problem; it produces a solution in one go.

3.10.1 Greater Manchester Buses

A driver scheduling problem from the former Greater Manchester Buses (GMB) was chosen as

a test problem. This problem contained 21 blocks and had a total bus working time of 227 hours

and 52 minutes. The original problem allowed three and more spell duties. After switching off

the generation of three and four spell duties, some work was uncovered. The modified GMB

problem contained 15 buses into 16 blocks with 217 hours and 29 minutes of bus work per day.

The total number of relief opportunities was 161. Table 3.4 summarises the solution and

compares it with that obtained by TRACS II.

Table 3.4 Comparison between 2-opt and TRACS II solutions to the GMB problem

System No.
Duties

Cost
(in hours)

Elapsed Run Time
(hh:mm:ss)

TRACS II 32 273:34 More than 5 minutes
2-opt 34 273:10 0:00:39

A smaller problem called GMBmini was created, which utilised the labour agreement rules in

GMB. The vehicle work was fictitious and contained fourteen pieces of work distributed in

three blocks. The results are displayed in Table 3.5.

Table 3.5 Comparison between 2-opt and TRACS II solutions to the GMBmini problem

System No.
Duties

Cost
(in hours)

Elapsed Run Time
(hh:mm:ss)

TRACS II 4 24:58 More than 5 minutes
2-opt 4 24:58 < 0:00:01

3.10.2 Merseyside Transport

A problem called MTLD was from Merseyside Transport, which had a total working time of

508 hours and 35 minutes undertaken by 37 buses. Table 3.6 compares the 2-opt solution and

the TRACS II solution to this problem.

Table 3.6 Comparison between 2-opt and TRACS II solutions to the MTLD problem

System No.
Duties

Cost
(in hours)

Elapsed Run Time
(hh:mm:ss)

TRACS II 77 605:10 More than 20 minutes
2-opt 81 615:05 0:05:10

A smaller problem called MTLDmini was derived from the MTLD problem by only retaining

five blocks while removing the other blocks. The data had 70 hours and 24 minutes of vehicle

work. The results are displayed in Table 3.7.

Table 3.7 Comparison between 2-opt and TRACS II solutions to the MTLDmini problem

System No.
Duties

Cost
(in hours)

Elapsed Run Time
(seconds)

TRACS II 13 88:04 More than 5 minutes
2-opt 13 91:39 0:00:40

3.10.3 Regional Railways North East

A problem RRNE came from the former Regional Railways North East, which operated a large

railway network service covering a wide area in northern England. The problem contained 197

blocks and had a total working time of 1944 hours and 36 minutes. There were 1656 relief

opportunities and 46 relief points, amongst which 20 were depots. This data could not be

handled by TRACS II in one go and it was divided into four sub-problems when the scheduling

work was first commissioned. To test the 2-opt approach, the four sub-problems were merged

back to one big problem. Unfortunately, no solution was obtained after 20 hours of running and

the program was terminated. It was decided to investigate whether the TRACS II solution could

be improved instead. The decomposition of a large problem compromises solution optimality.

There should be some room for improvement. A new experiment was therefore designed, in

which the TRACS II solution, containing the solutions of the four sub-problems combined, was

used as a starting solution. The computational results are shown in Table 3.8.

Table 3.8 Comparison between 2-opt and TRACS II solutions to the RRNE problem

System No.
Duties

Cost
(in hours)

Elapsed Run Time
(hh:mm:ss)

Sub-problem 1 96 782:18
Sub-problem 2 111 910:01
Sub-problem 3 47 328:21
Sub-problem 4 76 581:35

TRACS II (total) 330 2602:15 About a day
2-opt N/A N/A

2-opt (based on the
TRACS II solution)

329 2596:39 1:14:55

3.10.4 Summary

This section has presented five experiments carried out on a 233 mHz personal computer. The

elapsed times recorded were actual clock times to obtain the solutions. TRACS II did not report

on elapsed times but took considerably longer time in general. For example, for the smallest

problem it spent more than 5 minutes and for the largest problem about a day. The TRACS II

solutions presented above are the best after tuning the parameters, and different versions of the

duty generation program (BUILD) specific to different test problems were used (the latest

development in TRACS II is such that there is now only one version of BUILD for all

problems). In contrast, the 2-opt solutions were obtained in just one go. The 2-opt solutions are

generally not as good as the TRACS II solutions. For the very large problem, the 2-opt heuristic

approach did not generate a solution based on the infeasible initial schedule it constructed, but

improved the TRACS II solution benefiting from not having to decompose the problem.

3.11 Conclusions

A 2-opt heuristic approach has been presented in this chapter. Some of the basic operations in

the swapping-link and replacing-ARO processes were tried in some very early heuristic

approaches (e.g. Weaver, 1968; Weaver and Wren, 1970 and 1972). This research has designed

a more elaborate scheme including heuristics for helping to escape from local optima.

The 2-opt approach presented in this section is purely heuristic based and incorporates multi-

neighbourhood structures. It applies the 2-opt heuristics to driver scheduling not relying on

specific problem knowledge. It is much more generally applicable to problems from different

operators compared with the early heuristic systems. Since no specific problem knowledge is

required, it is applicable to different situations subject to the simplified requirements. Compared

with the generate-and-select based driver scheduling systems, the 2-opt heuristic system is

much easier to manipulate because there are no artificial rule parameters for the user to adjust;

and the computation time is considerably shorter.

However, the 2-opt heuristic approach has significant limitations. The basic 2-opt heuristic does

not have a specific means of escaping from local optima. Although the use of different link

swapping rules is helpful, the swapping for creating favourable conditions is not very efficient.

Designing and organising the search strategies is very difficult because the number of possible

strategies and their combinations would be too many. Furthermore, it is extremely hard to rank

the alternatives in fixing the framework of the 2-opt approach. The most significant limitation

of this current 2-opt heuristic approach is that it cannot compile three or more part duties. When

more-spell duties are considered, it would be significantly more complicated to expand the

current approach.

Despite the limitations, the 2-opt heuristic approach has its advantages and has demonstrated

the potential of a constructive heuristic approach for driver scheduling. The experience is

greatly helpful to the further research. The following summarises the crucial factors, identified

for a more general approach.

• Swapping links and replacing AROs are the most important processes contributing to

solution improvement. The replacing-ARO process offers the constructive heuristic

approach potential to handle windows of relief opportunities because the replacing-ARO

process could possibly select any ROs in the windows of relief opportunities as AROs.

• The use of a deliberately low target number of duties together with a carefully controlled

increment of extra duties is helpful in minimising the number of duties.

• The cost function and penalty function are established.

• Multi-neighbourhood structures are defined by swapping-link and replacing-ARO

operations.

Chapter Four

Modelling the Driver Scheduling

Problem and Overview of HACS

4.1 Introduction

After the research on the 2-opt driver scheduling approach presented in the previous chapter,

research is carried further to solve the driver scheduling problem with the simplifications being

removed: the number of spells in a duty is unlimited; the common labour agreement rules

(listed in Section 1.1.5) are fully enforced on duties; more duty types are considered, and

windows of relief opportunities are handled. Handling WROs and allowing an unlimited

number of spells in a duty are currently beyond the capability of TRACS II.

The review of driver scheduling methods in Chapter two has found that the most successful

existing driver scheduling systems are based on ILP, while some other generate-and-select

approaches have taken advantage of the LP relaxation solution. Inherent in the generate-and-

select approach, artificial restrictions are usually imposed at various stages to control the size of

the problem and search space. The early heuristic approaches solved the driver scheduling

problem by simulating human schedulers’ methods instead of building a general model. As

discussed in Chapter two, a good constructive heuristic approach can be less dependent on

domain knowledge and be free of artificial restrictions. This enables the building of a model,

which better matches real-life problems, and hence has a chance of yielding better solutions.

The research presented in the previous chapter has demonstrated the viability and potential of

the constructive heuristic approach. This chapter will first present two formal models for the

driver scheduling problem (Shen and Kwan, 2000a and 2001a). Based on these models, a

constructive driver scheduling approach using the Tabu Search framework is developed, which

is overviewed at the end of this chapter.

4.2 A formal model for driver scheduling

There are four main aspects in modelling bus and train driver scheduling problems, which are

vehicle work, driver schedule, labour agreement rules, and objectives.

4.2.1 Vehicle work

As described in Chapter one, the work in a vehicle schedule can be represented as a set of

blocks. For driver scheduling purposes, each block is usually presented in a graphical format

identifying a sequence of relief opportunities. However, the existence of windows, which

provide a range of time instead of a particular time, for relief opportunities are usually ignored.

The reason of simplifying WROs into ROs by the existing approaches is that WROs

dramatically increase the magnitude of problem to beyond the capability of the existing

approaches. The following model for vehicle work incorporates WROs. The notations are

extended from those in Chapter one.

B = {Bi| i=1,2,…,k} a block set, i.e. a set of all the k blocks in a problem.

(Bi, ≤) = {bi1< bi2<…< bimi} a block, defined by a linearly ordered set of WROs bij ordered

by relief time, where mi is the number of WROs in Bi.

bij = (uij , wij , vij) a WRO, defined by a ternary vector, where uij = [t1, t2] denotes

a time window from time t1 to time t2. wij is a relief point,

vij ∈{0,1}, vij=0 if bij is an U-WRO and vij=1 if bij is an A-

WRO.

In the above definition of a WRO, the first subscript identifies the block, to which the WRO

belongs. For example, bij is the j th WRO in block Bi. The subscripts may be omitted when they

are obviously unambiguous.

A RO is a special case of a WRO, where t1 = t2. Sometimes we define a RO by an ordered pair

(tij , wij), where tij and wij are relief time and relief point respectively.

4.2.2 A driver schedule

A driver schedule is a solution of the driver scheduling problem, which contains a set of valid

driver duties that together cover all the vehicle work in B. Under the generate-and-select

approach, only valid potential duties are generated, and then various methods can be employed

to find a subset to form a schedule. In a constructive approach, only allowing valid duties at all

stages may be difficult and computationally expensive. In contrast, covering all the vehicle

work would be easy if validity of the duties is not a prerequisite. Also, allowing infeasible

intermediate solutions may enable more flexible exploration of the solution search space.

Therefore, we model a schedule simply as a set of duties that together cover all the vehicle

work. Some duties may be illegal because either there is not enough time to make a connection

between two successive spells, or the duty has violated some labour agreement rules.

A duty starts with a sign-on activity, followed by a sequence of spells, and ends with a sign-off

activity. Each spell includes one or more consecutive pieces of work and at least two ROs. The

first and the last ROs are AROs, each of which corresponds to a unique WRO in a certain

block. Figure 4.1 illustrates a duty, where an arrow denotes a link between two driver activities.

Sign-on time at depot and sign-off time at depot are treated similar to AROs when linkages are

considered.

In Figure 4.1, a duty can be defined by a sequence of links (called spell-links). Each spell-link

consists of an ordered pair of AROs (the first is called an arrival-ARO while the second is

called a departure-ARO), which connects two successive spells in the duty, the sign-on activity

to the first spell, or the last spell to the sign-off activity. Formally, a solution S to a problem

with a block set B is defined as follows: let Di be a duty in S.

pij = (tp, wp) an arrival-ARO, corresponding to a unique WRO blk =

(ulk,wlk,vlk)∈Bl∈B such that tp∈ulk and wp = wlk.

Figure 4.1: Illustration of a driver duty

(Sign-on-at-depot ARO) (ARO ARO) (ARO ARO) (ARO Sign-off-at-depot)

Depot Spell Spell Spell Depot

qij = (tq, wq) a departure-ARO, corresponding to a unique WRO blk

= (ulk,wlk,vlk)∈Bl∈B such that tq∈ulk and wq = wlk.

dij = (pij, qij) a spell-link, defined by a directed pair of an arrival-

ARO and a departure-ARO.

 li the number of links in Di.

 (Di, ≤) = {di1<di2<…<dil i
} a duty, defined by a linearly ordered set of links in the

order they occur in the duty (the links may not be in

chronological order). There is an associated function

for returning the next link of a given link:

 next(dij) = di,j+1, j=1,2,…,l i-1.

 n the number of duties in the solution.

 P = {pij|i =1,2,…,n; j = 1,2,…, l i} an arr ival-ARO set.

 Q = {qij|i =1,2,…,n; j = 1,2,…, l i} a departure-ARO set.

 S = (P, Q, D) a solution, presented by a ternary vector, where

D = �
n

1i
iD

=
.

�
 = {Si | i= 1,2,…,N } a solution space, i.e. a set of all possible solutions,

where N is generally an enormous unknown constant

in practical problems.

The relationship between blocks and duties is illustrated in Figure 4.2, where 7901 and 7902 are

two blocks while Di is a duty containing four links denoted by solid arrows. The duty Di covers

three spells of vehicle work in the blocks 7901 and 7902, which are from 0609 to 1049 in 7902,

from 1213 to 1530 in 7901, and from 1552 to 1825 in 7902. Hence there are six AROs: qi1 =

(0609, G), pi2 = (1049, W), qi2 = (1212, W), pi3 = (1530, H), qi3 = (1552, H), and pi4 = (1825, G),

Depot

and two pairs pi1 = (sign-on-time, depot), qi4 = (sign-off-time, depot) associated with sign-on/off

activities and treated similar to AROs.

 qi2 pi3

 0607 0649-0659 0959 - 1019 1200-1215 1349-1359 1519 +1549 1815

 7901

 G H H W H H G

 qi1 pi2 qi3 pi4

 0609 0649-0655 0940+1003 1049 +1205 1302-1315 1515-1520 1540-1552 1825

 7902

 G H H W H H H G

 pi1 qi1 pi2 qi2 pi3 qi3 pi4 qi4

 0609---------(7902)------------1049 dij 1212----(7901)------1530 1552--(7902)-1825

 G H H W W H H H G

4.2.3 Labour agreement rules and costing functions

Labour agreement rules are operator-specific. A general discussion has already been given in

Section 1.1.5. In this model, the following rules are enforced on duties:

1. The spreadover, the spells and the stretches fall within their respective limited ranges;

2. The duty signs on/off and starts on/finishes off within their respective limited time

periods;

3. The duty signs on and signs off at the same depot;

4. The working time of the duty does not exceed a specified limit;

Figure 4.2: Relationship between blocks and duties

Depot Di

5. The mealbreak is not shorter than a specified minimum length of time, and the meal is

taken within a restricted time range;

6. For a split duty, the longest gap between two consecutive spells is not shorter than a

specified minimum length of time.

The labour agreement rules govern the legality of duties. There are different types of duty (see

4.2.3.1). Each type has an associated set of labour agreements. The legality and payment of a

duty is governed by the set of rules associated with its type, and can be quantified by penalty

and cost functions. Every duty has a wage cost calculated based on the labour agreement rules.

Different types of duty have different governing rules and different methods for calculating the

wage costs. The wage cost of an invalid duty could be computed in the same way as that of a

valid duty, but the results might not be very meaningful or relevant to the optimisation

algorithm. A penalty function is defined to reflect how poorly a duty satisfies the governing

rules. The penalty of a valid duty is always defined as zero. Drivers and operators may have

different preferences to different types of duty. The preferences can be regarded as soft rules

and be reflected by weighted cost function (see 4.2.3.2).

4.2.3.1 Duty types

A general discussion of duty types has been provided in Section 1.1.4. Figure 4.3 presents a

formal classification defined in this model. In Figure 4.3, A, B and C denote respectively three

types of straight duty with at least one mealbreak. They could be early duty, middle duty and

late duty, or ordinary duty, shorter duty and longer duty respectively. The name used for other

types are self-explanatory. This classification is adequate for normal problem situations, and the

types of duty are normally mutually exclusive. In a particular problem, not all types of duty

may be required, but at least one, say A in this model, is necessary.

 Duty

 Split duty Straight duty

 Single-spell duty Non-mealbreak duty A B C
 (with two or more spells)

Every type of duty required has an associated set of labour agreement rules governing the

validity of duties.

4.2.3.2 Costing a duty

The cost and the penalty functions are duty type specific. A wage cost function h(Di), expressed

in time units to be paid, can be computed according to the specific method expressed in the

labour agreement rules. The following concepts, which are related to the computation of the

wage cost function, are defined:

1. Sign on time and sign off time ---- the shortest time for signing on and off at the same

depot, this depot is called the best-depot for the duty;

2. Start on time and finish off time ---- the earliest driving time after signing on and the

latest driving time before signing off;

3. Spreadover ---- the time duration from signing on to signing off at the depot;

4. Spell ---- the driving time of a driver on one vehicle without a break;

5. Gap ---- the time between two successive spells;

6. Join-up ---- is a gap in which the driver leaves one vehicle and takes over the next

vehicle;

Figure 4.3: Classification of driver duties

7. Mealbreak ---- is a gap in which the driver travels to/from the canteen to have a meal;

8. Sign off/on before and after a long break ---- the time for the driver to sign off before a

long break and to sign on after the break;

9. Stretch ---- the time between sign-on to the first mealbreak, or between the end of the

last mealbreak to sign-off, or between two consecutive mealbreaks if there are two or

more of them; some operators stipulate that the join-up time is excluded from stretches.

10. Working time ---- the time counted towards the driver’s payment, i.e. the wage cos t

h(Di). It is operator and duty type specific and determined by costing rules stipulated in

the labour agreement. For instance, the working time could be equal to the spreadover,

the spreadover minus a constant (say 30 minutes), or the spreadover minus some

unproductive work, e.g. mealbreak, sign on/off and travel to/from canteen before and

after a long break.

If a duty Di is valid, the wage cost h(Di) is defined as being equal to the working time of the

duty. In driver scheduling, several types of duty may be allowed, but some types may be more

preferable to others. For example, straight duties are often preferred to split duties and non-

mealbreak duties. Every type of duty may be assigned an associated subjective weight on its

wage cost in order to distinguish the preference. The cost function f(Di) can be defined to reflect

the wage cost of the duty Di and the preference by the following formula.

f(Di) =

C;duty straightvalida is D if ,w*)h(D

B;duty straightvalida is D if ,w*)h(D

A;duty straightvalida is D if ,w*)h(D

 spells;moreor two duty with mealbreak-non valida is D if ,w*)h(D

duty; spell- singlevalida is D if ,w*)h(D

duty; splitvalida is D if ,w*)h(D

i6i

i5i

i4i

i3i

i2i

i1i

 (4.1)

In Formula 4.1, w1, w2, w3, w4, w5, and w6 are the weights assigned to six different types of valid

duty to distinguish their relative preferences. In the UK, straight duties with a mealbreak are

usually preferable to the other types of duty. An appropriate assignment to w1, w2, w3, w4, w5,

and w6 might use the values 2, 5, 5, 1, 1, 1 respectively. If the weights w1 to w6 are all assigned

the value of one, there is no preference on any type of valid duty and the cost of a valid duty

equals its wage cost. These weights are parameterised and are therefore adjustable for different

problems. In the experiments to be presented in Chapter 6, the weights: w1, w2, w3, w4, w5, and

w6 are set as 2, 5, 5, 1, 1, 1 respectively. Empirical evidence shows that this set of weights

produces better schedules than by setting all the weights to one. The reason may be that the

straight duties with a mealbreak are usually more efficient, besides being more preferable, than

the split and non-mealbreak duties.

If a duty Di is invalid, the value of h(Di) could be computed in the same way but the results

might not be very meaningful. For instance, consider a two-spell duty: the sign on and off time

allowances are both 5 minutes; the first spell is from 0605 to 1000; the second is from 0610 to

0900. If we calculate the spreadover by subtracting the sign on time from the sign off time, the

spreadover of the duty is 3 hours and 5 minutes; we can also calculate the spreadover as the

sum of the sign on and sign off time allowances plus the length of the two spells, then the

spreadover is 6 hours and 55 minutes. Suppose that the wage cost is defined as the spreadover,

the wage cost of this duty is 3:05 or 6:55, but none of the values can reflect the real wage cost

of the duty.

A penalty function g(Di) is defined as a value reflecting the infeasibility of the duty Di, i.e., how

poorly Di conforms to the labour agreement rules. In particular, if Di is a valid duty then g(Di)=

0. Every labour agreement rule has a corresponding kind of penalty function. If the rule is

obeyed, the corresponding penalty is defined as zero, otherwise it is defined as the difference

between the actual value and the corresponding specified limit. For example, if the spreadover

of a duty is 8:30 and the maximum length of spreadover for this type of duty is 8:00, the

spreadover penalty of this duty is 30 minutes. The formulae given in Section 3.4 are applicable

in this model while more formulae need to be defined similarly according to the labour

agreement rules. The total penalty g(Di) is defined as the sum of all types of penalty of the duty

Di.

4.2.3.3 Costing a link

Spell-links constitute the basis for the optimisation algorithm, which requires the definitions of

penalty and cost functions of a given link. As already discussed in Section 3.3.3, it is generally

not easy to assess precisely how much individual spells and links are contributing to the cost

and penalty of a duty. For example, a duty might attract a penalty if there is not a suitable meal

break between the third and fifth hour and all duties under eight hours might cost the same.

Hence, all the links in the same duty will be assigned the cost and penalty of the duty, i.e., g(dij)

= g(Di) and f(dij) = f(Di) for any link dij in a duty Di.

4.2.3.4 Costing a schedule

Given a solution S containing n duties, we define g(S) to be the total penalty of S, and f(S) to be

the total cost of S, where

g(S) = ∑
=

n

1i
i)g(D (4.2)

f(S) = ∑
=

n

1i

i)f(D (4.3)

4.2.4 Objectives

The goal of driver scheduling is to compile a schedule such that:

• Each piece of work is assigned to a duty;

• Each duty obeys a set of rules, which govern the legality of duties;

• The number of duties required is minimised;

• The total cost of duties is minimised.

According to the definition of a schedule (see Section 4.2.2), the first condition is always

satisfied throughout the scheduling process. The last three conditions are the three objectives in

our approach. The first objective is to make each duty valid, which is modelled as minimising

g(S) until g(S)= 0. The second objective is to minimise n, the number of duties in a schedule,

which is variable during the scheduling process. The third objective is to minimise total cost,

which is modelled as minimising f(S). The first objective is overriding. The second and the third

objectives may sometimes be in conflict. A trade-off is therefore needed dependent on the

requirement of the operator. In UK, it is common that the second objective has priority over the

third one. These two objectives can be combined as minimising:

f(S) = ∑
=

n

1i

i)f(D + n * W (4.4)

where W >> f(Di) is a constant, and n is the number of duties in a schedule, which is variable

during the scheduling process.

A method exists (Sherali, 1982) which defines W as a Sherali weight that guarantees the

reduction of duties as a priority. TRACS II uses a Sherali weighted objective function (Fores et

al., 1999). The constant chosen in this model is 5000, which adequately prioritises the reduction

of duties. The priority will be further guaranteed by rewarding the operations which can reduce

the number of duties (see Section 5.6.2).

4.3 An alternative model of a driver schedule

In the previous model, called a spell-model, a driver schedule is modelled based on a set of

spell-links and their associated AROs. The AROs are determined by how the blocks are cut into

spells. Once a set of spells is formed, the AROs are fixed. The current schedule could be

improved by breaking up some links and re-forming links in alternative ways. Even though an

optimal set of spell-links could be obtained for a given set of spells, the schedule might not be

optimal. This is because the initial set of spells and corresponding AROs are usually determined

quite roughly. Determining a set of ‘good’ spells may be as hard as forming a ‘good’ schedule.

In the spell-model, spells are basic units of driver activities, which can be broken down into

smaller units called pieces of work (pieces for short), which are fixed covering the work

between two consecutive WROs in a vehicle. A spell consists of a number of contiguous pieces.

Similar to the spell-model, a duty can be represented as a linearly ordered set of piece-links. A

piece-link, which sometimes is called a link if it is obviously unambiguous, connects either the

sign-on activity to the first piece, two successive pieces, or the last piece to the sign-off activity.

Each piece is defined by two ROs in its two WROs respectively (the first RO is called an

arrival-RO while the second RO is called a departure-RO). The formal definition of a schedule

S to a problem with a block set B is presented below, where the notations are the same as those

used in the spell-model, but the definitions are slightly different.

pij = (tp, wp) an arrival-RO, corresponding to a unique WRO blk =

(ulk,wlk,vlk)∈Bl∈B such that tp∈ulk and wp = wlk.

qij = (tq, wq) a departure-RO, corresponding to a unique WRO blk =

(ulk,wlk,vlk)∈Bl∈B such that tq∈ulk and wq = wlk.

dij = (pij, qij) a piece-link, defined by a directed pair of an arrival-

RO and a departure-RO.

 li the number of piece-links in Di.

 (Di, ≤) = {di1<di2<…<d ili
} a duty, defined by a linearly ordered set of piece-links

in the order they occur in the duty. There is an

associated function for returning the next link of a

given link: next(dij) = di,j+1, j=1,2,…,l i-1.

 n the number of duties in the solution.

 P = {pij|i =1,2,…,n; j = 1,2,…, l i} an arrival-RO set.

 Q = {qij|i =1,2,…,n; j = 1,2,…, l i} a departure-RO set.

 S = (P, Q, D) a solution, defined by a ternary vector, where

 D = �
n

i

iD
1=

.

�
 = {Si | i= 1,2,…,N } a solution space, where N is generally an enormous

unknown constant in practical problems.

In the above definition, a schedule is modelled as a set of piece-links with their associated ROs.

The other factors in driver scheduling such as vehicle work, labour agreement rules and

objectives are identically modelled as in the spell-model. Similar to spell-links, all the piece-

links in the same duty are assigned the cost and penalty of the duty. This model is called a

piece-model, in which pieces are fundamental timetabled activities and are fixed. However, the

actual driver relief times may be variable within a WRO if it is used.

4.4 Spell-model versus piece-model

We have built a spell-model and a piece-model for the driver scheduling problem with WROs.

These two models are analogous; the difference is in the definition of a schedule. Both models

define a schedule as a set of links, but one refers to spell-links while the other to piece-links.

Spell-model is built by a natural presentation of the problem, in which a spell is the basic unit of

driving work in a duty. During the scheduling process, the compositions of spells are variable.

Once an initial schedule is constructed, the set of spells is determined. Breaking up and

reforming links may improve the schedule, but is not adequate for finding a good schedule.

Even though the optimal combination of the spells could be found, an optimal solution cannot

be ensured, because the initial set of spells and the corresponding AROs are usually determined

roughly. Re-selecting AROs (i.e., reforming spells) from the entire set of WROs is essential to

refining the current schedule. However, unlimited re-selection of AROs would be impractical

because there would be too many combinations to consider.

In the piece-model, fixed pieces are the basic units. Finding the optimal combination of pieces

by breaking up and reforming the links would lead to an optimal solution. Hence, exchanging

links would be the most important operation for improvement. However, exchanging links

would be more time-consuming than that in the spell-model because there are many more

piece-links than spell-links in a schedule. Moreover, exchanging piece-links would cause

resulting duties to have too many fragmented pieces of work.

By combined utilisation of the two models, an enhanced approach would be developed, which

is anticipated to allow all ROs a chance of being used while the driver work would not become

too fragmented and the computation is efficient.

4.5 Overview of the HACS approach

Based on the models, a heuristic approach for driver scheduling called HACS (Heuristics for

Automatic Crew Scheduling) is developed. The fundamental idea of the HACS approach is that

of neighbourhood search (NS), which first generates an initial schedule and then refines the

schedule iteratively. The general scheme of the HACS approach is as follows:

Step 1 Construct an initial schedule

Step 2 Minimise total penalty using a tabu search technique

Step 3 Minimise total cost using a tabu search technique without increasing penalty

If the total cost is reduced and the currently best schedule is still infeasible, go

back to step 2; otherwise go to step 4.

Step 4 Reduce penalty by using extra duties

If the currently best schedule is feasible, then terminate; otherwise, add an extra

duty to reduce total penalty and then go back to step 2.

This scheme attempts to improve the initial solution as much as possible by means of steps 2

and 3. Adding duties is only a last resort. Note that in step 3 (i.e., during minimising cost) the

total penalty is not allowed to be increased. Removing penalty is the overriding objective of

HACS, which becomes more difficult after Step 2. A feasible schedule is not allowed to be

turned into an infeasible schedule during the minimising cost process because the infeasibility

cannot be guaranteed to be removed later without using extra duties.

4.5.1 Construction of an initial schedule

An initial solution is the starting point of a heuristic approach and its construction is problem-

oriented. Chapter three has presented a simple and quick method to construct an initial schedule

for the driver scheduling problem. The initial schedule covers all the vehicle work using a

deliberately low target number of duties. The process consists of the following main steps

driven by labour agreement rules: first a tight target number of duties is estimated automatically

and can be increased or reduced manually; then according to this target number, the block set B

is partitioned into a set of spells; lastly, the spells are coupled while the last spell, if any

remains, forms a one-spell duty. The HACS approach adopts this method to generate an initial

solution, which consists of duties with up to two spells. Three and more spell duties may be

yielded automatically during the scheduling process.

The initial schedule generated is usually crude and very likely to be infeasible. However, this

method is quick, easy to implement, and it is not sensitive to problem variations.

4.5.2 Refinement of the schedule

The initial schedule constructed is very likely to contain infeasible duties. The refining process

will improve it iteratively. HACS has three refining process components: minimising penalty,

minimising cost, and adding duties. The former two components are driven by the tabu search

technique tailored for driver scheduling, which is presented in the next chapter. The major

operations in these two minimising processes are swapping-link and recutting block. Swapping-

link improves the schedule by exchanging links while the AROs remain unchanged. Recutting-

block improves the schedule by reselecting AROs. Any RO, including those in WROs, has a

chance of being selected as an ARO. Hence, the HACS approach could handle WROs. After the

minimising processes using a tabu search, the current best schedule may still be infeasible

because the tabu search cannot guarantee an optimal solution, and the target number may be

lower than that achievable. Therefore, the adding-duties process is devised, analogous to that in

the 2-opt approach presented in Section 3.9, to reduce infeasibility until a feasible schedule is

obtained:

• One duty is added at a time when the tabu search cannot lead to any improvement.

• Some work from the infeasible duties is taken out to form the extra duty, such that the

overall total infeasibility is reduced.

4.6 Conclusions

This chapter has presented two models: spell-model and piece-model for the driver schedule

problem with WROs. The legality of duties according to the labour agreement rules has been

quantified by a penalty function while the wage cost and weighted cost functions of duties are

defined. These functions can be easily adjusted to different situations. A schedule is modelled

as a set of links, which will constitute the basis for the refining operations. There is no limit on

the number of spells in a duty as necessitated in the TRACS II system, and WROs could be

handled.

This chapter has also presented the general scheme of HACS, a constructive approach based on

the models. HACS has four key processes: a) constructing an initial schedule, b) minimising

penalty, c) minimising cost, and d) adding duties. The first and the last processes adopt the

ideas in the 2-opt heuristic approach. HACS focuses on the processes of minimising penalty

and minimising cost, which constitute the core of this research. During the minimising

processes, tabu search is employed. The next chapter focuses on the tabu search technique

tailored for the driver scheduling problem with WROs.

Chapter Five

Tabu Search Technique Tailored for the

Driver Scheduling Problem with WROs

5.1 Introduction

Many variations of neighbourhood search algorithms have been proposed based on studies of

natural processes, which perform an analogy of optimisation (Aarts and Lenstra, 1997).

Simulated Annealing (Kirkpatrick et al., 1983; Aarts et al., 1997), Tabu Search (Glover, 1989;

Glover and Laguna, 1997), and Genetic Algorithms (Holland, 1975; Muhlenbein, 1997), are

such popular methods and have been labelled as meta-heuristics (Reeves, 1993) or artificial

intelligent approaches. In recent years, these meta-heuristics have attracted strong research

interests (see for instance, Pham and Karaboga, 2000; Tian et al., 2000; Mori and Matsuzaki,

2001; Nara et al., 2001). It is also of appeal that they have been widely and successfully used

for seeking practical near-optimal solutions to NP-hard problems such as Travelling Salesman

Problem (Reinelt, 1994), Job Shop Scheduling (Brandimarte, 1993; Madureira, 1999), Vehicle

Routing (Gendreau et al., 1997; Ozdemir and Mohan, 2000), etc.

An online computing dictionary (http://www.instantweb.com/d/dictionary/index.html) gives

meta-heuristics the following definition:

A top-level general strategy which guides other heuristics to search for feasible

solutions in domains where the task is hard.

Guiding the 2-opt heuristics, Tabu Search (Glover, 1986, 1989 and 1990) is investigated for the

driver scheduling problem with WROs. Glover and Laguna (1993) indicate that a fundamental

element underlying Tabu Search is the use of flexible memory, which creates and exploits

structures to take advantage of history. Strategic use of memory can make dramatic differences

in the ability to solve problem (Glover and Laguna, 1997), but Tabu Search is a general search

scheme that must be tailored to the details of the problem at hand. Unfortunately, there is little

theoretical knowledge that guides this tailoring process, and users have to resort to the available

practical experience.

This chapter first introduces the Tabu Search method, and then presents the main components

of the Tabu Search technique tailored for the driver scheduling problem with WROs, in which

objective functions are defined while multi-neighbourhoods and an appropriate memory scheme

are devised. Before the Conclusions, the Tabu Search algorithms in HACS are outlined. The

driver scheduling problem without WROs is a special case of that with WROs. Much of the

work in this chapter has been published by Shen and Kwan (2001).

5.2 Tabu Search

Tabu Search (TS) was first proposed by Glover (1986) although its roots go back to the 1970s.

Hansen (1986) then sketched the basic idea. Additional efforts of formalization were reported

by Glover (1989, 1990) and de Werra & Hertz (1989). A comprehensive account of the basic

concepts, and of recent developments was given by Glover and Laguna (1993). Later Glover

and Laguna (1997) provided “hands -on” knowledge of TS and insight alike by presenting the

major ideas of TS with examples that showed their relevance to multiple applications. New

applications of TS are emerging frequently (i.e., Tian et al., 2000; Mori and Matsuzaki, 2001).

The fundamental idea of TS is that of neighbourhood search. To avoid being trapped in local

optima, TS allows the acceptance of non-improved solutions. In this way, the search is directed

away from local optima, such that other parts of the search space can be explored. To prevent

going back to recently visited solutions, a memory scheme is used to record the moves made in

the recent past of the search. This recorded search history is usually denoted by H and presented

by a tabu list of moves, which are forbidden for a certain number of iterations. However, a

move labelled tabu is still acceptable if a certain aspiration criterion is satisfied, for instance,

the move leads to a good enough solution. With the search history record H, the neighbourhood

N(xnow) is modified to N(H, xnow). This history is dynamically updated during the search process.

As a more elaborate neighbourhood search method, TS can be initially described as a steepest

descent method with a dynamic neighbourhood associated with an exploration history.

However, since finding a best solution in N(H, xnow) may often be too time-consuming, it is

usually crucial to determine a candidate set as a subset of N(H, xnow). Table 5.1 shows a basic

TS algorithm.

Table 5.1: Tabu Search

Step 1 (Initialisation)

Get an initial solution xnow;

Record the current best solution by setting xbest = xnow;

Set history record H = ∅.

Step 2 (Move choice and termination)

Determine Candidate_N(xnow) as a subset of N (H, xnow);

Choose a best solution xnext ∈ Candidate_N(xnow) such that

c(xnext) ≤ c(x) for any x ∈ Candidate_N(xnow);

If no solution qualifies to be xnext or other termination criteria

apply, the method stops.

Step 3 (Update)

Set xnow = xnext;

Set xbest = xnow if xnow is better than the current best solution;

Update H;

Then go to Step 2.

TS has been applied to a large variety of problems with considerable success (see for instance

Hertz and de Werra, 1991; Mori and Matsuzaki, 2001), although no clean proof of convergence

is known and there has been no formal explanation of this good behaviour up to now (Hertz,

Taillard and de Werra, 1997). There are investigations of theoretical aspects of TS (e.g. Faigle

and Kern, 1992), but this research mainly concentrates on its tailoring for the driver scheduling

problem.

5.3 Objective functions

The TS technique is employed in two phases: minimising penalty and minimising cost (see the

general scheme in Section 4.5), in which the objective functions are defined (in Section 4.2.4)

as min(g(S)) and min(f(S)) respectively, and in the phase of minimising cost, the total penalty is

not allowed to be increased.

5.4 Multi-neighbourhoods based on the spell model

Tabu Search may be conveniently characterised as a form of neighbourhood search (see Glover

and Laguna, 1993), where each solution S ∈ � has an associated set of neighbours N(S) ⊂ �

called the neighbourhood of S. Any solution S' ∈N(S) can be reached directly from S to S' by

an operation called a move. 2-opt exchange is frequently used to define neighbourhoods in

permutation problems, e.g. TSP and filtering sequence problems (Glover and Laguna, 1993).

Applying 2-opt exchange and its variants to the HACS approach, neighbourhoods for the driver

scheduling problem are defined by the following move operations: swapping-two-links,

swapping-two-spells, insert-one-spell, and recutting-block. More than one move operations (i.e.

multi-neighbourhoods) are employed in HACS, the reason is provided while defining the

operations below, where D1 and D2 denote two duties, and D1 = {d11,d12, …,d 1i, … , d1s}, where s

is the number of links in D1; D2 = {d21,d22, …,d 2j, … , d2t}, where t is the number of links in D2.

5.4.1 Swapping two links

This is a typical 2-opt swapping operation. Given two links d1i = (p1i,q1i)∈D1, d2j = (p2j,q2j)∈D2,

the operation swapping-two-links(d1i,d2j) is defined as follows.

If D1 = D2, this operation will do nothing, otherwise, it operates by the following steps:

Step 1: Exchange-link1 ({d1i,d2j}) = { d′1i, d′2j}, where

d′1i = (p1i, q2j), d′2j = (p2j, q1i).

Step 2: Exchange-duty1 ({D1, D2}) = { D′1, D′2}, where

D′1 = {d11,d12, …, d1,i-1, d′1i, d2,j+1, … , d2t},

D′2 = {d21, d22, … , d2,j-1, d′2j, d1,i+1, … , d1s}.

Step 3: d1i = d′1i; d2j = d′2j; D1 := D′1; D2 := D′2.

This operation replaces the given links d1i, d2j with two new links d′1i, d′2j. Figure 5.1 provides

an illustration, where a thick line denotes a spell, a solid arrow denotes an original link and a

dotted arrow denotes a new link generated by the operation.

In the 2-opt heuristic approach, we have considered all possible scenarios of 2-opt exchange

(see Section 3.7). That is not practical for HACS, in which the number of links in a duty is

unlimited. In addition, it is not necessary because any spell could be changed to any position in

a duty after the operation, i.e., any spell could be changed into a start spell, an end spell, or a

spell in the middle of a duty. Figure 5.2 shows an example, in which the spell denoted by the

thickest line will become an end spell while the end spell in D2 will become a spell in the

middle of a duty after the swapping-two-links operation.

Figure 5.1: Illustration of swapping two links

Figure 5.2: Example of turning a spell into an end spell

 D1 depot …

D2 depot …

… depot

… depot

d1i

d2j

d′2j d′1i

 D1 depot …

D2 depot …

… depot

depot

Despite this, it is hard for the swapping-two-links operation to generate all possible links

because each link is tied by the whole chain and there are many restrictions on the duty

generation. Two other swapping operations have been designed to provide more chances of

refining the solution. Later experiments show that the use of these three swapping operations

together produces better solutions than the use of a single swapping operation.

5.4.2 Swapping two spells

Given two links d1i = (p1i,q1i) ∈ D1 , d2j = (p2j,q2j) ∈ D2, the operation swapping-two-

spells(d1i,d2j) is defined as follows.

If D1 ≠ D2 and none of the links is a sign-off activity, i.e. there exist d1,i+1 = (p1,i+1, q1,i+1) ∈ D1,

d2,j+1 = (p2,j+1, q2,j+1) ∈ D2 such that next(d1i)= d1,i+1 and next(d2j)= d2,j+1, the operation will be

done by the following steps, otherwise nothing will be done.

Step 1: Exchange-link2 ({d1i, d2j}) = { d′1i, d′2j, d′1,i+1, d′2,j+1}, where

d′1i = (p1i, q2j), d′2j = (p2j, q1i),

d′1,i+1 = (p1,i+1, q2,j+1), d′2,j+1 = (p2,j+1, q1,i+1).

Step 2: Exchange-duty2 ({D1, D2}) = {D′1, D′2}, where

D′1 = {d11, d12, …, d1,i-1, d′1i, d′2,j+1, d1,i+2, … , d1s},

D′2 = {d21, d22, …, d2,j-1, d′2j, d′1,i+1, d2,j+2, … , d2t}.

Step 3: d1i = d′1i; d2j = d′2j; d1,i+1 = d′1,i+1; d2,j+1 = d′2,j+1; D1 := D’
1; D2 := D’

2.

D1 depot … … depot

… depot

D2 depot …

This operation replaces the given two links d1i, d2j and their successors d1,i+1, d2,j+1, if they exist,

with four new links d′1i, d′2j, d′1,i+1, and d′2,j+1 as illustrated in Figure 5.3, where the notations

have the same meanings as those used in Figure 5.1.

5.4.3 Inserting one spell

Given two links d1i = (p1i,q1i) ∈ D1 , d2j = (p2j,q2j) ∈ D2, the operation inserting-one-spell(d1i,d2j)

is defined as follows.

If D1 ≠ D2 and the link d1i is not a sign-off activity, i.e. there exists d1,i+1 = (p1,i+1, q1,i+1) ∈ D1

such that next(d1i)= d1,i+1, the operation will be done by the following steps, otherwise, nothing

will be done.

Step 1: Exchange-link3 ({d1i, d2j}) = {d′1i, d′2j, d′1,i+1}, where

d′1i = (p2j, q1i), d′2j =(p1i, q1,i+1), d′1,i+1 = (p1,i+1, q2j).

Step 2: Exchange-duty3 ({D1, D2}) = {D′1, D′2}, where

D′1 = {d11, d12, …, d1,i-1, d′2j, d1,i+2, … , d1s},

D′2 = {d21, d22, …, d2,j-1, d′1i, d′1,i+1, d2,j+2, … , d2t}.

Step 3: d1i = d′1i; d2j = d′2j; d1,i+1 = d′1,i+1; D1 := D′1; D2 := D′2.

Figure 5.3: Illustration of swapping two spells

d1i

d2j

d′1,i+1 d′2j

d2,j+1

d1,i+1

d′1i
d′2,j+1

… depot D1 depot …

D2 depot … … dep ot

This operation replaces the given two links d1i, d2j, and the link d1,i+1 (the successor of d1i), if it

exists, with three new links d′1i, d′2j, and d′1,i+1 as illustrated in Figure 5.4, where the notations

have the same meanings as those used in Figure 5.1.

Note that the operation inserting-one-spell(d1i,d2j) is different from the operation inserting-one-

spell(d2j,d1i). The latter operation inserts the spell following the link d2j into the link d1i.

5.4.4 Recutting block

In the spell-based model, spells are the basic units of driver duties. The initial set of spells and

corresponding AROs are determined quite roughly. Recutting blocks is therefore necessary and

plays an important role in refining the current schedule by re-selecting AROs (i.e. re-compose

spells).

5.4.4.1 Definition of the potential alternatives of a given ARO

In the process of recutting blocks (i.e. re-selecting AROs), the most important task is to define

which ROs are to replace the current AROs. In HACS, only the ROs adjacent to the current

AROs are considered as potential AROs, i.e. the predecessor and the successor of an ARO are

Figure 5.4: Illustration of inserting one spell

d1i

d2j

d1,i+1

d′1i d′1,i+1

d′2j

defined as candidates. If this restriction were relaxed, the process would be impractical because

there would be too many combinations to consider. However, according to this stipulation,

each RO still has potential opportunities to be an ARO. The reason is as follows: Once the

predecessor or the successor of a current ARO is selected as an ARO, the predecessor or the

successor of the new selected ARO has chance to be an ARO, and so on. Any RO could be an

ARO.

Further, we stipulate that an arrival-ARO may be replaced by its nearest previous RO

(predecessor) while a departure-ARO may be replaced by its nearest next RO (successor). This

stipulation is consistent with the previous one. The reason is as follows:

• If a RO is at the beginning of a block, it must be a departure-ARO and only has a successor.

• Similarly, if a RO is at the end of a block, it must be an arrival-ARO and only has a

predecessor.

• If an ARO is in the middle of a block, it must be included in two different spells. In one

spell it is an arrival-ARO having a predecessor while in another spell it is a departure-ARO

having a successor.

5.4.4.2 Definition of the predecessor and successor of an ARO without considering WROs

If WROs are not considered, a block (Bi, ≤) = {bi1< bi2<…< bimi
} can be simplified as (Bi, ≤)=

{ri1< ri2<…< rimi
}, where rij is a RO, a special case of a WRO. Any ARO must be a RO rij in a

certain block Bi. Therefore we can define the functions predecessor and successor as:

predecessor(rij) = ri,j-1, 1< j ≤ mi, where rij is a arrival-ARO. (5.1)

successor(rij) = ri,j+1, 1 ≤ j < mi, where rij is a departure-ARO. (5.2)

5.4.4.3 Conversion of a time window into discrete times

Before defining the predecessor and the successor of an ARO considering WROs, we convert

time windows into discrete times.

A WRO consists of a range of times. Since the HACS approach handles ROs as discrete times,

a possible way to handle WROs is to expand explicitly each time window into individual

minutes. Considering the difference between A-WROs and U-WROs, two different conversions

are devised as follows:

In an A-WRO a driver must be on duty but can be relieved by another. Therefore, an A-WRO

can be modelled as a sequence of relief opportunities with one-minute intervals. For example,

supposing bij = (uij, wij, vij) is an A-WRO and uij = [t1, t2], then bij can be treated as a sequence of

ROs: r1, r2,…,rm, where m = t2 - t1 + 1, and rk = (t1 + k – 1, wij), k ∈ {1,2,…,m}.

In contrast with an A-WRO, an U-WRO requires no driver. The usual practice, e.g. in TRACS

II, is to either select only the arrival time and the departure time as relief times or divide a block

containing several large gaps of U-WROs into several shorter blocks. This conversion does not

compromise the property of U-WROs because the times in between U-WROs do not contribute

to improving the schedule, and in contrast, they increase unproductive driver work.

Consequently, HACS also selects only the arrival time and the departure time as relief

opportunities. However, It is not necessary for HACS to split blocks containing large gaps of

U-WROs. HACS stipulates that the arrival time is applied when the U-WRO is at the end of the

spell while the departure time is applied when the U-WRO is at the beginning of the spell.

| depot Di depot |

5.4.4.4 Enhanced definitions of the predecessor and successor of an ARO

Based on the foregoing conversion of WROs into discrete ROs, the functions predecessor(pij)

and successor(qij) involving WROs are defined below, by reference to Figure 5.5 and the

notations in Sections 4.2.1 and 4.2.2.

 dij = (pij, qij)

 ba,k-1 bak bcl bc,l+1

In Figure 5.5, dij = (pij, qij) is a link in a duty Di. Suppose pij= (tp,wp), qij=(tq,wq) corresponding

to bak = (uak, wak, vak) ∈ Ba and bcl = (ucl, wcl, vcl) ∈ Bc respectively, where tp∈ uak =[tak1,tak2],

tq∈ucl =[tcl1,tcl2], and wp= wak , wq= wcl. If bak is an U-WRO, then vak = 0, otherwise, vak = 1. If bcl

is an U-WRO, then vcl = 0, otherwise, vcl = 1. We define the predecessor of pij and the successor

of qij as follows.

predecessor(pij) =

==
==
>=
>=

; t , t), if v,w(t

; t , t), if v,w(t

; t , t), if v,w(t

; t , t), if v,w-t

akpa,k-p,a,k-

akpa,k-p,a,k-

akpakpak

akpakpp

1111

1121

11

1

0

1

0

11(

 (5.3)

successor(qij) =

==
==
<=
<=

++

++

+

; t , t), if v,w(t

; t , t), if v,w(t

; t , t), if v,w(t

; t , t), if v,w(t

clqc,lp,c,l

clqc,lp,c,l

clqclpcl

clqclpq

2121

2111

22

2

0

1

0

11

 (5.4)

These new definitions are also applicable to the problems without time windows, in which tp=

tak1 = tak2 , tq= tcl1 = tcl2 and (ta,k-1,1, wp) = (ta,k-1,2, wp), (tc,l+1,1, wp) = (tc,l+1,2, wp), i.e. the formulae

(5.3) and (5.4) embody the formulae (5.1) and (5.2) respectively.

Figure 5.5: Duty with a selected link and its WROs

5.4.4.5 Definition of recutting-block operation

Given a link d1i = (p1i,q1i) ∈ D1, where p1i∈B1, q1i∈B2, and D1 = {d11,d12, …,d 1i, … , d1s}, where s

is the number of links in D1, if there exists a link d2j = (p2j, q2j) such that

- d2j ∈ D2 = {d21,d22, …,d 2j, … , d2t}, where t is the number of links in D2,

- D1 ≠ D2,

- p1i = q2j or p2j = q1i,

The link d2j is called the relevant link of d1i. We then define the operation recutting-block by

cases as follows:

Case 1: p1i = q2j

Step 1: Search for a component r1v in B1 such that predecessor(p1i) = r1v.

Step 2: Exchange-link4 ({d1i, d2j}) = {d′1i, d′2j}, where d′1i = (r1v, q1i), d′2j = (p2j, r1v).

Step 3: Exchange-duty4 ({D1, D2}) = {D′1, D′2}, where

D′1 = {d11, d12, …, d1,i-1, d′1i, d1,i+1, … , d1s},

D′2 = {d21, d22, …, d2,j-1, d′2j, d2,j+1, … , d2t}.

Step 4: Remove p1i from P.

Step 5: Remove q2j from Q.

Step 6: Put r1v into P,Q.

Step 7: d1i = d′1i; d2j = d′2j; D1 := D′1; D2 := D′2.

Case 2: q1i = p2j

Step 1: Search for a component r1v in B2 such that successor(q1i) = r1v.

Step 2: Exchange-link4 ({d1i, d2j}) = {d′1i, d′2j}, where d′1i = (p1i, r1v), d′2j = (r1v, q2j).

Step 3: Exchange-duty4 ({D1, D2}) = {D′1, D′2}, where

 d1i … depot
r1v p1i q1i

… depot D2 depot …

D1 depot …

p2j q2j

 … depot D1 depot …

 … depot D2 depot …
 p2j r1v

 d2j

D′1 = {d11, d12, …, d1,i-1, d′1i, d1,i+1, … , d1s},

D′2 = {d21, d22, …, d2,j-1, d′2j, d2,j+1, … , d2t}.

Step 4: Remove q1i from P.

Step 5: Remove p2j from Q.

Step 6: Put r1v into P and Q.

Step 7: d1i = d′1i; d2j = d′2j; D1 := D′1; D2 := D′2.

An illustration of recutting-block of case 1 is given in Figure 5.6. Figure 5.6(a) shows two

original duties while Figure 5.6(b) shows the corresponding new duties, where the piece of

work presented as a hatched pattern is removed from D1 and then inserted into D2 after the

recutting-block operation.

 (p1i = q2j)

(a) Two original duties

 d′1i

 r1v q1i

 d′2j

(b) Two new duties

Figure 5.6: Illustration of recutting blocks

5.4.5 Summary

Four move operations (corresponding to multi-neighbourhoods) have been defined in this

section. Given the current solution S = (P,Q,D), the first three operations transform

S=(P,Q,D)∈ � to S' =(P,Q,D')∈ � , where the sets of AROs P and Q remain unchanged. These

three operations can be categorised as swapping-link (or swapping for short) operations denoted

as swapping(d1i, d2j) because they involve swapping several links triggered by a given pair of

links (d1i, d2j) while the set of AROs remains unchanged. The recutting-block operation is

different from the swapping operations. It revises the selection of AROs, i.e. P, Q and D are

changed when the move transforms a solution S=(P,Q,D)∈ � to its neighbour S' = (P' ,Q' ,D')∈ � .

Any link d1i and its relevant link d2j, which is uniquely determined by d1i, can trigger a unique

recutting-block move, hence we can denote it as recutting(d1i, d2j). Referring to a non-specific

move, the move is denoted as move(d1i, d2j) instead of swapping(d1i, d2j) or recutting(d1i, d2j).

5.5 Multi-neighbourhoods with combined utilisation of the spell

model and the piece model

The previous section has defined three swapping-link operations and a recutting-block

operation. In these operations, the spells are treated as basic units. In addition to swapping

links, recutting blocks plays an important role in refining the current schedule because the

initial set of spells and corresponding AROs were determined quite roughly. However, the

recutting function is limited because only the ROs adjacent to the current AROs are considered

as potential AROs. If this restriction were relaxed, the process would be impractical because

there would be too many combinations to consider.

In the above swapping-link and recutting-block operations, spells are the basic units of driver

work. By considering the piece of work (piece for short) covered between two successive ROs

as a more basic unit, a spell consists of a number of pieces contiguously linked together. The

four operations could be applied to the links between the pieces instead of between spells. The

new piece-based operations are swapping-two-links, swapping-two-pieces, inserting-one-piece,

and recutting-block, which are analogous to the spell-based operations accordingly. The piece-

based new operations can be identically illustrated by Figures 5.1, 5.3, 5.4 and 5.6 respectively,

but the thick lines denote pieces instead of spells.

In the piece-based model, pieces of work are fixed indivisible units. During the swapping-link

operations, each WRO has a chance of being tried as an active WRO. Hence, the piece-based

swapping operations can be used to replace the spell-based recutting-block operation. The

limitation that only the ROs adjacent to the current AROs are considered as potential AROs in

the spell-based recutting-block operation is thus removed.

When WROs are considered, an ARO may be replaced by another RO in the same WRO. The

recutting-block operation is therefore retained to re-select an ARO from within its

corresponding WRO. Limiting the recutting-block operation within WROs, the definitions of

the predecessor of pij and the successor of qij in the formulae 5.3 and 5.4 (see Section 5.4.4.4)

should be changed as follows.

predecessor(pij) =

>=
>=

; t , t0), if v,w(t

; t , t1), if v,w1-t(

1akpakp1ak

1akpakpp
 (5.5)

successor(qij) =

<=
<=+

; t , t0), if v,w(t

; t , t1), if v,w1(t

2clqclp2cl

2clqclpq
 (5.6)

When no WROs are involved, the piece-based swapping-link operations would be adequate and

the recutting-block operation is therefore not applied. Unfortunately, the piece-based swapping

operations would be very time-consuming, and the resulting duties would have too many

fragmented pieces of work. A compromise would be a combination of the following operations:

spell-based swapping-two-links, swapping-two-spells and inserting-one-spell; piece-based

swapping-two-pieces and inserting-one-piece; and recutting-block for WROs.

The HACS approach incorporating the spell-model and the piece model (i.e., applying the five

swapping operations and a recutting-block operation for WROs) is anticipated to be superior to

the HACS approach based on a single model, because all ROs would have a chance of being

used while the driver work would not become too fragmented.

5.6 Memory schemes

The aggressive aspect of TS is manifest in choice rules that seek the best available move that

can be determined with an appropriate amount of effort (see Glover and Laguna, 1997). The

meaning of ‘best’ in TS a pplications is customarily not limited to an objective function

evaluation. In HACS, the best move is defined as the move with a highest move value amongst

the moves either being non-tabu in the neighbourhood or satisfying a certain aspiration

criterion, which determines when tabu activation rules can be overridden. In HACS, we employ

the improved-best criterion, i.e., removing a tabu classification from a trial move when the

move yields a solution better than the best obtained so far.

For many situations, where the neighbourhood N(S,H) (which depends on the current solution S

and the search history H) is large or its elements are expensive to evaluate, finding the best

move in N(S,H) may often be too time-consuming. Cutting down the computational effort is

vital. Before addressing the methods for cutting down the computational effort, some basic

components of TS, e.g., move attribute, move value, tabu tenure and tabu status are defined.

5.6.1 Move representation and move attribute

The fundamental operation in TS is called a move. The move operations used in HACS have

been defined in Sections 5.4 and 5.5. According to the definitions of the move operations, a link

(a spell-link or a piece-link) is the basic unit of a move operation. Given a solution, a set of

links is fixed and the number of links is known. We store all the links in a vector V = (d1, d2,…

,dk), where k is the number of links in the solution. Each link corresponds to a unique index in

the vector, hence we can use the index to denote a link, and a move swapping(di, dj) or

recutting(di, dj) can be represented as a move(i,j), where i,j ∈ {1,2,…,k}.

Each move has an associated attribute that can encompass any aspect that changes as a result of

the move. After a move, indices for the original pair of links are reused for the new pair of

links. Therefore, the attribute of a move(i,j) can be defined as the pair (i,j), in which the links di

and dj change from the original ones to the current ones.

Recorded move attributes are often used to impose tabu restrictions that prevent moves from

being selected that would reverse the changes represented by these attributes. In the swapping

operations, a move(i,j) is tabu if the move(i,j) has been executed previously. In the recutting

operation, a move(i,j) is tabu if the move(j,i) has been previously executed.

5.6.2 Move value

Move values are used to measure moves. The value of a move(i,j) can be defined as f(S) - f(S')

or g(S) - g(S'), where S is the current schedule and S' is the resultant schedule of the move,

depending on the phase of the algorithm. According to this definition, a preferable move has a

high value. The move values are updated from one iteration to another. Efficient updating of

move values can reduce the effort of finding the best or near best moves. In driver scheduling,

the move values can be calculated without a full evaluation of the objective function as follows:

Obviously, only the duties altered by the move need to be evaluated. Since we have defined the

cost and penalty of a link to be those of the duty it belongs to (see Section 4.2.3.3), the move

value f(S) - f(S') or g(S) - g(S') can be equivalently represented as f(di) + f(dj) − f(d'i) − f(d'j)

while g(S) − g(S') can be equivalently represented as g(di) + g(dj) − g(d'i) − g(d'j).

As addressed in Section 4.2.4, the objective of minimising the total number of duties usually

has priority over the objective of minimising cost. If a move can lead to the reduction of the

number of duties without increasing infeasibility, we will prioritise the move by adding a large

constant, say 5000, to the value of the move. Moreover, if a move is prohibited, e.g. both links

of a move are in the same duty, the move will be assigned a very low value, say –5000.

5.6.3 Tabu tenure and tabu status

As already mentioned, the basic idea of TS is to allow the acceptance of non-improved

solutions to avoid being trapped in local optima. To prevent going back to recently visited

solutions, a memory is used to record the moves made in the recent past of the search. This

memory is called a tabu list, in which the recorded moves are forbidden for a certain number of

iterations. The certain number of iterations for which a move must remain tabu is called the

tabu status of the move. Each move has a corresponding tabu status. If a move is not tabu, its

tabu status is usually defined as zero; otherwise its tabu status depends on the tabu tenure and

the current iteration. The tabu tenure decides the number of iterations for which the current

executed move must remain tabu. Therefore, the tabu status of a current executed move can be

defined as the tabu tenure, and then at each subsequent iteration the tabu status of the move is

subtracted by one, continuing until the tabu status is zero. There are other ways (see Section

5.6.4.2 for instance) to define the tabu status of a move but the meaning is similar.

No single rule has been designed to yield an effective tenure for all classes of problems (Glover

and Laguna, 1997). However, Glover and Laguna (1993) indicate that values between 7 and 20

appear to work well for a variety of problem classes, while values between 0.5 n and 2 n

appear to work well for other classes, where n is a measure of problem dimension. In HACS,

min(n , 20) is defined as the tabu tenure, where n denotes the number of spell-links, which

equals the sum of the number of spells and the number of duties in the current schedule.

Experiments have shown that using this variable function is more effective than using a

constant between 7 and 20, although the usual range for this function is between 7 and 20 for

practical problems. For example, considering practical driver scheduling problems with about

100 duties, which are mostly consisting of two or three spells (i.e. 3 or 4 spell-links per duty),

n is usually less than 20. Considering small problems with 14 duties n is approximately

equal to 7.

5.6.4 Candidate list and tabu list

As already addressed, for many situations, where the neighbourhood N(S,H) is large or its

elements are expensive to evaluate, finding the best move in N(S,H) may often be too time-

consuming. Cutting down the computational effort is vital. The usual method is to determine a

candidate set as a subset of N(S, H) to restrict the number of solutions examined on a given

iteration. The importance of determining a candidate set has been described a great deal in the

literature. Glover and Laguna (1997) suggest some general classes of candidate set (or

candidate list) strategies, such as aspiration plus, elite candidate list, etc. Employing the elite

candidate list strategy, a memory scheme is designed for the driver scheduling problem.

5.6.4.1 Elite candidate list

The Elite Candidate List approach (Glover and Laguna, 1997) first builds a candidate list by

examining all moves, selecting the k best moves encountered, where k is a parameter. Then at

each subsequent iteration, the current best move from the candidate list is selected to be

executed. This process terminates when such a move falls below a given quality threshold, or

until a given number of iterations have elapsed. Then a new elite candidate list is constructed

and the process repeats. As discussed by Glover and Laguna (1997), this method is created

based on the assumption that a good move, if not performed at the present iteration, will still be

a good move for some number of iterations. This assumption might be true in many situations,

but our experiments have shown that this assumption is not appropriate for the HACS driver

scheduling approach. The explanation is given by the following example.

In the experiments, an elite candidate list is designed for driver scheduling using the above-

described method. The elite candidate list first records the best k moves, where the parameter k

is arbitrarily defined to be equal to thirty. Suppose the current best move is move(i,j). The move

move(i,x) may be also recorded in the candidate list. Figure 5.7 illustrates an example, in which

link i, link j and link x are the invalid links involved in move(i,j) and move(i,x). Both moves

move(i,j) and move(i,x) can make a considerable improvement on the schedule, such that they

are selected into the elite candidate list. The improvement can be seen by comparing Figure 5.7

and Figure 5.8, where the new links after the moves are shown. Suppose move(i,j) is executed,

link i changes and the quality of move(i,x) becomes poor.

D1 depot depot

D2 depot

 depot

D3 depot

 depot

di D1 depot depot

D2 depot depot

D3 depot depot

D1 depot depot

 0600 0700 1500 1800

 0650 0800

 0740 0900

 0750 1000

 0910 1200

 0600 0700 0740 0900

 0650 0800 1500 1800

(a) After move(i,j)

 0600 0700 0910 1200

 0750 1000 1500 1800

(b) After move(i,x)

To avoid a very poor move being executed before there are still better moves in the candidate

list, the elite candidate list approach is modified in the experiments as follows. After a move is

executed and removed from the candidate list, the values of the remaining moves will be re-

Figure 5.7: Illustration of three invalid links involved in move(i,j) and move(i,x)

Figure 5.8: Illustration of the new links after two elite candidate moves

di

dj

dx

dj

dx

di

computed, and then the moves are sorted by the order of move values. When the recent best

most is below or equal to a given quality threshold, a new candidate list is constructed and the

process repeats. In the experiments, the quality threshold was arbitrarily defined as where the

move value is equal to a given small constant, say –500. If the constant is defined too high, all

of the recorded moves in the candidate list may be below the quality threshold after a number of

iterations. Then, the same elite candidate list will be constructed and the process repeats. This

may form an endless loop if there is no limit on the number of iterations. If the constant is

defined too low, e.g. –5000, the poor moves (which originally were elite moves but are turned

into poor moves by the execution of their related moves) may be selected and executed at the

very early stages.

This elite candidate list, comparing with the entire neighbourhood, reduces the number of

moves evaluated at a given iteration. However, at each iteration, the recorded moves have to be

re-evaluated and the quality of the best move cannot be ensured since some recorded moves

may be influenced by some other previously executed moves, especially when a low quality

threshold is defined. Experiments have shown that this method (in which the threshold constant

is defined as –500) worked well at the first iterations, but became inefficient thereafter. The

reason is that there would be more and more recorded moves under the quality threshold after a

number of iterations. The reconstruction of an elite candidate list would become more frequent.

Several other candidate list approaches were designed as variants of the above candidate list

approach, but none of them was satisfactory in terms of the quality of the best move and the

computational effort. Consequently, we gave up the effort in designing a special candidate list

(i.e. building a subset of the entire neighbourhood). Instead, HACS cuts down the

computational effort by other means, which is described in the next section.

5.6.4.2 An efficient memory scheme for driver scheduling

Using the entire set of the neighbourhood as a candidate set (this can guarantee the quality of

the best move at each iteration), HACS cuts down the computational effort by other means

(diverting from using a subset of candidates), in which the number of solutions examined on a

given iteration is greatly restricted as follows.

Each move defined in HACS only alters two duties; therefore, only two duties need to be re-

evaluated after a move. The trial moves, not involving any link in the two altered duties, remain

unaffected. The other trial moves, which are a minority, will be evaluated. Moreover, if the two

links of a trial move are in the same duty, the move will not be considered and will be

artificially assigned a very low move value. To fulfil this strategy, each link is assigned a link-

status, which indicates whether a link is in a currently altered duty.

This memory scheme can guarantee the quality of the best move at an iteration while the

computational effort is efficient. The implementation of the candidate list is discussed below.

Different memory structures have been designed for the swapping move and the recutting move

respectively.

• Candidate list and tabu status for the swapping-link moves

The candidate list is designed to be as large as the entire neighbourhood, which records all the

move values in a lower triangular matrix C = [cij], where i>j; i = 2,3,…,n; j = 1,2,…,n-1; and n

is the number of links in the current schedule. As addressed above, it would be very time-

consuming and unnecessary to update every value in C after a move. Only the moves

containing the recently visited links need to be costed again and C is updated accordingly. Each

move in C has a corresponding tabu status, which indicates the number of iterations for which

the move must remain tabu. If a move is not tabu, its tabu status is defined as zero. The tabu

statuses and the move values could be recorded in the same matrix, such that the move values

would be recorded in the lower triangle while the tabu statuses in the upper triangle

accordingly. However, most of the moves would not be recorded as tabu at a given iteration. It

would therefore be more efficient to record the tabu status of only the moves that are tabu in a

tabu list.

The tabu list is designed as a fixed size (= tabu tenure) queue, which records a and b for a move

move(a,b), and the tabu status of the move. The queue is initially empty. When the queue is full,

its head record is removed and the tabu statuses of the remaining moves are decreased by one

before a new record is added. The new added record always has its tabu status equal to the tabu

tenure. If the tabu classification of a move is removed by an aspiration criterion, the

corresponding record in the queue is transferred to the end of the queue, and the tabu status

becomes equal to the tabu tenure. Any move not recorded in the queue is not tabu.

• Candidate list and tabu status for the recutting-block moves

Each link has two AROs (in the spell model) or two ROs (in the piece model), hence there are

two possibilities to recut the blocks for each link. Suppose there are n links in a solution, the

recutting-ARO operation on both AROs/ROs in each link can produce 2*n potential schedules

in the neighbourhood. The candidate list is designed to be as large as the entire neighbourhood,

which records all the links and their corresponding relevant links (i.e. all potential moves), the

move values, and the tabu statuses in a four-column matrix C = [cij], where i = 1,2,3,4; j =

1,2,…,2n.

The tabu status is initialised to 0 and is used to identify the ending iteration of the tabu tenure

for the corresponding move. For a move, iter is used to denote the current iteration, at which

this move is selected. The tabu status of this move is defined as:

tabu status(move) = iter + tabu tenure

In conjunction with the above definition, a move remains tabu if the tabu status of the move is

not less than the current iteration.

5.7 Tabu search algorithms in HACS

TS algorithms are employed in the two phases of HACS: minimising penalty and minimising

cost (see the general scheme of HACS presented in Section 4.5). The algorithms are the same in

both phases but the objective functions are different accordingly. The pseudo codes of the

algorithms are as follows, where S* denotes the current best solution.

The algorithm for minimising penalty or cost

Given an initial solution S containing n duties, where S = (P, Q, D);

S*
 := S;

Tabu-mechanism := off;

times := 0;

While times < Given-limit do

 A set of TS Algorithms* 1

If (The current solution S is better than the best solution S*)

 S* := S;

 times := 0;

 else if (Tabu-mechanism = off)

 Tabu-mechanism := on;

else

 times := times + 1;

 End if

2 End while

*1 The set of TS algorithms varies according to the model, on which the HACS approach is

based.

1. In the HACS approach based on the spell-model, the set contains the following algorithms:

 TS Algorithm – swapping-two-links (spell-links);

 TS Algorithm – swapping-two-spells;

 TS Algorithm – inserting-one-spell;

 TS Algorithm – recutting-block;

2. In the HACS approach based on the piece-model, the set contains the following

algorithms:

 Tabu Search Algorithm – swapping-two-links (piece-links);

 Tabu Search Algorithm – swapping-two-pieces;

 Tabu Search Algorithm – inserting-one-piece;

 TS Algorithm – recutting-block (limited with WROs);

3. In the HACS approach utilising the spell-based and piece-based operations together, the

set contains the following algorithms:

 TS Algorithm – swapping-two-links (spell-links);

 TS Algorithm – swapping-two-spells;

 TS Algorithm – inserting-one-spell;

 TS Algorithm – swapping-two-pieces;

 TS Algorithm – inserting-one-piece;

 TS Algorithm – recutting-block (limited within WROs);

In the above minimising penalty or cost algorithm, multi-neighbourhoods (each operation

decides a neighbourhood) are employed, each of which corresponds to a TS algorithm. Each TS

algorithm is executed in turn until no further improvement can be made, taking the current best

solution as its starting solution.

An alternative could be to use a compound move to coordinate the move operations. A

compound move (Glover and Laguna, 1993) consists of a series of simpler components. For

example, the rejection chain method used by Cavique et al (see Section 2.4.1) consists of three

component operations: shift operation, cut operation and merge operation. Cavique’s ejection

chain method cannot compile duties consisting of more than two-spells. In driver scheduling,

using a compound move would be very complicated if multi-spell duties are considered.

In the minimisation algorithm, a steepest descent method is first applied by switching off the

tabu-mechanism. Since at the first stage of minimisation process the penalty or the cost could

be easily reduced, the steepest descent method could be applied to reduce the penalty or the cost

with less computational effort than the TS method. After the steepest descent method terminates

at the local optimum, the TS algorithms are applied by switching on the tabu-mechanism.

The above minimisation algorithm contains a set of TS algorithms, each of which corresponds

to a different move operation. They can be described by the following pseudo codes, where S is

the current solution, S' is a trial solution, and S* is the currently best solution.

Tabu Search Algorithm

Given an initial solution S containing n duties, where S = (P, Q, D);

S* := S;

T := Ø; (The tabu list is empty.)

iterator := 0;

While iterator < Given-iterator-limit do

Search for the best move move* such that move* ∉T, or f(S')< f(S*);*1

S := S';

If (Tabu-mechanism = on)

 Update T; (put move* into T and update the tabu status of moves)

End if

Update the set of links D;

Update the sets P and Q, if the current operation is recutting-block;

iterator := iterator + 1;

 If (f(S) < f(S*))

 S* := S;

End if

End while

*1 In this tabu search algorithm, the best move is defined as the move with a highest move value

amongst the moves either being non-tabu in the neighbourhood (move* ∉T) or satisfying the

improved-best aspiration criterion (f(S')< f(S*)), i.e., a tabu classification on a trial move can

be removed if the move yields a solution S' better than the best solution S* obtained so far.

5.8 Conclusions

This chapter has presented the Tabu Search technique tailored for the driver scheduling

problem. Multi-neighbourhood structures and an appropriate memory scheme, which are

essential elements of Tabu Search, have been designed. An effective and efficient memory

scheme (candidate list and tabu list) is specially designed for the driver scheduling problem.

The multi-neighbourhood structures are proposed to diversify the search and enable a more

comprehensive coverage of the search space. Experiments on the foregoing technique and some

alternative designs are presented in the next chapter, comparing the results with best known

solutions drawn from real-life data sets.

Chapter Six

Evaluation and Computational

Experiments

6.1 Introduction

No clean proof of convergence for Tabu Search is known. Hertz et al (1997) describe Tabu

Search to be like an engineering approach to large and difficult problems of optimisation, which

may not possess the elegance of mathematics. Memory-based strategies are the hallmark of

Tabu Search (Glover and Laguna, 1997). Memory, particularly in its adaptive forms, introduces

too many degrees of freedom to be treated conveniently in ‘theorem and proof’ developments.

Glover and Laguna (1997) suggest that researchers who prefer to restrict consideration to

processes (and behaviour) that can be characterised by rigorous proofs must focus their efforts

in other directions. Consequently, it is common to evaluate tabu search based approaches by

experiments. The quality of solutions and the computational time are the major concerns.

Throughout this thesis, Relative Percentage Deviation (RPD) over best known solutions is

employed to measure the quality of solutions.

RPD = (s−b)/b*100% (6.1)

where, s denotes the solution to be assessed while b denotes the best known solution.

The HACS approach presented in this thesis has been implemented using Borland C++

(Version 5.02) within an object-oriented framework. A large number of experiments have been

carried out to assess HACS on the performance of individual components of the tabu search

algorithm, the overall performance, and the capability of handling WROs. This chapter first

presents the experiments related to the core of the tabu search technique in Sections 6.3 and 6.4.

Experiments were first carried out on the spell-based operations to evaluate the neighbourhood

structures and to compare tabu search with steepest descent search. Then, experiments were

carried out on the piece-based operations and the combination of the spell-based and piece-

based operations. The experiments related to WROs are presented in Sections 6.5 to 6.7. Finally

the conclusions drawn from the experiments are provided at the end of this chapter.

6.2 Test problems and the best known solutions

The School of Computing, University of Leeds has a long history (more than thirty years) on

transport scheduling. Their scheduling packages, e.g. BUSMAN (Chamberlain and Wren,

1992), OPENBUS (Wren and Kwan, 1999), and TRACS II, have been broadly installed in the

UK and some other countries. Many practical problems have been successfully solved, from

which we selected ten real-life driver scheduling problems as test data to evaluate the

performance of the HACS system. The original problems have been accumulated over many

years, during which the driver scheduling systems at Leeds have been evolving. We tested

HACS with the problems formatted for the recent TRACS II system. In the data set, the original

A-WROs were replaced with one or two ROs each because TRACS II cannot handle A-WROs,

while the original U-WROs were either kept (with a small gap) or removed (with a large gap)

by splitting the blocks. The properties of the problems and the TRACS II solutions (i.e. the best

known solutions to the problems) are displayed in Table 6.1. TRACS II is one of the most

successful driver scheduling systems. It has been successfully installed for many bus companies

and used by many train operating companies (see Kwan et al, 1999; Wren and Kwan, 1999). In

tests against other established bus driver scheduling systems, TRACS II has always produced

the most efficient schedules.

Table 6.1: Properties and best known solutions of test problems

Best known solution
Data

Code

Data

Name

Vehicle

hours

No.

ROs

No.

Blocks
Potential

Duties

No.

Duties

Cost

(hours)

Elapsed

Time

D1 AG66 165:56 130 10 8090 24 180:18 3 mins

D2 AG62 178:46 200 13 58136 25 192:52 25 mins

D3 NURS 216:28 248 16 32904 31 235:05 10 mins

D4 GMB 227:52 175 21 11817 34 289:32 5 mins

D5 GOLD 294:10 289 23 27068 42 327:48 10 mins

D6 COM9 332:06 356 30 32000 39 363:26 10 mins

D7 TRMX 349:37 574 21 29500 49 408:47 10 mins

D8 LH7A 404:46 646 30 29021 54 427:04 10 mins

D9 LHM2 552.07 799 41 671541 80 632:32 Over 5 hours

D10 LHM1 786:47 859 63 999101 108 862:29 Over 15 hours

The elapsed times recorded in this thesis were actual clock times to obtain the solutions running

on a 333 mHz personal computer, any exception will be indicated. The elapsed times for HACS

were obtained by calling a built-in timing function in C-libraries. Since TRACS II does not

report on elapsed times, and the duty generation and the ILP selection process were run

separately, the elapsed times were estimated. In D9 and D10, slack parameters were used in the

TRACS II runs (on a Pentium III 1gHz personal computer), and much (over 85%) of the

elapsed time reported was spent on generating the large number of potential duties.

In the test data, there are no A-WROs, which have been removed from the original raw data for

the sake of TRACS II. We have to restore or add them to test the ability of HACS on handling

WROs because tackling WROs is one of the most important objectives of this research. In the

test data, the U-WROs with large gaps were not restored because they could not provide any

benefit. The other U-WROs were restored by merging the split blocks. Some A-WROs were

restored by checking the actual vehicle work. Unfortunately, most of the original A-WROs

cannot be restored without the original raw data. We extended ROs into WROs artificially as

follows. In practice, when a vehicle stops at a location, there is often a gap between the arrival

time and the departure time, for instance 5 minutes or 8 minutes. These gaps usually vary in

size. Without the benefit of a real data set, it might be more appropriate to extend ROs into

WROs with variable durations, but in practice a fixed duration will still enable us to see the

effect of altering the time of the ARO within the window (The HACS approach itself does not

impose any restrictions on the durations of WROs). Therefore, we extended all the ROs in the

testing problems into A-WROs with 5 minutes each, except those already expressed as WROs

(their durations are variable) and the first and the last ROs in each block (their durations are

zero). After this has been done, the problems D1 to D10 in table 6.1 become the problems with

WROs and are labelled W1 to W10.

The experiments to be presented in this chapter were designed for evaluation of both HACS’

ability to handle WROs and its tabu search technique. When evaluating the technique (see

Sections 6.3 and 6.4), the problems D1 to D10 were used in order to compare the solutions with

the best known solutions, in which no A-WROs were imposed. When evaluating the ability of

HACS to handle WROs (see Sections 6.5 to 6.7), the problems W1 to W10 were employed.

6.3 HACS based on spell-model

To assess the performance of HACS, a number of experiments were devised in this section to:

• Compare the performance of different neighbourhood structures;

• Compare the tabu search technique and a steepest descent method;

• Evaluate the swapping processes.

Throughout this section, the experiments are based on the spell-model presented in Chapter 4.

6.3.1 Experiments on different neighbourhood structures

Given an objective function, different neighbourhood structures may give rise to different

“landscapes” of local optima. In HACS, three spell -based swapping neighbourhood structures

have been defined, each of which has different local optima and leads to a different solution.

Table 6.2 compares the solutions obtained using each swapping neighbourhood structure

separately while the recutting neighbourhood structure is always applied.

Obviously the quality of the solutions presented in Table 6.2 is poor. The average RPD in terms

of number of duties is more than 6%. It is hard to conclude that one neighbourhood structure is

superior to another.

The following experiments employed all three swapping operations and the recutting operation

together, in which each neighbourhood structure is applied in turn, starting from the current best

solution, until no further improvement can be achieved. The computational results presented in

Table 6.3 show that HACS with all the swapping neighbourhood structures together produced

better solutions than with only a single one. The application of multi-swapping neighbourhoods

diversified the search and led to much better results. The average RPD of the HACS solutions

over the best known solutions was 3.24% in terms of number of duties and 1.27% in terms of

cost. For the largest problem (D10) HACS produced a marginally better solution than TRACS

II.

Table 6.2: Results obtained by HACS with different single swapping neighbourhood structure

Swapping-two-links Swapping-two-spells Inserting-one-spell Data

No.

Duties

Cost

(hours)

Run Time

(h:mm:ss)

No.

Duties

Cost

(hours)

Run Time

(h:mm:ss)

No.

Duties

Cost

(hours)

Run Time

(h:mm:ss)

D1 28 199.24 0:00:05 26 191.02 0:00:02 25 188.03 0:00:03

D2 26 192.37 0:00:14 26 199.21 0:00:08 26 200.41 0:00:13

D3 33 244.06 0:00:19 34 239.20 0:00:17 34 242.13 0:00:31

D4 36 285.57 0:00:10 36 289.16 0:00:10 37 292.37 0:00:17

D5 45 330.32 0:00:24 46 333.13 0:00:11 45 333.25 0:00:31

D6 44 388.13 0:00:16 44 384.00 0:00:23 46 393.12 0:00:36

D7 53 419.25 0:00:36 51 416.08 0:00:23 52 415.18 0:00:35

D8 58 457.10 0:01:11 58 457.22 0:00:59 59 470.33 0:01:11

D9 87 685.26 0:01:25 83 654.12 0:00:37 87 688.27 0:01:14

D10 113 889.11 0:03:32 110 865.26 0:02:15 118 927.02 0:05:10

RPD 8.19% 6.73% 8.52%

Table 6.3: The solutions obtained by HACS with multi-neighbourhoods

Data No.

Duties

RPD

(%)

Cost

(hours)

RPD

(%)

Run Time

(h:mm:ss)

D1 25 4.17 182.26 1.18 0:00:07

D2 25 0.00 196.50 2.06 0:00:25

D3 33 6.45 239.33 1.90 0:00:30

D4 35 2.94 287.48 -0.60 0:00:19

D5 44 4.76 331.05 1.00 0:00:33

D6 42 7.69 371.15 2.15 0:00:54

D7 50 2.04 411.18 0.62 0:01:10

D8 55 1.85 438.52 2.76 0:01:43

D9 82 2.50 647.13 2.32 0:02:01

D10 108 0.00 856.11 -0.73 0:06:11

Avg. 3.24% 1.27%

6.3.2 Experiments on a steepest descent method

As a more elaborate neighbourhood search method, tabu search can be described as a steepest

descent method with a dynamic neighbourhood associated with an exploration history. Turning

off the up-hill move operation (i.e. forbid any non-improved solutions), the tabu search

approach becomes a steepest descent approach (i.e., from a given solution the move that leads

to the best improved solution amongst the neighbourhood of the given solution is selected). The

steepest descent method presented here was adapted from the HACS approach with all the

neighbourhood structures. The computational results displayed in Table 6.4 show that the

steepest descent method is inferior to the HACS approach based on the tabu search technique.

However, the steepest descent method produced better solutions than the HACS approach with

a single swapping neighbourhood structure.

Table 6.4: Results obtained by a Steepest Descent method

Data No.

Duties

RPD

(%)

Cost

 (hours)

RPD

(%)

Run Time

(h:mm:ss)

D1 26 8.33 198.49 10.27 0:00:07

D2 27 8.00 192.15 -0.32 0:00:14

D3 33 6.45 244.28 3.99 0:00:25

D4 35 2.94 295.04 1.91 0:00:15

D5 45 7.14 334.31 2.05 0:00:26

D6 43 10.26 373.39 2.81 0:00:30

D7 51 4.08 415.46 1.71 0:00:30

D8 58 7.41 453.14 6.13 0:01:32

D9 83 3.75 650.27 2.83 0:01:53

D10 110 1.85 864.00 0.18 0:06:20

Avg. 6.02% 3.16%

6.3.3 Evaluation of the swapping processes

In the tabu search algorithms of HACS, there are two main operations: swapping and recutting.

Once a set of spells are fixed, the swapping function attempts to improve the solution as much

as possible by re-linking the units of vehicle work. The recutting function attempts to improve

the solution by re-selecting AROs. Both functions play very important roles in refining the

schedule. Their performances will affect the solution quality of HACS although the cooperation

of all components of HACS determines the ultimate solution quality. This subsection intends to

investigate the individual performance of the tabu search swapping algorithms; the recutting

function is not independently tested because there is no appropriate way to judge its individual

performance.

To evaluate the tabu search swapping algorithms, we design an experiment in which the initial

schedule formed is based on a ‘good’ set of spells. The swapping fun ction, including all of the

three swapping operations, is used solely to refine the schedule while the recutting-block and

the adding-duties functions are switched off. The ‘good’ set of spells is taken from the best

known solutions, i.e. TRACS II solutions.

• Forming initial solutions based on the spells in TRACS II solutions

The method of forming an initial schedule needs to be adjusted to use the spells in TRACS II

solutions. In a TRACS II solution, some duties contain two-spells while the others may contain

one, three or four spells (TRACS II only produces the duties with up to four-spells). However,

HACS only initially forms the duties with up to two-spells. The number of duties in an initial

schedule would be larger than that in the TRACS II solution containing three or four spell

duties. Although it would be possible for the swapping process to reduce the number of duties

used, it is anticipated that the current HACS would have difficulty in reducing many duties. To

focus on the performance of the tabu search swapping algorithms, the non-two-spell duties are

adopted into the initial schedule while the spells in the other duties are re-coupled to form new

two-spell duties. We use two different methods to couple the spells in order to test the swapping

algorithms from different starting solutions. One method is the HACS’ initialisation method.

Another method forms an initial schedule by first sorting the spells by starting time, and then

coupling two adjacent spells. The duties generated by one of the methods plus the original non-

two-spell duties constitute an initial schedule. The HACS approach modified to test the

swapping algorithms is denoted as HACS-1 or HACS-2 respectively according to the

initialisation method incorporated.

• Experiment 1

The problem D6 was first selected for this experiment because the RPD, in terms of number of

duties, over the best known solution is the highest amongst the test data listed in Table 6.3. It

was expected that a better solution would be produced by using the ‘good’ set of spells in the

best known solution. The best known solution to D6 costs 363 hours and 26 minutes and

contains 39 duties, but only 18 of which are two-spell duties while the other duties are three-

spell duties. Based on the 36 spells included in the 18 two-spell duties, two starting solutions

and the corresponding final solutions are generated, which are summarised in Table 6.5, in

which the similarity to the best known solution is analysed. In the initial solutions, the number

of non-two-spell duties is presented in the first column, which is constant in both methods.

When a solution is infeasible, the penalty of which is presented with ‘p’ following the number.

The cost of a feasible solution is followed by a ‘c’.

Table 6.5: The starting solutions and the corresponding final solutions to D6 obtained by HACS

based on the spells in the TRACS II solutions.

Initial Schedule Final schedule System

No.

Same

duties

No.

Diff.

Duties

No.

Invalid

Duties

Total

Cost or

Penalty

No.

Same

duties

No.

Diff.

Duties

No.

Invalid

Duties

Total

Cost or

Penalty

HACS-1 21 13 5 0 364:18c 30 9 0 363:23c

HACS-2 21 0 18 18 13256p 18 21 3 147p

From Table 6.5, we can see that HACS-1 produces a solution 3 minutes cheaper than the best

known solution starting from a more expensive feasible solution, and HACS-2 does not produce

a feasible solution starting from a very poor initial solution. However, HACS-2 has improved

the initial schedule considerably. In the initial schedule of HACS-2, every newly generated duty

is illegal and different from the original duties. After swapping, most of the duties are still

different. In HACS-1, the number of different duties has increased after swapping although the

total cost is very close. The results indicate that there may be many possible combinations to

form good feasible solutions based on the same set of spells.

• Experiment 2

In the previous experiments, the best known solution only contains 46% two-spell duties. This

has reduced the difficulty to form a good initial schedule for HACS-1 because 54% of the

duties are already formed and are valid. That case is not very common; in many cases two-spell

duties are the majority in a solution. In this experiment, we select D7 as the test problem. The

best solution to D7 has 408 hours and 47 minutes in cost and contains 49 duties, 48 of which

are two-spell duties while only one is a three-spell duty. HACS-1 forms an initial schedule

containing two infeasible duties. This initial schedule differs greatly from the best known

solution. After swapping, a feasible solution is obtained, which is 48 minutes more expensive

and 55% of the duties are different from those in the best known solution. HACS-2 forms an

extremely poor initial schedule, from which a considerably better solution is obtained after

swapping although it is still infeasible. The details are shown in Table 6.6.

Table 6.6: The starting solutions and the corresponding final solutions to D7 obtained by HACS

based on the spells in the TRACS II solutions.

Initial Schedule Final schedule System

No.

Same

duties

No.

Diff.

Duties

No.

Invalid

Duties

Total

Cost or

Penalty

No.

Same

duties

No.

Diff.

Duties

No.

Invalid

Duties

Total

Cost or

Penalty

HACS-1 1 12 36 2 935p 22 27 0 409:35c

HACS-2 1 0 48 48 29188p 22 27 3 223p

Similar to the previous experiment, this experiment shows that the HACS initialisation method

produces a better initial solution than the method in HACS-2, and the better initial solution

leads to a better final solution.

• Experiment 3

This experiment selects D9 as the test problem, which is the second largest amongst the test

problems. The best known solution to D9 has 632 hours and 32 minutes in cost and contains 80

duties, 54 of which are two-spell duties. HACS-1 forms an initial schedule containing 8

infeasible duties. This initial schedule differs greatly from the best known solution. After

swapping, a feasible solution is obtained, which is 1 hour and 56 minutes more expensive.

HACS-2 forms an extremely poor initial schedule, from which a considerably better solution is

obtained after swapping, which contains two invalid duties with 40 minutes penalty. The details

are shown in Table 6.7. In this experiment, the solutions obtained by HACS-1 and HACS-2 are

considerably different from the TRACS II solution, and the number of different duties is not

explicitly counted.

Table 6.7: The starting solutions and the corresponding final solutions to D9 obtained by HACS

based on the spells in the TRACS II solutions.

Initial Schedule Final schedule System

No. Same

duties

No. Diff.

Duties

No. Invalid

Duties

Total Cost

or Penalty

No. Invalid

Duties

Total Cost or

Penalty

HACS-1 26 15 39 8 8420p 0 634:28c

HACS-2 26 0 54 54 51546p 2 40p

The foregoing experiments show that the HACS-1 solutions to the three problems are of a

quality comparable to the best known solutions. Hence, the tabu search swapping algorithms

have reached an acceptable level of performance because we do not expect an optimal solution.

As for the HACS-2 solutions, which are not good enough, the tabu search swapping algorithms

do improve the extremely poor starting solutions considerably. For local search methods, better

initial solutions usually lead to better final solutions.

6.3.4 Summary

This section has presented a series of experiments on the HACS approach with the spell-model.

The experiments have shown the importance of multi-neighbourhood structures and the tabu

search framework. The multi-neighbourhood structures used in combination are superior to a

single neighbourhood structure used in isolation, and the tabu search technique is superior to

the steepest descent method. Compared with TRACS II, HACS can produce solutions

considerably quicker and is very easy to manipulate because many parameters in TRACS II

requiring careful setting are not needed. The experiments on solely evaluating the swapping

function have shown that the swapping function has reached an acceptable level of

performance. Given a good set of spells, HACS could generate a good solution. However,

without this condition, the HACS solutions may be unsatisfactory. The next section will focus

on the enhancement of the recutting function by incorporating the piece-model.

6.4 HACS with combined utilisation of the spell model and the piece

model

It was anticipated that the piece-based operations would improve the results because more ROs

would be considered than the spell-based recutting operation, in which only the ROs adjacent to

the current AROs are considered as potential AROs. A number of experiments have been done,

in which the same memory structure was used since links are still the basis of the memory

structure.

As discussed in Section 5.5, an enhanced HACS approach, having a combined utilisation of the

spell-model and the piece model, is anticipated to allow all ROs a chance of being used while

the driver work would not become too fragmented. In this enhanced approach, the five

swapping operations (swapping-two-links, swapping-two-spells, inserting-one-spell, swapping-

two-pieces, inserting-one-piece) and a recutting-block (only applicable to WROs) operation are

applied in turn. The test problems in this set of experiments do not contain WROs, hence no

blocks need to be re-cut. The computational results (presented in Table 6.8) show:

• The HACS approach with the spell-based and piece-based operations combined produced

better solutions than the other variant HACS approaches.

• In most cases, the improved HACS solutions to the test problems are close to the best

known solutions. The average RPD over the best known solutions is 1.36% in terms of

number of duties and 1.30% in terms of total cost.

• For the largest problem in the table, HACS produced a better solution than TRACS II.

• The HACS approach can produce solutions very quickly.

Table 6.8: Results obtained by the HACS approach with the spell-based and piece-based

operations combined

Data No.

Duties

RPD

(%)

Cost

(hours)

RPD

(%)

Run Time

(h:mm:ss)

D1 24 0 182:29 1.21 0:00:24

D2 25 0 196:14 1.74 0:00:54

D3 32 3.22 239:15 1.77 0:01:02

D4 34 0 291:56 0.83 0:00:36

D5 44 4.76 330:18 0.76 0:00:59

D6 40 2.56 362:48 -0.17 0:01:40

D7 49 0 414:05 1.30 0:02:53

D8 56 3.70 450:34 5.50 0:09:17

D9 81 1.25 643:41 1.76 0:03:33

D10 106 -1.85 847:55 -1.69 0:17:54

Avg. RPD 1.36 1.30

So far, the HACS approach, incorporating the spell-based and piece-based operations, has been

developed. This approach is superior to the other variant HACS approaches and has produced

the solutions close to the best known solutions. It will be applied in the following experiments

in order to test its ability in handling WROs.

6.5 Demonstration of handling WROs

This section will demonstrate by experiments that HACS can take advantage of WROs. A small

artificial test problem was first created for the demonstration. In order to assess the quality of

the solution, two methods were used to apply TRACS II to obtain solutions to the test problem,

although TRACS II cannot handle WROs practically.

6.5.1 The TEST problem and the HACS solution

The artificial problem created is called TEST, in which the set of labour agreement rules was

selected from a real-life problem while the vehicle work was fictitious and contained fourteen

pieces of work distributed in three blocks as shown in Figure 6.1. In the labour agreement rules,

three types of duty: split duty, straight duty with mealbreak and non-mealbreak duty, are

allowed, and the maximum length of spreadover is 12:30, 8:06, or 5:30 respectively. For each

duty, the maximum length of spell is stipulated as 5 hours.

Figure 6.1 also illustrates the solution obtained by HACS. The schedule, produced within less

than one minute, contains three duties and costs 24 hours and 13 minutes.

 0812 0950-0955 1152-1157 1332-1337 1455-1500 1655

vehicle 1

 G H H H H G

 +-------Duty 1--------+-------------------Duty 2--------------------------+

 1240 1330-1335 1430-1435 1550-1555 1710-1715 1855

vehicle 2

 G H H H H G

 +----------------Duty 1----------+----------Duty 3----------+

 0920 1112-1117 1230-1235 1350-1400 1505

vehicle 3

 G H H H G

 +--Duty 2--+-----------------Duty 3-------------------+

Figure 6.1: The TEST problem and the HACS solution

6.5.2 TRACS II solutions to the TEST problem and analyses

It has already been mentioned that none of the existing systems can directly handle windows of

relief opportunities. There are only two possible ways for TRACS II to tackle the TEST

problem. They are discussed separately below.

1) Shrink a WRO into a RO by selecting only the arrival time as a relief time

This is a common method for the existing approaches to solve practical driver scheduling

problems. After the change, the blocks included in the TEST problem were converted into those

as displayed in Figure 6.2, where no WROs existed.

 0812 0950 1152 1332 1455 1655
vehicle 1
 G H H H H G

 1240 1330 1430 1550 1710 1855
vehicle 2
 G H H H H G

 0920 1112 1230 1350 1505
vehicle 3
 G H H H G

TRACS II was then run and produced a solution as shown in Figure 6.3. This solution

contained four duties with a total wage cost of 24 hours and 58 minutes, which was worse than

the HACS solution in the terms of both the number of duties and the cost.

Figure 6.2: Blocks in the TEST problem after shrinking each WRO into a RO

 0812 0950 1152 1332 1455 1655

vehicle 1

 G H H H H G

 +-------Duty 1-------+-----Duty 4------+--------Duty 2----------------+

 1240 1330 1430 1550 1710 1855

vehicle 2

 G H H H H G

 +----------------Duty 1------------+---------Duty 3---------+

 0920 1112 1230 1350 1505

vehicle 3

 G H H H G

 +--------Duty 2--------+-----------Duty 3--------------+

Comparing the TRACS II solution with the HACS solution, we found that the TRACS II

solution contained seven spells while the HACS solution had six. Further investigation found

that TRACS II partitioned the first block into three spells while HACS divided it into two

spells. The explanation is: the length of the first block is 8:43, which is longer than the

maximum length of spell (five hours). The block therefore has to be partitioned into at least two

spells. The longest early spell could be from 8:12 to 13:12 (the sum of 8:12 plus 5:00).

However, since 13:12 is not a relief time, an earlier relief time 11:52 was selected. Similarly,

the longest spell covering the end of the block could be from 11:55 to 16:55. Since 11:55 is not

a relief time, the later time 13:32 was selected. The work between 11:52 and 13:32 was not

covered; hence, three spells were essential to cover all the work in the first block.

Figure 6.3: TRACS II solution to the TEST problem

after shrinking each WRO into a RO

However, in the original TEST problem presented in Figure 6.1, the time 11:55 in the first

block was a relief time falling in the time window from 11:52 to 11:57. It was possible to

partition the block into two at the time 11:55, 11:56, or 11:57. The WROs enabled the use of

one fewer spell and to produce the better solution. This experiment has exemplified the

improvement that WROs may bring and that shrinking WROs might lose some opportunities to

produce a better solution.

2) Expand explicitly each WRO into a sequence of individual ROs at one-minute intervals

This method would not normally be practical because it will increase considerably the number

of ROs, and is thus not suitable for the generate-and-select based approaches, e.g. TRACS II, in

which the magnitude of a problem is largely dependent on the number of ROs. Since the TEST

problem is artificially tiny in terms of vehicle work to be covered, it would be worth trying.

Two experiments were carried out: one used slack filtering rule parameters while another used

tight parameters.

Theoretically, using slack filtering parameters enlarges the search space providing more chance

of producing a good solution. HACS does not need any filtering rules because it only refines

the small solution set of duties constructed. However, TRACS II has to apply filtering rules so

that the set of potential duties generated would not be prohibitively large. In the duty generation

process, TRACS II first generates the set of potential legal spells, the length of each is limited

in a time range stipulated by parameters. It then generates the set of potential legal stretches

based on the set of spells. Finally by combining the stretches a large set of potential duties is

generated. There are upper bound limits for the number of potential spells, stretches generated.

To run TRACS II in a similar condition to HACS, slack filtering rule parameters were used in

the first experiment. Unfortunately, TRACS II terminated before finishing the duty generation

process because the number of stretches exceeded TRACS II’s limit (899 spells and 26637

stretches had been formed before the termination).

The second experiment was then designed using tighter parameters in order to reduce the

number of stretches to be formed. The minimum lengths of spells and stretches were set to one

hour and three hours respectively. A solution was obtained in about ten minutes, which

contained four duties and the total cost in hours and minutes was 23:53. Figure 6.4

demonstrates the schedule, where the times underlined are active relief times. Duty 1 is a

straight duty with a meal break and the other duties are non-mealbreak duties, amongst which

duty 4 contains two spells.

 0957 1157 1337 1500
 0956 1156 1336 1459
 0955 1155 1335 1458
 0954 1154 1334 1457
 0953 1153 1333 1456
 0812 0952 1152 1332 1455 1655
 1 G---------h-----------h---------h--------h-----------G
 + duty 1 + duty 3 +

 1335 1435 1555 1645 1745
 1334 1434 1554 1644 1744
 1333 1433 1553 1643 1743
 1332 1432 1552 1642 1742
 1331 1431 1551 1641 1741
 1240 1330 1430 1550 1640 1740 1855
 2 G----h-----h-------h----h-----h-------G
 + duty 1 + duty 4 +

 1015 1117 1235 1355
 1014 1116 1234 1354
 1013 1115 1233 1353
 1012 1114 1232 1352
 1011 1113 1231 1351
 0920 1010 1112 1230 1350 1505
 3 G----h-----h-------h-------h--------G
 + duty 2 + duty 4 +

Figure 6.4: TRACS II solution to the TEST problem after expanding

each time window into individual minutes

In the foregoing experiment, WROs were represented in the same way as in HACS, but the

solution contained one more duty. The reason was investigated below.

Comparing the solutions, we found in the HACS solution that the shortest stretch, which

contained only one spell, was 1 hour and 55 minutes. This stretch was shorter than the

minimum length of stretch stipulated in TRACS II. Therefore, it was impossible for TRACS II

to produce such a solution.

6.5.3 Summary

This section has demonstrated that HACS can take advantage of WROs, but the generate-and-

select approaches, e.g. TRACS II, cannot because shrinking WROs or using tight parameters

compromises the quality of solutions while the slack parameters cause the set of potential

stretches or duties generated to be too large even for trivial problem instances with WROs. It is

impractical to expand explicitly each time window into individual minutes using the existing

generate-and-select approaches.

6.6 Experiments on real-life problems with WROs

Further experiments were carried out on the real-life problems presented in Table 6.1. Since

these problems (D1 to D10) do not contain WROs, HACS was run on the problems W1 to

W10, which were derived from D1 to D10 by imposing WROs (see Section 6.2). This enables

us to see further the ability of HACS to tackle WROs. The computational results are displayed

in Table 6.9.

Table 6.9: HACS solutions involving WROs

Best solutions to D1 to D10 by HACS solutions

(to the problems W1 to W10) TRACS II

(see Table 6.1)

HACS

(see Table 6.8)

DATA

No.

Duties

RPD

(%)

Cost

(hours)

RDP

(%)

Elapsed

Time

No.

Duties

Cost

(hours)

No.

Duties

Cost

(hours)

W1 24 0 181:50 0.85 0:00:08 24 180:18 24 182:29

W2 25 0 193:56 0.55 0:00:37 25 192:52 25 196:14

W3 32 3.23 240:42 2.39 0:01:03 31 235:05 32 239:15

W4 34 0 288:31 -0.35 0:00:19 34 289:32 34 291:56

W5 44 4.76 330:31 0.83 0:00:39 42 327:48 44 330:18

W6 39 0 364:25 0.27 0:00:46 39 363:26 40 362:48

W7 49 0 410:08 0.33 0:04:05 49 408:47 49 414:05

W8 54 0 433:29 1.50 0:07:48 54 427:04 56 450:34

W9 81 1.25 645:04 1.98 0:08:09 80 632:32 81 643:41

W10 104 -1.89 830:18 -2.08 0:31:16 108 862:29 106* 847:55

Avg. RPD 0.74% 0.63%

* The best known solution to D10 was produced by HACS. The best known solutions to the

other problems (D1 to D9) were generated by TRACS II.

The computational results presented in table 6.9 show:

• HACS produced better solutions to all the ten problem instances with WROs imposed (W1

to W10) than to those without A-WROs (D1 to D10). The best HACS solutions to D6, D8

and D10 were considerably improved, in which the number of duties was reduced, by

taking advantage of WROs.

• In most cases, the HACS solutions to the test problems are close to the best known

solutions. The average RPD over the best known solutions is 0.74% in terms of number of

duties and 0.63% in terms of total cost.

• For the largest problem (W10) in table 6.9, HACS produced a better solution than TRACS

II. (A larger problem usually has more WROs, which provide more chances of improving

the schedule).

6.7 Experiments to improve best known solutions

Theoretically, WROs provide more chances of compiling a good schedule. This experiment

investigates if HACS could improve the best known solutions by taking advantage of WROs.

This experiment was carried out using the best known solutions as initial solutions for HACS.

The best known solutions were obtained by solving the test problems without WROs. Table

6.10 shows the results, from which it can be seen that the best known solutions to all the test

problems have been improved by HACS, taking advantage of WROs, in terms of cost. The

average RPD of the HACS solutions over the best known solutions is –0.85%. This implies that

HACS could be used as a post process for TRACS II or other systems to improve their

solutions by WROs. One of the most recent experiments, which was on scheduling train staff

for London Underground Metropolitan Line, provides further proof.

Table 6.10: HACS solutions based on the best known solutions

HACS solutions Best known solutions Data

No.

Duties

Cost

(hours)

RDP

(%)

Elapsed Time

(h:mm:ss)

No.

Duties

Cost

(hours)

W1 24 179:08 -0.65 0:00:03 24 180:18

W2 25 190:25 -1.27 0:00:05 25 192:52

W3 31 234:41 -0.17 0:00:05 31 235:05

W4 34 279:41 -3.40 0:00:08 34 289:32

W5 42 326:57 -0.26 0:00:07 42 327:48

W6 39 361:23 -0.56 0:00:16 39 363:26

W7 49 407:36 -0.29 0:00:20 49 408:47

W8 54 424:54 -0.51 0:00:32 54 427:04

W9 80 625:16 -1.15 0:00:52 80 632:32

W10 106 845:44 -0.26 0:01:41 106 847:55

Avg. RPD 0% −0.85%

Neasden Depot

Rickmansworth

CLFO

CLFX

WPKO

LFO

5:32

5:38

6:01

6:09

(6:31--24:42)

(24:50-24:55) RKYI

WPKI 25:13

Neasden Depot 25:19

The exercise on scheduling train staff for London Underground Metropolitan Line was mainly

carried out by Professor A. Wren and his colleagues. Since there were some time windows

involved, it was anticipated that HACS could improve the best solution generated by TRACS

II.

This problem had 569 ROs and 17 relief points, of which two were depots. Amongst the ROs,

37 were WROs, which together contained 4 hours and 45 minutes of daily work in one vehicle.

Figure 6.5 illustrates the vehicle work diagram, where the dotted lines denote WROs. This

vehicle operates a shuttle service from CLFX to another point and back. Most of the round

journeys last 22 minutes each and then wait at CLFX for 8 minutes.

There were some special conditions: the ability to sign on or sign off at relief points other than

depots at certain times of day, and the ability to provide different latest sign off times at certain

relief points.

Figure 6.5: Illustration of a vehicle work with WROs in the

London Underground Metropolitan Line

To solve the problem with the special conditions, an intelligent manipulation of the data for

TRACS II was under taken while each WRO was shrunk into two ROs. The best solution

obtained by TRACS II at the time used 79 duties with a cost of 598 hours and 17 minutes. It

was anticipated that the TRACS II solution might be improved in cost by taking advantage of

WROs using HACS. Starting from the TRACS II solution, HACS generated a solution with 596

hours and 10 minutes in cost. The HACS solution improved the TRACS II solution by saving 2

hours and 7 minutes in terms of cost while the number of duties used was the same.

6.8 Conclusions

This chapter has presented a series of experiments to evaluate the HACS approach. The tabu

search technique in HACS has been evaluated first. The experiments have shown the

importance of the multi-neighbourhood structures and the tabu search framework. By

combining spell-based and piece-based operations, HACS has improved the chance of all ROs

to be used while the driver work would not become too fragmented and the computation is

efficient. The computational results are generally nearly as good as the TRACS II solutions.

After testing the technical aspects of HACS, this chapter has also presented the experiments on

handling WROs. The demonstration on solving the TEST problem shows that HACS can take

advantage of WROs but TRACS II cannot. We can deduce that it is impractical to expand

explicitly each time window into individual minutes using the existing generate-and-select

approaches.

The further experiments on solving the ten real-life problem instances with WROs have shown

that HACS is able to handle WROs while producing solutions generally close to the TRACS II

solutions using significantly shorter computational time. By employing the best known

solutions as initial solutions, HACS can improve the best known solutions by taking advantage

of WROs. The case of London Underground Metropolitan Line indicates that HACS has

practical significance for improving existing solutions by taking advantage of WROs.

From all the experiments presented in this chapter, we can see that HACS can produce solutions

in one-go and is considerably quicker than TRACS II, an ILP-based generate-and-select

approach. Theoretically, using slack labour rule parameters enlarges the search space providing

more chance to produce a good solution. However, the duty generation process could take a

very long time when the labour rule parameters are slack. Hence, TRACS II uses some

parameterised filtering rules to prevent too many potential duties from being generated. The

HACS approach does not need any filtering rules because it only refines the small solution set

of duties constructed. Although the current HACS solutions are generally only close to the

TRACS II solutions, HACS has the potential of being developed to yield solutions better than

TRACS II because its search space is not limited by the filtering rules and it can take advantage

of WROs. This feature (no soft rules under consideration) also provides HACS another

advantage: easy to manipulate.

Chapter Seven

Conclusions

7.1 Summary

The bus and train driver scheduling problem has been presented. While reviewing the

approaches for solving the driver scheduling problem, the shortcomings of the current

approaches have been identified. Early heuristic approaches are heavily dependent on problem

domain knowledge and hard to adapt between organisations. Although generate-and-select

approaches, e.g. TRACS II and HASTUS, are at present the most successful for driver

scheduling, they still cannot be regarded as black boxes that produce working schedules and

they cannot guarantee to yield optimal solutions within practical computational limits.

Windows of relief opportunities, which often exist in real-world driver scheduling problems,

cannot be handled by them. Filtering rules are often applied so that the set of potential duties

generated would not be prohibitively large. The adjustment of the parameterised filtering rules

is sometimes frustrating and time-consuming. The ILP-based approaches cannot ensure a

solution at the first attempt, and it is likely that there will always be problems for which

decomposition is necessary on size grounds.

Constructive approaches have been investigated in this thesis, under which filtering rules are

unnecessary. Initial research was aimed at investigating the applicability of a 2-opt heuristic

local search method for driver scheduling. The 2-opt heuristic approach is much less dependent

on domain knowledge than the early heuristic approaches and is easier to adapt to different

situations. The initial research was limited to form the duties with up to two-spells. The 2-opt

approach can produce solutions very quickly and is very easy to manipulate because there is no

filtering rule parameters to be adjusted by users. Development and experiments on the 2-opt

approach have demonstrated the feasibility of a constructive heuristic approach for driver

scheduling and inspired the tabu search approach.

Benefiting from the experience in the 2-opt heuristics, two models have been built for the driver

scheduling problem with WROs. In these models the labour agreement rules governing the

legality and payment of duties have been formulated by quantified penalty and cost functions.

These functions can be easily adjusted to different situations. A schedule is modelled as a set of

links, which constitutes the basis for the refining operations. Adjusting the set of links may

improve the schedule, and any ROs in windows of relief opportunities may have the chance to

be selected as AROs during the scheduling process. Hence, it is possible for the constructive

approach to handle WROs based on the models. In addition, there is no limit on the number of

spells in a duty as necessitated in the TRACS II system.

Based on the models, a constructive approach, HACS, employing Tabu Search, has been

developed. In the HACS approach, the tabu search technique has been appropriately tailored for

the driver scheduling problem with WROs. A large number of experiments have been

undertaken, of which the computational results have been presented in detail.

7.2 Research Contributions

This research has investigated two local search methods, 2-opt heuristics and Tabu Search, for

the bus and train driver scheduling problem with WROs. The problem without WROs is a

special case, in which all WROs have zero durations. Despite extensive literature search and

discussions with colleagues, it appears that this is the first time that research is focussed on time

windows in driver scheduling.

Two models for bus and train driver scheduling problem have been built. Based on the models a

heuristic driver scheduling approach, called HACS, has been developed. The core of the HACS

approach is the Tabu Search technique, which has been appropriately tailored for the driver

scheduling problem with WROs. HACS does not need any filtering rules to reduce problem

size. Consequently, HACS is easy to manipulate and has the potential of being developed to

yield schedules better than TRACS II, although the current HACS solutions are only close to,

generally not as good as, the TRACS II solutions.

Experiments have shown that the HACS tabu search approach has met the proposed goals:

1. HACS can take advantage of WROs, which cannot be practically handled by other

existing systems;

2. HACS does not use any artificial rules and is easy to manipulate (unlike generate-and-

select approaches, which have to apply a set of filtering rules to reduce problem size,

and require manipulation of these parameterised filtering rules; this is often frustrating

to human schedulers).

In addition, HACS has the following features:

a) HACS can compile duties, in which the number of spells is unlimited. (Generate-and-

select approaches limit the number of spells in a duty so that the set of potential duties

generated would not be prohibitively large);

b) HACS can produce solutions quickly (considerably quicker than TRACS II).

c) It can be applicable to different transport operators since the most common labour

agreement rules have been considered in formulating the penalty and cost functions.

d) During the scheduling process, HACS produces a sequence of intermediate solutions.

Some infeasible intermediate solutions might be useful for the scheduler who might be

able to adjust the operations to reduce the number of drivers.

Experiments on the ten sets of real-life problems have shown that HACS has produced results

closely comparable to the best known solutions. The average RPD over the best known

solutions is 1.36% in terms of total number of duties and 1.30% in terms of total cost. The

results would be better if the WROs could be restored (this has been demonstrated by

experiments). With better starting solutions, e.g. the blocks are first cut according to the

TRACS II solutions, the results could be improved further. It should be noted that HACS has

only been developed after about three person-years work while perhaps 100 person-years have

been devoted to the developments of TRACS II (Kwan et al, 2000).

It has practical significance that HACS can improve the TRACS II solutions by taking

advantage of WROs within a short computational time. Consequently, HACS could be

incorporated into existing systems such as TRACS II to improve the solution by taking

advantage of WROs. The extra relief opportunities, within time windows, chosen for use in the

improved solution could be inserted into the original TRACS II data for re-running. The whole

process could be repeated until HACS cannot make any further improvement.

The research presented in this thesis is concerned with bus and train driver scheduling;

however, it is anticipated that the modelling method, the idea of allowing infeasible

intermediate solutions, and the tailored tabu search technique (especially the efficient memory

scheme and multi-neighbourhood structures) could be applied to many combinatorial problems,

such as vehicle routing problems, job shop scheduling and travelling salesman problems.

7.3 Future Work

HACS could benefit from further development in both methods of constructing an initial

schedule and adding duties. HACS might be advanced by more complex compound moves,

involving intermixing the swapping moves and the recutting moves.

In a large operating area, an individual driver may not know all the routes. However, the usual

assumption is that each depot, and therefore its drivers, is associated with knowledge of a set of

routes. In a vehicle schedule, specific driver route knowledge may be required for individual

pieces of work. Similarly in the train situation, each block in a train schedule may have specific

traction knowledge required of the drivers. Further research may cater for route knowledge,

traction knowledge and other practical driver scheduling constraints, so that HACS would be

more versatile for the transport industry.

In real-time operation, vehicle delay, accident or some other unexpected events may happen.

This may need the adjustment of the vehicle schedules and the driver schedules. Further

research may adapt HACS to produce quickly a revised driver schedule with least changes

according to the newly adjusted vehicle schedule.

Combining tabu search with other meta-heuristics such as simulated annealing and genetic

algorithms is also worthy of further research.

Bibliography:

Aarts, E. and Lenstra, J. K. (eds.) (1997). Local Search in Combinatorial Optimization.

Wiley, Chichester.

Aarts, E., Korst, J.H.M. and van Laarhoven, P.J.M. (1997). Simulated annealing. In: Aarts,

E. and Lenstra, J. K. (eds.) Local Search in Combinatorial Optimization, Wiley, Chichester, pp.

91-120.

Ball, L. O., Bodin, L. D. and Greenberg, J. (1985). Enhancements to the RUCUS 2 crew

scheduling system. In: Rousseau, J.-M. (ed.) Computer Scheduling of Public Transport 2,

North-Holland, pp. 279-293.

Blais, J.-Y. and Rousseau, J.-M. (1988). Overview of HASTUS Current and Future Versions.

In: Daduna, J.R. and Wren, A. (eds.) Computer-Aided Transit Scheduling, Springer Verlag,

pp.175-187.

Bodin and Bergman (eds.) (1975). Preprints of the International Workshop on Automated

Techniques for Scheduling of Vehicle Operators for Urban Public Transportation Services,

Chicago.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. In:

Glover, F., Laguna, M., Taillard, E., and de Werra, D. (eds.) Tabu Search. Annals of operations

research, vol. 41, J.C. Baltzer AG, Science Publishers, Basel. pp, 157-183.

Carraresi, P. and Rousseau, J.-M. (1982). Relaxation Approaches to Large Scale Bus Driver

Scheduling Problems, Transportation Research, Vol. 16B, pp. 383-397.

Cavique, L., Rego, C. and Themido, I. (1999). Subgraph ejection chains and tabu search for

the crew scheduling problem, Journal of the Operational Research Society, Vol. 50, pp. 608-

616.

Chamberlain, M. and Wren, A. (1992). Developments and recent experience with the

BUSMAN and BUSMAN II systems. In: Desrochers, M. and Rousseau, J.-M. (eds.) Computer-

Aided Transit Scheduling, Springer Verlag, pp. 1-15.

Curtis, S. D. (2000). Constraint satisfaction approaches to bus driver scheduling. PhD thesis,

School of Computing, University of Leeds, UK.

Curtis, S.D., Smith, B.M. and Wren, A. (1999). Forming bus driver scheduling using

constraint programming. In: Proceedings of the first international conference on Practical

Application of Constraint technologies and Logic Programming PACLP99, pp. 239-254.

Curtis, S.D., Smith, B.M. and Wren, A. (2000). Constructing driver schedules using iterative

repair. In: Proceedings of the second international conference on Practical Application of

Constraint technologies and Logic Programming PACLP2000, pp. 59-78.

Daduna, J.R., Branco, I. and Paixao, J.M.P. (eds.) (1995). Computer-Aided Transit

Scheduling, Proceedings of the Sixth International Workshop on Computer-Aided Scheduling of

Public Transport, Springer-Verlag.

Daduna, J.R. and Wren, A. (eds.) (1988). Computer-Aided Transit Scheduling, Proceedings

of the Fourth International Workshop on Computer-Aided Scheduling of Public Transport,

Springer-Verlag.

Desrochers, M., Gilbert, J., Sauve, M. and Soumis, F. (1992). CREW-OPT: subproblem

modelling in a column generation approach to urban crew scheduling. In: Desrochers, M. and

Rousseau, J.-M. (eds.) Computer-Aided Transit Scheduling, Springer Verlag, pp. 395-406.

Desrochers, M. and Rousseau, J.-M. (eds.) (1992). Computer-Aided Transit Scheduling,

Proceedings of the Fifth International Workshop on Computer-Aided Scheduling of Public

Transport, Springer-Verlag.

Desrochers, M. and Soumis, F. (1988). CREW-OPT: crew scheduling by column generation.

In: Daduna, J.R. and Wren, A. (eds.) Computer-Aided Transit Scheduling, Springer Verlag, pp.

83-90.

Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit

crew scheduling problem, Transportation Science, Vol. 23, pp. 1-13.

Dias, T. G., Ferreira, J. V. and Cunha, J. F. (2000). Evaluating a DSS for operational

planning in public transport systems: ten years of experience with the GIST system. Presented

in: the eight International Conference on Computer-Aided Scheduling of Public Transport, 21st-

23rd June, 2000, Berlin.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a colony of

cooperating agents. IEEE Transactions on System, Man, and Cybernetics, Vol. 26(1), pp. 29-

41.

Elias, S.E.G. (1964). The use of digital computers in the economic scheduling for both man

and machine in public transportation. Special report no. 49, Kansas State University Bulletin.

Elias, S.E.G. (1966). A mathematical model for optimising the assignment of man and machine

in public transit “run -cutting”. Research Bulletin no. 81, West Virginia University Engineering

Experiment Station.

Faigle, U. and Kern, W. (1992). Some convergence results for probabilistic tabu search. ORSA

Journal on Computing, Vol. 4, pp. 32-37.

Fores, S. (1996). Column generation approaches to bus driver scheduling. PhD thesis, School

of Computing, University of Leeds, UK.

Fores, S. and Proll, L. (1998). Driver scheduling by integer linear programming - the TRACS

II approach. In: Borne, P., Ksouri, M. and El Kamel, A. (eds.) Proceedings CESA' 98

Computational Engineering in Systems Applications, Volume 3 Symposium on Industrial and

Manufacturing Systems, pp.213-218.

Fores, S., Proll, L. and Wren, A. (1998). A column generation approach to bus driver

scheduling. In: Bell, M. H. G. (ed) Transportation Networks: Recent Methodological Advances,

Pergamon, pp.195-208.

Fores, S., Proll, L. and Wren, A. (1999). An Improved ILP System for Driver Scheduling. In:

N. H. M. Wilson (ed.) Computer-Aided Transit Scheduling, Springer Verlag, pp.43-62.

Fores, S., Proll, L. and Wren, A. (2001). Experiences with a flexible driver scheduler. To

appear in: Voß, S. and Daduna, J.R. (eds.) Computer-Aided Scheduling of Public Transport,

Springer Verlag.

Forsyth, P. and Wren, A. (1997). An ant system for driver scheduling. Technical Report

97.25, School of Computing, University of Leeds, UK.

Gendreau, M., Laporte and Potvin, J.-Y. (1997). Vehicle routing: modern heuristics. In:

Aarts, E. and Lenstra, J. K. (eds.) Local Search in Combinatorial Optimization, Wiley,

Chichester, pp. 311-336.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.

Computers and Operations Research, Vol. 13, pp. 533-549.

Glover, F. (1989). Tabu search - part 1. ORSA Journal on Computing, Vol. 1, pp.190-206.

Glover, F. (1990). Tabu search - part 2. ORSA Journal on Computing, Vol. 2, pp. 4-32.

Glover, F. (1996). Ejection chains, reference structures and alternating path methods for

travelli ng salesman problems. Discrete Applied Mathematics, Vol. 65, pp. 223-253.

Glover, F. and Laguna, M. (1993). Tabu Search. In: Reeves, C.R. (ed.), Modern heuristic

techniques for combinatorial problems, Blackwell Scientific Publications, pp.70-150.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

Glover, F., Laguna, M., Taillard, E., and de Werra, D. (eds.) (1993). Tabu Search. In:

Hammer, P. L. (editor-in-chief) Annals of operations research, vol. 41, J.C. Baltzer AG,

Science Publishers, Basel, Switzerland.

Hansen, P. (1986). The steepest ascent mildest descent heuristic for combinatorial

programming. Presented at: the Congress on Numerical Methods in Combinatorial

Optimisation, Capri.

Hertz, A. and de Werra, D. (1991). The tabu search metaheuristic: how we used it. Annals of

Mathematics and Artificial Intelligence, Vol. 1, pp. 111-121.

Hertz, A., Taillard, E. and de Werra, D. (1997). Tabu search. In: Aarts, E. and Lenstra, J. K.

(eds.) Local Search in Combinatorial Optimization, John Wiley and Sons Ltd., Chichester,

England, pp. 121-136.

Hildyard, P. M. and Wallis, H. V. (1981). Advances in computer assisted runcutting in North

America. In: Wren, A. (ed.) Computer Scheduling of Public Transport, North-Holland, pp.183-

192.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence, University of Michigan Press.

Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs.

Bell System Technical Journal, Vol. 49, pp. 291-307.

Kirkpatrick, S., Gelatt, C.D. Jr and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, Vol. 220, No. 4598, pp. 671-680.

Kling, R. M. and Banerjee, P. (1987). ESP: A new standard cell placement package using

simulated evolution. In: proceedings of the 24th ACM/IEEE design automation conference,

Miami Beach, FL, pp. 60-66.

Kwan, A.S.K. (1999). Train Driver Scheduling. PhD thesis, School of Computing, University

of Leeds, UK.

Kwan, A.S.K., Kwan, R.S.K., Parker, M.E. and Wren, A. (1999). Producing train driver

schedules under differing operating strategies. In: Wilson, N.H.M. (ed.), Computer-Aided

Transit Scheduling, Springer-Verlag, pp.129-154.

Kwan, A.S.K., Kwan, R.S.K. and Wren, A. (1999a). Driver scheduling using genetic

algorithms with embedded combinatorial traits. In: Wilson, N.H.M. (ed.) Computer-Aided

Transit Scheduling, Springer Verlag, pp. 81-102.

Kwan, R.S.K. and Rahin, M.A. (1999). Object oriented bus vehicle scheduling - the BOOST

system. In: Wilson, N.H.M. (ed.), Computer-Aided Transit Scheduling, Springer-Verlag, pp.

179-194.

Kwan, R.S.K., Wren, A. and Kwan, A.S.K. (2000). Hybrid genetic algorithms for scheduling

bus and train drivers. In: Proceedings of the 2000 congress on evolutionary computation, vol. 1,

pp. 285-292. La Jolla, CA, USA.

Layfield, C. J., Smith, B. M. and Wren, A. (1999). Bus relief opportunity selection using

constraint programming. In: Proceedings of practical application of constraint technologies

and logic programming conference - PACLP99, The Practical Application Company Ltd, pp.

537-552.

Lessard, R., Rousseau, J.-M. and Dupuis, D. (1981). HASTUS I: A Mathematical

Programming Approach to the Bus Driver Scheduling Problem. In: Wren, A. (ed.) Computer

Scheduling of Public Transport, North-Holland, pp.255-267.

Li, J. and Kwan, R.S.K. (2000). A genetic algorithm with fuzzy comprehensive evaluation for

driver scheduling. Technical Report 2000.17, School of Computing, University of Leeds, UK.

Li, J. and Kwan, R.S.K. (2001). A fuzzy simulated evaluation algorithm for the driver

scheduling problem. To appear in: proceedings of the 2001 IEEE Congress on Evolutionary

Computation, May 27-30, Seoul, Korea.

Lin, S. (1965). Computer solutions of the travelling salesman problem. Bell System Technical

Journal, Vol. 44, pp. 2245-2269.

Lin, S. and Kernighan, B.W. (1973). An effective heuristic algorithm for the travelling

salesman problem. Operations Research, Vol.21, pp.498-516.

���������
	������������� ��������� � �����! �"# %$�&�'("��%)+*-,�.�$�/0��1� !243%5�5�5768
 Multiobjective metaheuristics for the

bus-driver scheduling problem. Presented in: the eight International Conference on Computer-

Aided Scheduling of Public Transport, 21st-23rd June, 2000, Berlin.

Luedtke, L. K. (1985). RUCUS II: A Review of System Capabilities. In: Rousseau, J.-M. (ed.)

Computer Scheduling of Public Transport 2, North-Holland, pp. 61-116.

Madureira, A. M. (1999). Meta-heuristics for the single-machine scheduling total weighted

tardiness problem. In: Proceedings of the IEEE International Symposium on Assembly and Task

Planning, Porto, Portugal, pp. 405-410.

Manington, B. and Wren, A. (1975). A general computer method for bus crew scheduling. In:

Bodin and Bergman (eds.) Preprints of the International Workshop on Automated Techniques

for Scheduling of Vehicle Operators for Urban Public Transportation Services, Chicago.

Mori, H and Matsuzaki, O. (2001). Embedding the priority list into tabu search for unit

commitment. In: Power Engineering Society Winter Meeting, 2001 IEEE, Vol. 3, pp. 1067-

1072.

Muhlenbein, H. (1997). Genetic algorithms. In: Aarts, E. and Lenstra, J. K. (eds.) Local Search

in Combinatorial Optimization, John Wiley and Sons Ltd., Chichester, pp. 137-172.

Nara, K., Hayashi, Y., Ikeda, K. and Ashizawa, T. (2001). Application of tabu search to

optimal placement of distributed generators. In: Power Engineering Society Winter Meeting,

2001 IEEE, Vol. 2, pp. 918-923.

Okada, M., Jaji, K. and Fukushima, M. (1998). Probabilistic analysis of 2-opt for travelling

salesman problems, International Journal of Systems Science, Vol.29, No, 3, pp. 297-310.

Ozdemir, H.T. and Mohan, C. K. (2000). Evolving schedule graphs for the vehicle routing

problem with time windows. In: Proceedings of the 2000 congress on evolutionary

computation, vol. 2, pp. 888-895. Piscataway, NJ, USA.

Parker, M.E. and Smith, B.M. (1981). Two Approaches to Computer Crew Scheduling. In:

Wren, A. (ed.), Computer Scheduling of Public Transport, North-Holland, pp. 193-221.

Parker, M.E. and Wren, A. and Kwan, R. S. K. (1995). Modelling the scheduling of train

drivers. In: Daduna, J. R., Branco, I. and Paixao, J.M.P. (eds.) Computer-Aided Transit

Scheduling, Springer Verlag, pp. 359-370.

Pham, D.T. and Karaboga, D. (2000). Intelligent optimisation techniques, Springer-Verlag.

Rayward-Smith, V.J., Osman, I.H., Reeves, C.R. and Smith, G.D. (eds.) (1996). Modern

Heuristic Search Methods, John Wiley and Sons Ltd., Chichester, England.

Reeves, C.R. (ed.) (1993). Modern heuristic techniques for combinatorial problems, Blackwell

Scientific Publications.

Reeves, C.R. (ed.) (1996). Modern Heuristic Techniques. In: Rayward-Smith, V.J., Osman,

I.H., Reeves, C.R. and Smith, G.D. (eds.) Modern Heuristic Search Methods, John Wiley and

Sons Ltd., Chichester, England.

Reinelt, G. (1994). The traveling salesman computational solutions for TSP applications.

Lecture Notes in Computer Science, 840. Springer-Verlag.

Rousseau, J.-M. (ed.) (1985). Computer Scheduling of Public Transport 2, Proceedings of the

Third International Workshop on Computer-Aided Scheduling of Public Transport, North-

Holland.

Rousseau, J.-M. and Blais, J.-Y. (ed.) (1985). HASTUS: An Interactive System for Buses and

Crew Scheduling. In: Rousseau, J.-M. (ed.) Computer Scheduling of Public Transport 2, North-

Holland, pp. 45-60.

Rousseau, J.-M. and Desrochers, M. (1995). Results obtained with CREW-Opt, a column

generation method for transit crew scheduling. In: Daduna, J. R., Branco, I. and Paixao, J.M.P.

(eds.) Computer-Aided Transit Scheduling, Springer Verlag, pp. 349-358.

Rousseau, J.-M., Lessard, R. and Blais, J.-Y. (ed.) (1985). Enhancements to the HASTUS

Crew Scheduling Algorithm. In: Rousseau, J.-M. (ed.) Computer Scheduling of Public

Transport 2, North-Holland, pp. 295-310.

Schmidt, J.W. and Knight, R.L. (1981). The status of computer-aided scheduling in North

America. In: Wren, A. (ed.) Computer Scheduling of Public Transport, North-Holland, pp. 17-

22.

Sherali, H. D. (1982). Equivalent weights for lexicographic multi-objective programs:

characterizations and computations. European Journal of Operations Research, Vol. 18, pp. 57-

61.

Shen, Y. and Kwan, R.S.K. (2000). A Tabu Search algorithm with 2-opt moves for bus and

rail driver scheduling. Presented in: the Eleventh Young Operational Research Conference,

28th-30th March, Fitzwilliam College, Cambridge, UK.

Shen, Y. and Kwan, R.S.K. (2000a). Tabu Search for time windowed public transport driver

scheduling. Technical Report 2000.14, School of Computing, University of Leeds.

Shen, Y. and Kwan, R.S.K. (2001). Tabu Search for Driver Scheduling. To appear in: Voß, S.

and Daduna, J.R. (eds.) Computer-Aided Scheduling of Public Transport, Springer Verlag.

Shen, Y. and Kwan, R.S.K. (2001a). A constructive approach to bus and train driver

scheduling. In: Proceedings of the IIE Annual Conference 2001, May 20-23, 2001, Dallas,

Texas.

Smith, B.M. (1986). Bus Crew Scheduling Using Mathematical Programming. PhD thesis,

School of Computing, University of Leeds, UK.

Smith, B.M. (1988). IMPACS – A Bus Crew Scheduling System Using Integer Programming.

Mathematical Programming, Vol. 42, pp. 181-187.

Smith, B.M. and Wren, A. (1981). VAMPIRES AND TASC: Two Successfully Applied Bus

Scheduling Programs. In: Wren, A. (ed.), Computer Scheduling of Public Transport, North-

Holland, pp. 97-124.

Smith, B.M. and Wren, A. (1988). A bus crew scheduling system using set covering

formulation. Transportation Research, Vol. 22A, pp. 97-108.

Tian, Y., Sannomiya, N. and Xu, Y. (2000). A tabu search with a new neighbourhood search

technique applied to flow shop scheduling problems. In: Proceedings of the 39th IEEE

conference on Decision and Control, Sydney, Australia, pp. 4606-4611.

Verhoeven, M.G.A., Aar ts, E.H.L. and Swinkels, P.C.J. (1995). A parallel 2-opt algorithm

for the Travelling Salesman Problem, Future Generation Computer Systems, Vol.11, pp. 175-

182.

Voß, S. and Daduna, J.R. (eds.) (2001). Computer-Aided Scheduling of Public Transport,

Proceedings of the Eighth International Conference on Computer-Aided Scheduling of Public

Transport, Springer-Verlag (in press).

Weaver, A (1968). A crew scheduling program. In: Carr, J.D. (ed.), Proceedings of a PTRC

seminar, Birkbeck College London, pp.48-50.

Weaver, A (1972). Bus crew scheduling. MPhil thesis, School of Computing, University of

Leeds, UK.

Weaver, A and Wren, A. (1970). Bus and crew scheduling. Report in Operational Research

Unit, School of Computing, University of Leeds, UK.

Weaver, A and Wren, A. (1972). Bus crew scheduling by computers. Report in Operational

Research Unit, School of Computing, University of Leeds, UK.

De Werra, D. and Hertz, A. (1989). Tabu search techniques: a tutorial and an application to

neural networks. OR Spektrum, Vol. 11, pp. 131-141.

Wilhelm, E. B. (1975). Overview of the RUCUS package driver run cutting program – RUNS.

Presented at: the Workshop on Automated Techniques for Scheduling of Vehicle Operators for

Urban Public Transportation Services , Chicago, US.

Willers, W. P. (1995). Improved algorithms for bus crew scheduling. PhD thesis, School of

Computing, University of Leeds, UK.

Wilson, N.H.M. (ed.) (1999). Computer-Aided Transit Scheduling, Proceedings of the Seventh

International Workshop on Computer-Aided Scheduling of Public Transport, Springer-Verlag.

Wren, A (1968). A review of computer scheduling of buses and crews. In: Carr, J.D. (ed.),

Proceedings of a PTRC seminar, Birkbeck College London, pp. 42-47.

Wren, A. (1972). Bus Scheduling: An Interactive Computer Method. Transportation Planning

and Technology, Vol. 1, pp. 115-122.

Wren, A. (ed.) (1981). Computer Scheduling of Public Transport, Proceedings of the Second

International Workshop on Computer-Aided Scheduling of Public Transport, North-Holland.

Wren, A. (1998). OR6 - scheduling and constraint management, Lecture notes, School of

Computing, University of Leeds, UK.

Wren, A. and Kwan, R.S.K. (1999), Installing an Urban Transport Scheduling System.

Journal of Scheduling, vol.2, pp. 3-17.

Wren, A. and Rousseau, J.-M. (1995). Bus Driver Scheduling – An overview. In: Daduna,

J.R., Branco, I. and Paixao, J.M.P. (eds.) Computer-Aided Transit Scheduling, Springer Verlag,

pp. 173-187.

Wren, A. and Smith, B.M. (1988). Experiences with a Crew Scheduling System Based on Set

Covering. In: Daduna, J.R. and Wren, A. (eds.) Computer-Aided Transit Scheduling, Springer

Verlag, pp. 104-118.

Wren, A. and Smith, B.M. and Miller, A. J. (1985). Complementary approaches to crew

scheduling. In: Rousseau, J.-M. (ed.) Computer Scheduling of Public Transport 2, North-

Holland, pp. 262-278.

Wren, A. and Wren, D. O. (1995). A genetic algorithm for public transport scheduling.

Computers and Operations Research, Vol. 22, pp. 101-110.

Glossary

In public transport scheduling areas, different transport companies may have different meanings

for some terms. Below is a glossary of some transport scheduling terms used in this thesis.

Active relief opportunity (ARO): A special relief opportunity, in which a driver is actually

relieved.

Attended window of relief opportunities (A-WRO): A window of relief opportunities,

during which a vehicle must be attended by a driver.

Block: A sequence of journeys to be operated by one vehicle during one day, beginning with a

pull-out from, and ending with a pull-in to a depot.

Depot: A place where vehicles and drivers are dispatched from at the start of their work period

and returned to at the end of their daily work.

Duty: The work to be performed by a driver during one day from signing on until signing off at

a depot.

Join up (join-up): The time allowance between two spells of work for the driver to get off

from the current vehicle to take over the next vehicle, which is not a

mealbreak.

Labour agreement rules: Rules agreed by government, the transport operators and the union,

which govern the legality of duties.

Meal break (mealbreak): The time allowance between two spells of work for the driver to

travel to the canteen having a meal and then travel to take over the next vehicle.

Over cover (over-cover): When a piece of work is assigned to two or more driver duties.

Piece of work (piece): An indivisible period of driving work, between two windows of relief

opportunities.

Relief opportunity (RO): A time/location pair, at which a driver can be relieved.

Relief point: Designated locations on vehicle work where drivers may be relieved.

Relief time: A time when a vehicle passes a relief point.

Spell: a section of continuous vehicle work to be operated by a driver without a break.

Spilt duty: a type of duty that has a longer spreadover than standard duties and has a long break

in the middle.

Stretch: The time period that a driver can work without a mealbreak, consisting of one or more

successive spells in a duty.

Time window: The time range between the arrival time and the departure time when a vehicle

stops at a location.

Unattended window of relief opportunities (U-WRO): A window of relief opportunities,

during which the vehicle is left without a driver.

Window of relief opportunities (WRO): The time range that a vehicle remains at a relief

point, during which the driver can be relieved.

