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Abstract 

 

The bus and train driver scheduling problem involves assigning bus or train work to drivers in 

such a way that all the bus or train work is covered and the number of drivers and duty costs are 

minimised. This is complicated by the fact that there are many restrictions on the duty 

generation. 

 

The generate-and-select approach is at present the most successful for bus and train driver 

scheduling. It involves generating a set of legal potential driver duties from which a minimal 

and most efficient subset is selected. Filtering rules are often applied so that the set of potential 

duties generated would not be prohibitively large. Moreover, windows of relief opportunities 

(WROs), which provide ranges of opportunities for relieving drivers, are beyond the capability 

of being handled by the existing systems. The usual practice is to consider one, sometimes two, 

discrete times within each time window. Optimality of solution is therefore compromised.  

 

The research presented in this thesis focuses on solving the driver scheduling problem with 

WROs using a constructive approach, which builds and refines a single schedule iteratively. 

Filtering rules are unnecessary under the approach. The 2-opt heuristic approach is first 

investigated, during which the potential of constructive heuristics is explored. Based on the 

experience, the Tabu Search meta-heuristic approach is then investigated. Multi-

neighbourhoods and an appropriate memory scheme, which are essential elements of Tabu 

Search are designed and tailored for the driver scheduling problem with WROs. Alternative 

designs have been tested and compared with best known solutions drawn from real-life data 

sets. The tabu search approach is very fast, can handle WROs, and has achieved results 

comparable to those based on mathematical programming approaches. Taking advantage of 

WROs, it can improve best known solutions obtained by the existing systems. Consequently, it 

could be incorporated into existing systems to improve the solution by taking advantage of 

WROs. 
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Chapter One  

 

Introduction 

____________________________________________________________ 

 

 

1.1 Bus and train driver scheduling problems 

 

The bus and train driver scheduling problem involves finding the most efficient way of 

assigning notional drivers to the daily operations of a fleet of vehicles. Bus driver scheduling 

and train driver scheduling are different aspects of the same problem (Kwan et al., 2000). All 

the features that are in the bus operation can be found in the train operation but not vice versa 

(Kwan, 1999). In both cases, driver duties are made up of spells of work on one or more 

vehicles, and all the vehicle work must be covered by such duties. The term vehicle shall be 

used to denote a bus or a train throughout this thesis. 

 

The precursor to the driver scheduling problem is the vehicle scheduling problem, in which 

vehicles are allocated to the journeys to be operated (the service is fixed in advance, and will 

remain unchanged for usually months at a time). Since both the vehicle scheduling problem and 



  

the driver scheduling problem are individually hard, the usual practice is to compile schedules 

separately for the vehicles and for the drivers. When all daily driver duties for a schedule or set 

of schedules (sometimes weekday and weekend have different schedules) have been complied it 

is necessary to combine them into sets of work for actual drivers on a weekly basis. In the 

United Kingdom, the weekly duties are usually organised by the management into a rotating 

roster, and the drivers work through all the weekly rotas in turn.  

 

The driver scheduling problem presented here is concerned with the assignment of notional 

drivers to a predetermined bus or train schedule. The number of possible combinations for 

partitioning the vehicle work in a schedule is usually astronomical. There is a set of restrictions 

on the driver schedules. For example, daily working time for a driver has to be limited to a 

certain number of hours; a driver is normally required to have a break if the continuous driving 

time has reached a certain limit. These restrictions are called labour agreement rules, which 

vary a great deal between different operators. The most common rules are listed in Section 

1.1.5. These rules governing the legality of a driver duty affect profoundly the complexity of 

duty compilation. The driver schedule must be legal according to the rules. It should use the 

minimum number of duties and/or have the lowest total cost.  

 

1.1.1 Vehicle work 

 

In a vehicle schedule, the work is usually presented as a set of blocks. A block presents a 

sequence of journeys to be operated by one vehicle during one day, beginning with a pull-out 

from, and ending with a pull-in, to a depot. The journeys of a vehicle that leaves and returns to 

the depot more than once in a day make up several blocks. Figure 1.1 displays an example of a 

block in a vehicle schedule, where layover denotes the time allowance during which a vehicle 

waits at a stop after its arrival and before starting its next journey; empty run denotes 



  

unproductive vehicle work, during which a vehicle runs from one location to another without 

carrying passengers.  

 

                             Block 1: 
                             Start from Depot at GNFDRL         05:31 
                             Location      Arrival Time    Departure Time   Layover (minutes) 
                                    GNFDRL                                                05:31                           
                                    BULBTS                 06:03                      06:07                          :4 
                                    GNFDRL                 06:46                      06:59                         :13 
                                    BULBTS                 07:33                      07:37                          :4 
                                    GNFDRL                 08:23                      08:26                         :3 
                                    HVKEHR                08:54                      08:55                          :1 
                                    GNFDRL                 09:33                      09:42                          :9 
                                    HVKEHR                10:10                      10:11                          :1 
                                    GNFDRL                 10:46                      10:56                         :10   
                                    BULBTS                  11:32                     11:37                          :5           
                                    GNFDRL                 12:21                      12:27                         :6 
                                    HVKEHR                12:55                      12:56                         :1    
                                    GNFDRL                 13:31                      13:36                         :5 
                                    BULBTS                 14:12                      14:17                          :5 
                                    GNFDRL                 15:01                      15:12                         :11 
                                    HVKEHR                15:40                      15:41                         :1 
                                    GNFDRL                 16:21                      16:27                         :6  
                                    HVKEHR                16:55                      16:56                         :1 
                                    GNFDRL                 17:36                      17:36                         :0 
                                    BULBTS                  18:12                      18:17                        :5 
                                    GNFDRL                 18:59                      19:16                        :17 
                                    BULBTS                  19:48                      19:53                        :5 
                                    GNFDRL                 20:32                      20:35                         :3 
                                    HVKEHR                20:54                      20:55                         :1      
                                    GNFDRL                 21:20                      21:35                         :15 
                                    HVKEHR                21:54                      21:55                         :1 
                                    GNFDRL                 22:20                      22:35                         :15 
                                    HVKEHR                22:54                      22:55                         :1 
                                    GNFDRL                 23:20                      23:20        empty run :4     
                                    SMFMHR                23:24                      23:25                         :1      
                                    EALCKR                 23:55                      24:00                         :5 
                                    SMFMHR                24:32                      24:32        empty run :4 
                                    GNFDRL                 24:36                     
                            Arrival back Depot at GNFDRL        24:36 

 

 

For driver scheduling purposes, a block is usually represented in a graphical format (see Parker 

and Smith, 1981) showing the vehicle number (i.e. block number) and all the vehicle work 

(including empty runs) in the block while identifying a sequence of relief opportunities (RO for 

short). A RO is a time/location pair, at which drivers can be relieved. The time is called a relief 

time, while the location is called a relief point and coded by a single alphabet in a block graph. 

Figure 1.1: Example of a block in a vehicle schedule 



  

Not all the places where a vehicle stops in a vehicle schedule are feasible places for relieving 

drivers. Only some of the places are designated as relief points by transport operators. Figure 

1.2 shows an example, which represents the block in Figure 1.1 in a graphical format 

identifying relief opportunities. In this example, we suppose that only GNFDRL and BULBTS 

are designated as relief points, which are denoted as G and B respectively in Figure 1.2.  

      

            0531  0603  0646   0733   0823  0933   1046   1132  1221   1331 1412  1501  1621  1736  1812  1859 1948   2032  2120 2220   2320    2436               

   1      G----B----G----B----G----G----G----B----G----G----B---G----G----G----B---G----B----G----G---G-----G----G 

 

In Figure 1.2, only the arrival times at relief points (plus the starting time at the depot) are 

selected as relief times. This is at present the most common practice in bus and train driver 

scheduling. However, a more comprehensive representation that takes into account the gaps 

between the arrivals and the departures at relief points is provided in the next section.   

 

1.1.2 Vehicle work with windows of relief opportunities 

    

In practice, when a vehicle stops at a location, there is often a gap between the arrival time and 

the departure time, which is called a time window. In bus vehicle scheduling, the time window 

is called a layover (see Figure 1.1). A time window at a particular relief point constitutes a 

window of relief opportunities (WRO for short), during which drivers can be relieved at any 

time within the window. Some WROs are called attended WROs (A-WRO for short), during 

which the vehicle must be attended by one driver. The others (normally long time gaps) are 

called unattended WROs (U-WRO for short), during which the vehicle can be left without a 

driver. For train operations, extra time has to be allowed for the driver to power off and on the 

engine before and after an U-WRO. Figure 1.3 exemplifies a vehicle block with WROs, where 

Figure 1.2: Example of a vehicle block with relief opportunities 



  

A-WRO RO U-WRO 

7909 is the block number; the thick line denotes vehicle work while the rectangles denote 

WROs; above these are their time ranges while below are the codes of their relief points. A-

WROs and U-WROs are distinguished by whether the thick line passes through their 

corresponding rectangles. A RO, denoted by a small circle, is a special case of a WRO, in 

which the arrival time is the same as the departure time. This special case of WROs will be 

distinguished and indicated in this thesis only when necessary. Any time in a time window 

together with the relief point constitutes a time-point pair and is also called a RO. When WROs 

are considered, a RO denotes a time-point pair in a WRO. The work between two consecutive 

WROs on a block is defined as a piece of work, which is not permitted to be broken up. 

 

            

                          0805    0649-0659   0949 - 0959     1149 - 1215   1349-1359    1519  - 1527      1815 

      7909 

                          D           N                N                     S                  N                 N                D 

 

1.1.3 Driver scheduling 

 

Driver scheduling is a process of partitioning vehicle work into a set of legal driver duties, the 

schedule, such that the total number of duties and/or the total duty costs are minimised.  

 

A duty is the work to be performed by a driver during one day from signing on until signing off 

at a depot. Each duty consists of a sequence of driver activities, i.e. a sign-on activity, a set of 

spells, and a sign-off activity. A spell is a section of continuous vehicle work to be operated by 

a driver without a break. Each spell includes at least two ROs, the first and the last ROs are 

called active relief opportunities (AROs for short), during which the drivers are actually 

relieved. Figure 1.4 illustrates a driver schedule, where ‘+’ denotes an ARO, while G and H are 

Figure 1.3: Example of a vehicle block with windows of relief opportunities 



  

relief point codes. Driver scheduling without considering windows of relief opportunities can 

be regarded as a special case. 

 

                          0812  0950-0955  1152-1157         1332-1337     1455-1459         1655 

vehicle 1 

                            G       H                   H                         H                     H                   G 

                             +-------Duty 1--------+-------------------Duty 2--------------------------+ 

 

 

                                                                       1240 1330-1332  1430-1435  1550-1555    1710-1715  1855 

vehicle 2 

                                                                          G      H                     H               H                     H          G 

                                                                           +----------------Duty 1----------+----------Duty 3----------+ 

 

 

                                 0920   1112-1117 1230-1235      1350-1405        1505 

vehicle 3 

                                   G             H               H                      H                  G 

                                   +--Duty 2--+-----------------Duty 3-------------------+ 

 

 

 

1.1.4 Duty types 

 

Duties can be classified into two principal types: split duties and straight duties. A split duty is 

one with a longer spreadover than standard duties, e.g. up to 12 hours or more, plus a long 

break in the middle. The other duties are called straight duties, which may be further divided 

into different types according to which time period the duty covers or to which range of 

spreadover length the duty falls in. For instance, in bus operations, straight duties can be 

divided into early duties (taking early buses out of the depot and covering part of the morning 

peak), late duties (taking late buses into the depot and covering part of the afternoon peak), and 

middle duties. In UK organisations, straight duties usually contain two stretches separated by a 

Figure 1.4: Illustration of a driver schedule 



  

meal break. There may also be a few straight duties containing two or more meal breaks, and 

some, which are usually only two to five hours long containing a straight run without 

mealbreak. In North America, straight bus runs without mealbreak are common. 

 

The above is a general classification; other classifications exist. In practice, the classification 

for a particular problem is defined by the operator and each type of duty often has a set of 

labour agreement rules to govern its legality. A duty satisfying all the governing rules is called 

a valid duty, a legal duty or a feasible duty; otherwise it is called an invalid duty, an illegal duty 

or an infeasible duty.  

 

1.1.5 Labour agreement rules 

 

A feasible schedule must be legal according to labour agreement rules determined by the 

government, the transport operators and the union. Some other local unwritten rules may also 

have to be enforced. Labour agreement rules vary considerably between operators. The 

common rules for bus drivers are listed in (Smith and Wren, 1988) and are included in the 

following list for both bus and train drivers. 

 

1) A driver starts work by signing on and finishes work by signing off at the same depot. 

 

2) There is a limit on spreadover, i.e. the length of a duty, which is the length of time from 

first signing on to finally signing off, and usually no more than twelve hours. Each kind 

of duty has a maximum length of spreadover, while some have a limit on the minimum 

length of spreadover.  

 



  

3) There is a maximum spell, i.e. length of driving time that a driver can work 

continuously without a break on one vehicle. There may be periods within a spell when 

the vehicle stops and attendance by a driver is optional. Some operations stipulate two 

different rules to restrict the maximum length of a spell with or without a stop. The 

maximum spell with a stop is always equal or longer than those without a stop. 

 

4) There is a maximum stretch, i.e. length of time that a driver can work without a meal 

break, say four to five hours. A stretch (e.g., from signing on to the start of the first 

meal break, or from the end of the last meal break to signing off, or between two 

successive meal breaks) consists of one or more successive spells in a duty. Between 

two successive spells in a stretch there is an intervening short break, called a join-up. 

This break must be long enough for the driver to travel to take over the following spell 

of work. 

 

5) Meal break (i.e. the time allowance between two spells of work for the driver to travel 

to the canteen, have a meal and then take over the next vehicle) must be a minimum 

length of time. In bus operations, there is usually one meal break in a duty of say at least 

30 or 40 minutes. For a split duty, the longest gap between two consecutive spells must 

not be shorter than the due minimum length of time. In UK train operation, a meal break 

is usually called a PNB (Physical Needs Break) and there may be one or more PNBs in 

a duty. The rules governing when PNBs should occur and how long they should at least 

be are complicated. Table 1.1 shows the PNB rules in a train operation, where PNB-

PERIODS denotes the time ranges when PNBs can occur, while LENGTH denotes the 

minimum length of a PNB. Both PNB-PERIODS and LENGTH depend on the 

spreadover of a duty. For instance, the first row in Table 1.1 means: one PNB of at least 

30 minutes must occur between the third and fifth hour relative to the start of the duty if 



  

the spreadover of the duty is equal to or less than eight hours. The last row means: two 

PNBs of 20 minutes each must occur between the second and the seventh hour if the 

spreadover of the duty is greater than eight hours and less than or equal to nine hours.  

 

Table 1.1: Example of PNB rules in train operation 

No. PNBS LENGTH Spreadover-RANGE PNB-PERIODS 

1 :30 000 800 300 500 

1 :30 801 900 200 600 

2 :20 000 800 200 600 

2 :20 801 900 200 700 

 

6) There is a maximum working time for a duty. The calculation of working time of a duty 

depends on the operator and the type of the duty. For some duties, the time from signing 

on to signing off is fully counted as working time; for some duties, non-driving time, 

e.g. mealbreak and the signing on and off allowances before and after a long meal 

break, is not counted as working time; for some duties, part of non-driving time is 

counted as working time.  

 

7) There are usually restrictions on the time of earliest sign-on/sign-off, earliest start 

on/finish off, latest sign-on/sign-off, and latest start on/finish off dependent on the duty 

types. 

 

The above rules govern the legality of a duty and must be adhered to in a feasible driver 

schedule. In addition to the labour agreement rules, some operators may have other 

requirements governing the legality of a duty. For instance, a driver must have knowledge of 

the type of vehicle he/she drives. We shall use the term labour agreement rules to denote any 

rules and requirements governing the legality of a duty throughout this thesis. 



  

1.1.6 Objectives of driver scheduling 

 

Although objectives of driver scheduling may vary, forming a feasible schedule covering all the 

vehicle work is the most essential objective for all operators and must be fulfilled. (In practice, 

operators may accommodate some infeasibility by bending the rules or adjusting the vehicle 

trips when considerable saving can be made). Minimising the number of duties required and the 

total duty cost are primary objectives for most operators. These two objectives sometimes 

confli ct and a trade-off may be needed. In the UK, minimising the total number of duties 

usually has priority over minimising total duty cost. 

 

1.2 Computerised driver scheduling approaches 

 

Early computerised driver scheduling approaches were purely heuristic. They were heavily 

reliant on domain knowledge, and often needed large amounts of manual intervention such that 

the algorithms were not readily portable to different transport operators. By the 1980’s it was 

generally recognised that heuristics alone were not suitable for general use (Wren and 

Rousseau, 1995). The purely heuristic approach was therefore abandoned in favour of 

mathematical programming approaches aided by heuristics. The principle mathematical 

programming approach, e.g. TRACS II (Fores and Proll, 1998; Kwan et al., 1999 and 2000; 

Fores et al., 2001), first generates all the ‘good’ valid potential driver duties according to labour 

agreement rules, then if necessary reduces the very large potential duty set using heuristics, and 

lastly uses a set covering or set partitioning formulation to select the cheapest subset of duties 

that covers each piece of vehicle work. This approach can be labelled as a generate-and-select 

approach. The mathematically based generate-and-select approach has been successful in many 

practical systems (e.g. Rousseau and Desrochers, 1995; Fores et al., 1999 and 2001), and is still 

dominant in commercial application of driving scheduling. The advances in the mathematical 



  

programming solvers, such as column generation techniques (Rousseau and Desrochers, 1995; 

Fores, 1996; Fores et al., 1998 and 1999), have made the mathematically-based approaches 

more powerful in solving large problems. The column generation technique can reduce the 

burden of duty generation if further potential duties are generated as required during the 

selection process (Rousseau and Desrochers, 1995).  

 

Despite their successes, the current systems can neither be regarded as black boxes that produce 

working schedules completely automatically nor guarantee to yield optimal solutions. As one of 

the most successful systems, TRACS II (Fores et al., 1999; Kwan et al., 2000) has, through long 

development working with many operators, reached a level of generality such that it can fit with 

many companies’ requirements. Filtering rules are often applied as parameters so that the set of 

potential duties generated would not be prohibitively large. These parameters have to be 

manipulated to compile driver schedules for different transport operators. Such manipulation 

can be frustrating to schedulers who do not appreciate the practical limitations of the 

mathematical programming approach. Moreover, windows of relief opportunities are beyond 

the capability of the current systems. The reason is that WROs greatly enlarge the sizes of 

problems. The existing systems only handle relief opportunities as discrete times, and it would 

be impractical to expand explicitly each time window into individual minutes. The usual 

practice is to consider one, or sometimes a few, discrete times within each time window. 

Optimality of the schedule is therefore compromised.  

 

1.3 Purpose of the research 

 

The bus and train driver scheduling problem is of great practical importance as efficient 

schedules can make huge monetary savings. Building efficient schedules is one of the best ways 

for the transportation industry to maximise profit. This problem has attracted much research 



  

interest since the 1960’s (Elias, 1964; Wren, 1968; Wilson, 1999; Voß and Daduna, 2001). 

Although a great deal of progress has been made, the problem (known as a hard combinatorial 

optimisation problem) still has scope for new research and improvements.  

 

This research aims to investigate a constructive heuristic approach that can tackle the driver 

scheduling problem with windows of relief opportunities. The proposed approach aims: 

 

1) To handle windows of relief opportunities; 

2) To produce solutions not requiring the use of any artificial rules as necessitated in the 

generate-and-select approach. 

 

A constructive heuristic approach builds and refines a single schedule. We use the term 

“constructive” to contrast with the term generate-and-select. The term “constructive approach” 

is used throughout this thesis. Under the class of the constructive approaches, artificial rules are 

unnecessary. Obviously for the constructive approach, the fewer rules that are imposed on the 

validity of a driver duty, the easier it is to construct a solution. Moreover, the more relief 

opportunities that are provided in the blocks, the more chance it has to refine the schedule. 

Windows of relief opportunities provide ranges of opportunities for drivers to change over. The 

constructive approach could benefit from the windows of relief opportunities to refine 

schedules with more flexibilit y in recutting blocks. 

 

1.4 Organisation of the thesis 

 

Following this introduction, Chapter two reviews a number of computerised approaches to the 

driver scheduling problem. The other chapters, except the Conclusions, present the research in 



  

stages by investigating and building a suitable approach to solve the driver scheduling problem 

with WROs. 

 

Chapter three presents some initial research on a 2-opt heuristic approach for driver scheduling. 

The driver scheduling problem was simplified, in which up to two spells were allowed in a duty 

and the WROs were reduced to one or two ROs. The main aims of this initial research were to 

investigate the potential of constructive heuristics, which were anticipated to be able to handle 

WROs for driver scheduling and to obtain some experience in building the proposed approach 

of this research. 

 

Chapter four shows two models: spell-model and piece-model, which aim to represent the real-

life driver scheduling problem with WROs. Spell-model is first built by a natural presentation of 

the problem, in which a spell is the basic unit of driving work in a duty. During the scheduling 

process, the compositions of spells are variable. For the sake of developing the new algorithm, a 

piece-model is also built, in which fixed pieces of work are the basic units. It is anticipated that 

a combined utilisation of the two models would be needed. Based on the models, a driver 

scheduling approach called HACS is developed, an overview of which is presented. 

 

Chapter five describes in detail the Tabu Search technique tailored for the driver scheduling 

problem with WROs, constituting the core of the HACS approach. Tabu Search is a general 

scheme that must be tailored to the details of the problem at hand. This tailoring process is non-

trivial. Strategic use of memory and design of neighbourhood structures are critical. The driver 

scheduling problem without WROs is a special case of that with WROs.  

 



  

Chapter six presents a series of experiments and computational results compared with best 

known solutions drawn from real-life data sets. Some components of HACS are evaluated while 

the ability of handling WROs is assessed by experiments. 

 

Finally, Chapter seven sums up the contributions of the research and considers options for 

future research. 

 



  

 

 

 

Chapter Two 

 

Review of Bus and Train Driver 

Scheduling Approaches 
____________________________________________________________ 

 

 

2.1 Introduction 

 

Scheduling public transport drivers using computers began in the 1960’s. Since then a great 

deal of progress has been made and many approaches have been developed. Wren and 

Rousseau (1995) gave an overview of the approaches, many of which have been reported in a 

series of proceedings of the eight international conferences on Computer-Aided Scheduling of 

Public Transport (edited by Bodin and Bergman, 1975; Wren, 1981; Rousseau, 1985; Daduna 

and Wren, 1988; Desrochers and Rousseau, 1992; Daduna, et al., 1995; Wilson, 1999; Voß and 

Daduna, 2001). Research into bus and train driver scheduling approaches has been aided by the 

continuing rapid growth in computer technology. The approaches may be roughly divided into 

four groups: earlier heuristics, mathematical programming approaches, meta-heuristics and 

constraint programming approaches. The classification is not distinctive because mathematical 



  

programming approaches often involve heuristics while meta-heuristics often incorporate some 

simple heuristics. Constraint programming approaches model practical problems as constraint 

satisfaction problems, which are solved by heuristics or mathematical programming techniques.  

 

Some earlier heuristic systems are described in Section 2.2 while some successful systems 

based on mathematical programming approaches are in Section 2.3. Sections 2.4 and 2.5 

describe some recent work on meta-heuristics and constraint programming. Section 2.6 briefly 

reports three recent transport scheduling packages exhibited in the latest international 

conference on Computer-Aided Scheduling of Public Transport. A concluding comparison 

between the generate-and-select approach and the constructive approach is given at the end of 

this chapter. 

 

2.2 Early heuristic approaches  

 

The earliest attempts (up till the 1970s) to solve driver scheduling problems used heuristics. 

The reasons were that the computer was not powerful enough for running the mathematical 

solvers, and the techniques employed by the mathematical programming solvers were not as 

advanced as nowadays. Most heuristic systems at that time constructed a schedule using 

methods similar to those used by manual schedulers. The refinement of the schedule was made 

either by the schedulers interactively or by automatic heuristic procedures making limited 

alterations. 

 

This section reviews the early attempts made by Elias and by Weaver and Wren, the more 

sophisticated TRACS and RUCUS systems, and an interactive system called COMPACS. The 

review of other heuristic systems in this period can be found in the theses of Smith (1986), 



  

Willers (1995), Fores (1996), Kwan (1999) and Curtis (2000)). These early heuristic 

approaches are summarised at the end of this section. 

 

2.2.1 Elias’ scheduling systems 

 

Elias applied the computer to aid manual schedulers to compile bus driver schedules in the 

early 1960’s (Elias, 1964). The situation that Elias’ aid system dealt with was common in the 

United States, in which many duties were straight runs, i.e. a single spell of bus work of about 8 

hours in length. The remaining work was combined into two-bus duties with an intervening 

break, and some might be left as ‘ trippers’, which were single spells of work to be covered as 

overtime. 

 

Elias’ aid system includes three phases: 

 

1) Form straight runs 

A straight run is first cut from the beginning of the blocks, the duration of which is 

longer than 8 hours. If there are no relief opportunities giving a straight run exactly 8 

hours long, the nearest previous or next relief opportunity is selected depending on the 

cost of the duty. The remaining work of the block is left as a spell if it is less than 8 

hours; otherwise, another straight run is cut from the end of the block. Once every 

block is cut, the above process will be repeated, by cutting the straight runs from the 

end of each block. Lastly, a subset of the straight runs is selected by human schedulers. 

 

2) Form 2-bus duties 

Combine the remaining spells into a set of all possible two-spell duties, from which 

a scheduler then chooses a subset. 



  

3) Form remaining duties 

The scheduler can also split up some straight runs generated in the first step and combine 

them with the remaining spells. The system provides little help to the scheduler beyond 

calculating the cost of the candidate duties. 

 

The goal of this system is just to aid human schedulers to compile a schedule. It only builds a 

set of potential valid duties for schedulers to select from and further compile a schedule. 

 

Later Elias attempted to develop an automatic driver scheduling system (Elias, 1966). He first 

developed a mathematical model, but found that the scheduling problem was too large to be 

solved by the model. He then turned to heuristic approaches instead. 

 

The heuristic approach includes the following steps:  

 

1) Cut each block into a set of spells  

The first pieces of work in each block are cut into a spell with a duration of approximate 3, 

4 or 5 hours. Then the rest of the block is partitioned into spells of about 3 hours each or a 

maximum length if it is less than 3 hours. 

2) Form all possible 2-spell duties based on the set of spells 

3) Construct many different schedules by selecting a different starting duty for each schedule 

All the duties are ranked in order of cost, and at each stage the cheapest remaining 

duty that does not conflict with those already selected is added into the schedule 

until no more duties can be added. The spells of work not covered are compiled 

into single-spell duties. 

4) Output the cheapest schedule. 

 



  

 

The method is generate-and-select based, which involves generating a large set of potential 

duties from which a subset, constituting a solution, is selected. In Elias’ method the duty 

generation process could only generate duties with up to two-spells. The duty selection process 

employed a greedy heuristic, which could obtain a solution quickly but the quality of the 

solution would usually be unsatisfactory. Although this system was only used on a test basis, 

the idea underlying this generate-and-select method may have influenced the development of 

other driver scheduling systems, in which the selection process employs more powerful 

approaches, e.g. Integer Linear Programming and meta-heuristics.  

 

2.2.2 Weaver and Wren’s work 

 

Experience of using heuristics for driver scheduling at the University of Leeds started in 1967 

(Wren, 1968; Weaver, 1968; Weaver and Wren, 1970 and 1972; Weaver, 1972; Manington and 

Wren, 1975). At the early days, it was hoped that heuristics could be developed which could 

improve any feasible schedule to a good final schedule. However, it became evident that the 

refining techniques were not sufficiently powerful to convert a poor initial schedule into a good 

final schedule, and they were frequently trapped in local optima. Therefore, the major effort 

was turned to finding a good initial schedule while the optimisation programs were still applied. 

This work led to the TRACS system (see Section 2.2.3) in the 1970’s.  

 

The first attempt of Weaver (1968) was to develop a driver scheduling program using the 

labour agreement in Leeds City Transport. The program only used a typical route of 33 buses 

from the Leeds schedule, and the route had only one relief point. Weaver claimed that the 

program would easily be extended to a route with more than one relief point. This program first 

estimated the least number of driver duties that would be needed to cover all the work in the 



  

schedule, and split all the work between the duties in some arbitrary way. This initial schedule 

usually was infeasible. Then, the program was divided into two parts, the first of which aimed 

to produce a feasible schedule, and the second of which aimed to reduce the total cost. A 

similar algorithm was used in the two parts of the program. 

 

The pieces of work were considered in pairs, and they attempted to change between the two 

duties all the work which came after the two pieces under consideration. That was, each of the 

two duties was first divided into two at the end of the pieces of work being considered, and 

then, the first part of work in each duty would be linked by the second part of work in the other 

duty. This operation was done only when the total infeasibility or the total cost was reduced. If 

the infeasibility could not be removed after no improvement could be made by the first part of 

the program, another duty would be introduced and the process was repeated. 

 

Weaver (1968) claimed that this algorithm had two main disadvantages. One of these was that 

this algorithm was time-consuming, and the other was that the algorithm had the tendency to 

split up a continuous stretch of work into several short pieces of work. 

   

Later, Weaver and Wren (1970 and 1972) modified the approach to build a good feasible initial 

schedule first and then to refine the schedule. Only limited tests were carried out on the 

approach, and no better schedules than the manual schedules were reported. Weaver (1972) 

summarised that the program was likely to produce good results if there was flexibility in both 

data (vehicle work) and labour agreements, and less good results otherwise. This work was 

superseded by TRACS. 

 

 

 



  

 

2.2.3 The TRACS system 

 

The TRACS (Technique for Running Automatic Crew Scheduling) system (Parker and Smith, 

1981) was developed in the University of Leeds in the 1970’s based on the work by Weaver 

and Wren (1970, 1972). It consisted of an initial program and a series of optimisation programs. 

The initial program constructed a good initial schedule, while the optimisation programs refined 

it. TRACS aimed to form a good initial schedule with the assumption that the refining process 

was unlikely to transform a poor initial schedule into a good one. An initial schedule is 

constructed as follows: 

 

1) Early duties are constructed, which satisfy all the constraints. 

 

First mark the latest relief time, by which the driver who takes the bus out of the depot must 

be relieved for a meal break. Then the bus with the earliest remaining marked time is 

considered to form a duty by taking over another bus at or before its marked time. The 

marked time that must be used is said to be fixed when it is at the end of the bus work or it 

has already been selected to start the second part of a duty for another driver. If a marked 

time is not fixed, an additional driver will have to take over the bus at that time. It is better 

to have the additional drive starting as early as possible so that the marked time may be 

fixed earlier.  

 

Throughout the process of forming early duties, sufficient first spells of work are left 

unallocated to provide the desired number of split duties. 

 

 



  

2) Late and middle duties are constructed by a similar process, but working backwards from 

the end of the day into the afternoon.  Evening peak parts of the bus work that are suitable 

for the second part of split duties are not allocated. 

 

3) Split duties are constructed by coupling the first and second halves of split duties.   

 

4) Any remaining morning peak work is assigned to an extra early duty while the other 

unallocated work is attached to existing duties if possible. 

 

The refinement process contains two sets of routines. One set attempts to reduce the number of 

duties or unallocated spells of work. Each duty is considered in turn to determine whether the 

work in it can be redistributed among the other duties. The duties with longer spreadovers are 

extended to be allocated more work, while the shorter duties become shorter and are hopefully 

removed altogether. Unassigned spells of work are reduced in length if possible. Another set of 

routines attempts to reduce the cost of the schedule, including any notional cost of 

undesirability. There are several routines to achieve this. One is to split up the duties at the meal 

break and to re-combine them as an assignment problem. The others are to exchange the links 

between spells if the cost is reduced. 

 

The system was successfully used to compile schedules for several different bus companies.  

Since the heuristics used for constructing an initial schedule were sophisticated and customised 

for a specific problem, it could fully meet specific requirements but it usually took several 

months to adapt the heuristics to a new problem.  

 

The TRACS approach assumed that duties with long spreadovers were ‘good’ duties. Hence, it 

tried to form long spreadover duties as far as possible. After compili ng such ‘good’ duties, there 



  

would be short spells of work remaining and the schedule might be inefficient as a whole. 

While many early heuristics could only compile duties with up to two-spells, TRACS could 

generate the duties containing two or three spells. However, the generation of multi-spell duties 

was dependent of the refinement process, which did not seem to have a means of escaping from 

local optima. 

 

2.2.4 RUCUS and RUCUS II 

 

RUCUS (RUn CUtting and Scheduling) (Wilhelm, 1975) is a bus and crew scheduling system 

developed by the MITRE Corporation under the sponsorship of the U.S. Urban Mass 

Transportation Administration in the early 1970’s. This system was installed in a number of bus 

companies in the USA and Canada from 1975. 

 

RUCUS had many similarities with TRACS, which constructed an initial schedule and then 

heuristically refined it. In the process of the construction of an initial schedule, RUCUS first 

formed one-spell straight duties without a mealbreak, and then formed two-spell early and late 

straight duties with an upper limit on the length of the intervening mealbreak, and two-spell 

early and late duties with mealbreaks of any length. Finally any unallocated work was added to 

the schedule as ‘trippers’, i.e. short one -spell duties. 

 

Besides labour agreement rules, RUCUS required some soft rules to help cut the blocks. 

Different soft rules affected significantly the quality of the initial schedule. Therefore 

sometimes the system was run several times with different soft rules to get an acceptable initial 

schedule. 

 



  

Having formed an initial schedule, several improvement algorithms were applied to eliminate 

the trippers by incorporating them into two-spell duties, and to reduce the cost of the schedule 

by shifting the spells between pairs of duties and by adjusting duties to use the preceding or 

succeeding relief opportunities. These algorithms were called shifts and switches respectively. 

 

RUCUS was field-tested in 1972 and 1973, and released to the industry in 1974 (Schmidt and 

Knight, 1981). The system was found hard to control and considerable experimentation with the 

parameters was required to get a good schedule. Since its launch, there were many 

modifications made by consulting firms and users at various transit authorities, which led to 

several versions of RUCUS. SAGE’s interactive package was one derivation (Hildyard and 

Wallis, 1981). SAGE did not modify the RUCUS algorithms. It just added natural language 

interfaces at different stages of system, which allowed schedulers to set parameter values 

between stages.     

 

Later, RUCUS was substantially revised (Luedtke, 1985). The new generation of RUCUS, 

called RUCUS II, was released in 1982. The main change was similar to that made in SAGE, 

which made it easier to specify and modify parameters during the process of forming the 

schedule. The scheduling process was interactive instead of operating in batch mode.  

 

Ball et al (1985) enhanced RUCUS II by replacing the shifts and switches algorithms with a 

graph-matching algorithm. The enhanced RUCUS II was applied to two test problems and 

better results were produced.  

 

The RUCUS II system only automatically formed duties with up to two-spells. It was mainly 

designed for North American operators and might not be good for European operators. This 

system has now been abandoned. 



  

 

2.2.5 The COMPACS system 

 

COMPACS (COMPuter Assisted Crew Scheduling) is an interactive system developed in the 

early 1980’s by a commercial company (Wren et al., 1985). It originated in an interactive crew 

scheduling system called TRICS (Techniques for Running Interactive Crew Scheduling), which 

was developed at the University of Leeds in the late 1970s. COMPACS also incorporated some 

heuristics used in TRACS for generating an initial schedule, but not the refinement programs. 

In the earlier 1980’s it was incorporated into the BUSMAN sche duling package (Chamberlain 

and Wren, 1992).  

 

COMPACS, as an interactive system, could help schedulers in a range of ways. It allowed the 

schedulers to build up the schedule one or more duties at a time; at any stage, the duties already 

formed could be unassigned or modified. COMPACS could also form a complete schedule 

automatically, but the quality of schedules was generally poor because it did not have any 

refining functions. 

 

2.2.6 Overview of the early heuristic approaches 

 

The heuristic systems were successful on some applications. The reason is that they were 

customised for individual companies; hence, they could be fully tailored to meet the company’s 

requirement. However, they were heavily reliant on domain knowledge and specific company 

needs and therefore they were not easily portable to other companies and had to be considerably 

modified in order to fit new conditions. 

 



  

By the 1980’s it was generally recognised that heuristics alone were not suitable for general use 

(Wren and Rousseau, 1995). The purely heuristic approach was therefore abandoned in favour 

of mathematical programming approaches aided by heuristics. 

 

2.3 Mathematical programming approaches 

 

In the late 1970s, research in driver scheduling methods has stepped into the second period, in 

which mathematical programming approaches were popular. Most currently successful driver 

scheduling systems are based on mathematical programming approaches, in which the driver 

scheduling problem is commonly modelled as either a set covering or a set partitioning 

problem. In this section, three systems IMPACS, TRACS II and HASTUS are reviewed. 

TRACS II and HASTUS are probably the most successful driver scheduling systems in the 

world. IMPACS is the precursor of TRACS II. The TRACS II system will be used for 

benchmarking results in this research.  

 

2.3.1 Mathematical model of set covering and set partitioning 

 

The following description of the set covering problem is taken from Reeves (1996). 

 

A family of m subsets collectively contains n items such that subset Si contains ni (≤ n) 

items. Select k (≤ m) subsets {Si1, Si2 …, Sik} such that | �k
1j i jS= | = n so as to minimise 

∑
=

k

1j

i jc  

where ci is the cost of selecting subset S i. 

Here the solution is represented by the family of subsets {Si1, Si2 …, Sik}. 



  

If, in addition, the subsets {Si1, Si2 …, Sik} are mutually exclusive, the above problem becomes a 

set partitioning problem. 

 

The driver scheduling problem with n pieces of work and m previously generated duties can be 

modelled as a set covering problem and expressed as the Integer Linear Programming (ILP) 

problem: 

Minimise  ∑
=

m

1j

jjxc                                                                             (2.1) 

subject to   ∑
=

m

1j

jijxa ≥ 1    for i = 1,2,…,n                                         (2.2) 

  where, 

  xj = 




otherwise     0

used is duty  if      1 j
        

aij = 




otherwise     

 work of piece covers duty  if      

0

ij1
 

cj is the cost associated with the j th duty. 

 

By changing the constraint (2.2) into the following form, it becomes a set partitioning problem: 

subject to   ∑
=

m

1j

jijxa = 1    for i = 1,2,…,n                                         (2.3) 

 

In the set covering model, each piece of work must be covered by at least one duty; in a set 

partitioning model, each piece of work must be covered by exactly one duty. In theory, the 

solution to the ILP is the schedule with minimum cost. However, in practice, the total number 

of all possible duties is usually very large, and the resulting ILP cannot be practically solved. 

The very large potential duty set therefore has to be reduced to a manageable size by heuristics 



  

or some other means, or else the problem has to be decomposed into several sub-problems and 

solved separately.  

 

2.3.2 The IMPACS system 

 

IMPACS (Integer Mathematical Programming for Automatic Crew Scheduling) is a driver 

scheduling system developed in University of Leeds in the late 1970’s. It was originally 

developed for bus operation. Parker and Smith (1981) presented the prototype version and the 

full description of the system was described by Smith (1986 and 1988), and Wren and Smith 

(1988). 

 

IMPACS is based on a set covering model. As mentioned above, the number of variables and 

constraints can be enormous; reduction heuristics are therefore employed by IMPACS. The 

system solves the driver scheduling problem by the following steps: 

 

1) Add some soft rules 

The number of variables, i.e. the number of candidate duties considered, depends on the 

rules governing the legality of a duty. The more tightly set rules are applied, the less 

possible legal duties are formed.  IMPACS adds some extra rules, known as soft rules, such 

as the minimum length of spells, and the minimum work content, etc. The soft rules, whose 

parameters are usually specified by the scheduler, prevent generating inefficient duties, and 

duties that are unlikely to contribute to forming a good schedule.  

 

2) Reduce the number of pieces of bus work using heuristics 

There are two optional modules in this step. EST identifies a list of relief opportunities that 

may be critical to forming a good schedule. SELECT analyses the remaining relief 



  

opportunities and de-selects those not likely to be used, thereby reducing the number of 

pieces of work. 

 

3) Generate a large set of legal duties according to the labour agreement rules and the soft 

rules using heuristics 

 

4) Reduce the number of duties using heuristics 

Some duties, which are considered less crucial (e.g. every piece of work in the duties is 

covered by a specified number of other duties) than the others for forming a good schedule, 

are eliminated from the large duty set. 

 

5) Select a subset of duties using ILP 

The driver scheduling problem is now expressed as a set covering problem. IMPACS 

solves this problem by first obtaining a relaxed LP solution and then looking for an integer 

solution using a Branch-and-Bound (B&B) algorithm. The B&B algorithm searches for 

integer solutions through a tree structure. The search terminates when a sufficiently good 

solution is found or a certain pre-defined search depth has been reached. 

 

IMPACS also provides a decomposition module for solving large problems. After 

decomposition and the first sub-problem has been solved, the work of inefficient duties in the 

schedule are carried forward to the next sub-problem. Finally, the results of all sub-problems 

are combined into a complete schedule. 

 

In 1990, IMPACS was adapted to estimate the effects of changing train driver scheduling 

requirements (Parker et al., 1995). Since train driver scheduling problems are usually larger and 

more complicated than bus driver scheduling problems, it is difficult to apply the IMPACS 



  

system, which was designed for bus driver scheduling problems. IMPACS is now superseded 

by TRACS II. 

 

2.3.3 The TRACS II system 

 

TRACS II (Techniques for Running Automatic Crew Schedules, Mark II) has been developed 

since 1994 specifically to satisfy the needs of rail operations, while still being capable of 

producing bus driver schedules. TRACS II follows almost the same approach as IMPACS, but 

the components have largely been redesigned to cope with the complexity of rail operations and 

to incorporate new algorithmic advances. 

 

 

  

 

From Figure 2.1, it can be seen that TRACS II consists of seven modules in three stages. The 

first stage is called shift generation, which constructs many potential duties. VALIDATE 

Figure 2.1  Workbench main window of TRACS II 



  

checks first the validity of data sets. Then TRAVEL calculates all possible opportunities for 

drivers to travel as passengers on scheduled services or taxis between relief opportunities. 

BUILD finally generates a large set of possible valid duties (a set of filtering parameters is used 

to limit the generation of too many duties). The heuristics in BUILD are different from 

IMPACS. The second stage contains a module called SIEVE, which ranks the duties generated 

by BUILD and eliminates those deemed to be inferior. The set of duties generated by BUILD is 

trimmed down to a desired size before it is passed to the mathematical solver called 

SCHEDULE. Recently, SIEVE is often only used to remove duplicated duties because the 

integration of a column generation method into SCHEDULE now allows it to accept larger duty 

sets. MERGE is only used when BUILD is run more than once. It merges sets of duties 

generated according to different parameters or different decomposed sub-problems. The 

mathematical process called SCHEDULE is the main module in the third stage, which is 

originated from the ILP process used in IMPACS. IMPACS could handle up to 30,000 input 

duties, but there is virtually no limit for TRACS II. SCHEDULE has two main choices of 

optimisation routines, which are that of a primal column generation approach and a dual 

steepest edge approach. Fores et al (2001) recommended that the dual steepest edge approach 

be executed on problems containing at most 30,000 duties, where all duties can be explicitly 

considered within the limits imposed for storage and efficiency. However, users can select the 

column generation approach to run any size of problem. SCHEDULE consists of four 

processes. The first process builds an initial integer solution using heuristics if column 

generation is selected as the solution algorithm. This process also selects an initial duty set of 

up to 30,000 duties from the large set of potential duties generated by BUILD. The second 

process uses a set covering model and obtains a LP relaxation.  The second process will be 

repeated if it is necessary to add new columns of duties. The third process called REDUCE is 

introduced by Smith and Wren (1988) and enhanced by Willers (1995). It selects the duties that 

start or end at an RO that is used in the LP solution. The other duties are removed and pieces of 



  

work not using a selected RO are combined. This is an optional process, but reduction in 

problem size decreases solution time and does not seem to inhibit the quality of the schedule. 

The fourth process searches for an integer solution using a Branch and Bound method. If a 

solution is found, DISPLAY will print the schedule in a condensed format. 

 

TRACS II has been successfully installed in several transport companies. Over the period 1995-

1996 TRACS II satisfactorily produced schedules for about twelve of the privatised British 

train companies (Kwan et al., 1999). It is now being installed in the 26 companies of First 

Group, the largest bus company in the UK.  

 

TRACS II is also used for benchmarking by a number of researches in Leeds University. Parts 

of the system are utilised in some other driver scheduling approaches, e.g. Forsyth’s ant system, 

Kwan’s and Li’s genetic algorithms, Li’s simulated evolution algorithm, and La yfield’s and 

Curtis’s constraint programming approaches (see Sections 2.4 and 2.5).  

 

Since TRACS II uses a set covering model, the schedule generated may (and usually) contains 

overlapping driving work (over-cover), which creates unproductive time for drivers. Over cover 

is eliminated manually before a schedule is operated.  

 

Also, because of the use of ILP, a series of techniques to reduce the number of variables 

(potential duties) and constraints (ROs) have to be operated according to the capability of the 

ILP solver. Figures 2.2 and 2.3 illustrate the processes of reduction, where A, B, C, D denote 

the sets of relief opportunities at different levels, while E, F, G, H, I denote the sets of duties at 

different levels.  The reduction at each level decreases the possibility of producing an optimal 

solution. 

 



  

 

 

 

 

A: Full set of windows of relief opportunities. 

B: Reduced set of relief opportunities after shrinking a WRO into one or two selected ROs. 

C: Reduced set of relief opportunities after removing the ROs not used in LP relaxation. 

      (This is optional so might not be reduced). 

D: Set of active relief opportunities. 

 

 

 

 

 

 

 

 

E: Set of all possible valid duties according to labour agreement rules 

F: Set of all possible valid duties based on tightened governing rules and the reduced set of 

     ROs in level B, i.e. not considering windows of relief opportunities. 

G: Reduced set of potential duties selected by the column generation method. 

H: Reduced set of potential duties selected based on the set of ROs in level C. 

I:  Set of duties in a schedule, which may contain overlapping duties. 

 

 

 

2.3.4 The Crew-opt method of the HASTUS system 

 

HASTUS is a commercial package that deals with all the scheduling issues: bus vehicle 

scheduling, driver scheduling, and rostering. It was originally developed by the University of 

Figure 2.2 Different levels of RO reduction 

Figure 2.3 Different levels of potential duty reduction 
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Montreal in the 1970’s and later jointly with Giro Inc., Canada. The work on the HASTUS 

system has been reported in a number of papers (e.g. Lessard et al., 1981; Carraresi and 

Rousseau, 1982; Rousseau et al., 1985; Rousseau and Blais, 1985; Blais and Rousseau, 1988). 

The latest version of HASTUS was exhibited in the international conference on Computer-

Aided Transit Scheduling held in June 2000, Berlin. A concise description is provided in 

Section 2.6. 

 

A crew scheduling method called Crew-opt is part of the HASTUS system (see Desrochers and 

Soumis, 1988, 1989; Desrochers et al., 1992; Rousseau and Desrochers, 1995), which has been 

used in a wide range of problems including a train company (East Japan Railway). The Crew-

opt approach solves the driver scheduling problem using a set covering (or set partitioning) 

method incorporating a column generation technique. 

 

Crew-opt generates a large set of legal potential duties based on a set of ‘useful’ ROs from 

which a set of ‘good’ duties is heuristically selected. It then solves the driver scheduling 

problem modelled as a set covering/partitioning problem with LP. The LP process will be 

repeated if new columns of interest are added. After this has been done, a Branch and Bound 

method is used to find an integer solution.  

 

Similar to TRACS II, HASTUS is an ILP-based approach, which selects a subset from the set 

of duties generated. The difference is that HASTUS does not generate all possible legal duties 

beforehand but a ‘good’ set of potential duties instead. After each LP solution, the dual 

variables are used to generate new duties with negative reduced costs susceptible to improving 

the current LP solution. The column generation method in HASTUS is used to generate new 

columns of duties; however, in TRACS II it is used to select new columns of duties from the 

previously generated set.  



  

 

Despite the use of column generation, filtering labour rule parameters are still employed to 

eliminate ‘useless’ relief opportunities and to limit the set of feasible duties generated. These 

parameters might guide the duty generation throughout the scheduling process. The column 

generation process might not be able to generate the duties with newly introduced constraints 

because it is based on the LP relaxation. This approach solves a number of LP problems until it 

becomes impossible to find a feasible duty satisfying its criteria (i.e. with a negative reduced 

cost). The whole process is likely to be time-consuming.  

 

2.3.5 Overview of the mathematical programming approaches 

 

The mathematical approaches based on a set covering or a set partitioning method have been 

successfully used in many practical systems with the aid of heuristics. However, optimal 

solutions still cannot be ensured and the systems cannot be treated as black boxes that produce 

working schedules. The limitations might be summarised as follows: 

 

• More easily adapted to different problems than early heuristics, but some adaptation is 

still needed sometimes, and this adaptation may be considerable; 

• Filtering rules are often applied so that the set of potential duties generated would not 

be prohibitively large, so the optimality of solutions would be compromised. The 

manipulation of the parameterised filtering rules may appear obscure to schedulers not 

versed in scientific disciplines; 

• Generation of all possible legal duties may be very time consuming if slack scheduling 

rule parameters are used; 

• Some reduction on problem size or in the scheduling process is inevitable; 



  

• It is likely that there will always be problems for which decomposition is necessary on 

size grounds; 

• It is possible that for some problem instances no solution can be found within a 

reasonable time; 

• Windows of relief opportunities cannot be handled practically. 

 

2.4 Meta-heuristic approaches 

 

While the mathematical methods continue to be improved, several strands of research into 

meta-heuristics for driver scheduling have begun in the 1990’s.  

 

2.4.1 A Tabu Search approach - Cavique et al 

 

Cavique et al (1999) have presented a Tabu Search approach for crew scheduling. The approach 

constructs an initial schedule using a method similar to that used by TRACS, which is called a 

run-cutting algorithm by Cavique et al (1999). The initial schedule is feasible according to a set 

of rules, and covers a pre-defined timetable. Tabu-crew, a refining algorithm embedded in a 

Tabu Search framework, is applied to reduce the number of duties. Tabu-crew iteratively 

removes some ‘inefficient duties’ (with only a single spell of work) as well as their ‘adjacent’ 

duties from the current solution, and then applies the run-cutting algorithm to construct duties 

to cover the broken schedule. The ‘adjacent’ duty of an inefficient duty was not defined in 

(Cavique et al., 1999). A frequency-based memory was used. The frequency values indicated 

the number of times that each trip was assigned to a single-spell duty. Two-spell duties 

containing trips with high frequencies, were evaluated favourably. This strategy provided 

‘difficult trips’ more chances to be combined with others at an early stage of the algorithm. 

Cavique et al (1999) claimed that this algorithm was very efficient at improving the initial 



  

solution after a few iterations, but thereafter it took a significant amount of time to find a better 

solution.  

 

Cavique et al (1999) also presents another Tabu Search algorithm called Run-ejection, which 

considers compound moves based on a subgraph ejection chain method. Ejection chain 

(Glover, 1996) is a type of approach in Tabu Search for creating compound moves. It results 

from a succession of steps in which an element is assigned to a new state, with the outcome of 

ejecting some other element from its current state. The ejected element is then assigned to a 

new state, in turn ejecting another element, and so forth, creating a chain of such operations. 

The Run-ejection algorithm first divides each block of vehicle work into feasible spells of work 

and creates the node set P containing all spells. It then links pairs of spells building all possible 

duties and forms the edge set D = {(pi, pj)| pi, pj∈P}. The matching graph G = (P, D) is 

therefore built. The left spells form single-spell duties, which are unmatched nodes. Since there 

is a large number of possible graphs G, a tabu search framework with compound moves is used 

to explore this enormous number of alternatives. The compound moves contain three 

elementary operations: ‘shift operation’ which shifts the endings of a spell to the right or to the 

left; ‘cut operation’ which cuts one spell into two spells; and ‘merge operation’ which combines 

two spells into a single spell. For each block divided as above, these three operations are 

considered in sequence and constitute an ejection chain. The matching graph is revised after 

each operation, during which some new feasible edges are built while the infeasible edges 

caused by the operation are removed. A feasible solution can be obtained at each step of the 

ejection chain process. 

 

The tabu search algorithms were designed as a part of a decision support system for the crew 

scheduling management of the Lisbon Underground. Cavique et al (1999) only evaluated the 

algorithms using data provided by Lisbon Underground. The computational results represent a 



  

reduction of up to 3.6% (in terms of number of duties) on the manual solutions produced by the 

Lisbon Underground planners, and the Run-ejection algorithm is superior to the Tabu-crew 

algorithm.  

 

These algorithms only construct one- or two-spell duties. The complexity will increase 

dramatically when duties with three or more spells are allowed. Duty costs are not considered, 

the objective is only to minimise the number of duties. Whereas these restrictions may be fine 

for Lisbon Underground, they may not be satisfactory for other bus or rail operations. 

 

2.4.2 Genetic Algorithms 

 

Genetic Algorithm (GA) is originated from Holland (1975) for solving hard combinatorial 

optimisation problems. It simulates the genetic evolution process to produce a ‘fit’ (high 

quality) solution, in which the fitter individuals have a better chance of survival while the 

weaker individuals are replaced by new generations. A chromosome is presented as a string of 

genes defining the characteristics of a solution to a problem. GA improves the current 

population by replacing weaker parents with fitter offsprings by the operation of selection, 

crossover and mutation.  

 

2.4.2.1 Kwan et al 

 

The approach presented in Kwan et al (1999a) and Kwan (1999) uses a Genetic Algorithm 

approach to schedule bus and train drivers. This work built on experience of the earlier attempt 

by Wren and Wren (1995). The main purpose of this approach is to replace the Branch and 

Bound method in the ILP process in TRACS II. The potential duties as well as the relaxed LP 

solution produced by TRACS II are used. The GA process only represents in the chromosomes 



  

preferred duties, whose fractional values in the relaxed LP solution generated by TRACS II are 

higher than a pre-defined constant, e.g. 0.2. The reason why only these duties are chosen as 

genes is that Kwan (1999) finds by experiments that an average of 74% of the duties in the best 

integer solutions obtained by TRACS II have fractional values higher than 0.2 in the 

corresponding relaxed solutions. These preferred duties form the backbone of a schedule. A 

solution set is completed by using a greedy repair technique.  

 

For some problems the approach has produced schedules as good as TRACS II solutions in 

terms of number of duties. In some other cases, one or two more duties are needed. For one 

large problem instance, which was decomposed by TRACS II at the time of the experiment, the 

number of duties is reduced, but the schedule is more expensive in terms of total cost. 

 

2.4.2.2 Li and Kwan 

 

Li and Kwan (2000) have presented a genetic algorithm with fuzzy comprehensive evaluation 

for driver scheduling. This research has the same objective as that of Kwan et al presented in 

the previous section. Both are intended to replace the Branch and Bound process in TRACS II. 

Similarly, Li and Kwan also make use of the potential duties and the LP relaxation solution 

produced by TRACS II. The difference is that a genetic algorithm is employed in this work to 

produce a near-optimal weight distribution amongst fuzzified criteria of evaluating individual 

potential duties instead of finding a schedule directly. The fuzzified criteria are expressed as 

five fuzzy membership functions, the weights of which are encoded as a chromosome. Each 

chromosome is a 30-bit string divided into six bits per weight. A greedy heuristic makes use of 

the fuzzy comprehensive evaluation to select duties to construct a schedule, the total cost of 

which is used to evaluate the fitness of the chromosome in the evolutionary process. The best 

schedule results as a by-product. 



  

 

This approach has been tested on eleven real-world problems and the results are comparable to 

the best known solutions.  

 

2.4.3 A Simulated Evolution algor ithm – L i and Kwan 

 

The latest research of Li and Kwan (2001) is on applying a Simulated Evolution (SE) algorithm 

for the driver scheduling problem modelled as a set covering problem. A SE algorithm is a 

general optimisation technique originally proposed by Kling and Banerjee (1987) based on 

analogy with the natural selection process in biological environments. The biological solution 

to the adaptation process is the evolution from one generation to the next one by eliminating 

inferior components and keeping superior ones for subsequent states. SE contains four main 

steps: initialisation, evaluation, selection and reconstruction. The first step initialises some 

parameters, e.g. stopping condition and a valid starting solution. The following three steps are 

applied iteratively. Evaluation calculates the goodness for each component of the current 

solution. Selection probabilistically selects components. Components with low goodness have a 

higher probability of being discarded. Reconstruction applies special heuristics to derive a new 

and complete solution from the former partial solution. Then the three steps are repeated until 

the stopping condition is reached. Throughout these iterations, the best solution is retained and 

finally returned as the final solution. 

  

In the SE algorithm for driver scheduling, the steps of Evaluation and Reconstruction have been 

fuzzified. Having generated an initial solution using a greedy method, the Evaluation step 

evaluates each duty in the solution based on its coverage status and five fuzzified criteria 

similar to those in their previous work (see Section 2.4.2.2). These criteria are represented by 

fuzzy membership functions, which would lead to a quantitative formulation of the structural 



  

goodness of this duty by the method of fuzzy comprehensive evaluation. The Reconstruction 

step applies a greed-based heuristic with the above derived fuzzy evaluation function to form a 

complete solution from a partial solution. 

 

This is the first time that the SE algorithm has been applied to the driver scheduling problem. 

The experimental results are better than the previous solutions generated by the Genetic 

Algorithm but generally not as good as the TRACS II solutions.  

 

2.4.4 An Ant System - Forsyth and Wren 

 

Forsyth and Wren (1997) have applied a combinatorial optimisation method called Ant System 

for driver scheduling. Ant system was developed by Dorigo et al (1996) from the study of the 

behaviour of ants searching for food.  The basic idea is that ants leave pheromone trails that can 

be detected by other ants. When ants set off to look for food, they move at random. Once food 

is found, the ant returns to the nest with highest probability along its own pheromone trail. The 

ants which find the shortest path are likely to return back soonest and their pheromone trails are 

therefore strongest. Subsequent ants are most likely to follow the shortest path because the ants 

have an in-built bias towards following strong pheromone trails. Therefore the shortest path will 

be strengthened more and more and it becomes the dominant trail. 

 

The ant system for driver scheduling defines a network of nodes based on the potential duties 

generated by TRACS II. Each ant creates a solution by traversing the network from a selected 

relief opportunity. Relief opportunities are selected by a probabilistic heuristic and then the ant 

chooses a duty (node) from the set that starts at the relief opportunity. This is repeated until all 

the work is covered. The quality of solution corresponds to the pheromone level. As the process 

progresses, the old trails slowly evaporate over time unless the trail is visited by more ants. The 



  

strongest pheromone trail represents the best solution. Unfortunately, this system does not 

generate schedules comparable to the TRACS II solutions. 

 

2.4.5 Overview of the meta-heuristic approaches 

 

The tabu search approach by Cavique et al was developed for a particular problem and was not 

able to compile duties with three or more spells. It might not be easily adaptable to different bus 

or rail operations. Amongst the other approaches reviewed, the evolutionary algorithms by 

Kwan et al and by Li and Kwan are promising; however they take advantage of TRACS II to 

obtain a large set of potential duties and the relaxed LP solution. They at best can only replace 

the final phase of TRACS II. Therefore they inherit parts of the drawback of the mathematical 

approach. As reported by Kwan et al (2000) and Kwan (1999), a pure genetic algorithm without 

using the relaxed LP solution did not produce acceptable solutions except for very small 

problems. 

 

2.5 Constraint programming approaches 

 

Constraint programming approaches for solving combinatorial optimisation problems are 

becoming widely used. They provide a powerful and easy system for modelling restrictions and 

use these restrictions to search for a solution. In recent years, attempts have been made to use 

them for solving driver scheduling problems. 

 

2.5.1 Layfield et al 

 

Layfield et al (1999) used constraint programming to produce a component that could be slot 

into the TRACS II system before building all potential duties. The aim of the work is to reduce 



  

the number of relief opportunities such that the problem size is cut down. This has been done by 

removing the relief opportunities that are unlikely to be used in good schedules. This program 

initially works on forming the morning part of the schedule imitating the manual scheduling 

process. The formed part of the schedule contains efficient handing over between drivers (good 

‘mealbreak chains’), in which Layfield et al suggested that potentially useful relief 

opportunities existed. Several morning schedules are constructed, then the relief opportunities 

that are not used in these schedules are removed. This process can also be applied to the 

evening part of the schedule. A constraint programming tool ILOG Solver is used to solve the 

problem formulated as a constraint satisfaction problem.  

 

2.5.2 Curtis et al 

 

Curtis et al (1999) presented a constraint programming approach for forming bus driver 

schedules. They modelled the bus driver scheduling problem as a constraint satisfaction 

problem, where variables were defined as pieces of work and the domain of each variable was 

the set of indices of the duties that covered the piece of work. They then solved this constraint 

satisfaction problem as a set partitioning problem. This work also benefited from the TRACS II 

duty generation phase to obtain a large set of potential duties. The relaxed LP solution 

generated by TRACS II was used as a ‘variable ordering’ guide. The approach was tested on 

relatively small problems and produced schedules with the same number of duties as those in 

TRACS II solutions. 

 

Later, Curtis et al (2000) provided an iterative repair process for constructing driver schedules. 

A local search method was used to solve the problem modelled as a constraint satisfaction 

problem. A comprehensive description is presented in Curtis (2000).  

 



  

2.5.3 Overview of the constraint programming approaches 

 

Two constraint programming approaches for bus driver scheduling have been reviewed in this 

section. Only the Curtis et al’s approach can produce full bus driver schedules. Their approach 

is heavily dependent of the use of the relaxed LP solutions to guide variable and value ordering. 

Therefore, it inherits the limitation of mathematical programming approaches on solving large 

problem instances. 

 

2.6 Recent transport scheduling packages 

 

The latest international conference on computer-aid scheduling of public transport was held in 

June 2000 in Berlin, Germany. During the conference, several transport scheduling packages 

were exhibited. The following are some examples: 

 

• GIST  

 

GIST (Dias et al., 2000; Lourenço et al., 2000) is a decision support system to assist the 

planning department of transportation companies or transit authorities in operations 

management. GIST is designed as a modular system, including the following processes: 

network information management, route information management, timetabling management, 

vehicle scheduling, crew scheduling, and crew rostering. GIST gives special attention to 

interactive faciliti es and friendly interfaces, combined with optimisation tools.  

 

GIST models the crew scheduling problem as a single objective linear programming problem to 

minimise the cost. Lourenço et al (2000) indicate that the bus companies involved in the GIST 

project have not been satisfied with the bus-driver module based on the single-objective LP, 



  

even though the optimal solution could be obtained. Therefore, Lourenço et al (2000) present a 

multi -objective meta-heuristic approach for the bus-driver scheduling problem. Lourenço’s 

approach aims to solve the driver scheduling problem in a user-friendly environment. The 

approach has been incorporated in GIST and can obtain many alternative solutions in a short 

time, but the detail has not been published yet. 

 

• Trapeze 

 

Trapeze (see http://www.trapezesoftware.com/index.html) is a commercial package of Trapeze 

Software Group, Canada. It provides transport software for public transport, dial-a-ride, student 

transport, medical transport, and other community transport services. It includes a function for 

scheduling public transport drivers. In the exhibition, a demonstration of driver scheduling was 

given. Trapeze produced a solution very quickly but the quality of the solution was difficult to 

judge and no information on the technique used was made available. 

 

• HASTUS 

 

HASTUS (see http://www.giro.ca/) is the result of over 20 years of ongoing research and 

development at GIRO, in collaboration with the University of Montreal’s Centre for Research 

on Transportation. The latest version of HASTUS, called HASTUS 5, offers an integrated transit 

database and a set of application modules, e.g., HASTUS-Vehicle, which generates vehicle 

timetables and vehicle schedules; HASTUS-Crew, which produces crew schedules, and 

HASTUS-Roster, which automatically generates multi-day operator assignment. The approach 

used in the crew scheduling component is described in (Rousseau and Desrochers, 1995) (see 

Section 2.3.4).  

 



  

2.7 Conclusions - generate-and-select approach vs. constructive 

approach 

 

This chapter has reviewed the driver scheduling approaches, which can be roughly divided into 

two groups: generate-and-select approach and constructive approach. 

 

The generate-and-select approach is at present the most successful for bus and train driver 

scheduling. It involves generating a set of legal potential duties from which a minimal and most 

efficient subset is selected. The generation process is problem-oriented while the selection 

process can be algorithm-oriented. After generating a set of duties, a solution may be found by 

a variety of selection methods, such as mathematical programming, evolutionary algorithms, 

constraint programming, etc. This makes the approach adaptable to different situations although 

the generation algorithm is likely to be adjusted depending on the situations. Most approaches 

used in present commercial systems such as TRACS II and HASTUS can be regarded or 

implicitly regarded as generate-and-select approaches. The recent researches of Kwan et al, Li 

and Kwan, and Curtis et al are also based on the generate-and-select approach (see Sections 2.4 

and 2.5). Unfortunately, the number of potential duties is usually enormous, which precludes 

the selection methods from finding an optimal solution in practical time. It is therefore 

inevitable that some restrictions have to be imposed to limit the set of potential duties to within 

an acceptable size or search depth, etc. Optimality is therefore compromised. Moreover, 

manipulation of the parameterised restrictions is usually hard for non-experienced users.  

 

In contrast, a constructive approach, which constructs an initial schedule and then refines it 

iteratively, has no need of artificial rules or explicit reduction in problem size. Obviously for 

constructive approaches, the fewer rules that are imposed on the validity of a driver duty, the 

easier it is to construct a solution. Moreover, the more relief opportunities that are provided in 



  

the blocks, the more chance it has to refine the schedule. Windows of relief opportunities 

provide ranges of opportunities for drivers to change over. The constructive approach could 

take benefit of windows of relief opportunities to refine schedules with more flexibility in 

recutting blocks. This opens up the opportunity of building a realistic model with a chance of 

obtaining ‘good’ solutions.  

 

The early heuristic systems (see Section 2.2) are based on the constructive approach. 

Unfortunately, the refinement functions, where one was used, were very weak. They relied on 

good initial schedules constructed based on human schedulers’ knowledge, such as in TRACS 

and RUCUS, and hoped to get a good final solution by simple refinement. This is the reason 

that the early heuristics tended to require much effort to be adapted to new situations. Also, 

extensive final manual adjustments to the schedule were needed. Possibly none of the early 

heuristics are still in use. Cavique et al’s tabu search approach (see Section 2.4.1) is of a 

constructive type. The refining algorithms Cavique et al used are more powerful than those in 

the early heuristic systems because a tabu search technique is applied, which can help escape 

from local optima. However, Cavique et al’s algorithms only construct duties with up to two 

spells, aim to minimise only the number of duties but not the cost, and are only evaluated for 

Lisbon Underground. The algorithms may not be suitable for most other practical situations.  

 

The early constructive approaches have been abandoned. Instead, the generate-and-select 

approach is at present the most successful for bus and train driver scheduling. However, the 

advantages of constructive approaches can overcome some limitations inherent in generate-and-

select approaches. Furthermore, the modern computing power and modern searching methods 

make good refining algorithms possible. Unfortunately, the solution quality of a constructive 

heuristic approach is difficult to guarantee.  

 



  

The research presented in this thesis will investigate a constructive approach to tackle the bus 

and train driver scheduling problem with windows of relief opportunities, which the generate-

and-select approach cannot handle. The initial research is on 2-opt heuristics presented in 

Chapter 3, based on which further research into a tabu search meta-heuristic approach is 

presented from Chapter 4 onwards. 

 



  

  

 

 

Chapter Three 

 

Neighbourhood Search Heuristics for 

Driver Scheduling 

___________________________________________________________ 

 

 

3.1 Introduction  

 

Many hard combinatorial optimisation problems in areas such as resource allocation, packing 

and scheduling have traditionally been tackled using mathematical programming methods 

(Reeves, 1996). However, the mathematical framework restricts the form of the objective 

function and/or the constraints. The assumptions in such models are often only approximately 

true. Heuristic methods are usually more flexible and may have no need of such assumptions. 

Capturing the salient features of the heuristic methods Rayward-Smith et al (1996, p.5) gives a 

definition as follows: 

 



  

‘‘A heuristic technique (or simply, a heuristic) is a method which seeks good (i.e. near-

optimal) solutions at a reasonable computational cost without being able to guarantee 

optimality, and possibly not feasibility. Unfortunately, it may not even be possible to 

state how close to optimality a particular heuristic solution is.’’ 

 

From this definition it seems that there are severe problems inherent in the use of heuristics. 

However many heuristics, especially modern heuristics, do produce high-quality solutions in 

practice. They can obtain near optimal solutions for many difficult real-world problems with 

reasonable computational effort. 

 

The driver scheduling problem is NP-hard (Wren, 1998). This research attempts to investigate 

two heuristic approaches for the driver scheduling problem. One is a 2-opt heuristic (Lin, 

1965), which is a simple Neighbourhood Search method. The other is a Tabu Search method 

(Glover and Laguna, 1997), which may be considered as an elaborate Neighbourhood Search 

method. A 2-opt heuristic approach is investigated in this chapter. A Tabu Search meta-

heuristic approach is investigated in Chapters 4 to 6. 

 

This chapter presents first the basic idea of the Neighbourhood Search methods, and then 

overviews some of the successful applications of 2-opt heuristics. Following this, a bus vehicle 

scheduling system using 2-opt heuristics is introduced while the complexity of the driver 

scheduling problem in applying the 2-opt heuristics is initially analysed. Some simplifications 

to the problem have been made and are presented in Section 3.4. The aims of the research are: 

 

• to investigate the applicability of 2-opt heuristics for driver scheduling; 

• to design the neighbourhoods, which are potentially suitable for the driver scheduling 

problem with WROs; 



  

• to design the methods for escaping from local optima; 

• to investigate the potential of the constructive heuristic approach. 

 

The proposed 2-opt driver scheduling approach is outlined in Section 3.5 while its major 

components are depicted in Sections 3.6 to 3.9. The implementation and some computational 

results are presented in Section 3.10 before concluding remarks are given at the end of this 

chapter. Some of the work in this chapter has been presented by Shen and Kwan (2000). 

 

3.2 Neighbourhood Search  

 

A fundamental concept of the heuristic methodology is that of neighbourhood search (NS) 

(Aarts and Lenstra, 1997). Roughly speaking, a neighbourhood N(x) of a solution x is a set of 

solutions that can be reached from x by an operation called a move. For example, in a 

sequencing problem, the interchange of two elements in a solution is a common move. If a 

solution x* is better than any other solutions in its neighbourhood N(x*), then x* is a local 

optimum with respect to this neighbourhood. Table 3.1 outlines a neighbourhood search 

method. 

Table 3.1 Neighbourhood Search Method 

Step 1 Initialisation (get an initial solution xnow, and record the current 

best solution by setting xbest = xnow). 

Step 2 Choose a solution xnext ∈N(xnow). If no solution qualifies to be 

xnext or other termination criteria apply, then the method stops. 

Step 3 Set xnow = xnext, and if xnow is better than the current best solution, 

set xbest = xnow. 

Go to Step 2. 



  

 

The definition of the best solution is normally dependent on the objective function (e.g. the cost 

of solution x), which is denoted by c(x). The choice criteria for selecting moves and the 

termination criteria for ending the search are given by some external prescriptions. By 

specifying these prescriptions in different ways, a variety of procedures can be generated.  

 

One of the most popular neighbourhood search methods for finding an approximation to the 

minimum cost is perhaps the descent method (Rayward-Smith et al., 1996). Descent Method 

only allows moves that improve the current solution. If no improving solutions can be found, 

the method terminates. Table 3.2 expresses the descent method by only showing Step 2 since 

Step 1 and 3 are the same as those in Table 3.1. 

Table 3.2 Descent Method 

Step 2 Choose a solution xnext ∈N(xnow) such that c(xnext ) < c(xnow) and 

terminate if no improving solutions can be found. 

 

There are two popular ways to choose the improving solution. One selects the first encountered 

improving solution, while the other selects the best improving solution among the 

neighbourhood of the current solution. The former is called Mild Descent Method, while the 

latter is a greedy method called Steepest Descent Method and its Step 2 is expressed in Table 

3.3 (Step 1 and Step 3 are the same as those in Table 3.1). 

Table 3.3 Steepest Descent Method 

Step 2 Choose a best solution xnext ∈ N(xnow) such that c(xnext ) ≤ c(x) for 

any x ∈N(xnow) and terminate if no such solution xnext exists. 

 

 



  

 

Obviously the best solution generated by the descent method is only guaranteed to be a local 

optimum. Therefore this is also often referred to as Local Search. In many combinatorial 

problems there are usually many local optima while there are only one or few global optima. 

The chance of a local optimum being a global optimum is usually very low. Various methods or 

strategies are designed in applications to continue the search before or after being trapped at 

local optima to find an improved solution, for example, the variable-depth search algorithms 

introduced by Kernighan and Lin (1970) for the graph partitioning problem and for the 

travelling salesman problem (Lin and Kernighan, 1973). Other recent methods, often labelled as 

meta-heuristics (Rayward-Smith et al, 1996; Aarts and Lenstra, 1997), are designed to escape 

from the local optima traps. Generally, they still do not guarantee an optimal solution nor 

performance bounds. However, they are widely used in solving combinatorial optimisation 

problems and give good quality results for a wide variety of problems in practice (see Glover et 

al, 1993; Aarts and Lenstra, 1997). 

 

3.3 2-opt heuristics 

 

A 2-opt heuristic (Lin, 1965) is a kind of Mild Descent neighbourhood search method, in which 

an improved solution is obtained by exchanging two distinct components in the current 

solution. 2-opt heuristic is very simple but effective. This is why 2-opt is one of the most 

popular heuristic methods for symmetric travelling salesman problems (TSP) (see Lin, 1965; 

Lin and Kernighan, 1973; Verhoeven, Aarts and Swinkels, 1995; Okada, Jaji and Fukushima, 

1998). 2-opt has also been successfully used in other combinatorial optimisation problems, such 

as graph partitioning (Kernighan and Lin, 1970) and bus vehicle scheduling (Wren, 1972; 

Smith and Wren, 1981; Kwan and Rahin, 1999). Amongst the successful applications, vehicle 

scheduling is in the area whose problem characteristics are closest to driver scheduling. Driver 



  

scheduling is generally more complex than vehicle scheduling. The common characteristics and 

the differences are first summarised in this section, then a successful application of 2-opt in 

vehicle scheduling is reviewed. The last part of this section will discuss the potential 

applicability of 2-opt for driver scheduling.  

 

3.3.1 Vehicle scheduling versus driver scheduling 

 

Both vehicle scheduling and driver scheduling are concerned with the allocation of a set of 

resources to timetabled activities in the public transport field.  

 

In public bus and train transport, vehicle scheduling is to allocate a vehicle to each journey in 

such a way that the total number of vehicles required operating all the journeys and the total 

vehicle cost are minimised. Each journey is a timetabled activity that starts and ends at 

specified times and locations. Vehicle scheduling involves making feasible and economic links 

amongst these activities. Similarly, driver scheduling is to allocate drivers to each vehicle in 

operation in such a way that the number of drivers and/or total cost are minimised. The pieces 

or spells of vehicle work are also timetabled activities that start and end at specified times and 

locations (i.e. ROs). 

 

In vehicle scheduling, the feasibility of a solution depends mainly on whether there is enough 

time for the vehicle to connect between two successive journeys. However, in driver 

scheduling, the feasibility of a solution depends on not only the connection time between two 

successive vehicles to be operated by a driver, but also a set of complex labour agreement rules 

that governs the legality of the driver duties.  

 

 



  

3.3.2 A bus vehicle scheduling system – BOOST 

 

Applying 2-opt heuristics, a bus vehicle scheduling system VAMPIRES (Wren, 1972; Smith 

and Wren, 1981) was developed using the traditional procedural approach and later was 

superseded by BOOST (Kwan and Rahin, 1999) embracing the object oriented paradigm. 

BOOST first forms a crude initial schedule using a target number of buses. The target is either 

estimated by an automatic process or specified by the user.  It is possible that some of the links 

in the initial schedule are time infeasible, i.e. the bus arrives later than it is due to depart. The 

schedule is then iteratively refined.  In each iteration, a selected pair of links is broken up and 

re-linked in the alternative way if the overall infeasibility and/or cost of the schedule are 

reduced.  At the end, BOOST returns either the lowest cost feasible solution it has found, or, if 

the target number of buses is too low, pointers to critical bus journeys that might be retimed to 

make the target bus number feasible. 

 

BOOST has been tested using data from various bus companies and used in some feasibility 

studies involving bus companies in the UK and Brazil. Wren and Kwan (1999) report an 

application for one UK bus company, whose main depot in the city centre has been relocated to 

a new site. They have satisfactorily used BOOST to re-schedule their entire new operation. 

 

3.3.3 2-opt heur istics for dr iver scheduling 

 

Corresponding to journeys in vehicle scheduling, spells in driver scheduling are timetabled 

activities and can be linked to form an initial schedule. Similar to BOOST, the initial schedule 

could be refined iteratively by breaking and re-linking pairs of links. It seems that the problem 

could be solved by this method. However, further contemplation of the method has revealed the 

following difficulties. 



  

• Costing method 

 

Using Neighbourhood Search, a large number of solutions have to be evaluated during 

the scheduling process. The costing methods for vehicle and driver scheduling are 

different.  

 

In vehicle scheduling, a link has an associated cost, which may be expressed as a 

function of idle time (i.e. waiting time of a vehicle after finishing a journey at a place 

and before making another journey from the place), dead run (i.e. non-passenger-

carrying journeys) or depot return (i.e. a time gap long enough to justify temporarily 

returning the vehicle to the depot before its next departure). The cost of operating the 

actual journeys in most practical situations may be regarded as constant, and therefore 

for the optimisation process the total cost of a vehicle schedule can be regarded as the 

sum of the cost of all the individual links. This costing method is called a link-based 

costing method, in which each link in a vehicle (a chain of links) has an independent 

cost and the sum of the individual costs constitutes the cost of the chain. A revised 

chain can be easily costed by re-costing only the revised or newly-added links involving 

only simple addition and subtraction. For instance, in BOOST the cost difference 

between a current schedule and the new schedule after a 2-opt exchange between two 

links is just the same as the cost difference between the two pairs of links before and 

after the exchange.  

 

However, in driver scheduling, it is generally not easy to assess precisely how much a 

link is contributing to optimality, and hence the cost of a duty. For example, all duties 

under eight hours might be paid the same. A simplification could be to treat all the links 

in the same duty as having the same cost as the whole duty. When any link in a duty is 



  

changed, the duty has been transformed, the cost of which must be re-calculated 

according to its constituent links and the labour agreement rules. This costing method is 

called a chain-based costing method, which is more complicated and time-consuming 

than the link-based costing method used in vehicle scheduling.  

 

Costing a duty (i.e. a chain of links) is complex. There are usually different types of 

duty (see duty types in Section 1.1.4), and each type has a corresponding set of rules 

governing the legality and payment of the duties. For example, the cost of a duty can be 

defined as the spreadover, or only the driving time, or the driving time plus partial 

unproductive working time.  

 

• Penalty costing 

 

In BOOST, a link is infeasible only when there is not enough time to connect two 

consecutive journeys. The quantitative penalty of a link is simply defined as the time 

lacking for connection, and thus the total penalty of a vehicle is defined as the sum of 

the penalties of all the individual links. The penalty of a feasible link is defined as zero. 

 

However, in driver scheduling, it cannot be determined whether an individual link is 

feasible without considering the whole duty. Hence, the chain-based costing method is 

applied to treat all the links in the same duty as having the same penalty as the whole 

duty. If a duty is legal according to labour agreement rules, the penalty of the duty is 

defined as zero; otherwise, a quantitative penalty should be assigned to the duty. To add 

penalty costs to infeasible duties, the infeasibility of duties must be classified according 

to labour agreement rules, and then each type of infeasibility is assigned a 

corresponding penalty function. The total penalty of a duty can be defined as the sum of 



  

all the individual penalty functions. Penalty costing a duty is non-trivial (see examples 

in Section 3.4 and Section 4.2.3). 

 

• Terminal ends 

 

In vehicle scheduling, journeys are continuous activities of fixed timing. Each journey 

starts and ends at fixed time. Given an initial schedule, an optimal schedule could be 

generated if an optimal set of links connecting all the journeys could be obtained by 

breaking the links and re-linking the journeys. However, in driver scheduling, the 

lengths of driving activities (i.e. spells) are determined by the optimisation process 

subject to the availability of relief opportunities. Given an initial schedule, the set of 

spells is fixed. Starting from a set of crudely determined spells, an optimal schedule 

could not be guaranteed even though an optimal combination of the spells could be 

obtained by breaking and re-building spell-links.  

 

An alternative way is to use pieces of vehicle work (pieces for short) instead of spells as 

timetabled activities and to form a driver schedule by linking all the pieces. A duty can 

therefore be presented as a sequence of piece-links. Each piece-link connects two 

consecutive pieces of work and each piece starts and ends at fixed times. However, the 

number of links would be greatly increased, and the evaluation of duties and links 

becomes more complex and time-consuming. Spells have to be determined whenever a 

duty is formed. 

 

To conclude, the BOOST system is a basis for the initial development of the 2-opt heuristic 

approach for driver scheduling, but extensive adaptation is expected. The driver scheduling 

problem is different from the vehicle scheduling problem and is generally more complex.  



  

3.4 Simplified driver scheduling problem 

 

The driver scheduling problem is a hard combinatorial problem. Compiling an effective driver 

schedule is very complex and difficult since there are many rules governing the legality of 

duties and the partition of blocks of vehicle work is restricted by the availability of relief 

opportunities.  

 

To make the driver scheduling problem simpler to solve, as a starting point, we simplify the 

problem by only allowing the compilation of duties with up to two-spells according to a 

reduced set of labour agreement rules. 

 

• Compile only the duties containing up to two-spells 

 

The driver scheduling problem, which allows duties with three or more spells is much more 

complicated than only allowing duties with up to two-spells. In this initial research, we limit the 

number of spells in a duty up to two. This simplification has practical significance and was 

applied in most of the early heuristic driver scheduling approaches and in the Cavique et al’s 

work reviewed in Section 2.4.1. The reason may be that two-spell duties are practically 

preferable, especially in bus operations. Moreover, some organisations only require duties with 

one or two spells, e.g. the Lisbon Underground situation reported by Cavique et al (1999).  

 

• Enforce only some essential labour agreement rules on duties 

 

The common labour agreement rules for both bus and train drivers have been outlined in 

Section 1.1.5. These rules governing the legality of a driver duty affect profoundly the 

complexity of duty compilation.  For constructive approaches, the more rules that are imposed 



  

on the validity of a duty, the more difficult it is to construct a solution. Hence, in this initial 

research, we simplify the problem by enforcing only the following rules, which would meet the 

essential requirements of most bus operators in the UK. 

 

1) The total spreadover of a duty must be within a specified range. 

2) The total daily working time of a duty must be limited to a certain number of hours. 

3) The break between the two spells of work in a straight duty must be long enough for a 

driver to have a meal and to travel to start the next piece of work, while the break in the 

middle of a split duty must be longer than a certain amount of time.  

4) There is a maximum length for a spell with or without a stop, and a maximum length for a 

stretch. 

5) For split duties, the starting time must fall within a specified period, and they must finish 

before a specified time. They also have an earliest sign on and a latest sign off time. 

 

If a duty obeys all the above rules, it is called a valid duty or a feasible duty; otherwise an 

invalid duty or an infeasible duty. 

 

• Duty types 

 

As discussed in Section 1.1.4, duties can be classified into two principal types: split duties and 

straight duties. Straight duties can be further divided into different types, e.g. early duties, 

middle duties, late duties. Some straight duties contain mealbreaks while the others do not. In 

this initial research, we classify duties into three types: split duties (having a long spreadover 

with a long break in the middle), straight duties (having a mealbreak in the middle), and non-

mealbreak duties (i.e. straight duties with no mealbreak). Since only the duties with up to two-

spells are allowed, both split duties and straight duties contain two spells with a mealbreak in 



  

between, while the non-mealbreak duties may contain either one spell or two spells with a join-

up in between. This classification can meet the requirement of many operators in the UK. 

 

• Cost function and penalty function 

 

Every duty has a corresponding payment, which is equal to the working time of the duty, and is 

called a wage cost or simply cost. Whether and how much non-driving work is counted as part 

of drivers’ working time depends on operators, and the way to calculate the working time varies 

dependent on the type of the duty. The following gives an example of the cost functions: 

      Wage cost of a straight duty = spreadover  

      Wage cost of a split duty      = sign-on-at-depot + start spell + end spell + sign-off-at-depot 

                                                     + sign-off before the long break + sign-on after the long break 

      Wage cost of a non-mealbreak duty = spreadover  

 

Some operators stipulate a minimum payment for duties. If the counted working time of a duty 

is less than the specified minimum payment, the cost of the duty is assigned the minimum 

payment. 

 

Usually, drivers prefer straight duties to split duties and operators do not prefer non-mealbreak 

duties. We treat the preferences as soft rules, which are catered for by means of some weighted 

costs to be minimised. For example, in the optimisation process, the cost of a split duty can be 

assigned twice its wage cost, the cost of a non-mealbreak duty can be assigned five times its 

wage cost, while the cost of a straight duty is assigned its wage cost. 

 

If a duty is invalid, a quantitative penalty should be calculated to reflect how much the duty 

violates the labour agreement rules. Each rule has a corresponding kind of penalty, which is 



  

defined as the difference between the actual time allowance and the due limit. If the difference 

is negative, it means this kind of rule is satisfied and the penalty is defined as zero. The 

following provides the formulae for calculating the penalty of a duty. 

 

The penalties for an invalid straight duty: 

Penalty-max-spreadover       = spreadover – maximum spreadover 

Penalty-working-time            = working time – maximum working time 

Penalty-mealbreak                = minimum mealbreak – mealbreak 

Penalty-stretch                     = stretch – maximum stretch   

 

The penalties for an invalid split duty: 

Penalty-max-spreadover      = spreadover – maximum spreadover 

Penalty-min-spreadover       = minimum spreadover - spreadover 

Penalty-working-time           = working time – maximum working time 

Penalty-mealbreak                = minimum mealbreak – mealbreak 

Penalty-stretch                     = stretch – maximum stretch   

Penalty-earliest-start-on     = earliest start on time – start on time 

Penalty-latest-start-on        = start on time – latest start on time 

Penalty-latest-finish-off      = finish off time – latest finish off time 

Penalty-earliest-sign-on     = earliest sign on time – sign on time 

Penalty-latest-sign-off        = sign off time – latest sign off time 

 

The penalties for an invalid non-mealbreak duty: 

Penalty-max-spreadover       = spreadover – maximum spreadover 

Penalty-working-time            = working time – maximum working time 

 



  

 

The total penalty of a duty is defined as the sum of the individual penalties. Validity of spells is 

enforced all the time.  

 

3.5 Outline of the 2-opt driver scheduling approach 

 

The basic idea of 2-opt heuristics is simple but it is non-trivial to design an effective application 

of the approach to solve a combinatorial optimisation problem such as the driver scheduling 

problem. A series of intermediate solutions are created and destroyed. A good algorithm design 

is necessary to prevent it from endless iterations. Many alternative designs are possible. Some 

strategies for escaping from the local optima are also necessary. This section presents a model 

and outlines a solution method to the simplified driver scheduling problem based on 2-opt 

heuristics.  

 

3.5.1 Modelling driver activities and duty 

 

Blocks with relief opportunities provide the basis for forming driver activities. Spells (not 

pieces) are essential activities in a driver duty. Links that connect successive spells are artificial 

driver activities and are called spell-links (links for short when the concept is unambiguous). 

Since there are at most two spells in a duty, whenever a pair of spells is linked a duty is formed. 

Meanwhile, a sign-on activity is inserted before the start spell and a sign-off activity is added 

after an end spell. Only spell and spell-link activities are explicitly modelled as driver activities. 

The validity and type of a link is treated as the same as those of the duty it belongs to. Figure 

3.1 shows a hierarchical classification of driver activities. 
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Each driver activity is associated with a duty. A duty consists of two spells (a start-spell and an 

end-spell) and a link in between (a one-spell duty is presented as a spell linked with a dummy 

spell, the work content of which is nil) while every spell has an implicitly embedded sign-on or 

sign-off activity. Figure 3.2 illustrates such a duty. 

 
 
 
      
 

 

 

3.5.2 General scheme of the 2-opt driver scheduling approach 

 

An initial solution is the starting point of a neighbourhood search method. A good initial 

solution might be helpful, and therefore some heuristic approaches require a feasible initial 

solution. However, an algorithm that ensures a very good initial schedule would itself be 

complex and time-consuming. We use a very simple method to obtain a crude initial schedule. 

The initial schedule is required to cover all the vehicle work, but some duties may be invalid 

Figure 3.1: Hierarchy of driver activities 

Figure 3.2: Illustration of a duty with two spells 

(Sign on) + Start-spell Spell-Link End-spell + (sign off) 



  

because either there is not sufficient time for the driver to connect between two successive 

spells of work or the duty has violated some labour agreement rules. Then the initial schedule is 

iteratively improved in a ‘mechanical’ way. In the 2 -opt heuristics, the refining process consists 

of two phases: minimise-penalty and minimise-cost. The phase of minimise-penalty is built on 

three major component processes: swapping-link, replacing-ARO and adding-duty. The phase 

of minimise-cost is built on the two processes: swapping-link and replacing-ARO. Each of these 

component processes consists of several operations, which together constitute multi-

neighbourhood structures in the 2-opt driver scheduling approach. Figure 3.3 illustrates the 

general scheme of the approach. Further description is given in the following sections. 

 

3.6 Formation of an initial schedule 

 

A crude initial schedule is quickly constructed by the following steps. 

 

a) Estimate a tight target number of duties N simply by the following formula: 

N = V / ( S – A – B – C ) 

where V denotes the total vehicle work. S denotes the maximum length of spreadover for a 

normal duty stipulated in the labour agreement rules. A and B denote the time allowances 

for drivers to sign on and sign off at depot respectively. C denotes the specified minimum 

meal break. 

 

This formula guarantees that the target number is not higher than that achievable. The 

reason such a low target number is used is that the optimal number of duties could not be 

known in advance. The low target leaves room for the refining process to improve the 

solution by adding duties incrementally. 
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Figure 3.3: The major functional components of the 2-opt heuristics  

Read Input Files 

Output Schedule 

Retiming 

 

 

Adding one duty 

                                                                                                     
Swapping for reducing penalty 

 Swapping for creating favourable 
           conditions for improvement 

Replacing AROs 

Retiming 

                                                                                                      

  
Swapping for reducing cost 

Swapping for creating favourable 
           conditions for improvement 

 

Replacing AROs 

Estimate the target number of duties 

Form Spells  (Yield initial AROs) 

Form initial schedule 

Begin 

End 



  

b) Partition blocks into a set of spells. 

 

The number of spells is defined to be twice the target number of duties since only duties 

with up to two-spells are considered. The average spell length can be calculated by 

dividing the total vehicle work by the number of spells. According to the average spell 

length, the blocks are partitioned into a set of spells without overlapping work. To ensure 

all the spells are valid according to labour agreement rules and together cover all the 

vehicle work, the number of spells required is allowed to be increased when necessary.  

 

c) Sort the spells by starting time. 

 

d) Form duties 

 

Couple the spells in a simple manner to form driver duties such that the first spell has its 

starting time earlier than the starting time of the succeeding spell, and an arbitrary depot 

(the first depot in the data file) is assigned to each duty for the driver to sign on and sign 

off. Some duties may be time infeasible or violate some labour agreement rules. 

 

If the number of spells is odd, generate the last duty by linking the remaining uncoupled 

spell to a dummy spell, the work content of which is nil. In this way, every duty can be 

treated as a two-spell duty. 

 

When a duty is formed, a sign-on activity is inserted before the start spell, and an end spell 

is followed by a sign-off activity. Once a duty is formed, a spell-link between the two 

spells (including any dummy spell) of the duty is established. The spell-links are generated 

and deleted dynamically during the scheduling process.  



  

 

The above method is very simple. An initial schedule can be quickly formed without 

considering much specific domain knowledge. An initial schedule can be constructed in many 

ways, such as those developed in the early heuristics. However, they are domain knowledge 

dependent and not readily portable to different transport operators, although the quality of the 

initial schedule may be better. The initial schedule constructed by the above method is very 

likely to contain infeasible duties. Therefore, in order to get rid of the infeasibility and to 

minimise the total cost of the schedule, a series of strategies is devised and included in the 

following functions: swapping-link, replacing-ARO and adding-duty.  

 

3.7 Swapping links 

 

The swapping-link process aims to improve the schedule by exchanging the links while the 

spells remain unchanged. 2-opt swapping-link to be presented in Section 3.7.1 plays a very 

important role in the refining process, which is driven by a set of link-swapping rules (described 

in Section 3.7.2). Link-swapping rules decide whether the selected links should be swapped 

during the scheduling process, and are classified into two groups: one is essential to improve 

the solution while the other is to help escape from local optima. Experiments on testing the 

swapping-link process are presented in Section 3.7.3. To improve the performance, some k-opt 

swapping-link processes have also been designed in Section 3.7.4. 

 

3.7.1 2-opt swapping links 

 

2-opt swapping-link constitutes the major part of the 2-opt heuristic approach, the principle of 

which is depicted as follows: 



  

 

A schedule has a set of spells S and a set of spell-links D. A spell-link in D connects a pair of 

spells in S, which can be denoted as: D = S^S = { s1^s2: s1 and s2 are in S}. The 2-opt heuristics 

select from D two distinct spell-links di and dj, where di = s1^s2 , dj = s3^s4, s1, s2, s3, s4 in S.  It 

then does a swapping trial by replacing the current two links with new links 'id = s1^s4 and 

'jd =s3^s2. A swap is allowed if some link-swapping rule is satisfied. Figure 3.4 illustrates the 

operation, where the depot for signing-on and signing-off in a duty must be the same. After 

swapping the links, two new duties are formed. The best depot for the driver to sign on and sign 

off is determined if more than one depot is used. 
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The above illustrates a typical scenario in applying the 2-opt method. However, in this way a 

start-spell can never become an end-spell while an end-spell can never become a start-spell. To 

ensure that any possible swapping scenarios are catered for, the 2-opt method is extended as 

illustrated in Figures 3.5-3.7. After swapping links, new best depots are determined for the new 

duties. The sign-on and sign-off activities are re-computed for the start-spell and end-spell 

respectively. 
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Figure 3.4: Illustration of 2-opt swapping-link (standard) 

Figure 3.5: Illustration of 2-opt swapping-link (a) 
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In an initial schedule, every duty contains two spells, except one may contain only one spell 

with a dummy spell. Spells remain the same during the swapping process but may be reformed 

by a process to be discussed in Section 3.8, which can give rise to more single-spell duties. 

After swapping between two single-spell duties, a duty may result in having two dummy spells. 

This means the number of duties may be reduced during the swapping process. 

 

3.7.2 Link swapping rules 

 

Link-swapping rules are developed to decide whether the selected links should be swapped 

during the scheduling process. The rules can be divided into two groups, one of which is for 

improving the current schedule; the other is for creating favourable conditions for 

improvement, which helps escape from the local optima. 

Figure 3.6: Illustration of 2-opt swapping-link (b) 

Figure 3.7: Illustration of 2-opt swapping-link (c) 

di 

dj 

Spell 2 Spell 1 

'di  
'jd  

Spell 

3 

Spell 

4 

Spell 3 Spell 4 

di 

dj 

Spell 2 Spell 1 

'jd
 'id  



  

 

3.7.2.1 Swapping for improving the current schedule 

 

Swapping-link is applied in both refining phases: minimise-penalty and minimise-cost for 

reducing penalty or cost respectively. 

 

In the phase of minimise-penalty, swapping trials are carried out between two links, one of 

which is invalid. The links are swapped if the total penalty is reduced, and amongst the four 

ways of swapping-link the one that reduces total penalty most is chosen. Similarly, in the phase 

of minimise-cost, a swap is allowed if it reduces total cost and is the best among the four ways 

of swapping-link. 

 

Obviously the best solution obtained, when the swapping-link process cannot lead to any 

improvement, is only a local optimum, which may not be the global optimum. Special 

swapping-link strategies are described in the next section, which may help escape from local 

optima. 

 

3.7.2.2 Swapping for creating favourable conditions for improvement 

 

When no improving solution can be found, the rules called wideBR/EvenBR, same-cost-

wideBR/same-cost-EvenBR and wideSO/EvenSO, same-cost-wideSO/same-cost-EvenSO are 

used to help escape from local optima. 

 

WideBR and EventBR allow a swap between any two valid links if the new generated links are 

still valid and have respectively a less even or a more even distribution of link lengths 

compared to before the swap. The WideBR and EvenBR swapping criteria, instead of 



  

decreasing the total penalty, are intended to create more opportunities for reducing penalty 

later. We shall explain this by reference to Figure 3.8. 

 

After the swap of widening break, we may form a duty D1 with a large gap between spell 1 and 

spell 2. Suppose that there is an invalid duty D2 consisting of two spells: spell 3 and spell 4. The 

swapping for reducing penalty operation may form the two new duties D'1 and D'2. 

 
                                                             
     D1        depot                                                                                                                  
 
      
     D2                               depot                                                    
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The EvenBR rule may help in forming preferable links for drivers. Both WidenBR and EvenBR 

can also disturb the current schedule and further make the swapping for reducing penalty 

operation work. 

 

Similarly, same-cost-WideBR and same-cost-EvenBR are intended to create more opportunities 

for reducing total cost. They allow a swap between two valid links if the new links are valid, 

cost the same or less, and have respectively a less or more even distribution of link lengths. 

Figure 3.8: Illustration of the possible effect of the WideBR swap 
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Having the same purpose as WideBR and EvenBR, the rules WideSO and EvenSO allow a swap 

between any two valid links if the new generated links are valid and have respectively a less or 

more even distribution of spreadover compared to before the swap. WideSO makes some duties 

with longer spreadover while making the others with shorter spreadover. The duties with a long 

spreadover are usually regarded as good duties while the duties with a short spreadover have 

some chance of being merged or to improve other duties by swapping spell-links. Similarly, 

same-cost-WideSO and same-cost-EvenSO are intended for assisting in reducing total cost by 

adjusting the distribution of spreadover of any two selected duties without increasing the total 

cost.  

 

Other rules such as widening/narrowing the gap of the length of driving work or mealbreak can 

be applied in a similar way. The more rules that are applied, the more opportunities it has to 

improve the solution, however, the more computation is spent.  

 

3.7.3 Experiments on 2-opt swapping 

 

The 2-opt heuristic approach for driver scheduling has been implemented and tested. Two data 

sets were used at this stage. One problem was from the former Greater Manchester Buses 

(GMB), which contained 21 blocks and had a total bus working time of 227 hours and 52 

minutes. The other was from Merseyside Transport (MTLD), which had a total working time of 

508 hours and 35 minutes undertaken by 37 buses. The TRACS II system (in the latest version 

at the time of the experiments) was used for benchmarking. Throughout this chapter, TRACS II 

was run not allowing duties with three and four spells to be generated. 

 



  

During the 2-opt swapping process, the spells never change. Therefore, the experiments were 

designed as follows. First, take the spells in the TRACS II solutions as the set of spells for 

forming an initial schedule; then apply the 2-opt swapping method to refine the initial schedule. 

The expectation is to obtain schedules as good as the TRACS II solutions, which were believed 

to be the best solutions to the test problems. Unfortunately, the results for both problems were 

not, although comparable to, as good as expected. More powerful swapping functions were 

needed, which led to the 3-opt, 4-opt, and even 5-opt swapping functions designed in the next 

section. 

 

During the experiments, it was also found that the swapping to create favourable conditions was 

very helpful in improving the solution in the first few iterations, but thereafter it became 

ineffective. Another finding was that when several types of swapping-rule for creating 

favourable conditions were used, only the first one or two could profit. Moreover, each 

additional swapping rule added increased the computational time considerably. However, later 

experiments showed that the application of some of the rules was critical to some problems. We 

cannot simply omit one of them. A compromise was made by ensuring flexible selection of the 

rules for creating favourable conditions. Users can choose the rules to be used, the rules can 

also be chosen automatically according to the size of problems. For example, when the 

estimated target number of duties is less than 50, all the link-swapping rules are used, otherwise 

only two rules WideBR/EvenBR and WideSO/EvenSO are used to create swapping 

opportunities.  

 

3.7.4 K-opt swapping links 

 

To enhance performance, k-opt (k = 3, 4, or 5) methods are designed, which do swapping trials 

among k links. They are illustrated in Figures 3.9-3.11, where a two-direction arrow denotes a 



  

link with two possibilities, for example in the duty D1, the link could be either the spell s1 

followed by the spell s2 or s2 followed by s1 depending on the starting times of the spells. The 

spell that starts the work earlier becomes the start-spell. The dotted arrows denote the new links 

to be generated. 
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Figure 3.9: Illustration of 3-opt swapping-link 

Figure 3.10: Illustration of 4-opt swapping-link 
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Applying the k-opt swapping functions, the experiments described in the previous section were 

carried out again and the same results as the TRACS II solutions were obtained. It could be 

concluded that near-optimal solutions would be achievable given a good set of spells (or AROs) 

with intensive swapping algorithms. 

 

A good swapping process is very important. However, it would be extremely hard, if at all 

possible, to determine a good set of spells from raw data. Working from a crudely derived set of 

spells, an optimal solution to the problem could not be guaranteed even if an optimal 

combination of the spells could be obtained by swapping operations.  Considering the whole 

scheduling process, it is more crucial to attain high computational efficiency. The 3-opt 

swapping method is therefore only used to reduce total penalty, and is optional because it takes 

a long computational time. The 4-opt and 5-opt swapping methods took a considerably long 

Figure 3.11: Illustration of 5-opt swapping-link 
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time and were only tested for very small problems in which the numbers of duties was less than 

15. Due to the low computational efficiency, the 4-opt and 5-opt swapping-link processes were 

abandoned. 

 

3.7.5 Summary 

 

Each swap in the 2-opt or k-opt methods causes two or k links to be removed and replaced by 

newly generated links while the spells remain the same. Once a link is generated, a new duty is 

formed and the best depot is assigned. During the swapping process, it is possible to reduce the 

total number of duties. The whole swapping process terminates when no more improvement can 

be made.  

 

3.8 Replacing AROs 

 

As already mentioned, during the swapping-link process the spells are not changed, i.e. the 

AROs are fixed. The selection of AROs depends on the first block cutting, which may be very 

rough. It is therefore necessary to revise the selection of AROs, which leads to the function 

replacing-ARO. Replacing-ARO attempts to use alternative relief opportunities to replace some 

current AROs in order to reduce total penalty or total cost.  

 

3.8.1 Principle of replacing AROs 

 

The principle of replacing-ARO is explained by reference to the example illustrated in Figure 

3.12.   

 



  

We consider replacing the ARO a in the duty Di in Figure 3.12(a). Suppose that r is the nearest 

next relief opportunity to a, and the replacement of a with r can reduce the penalty or the cost 

of Di. After the replacement, the piece of work between a and r is left unassigned to any driver. 

To solve this problem, another duty 'iD also using a, called the relevant duty, must be found and 

extended to cover the unassigned piece of work. Figure 4.12(b) shows the new duties after the 

replacement. Whenever a new duty is generated, a best depot is selected accordingly.  
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                                                                                   a     r 
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Note that replacing-ARO might reduce the number of spells. Suppose the start-spell in Di in 

Figure 4.12(a) contains only one piece of work, i.e. r is another ARO. After the operation, the 

entire work between a and r is moved to the duty 'iD  and the duty Di only contains the end-

spell. A one-spell duty is therefore generated while the start-spell becomes a dummy spell. If 

 Figure 3.12: Illustration of replacing AROs  



  

replacing-ARO is operated on a non-dummy spell in a one-spell duty that contains only one 

piece of work, the duty will be removed after the operation. 

 

3.8.2 Strategies of replacing AROs 

 

A series of strategies are designed to replace AROs efficiently. In the phase of minimise-cost, 

each ARO is considered for replacing ARO. A replacement is allowed when total cost is 

reduced. However, in the phase of minimise-penalty, attempting replacement of each ARO is 

not efficient. An obvious reason is that the replacement of an ARO related to two valid duties 

would not reduce any infeasibility. Hence we stipulate that the replacement of AROs is limited 

to invalid links and their relevant links. The efficiency of replacing AROs to reduce 

infeasibility is also affected by how the replacement is conducted. Before addressing this, we 

need to identify the types of infeasibility, which are listed below. 

 

1. Invalid Spreadover,    the spreadover is out of the range of spreadover. 

2. Invalid Sign-on,          the sign-on is earlier or later than the time stipulated. 

3. Invalid Sign-off,          the sign-off is earlier or later than the time stipulated. 

4. Invalid Start-Stretch,  the start-stretch is longer than the limit. 

5. Invalid End-Stretch,   the end-stretch is longer than the limit.  

6. Invalid Mealbreak,    for a two-spell straight link, there is insufficient time for the 

driver to have a meal break and then to make the connection between two successive 

spells of work; for a split duty, the gap between the two spells is less than the minimum 

long mealbreak stipulated.  

7. Invalid Working-time, the total counted working time exceeds the maximum daily   

working time stipulated.  

 



  

We define a relevant ARO to be an ARO whose replacement may reduce infeasibility. Different 

types of infeasibility correspond to different relevant AROs, which are represented by black 

circles in Figure 3.13. Other unclassified infeasibility is grouped as others, where all the AROs 

in a duty are regarded as relevant AROs.  

 

                                                                    a1         a2         a3           a4 

1. Invalid Spreadover,         depot                                                                depot. 

2. Invalid Sign on/off,          depot                                                                depot. 

3. Invalid Start-Stretch,       depot                                                                depot. 

4. Invalid End-Stretch,        depot                                                                depot. 

5. Invalid Mealbreak,          depot                                                                depot. 

6. Invalid Working-time,      depot                                                                depot. 

7. Others                              depot                                                                depot. 

 

For each invalid link, only the corresponding relevant AROs are considered in the replacing-

ARO operation in order to save computational time. It is suggested that the operation is carried 

out on all the invalid links in the order as listed in Figure 3.13 rather than randomly, i.e., work 

first on all the links with invalid spreadover, then on those with invalid sign on/off, and so on. 

This order is based on the following reasons. 

 

Limit on the spreadover of a duty is related to the duty’s type. Extending or shortening the 

spreadover of an invalid duty might make its type change so that it would become valid 

according to the rules associated with the new type. Moreover, it is hoped that an invalid duty 

could be improved or made valid by replacing as few AROs as possible. Replacing-ARO 

operation is therefore done first on the duties with spreadover infeasibility, and the last two 

Figure 3.13: Types of invalid duties and the relevant AROs for replacement 



  

types of infeasibility are assigned a low priority because they consist of more relevant AROs. 

Below is the replacing-ARO process depicted by an example for the first case of where invalid 

spreadover is first considered. 

 

Take a duty and check if the spreadover is invalid. If not, take another one; otherwise do 

replacing-ARO trials as follows by reference to Figure 3.13. 

• First, consider a1 if it is not the first relief opportunity in the block. Replace a1 with the next 

earlier relief opportunity and find the relevant duty and let it cover the left piece of work. 

Two new duties are temporarily constructed.  

• Then, consider a4 similarly if it is not the last relief opportunity in the block.  

The replacement that leads to greater improvement is selected. If none of them refines the 

schedule, take another duty until all the duties have been tried.  

 

In the 2-opt heuristic approach, every link with its relevant links, if they exist, is considered one 

by one to do the replacing-ARO operation.  

 

The replacing-ARO method could be extended to apply recursively the operation on the 

relevant duty if it is made invalid by the operation. However, a duty usually has four AROs, 

each of which may have a corresponding relevant duty, making the alternative method 

complicated. 

 

Figure 3.14 provides an illustration of performing replacing-ARO on three links, where three 

duties Di, Dj, Dk, are involved. A thick line denotes an original spell while a thick dotted line 

denotes a new spell generated after replacing AROs. Such a replacing-ARO operation is 

allowed if the total penalty or the total cost is reduced.  
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To develop alternative strategies for replacing ARO requires a great deal of research, and it is 

beyond the purpose of this initial research, which aims to investigate the potential of the 2-opt 

heuristics to driver scheduling and to gain some experience for the future research.   

 

3.8.3 Hybrid of swapping links and replacing AROs 

 

In the 2-opt driver scheduling approach, replacing-ARO is iteratively applied to improve the 

solution after the swapping process cannot lead to any improvement. When replacing-ARO 

fails to improve the solution further, the swapping process is recalled. The swapping and 

replacing-ARO operations are employed in turn until none of them makes any further 

improvement. 

 

Each swapping-link and replacing-ARO process is capable of refining the solution and 

therefore has an impact on the final solution. However, how an individual operation affects the 

final solution cannot be predicted. In the 2-opt heuristics, several neighbourhood structures such 

as those illustrated in Figures 3.4-3.7, 3.9-3.12, and 3.14 are applied. It is impossible to prove 

that any particular scheme of organising them would be optimal or better than another one. We 

Figure 3.14: Illustration of replacing AROs on three links 



  

can choose to execute swapping-link and replacing-ARO in turn as is done currently. We could 

also choose other schemes such as a hybrid of swapping-link and replacing-ARO described 

below. 

 

Take a pair of links and do swapping trials first. If the swapping trial is not successful, try 

replacing AROs on each link. If replacing-ARO is successful, do swapping-link trials again. 

This can be called a compound swapping operation incorporating replacing-ARO operation. 

 

Obviously it is very hard to consider all possible algorithmic design combinations. The above 

discussion has highlighted the difficulty of designing a structure or a strategy in the 2-opt 

heuristics. 

 

3.9 Adding duties 

 

So far, the number of duties used in the series of refining schedules does not exceed the target 

number, which is set deliberately low and may be lower than achievable. The best schedule 

obtained may still be infeasible. To obtain a feasible solution, more duties may need to be 

introduced. A process called adding-duty is devised in which, 

• One duty is added at a time when the swapping-link and replacing-ARO processes cannot 

lead to any improvement; 

• Some work from the current duties is taken out to form the extra duty, such that the overall 

total penalty is reduced. 

 

Two ways of adding a duty are developed: two-link-adding and one-link-adding. Two-link-

adding handles two invalid duties at a time. If two-link-adding fails, one-link-adding is applied, 

which deals with one invalid link at a time. Figure 3.15 shows an example of two-link-adding. 
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Figure 3.15 shows two invalid duties (a) and (b). Suppose both of them are spreadover 

infeasible and each duty may be shortened by removing one piece of work at the beginning or 

at the end. A new duty (c) is allowed to be added to cover the removed work if total penalty is 

reduced.  

 

One-link-adding is to improve an invalid duty in the following two ways. In the first way, one 

or more consecutive pieces of work are first cut from the invalid duty such that the infeasibility 

of the duty is removed or reduced, and then the cut work is linked with a piece of work cut from 

a valid duty such that the total penalty is reduced. The other way is to separate the invalid duty 

into two duties such that the total penalty is decreased.  

 

As in the swapping-link and replacing-ARO processes, there may be other possible methods for 

adding duties. However, the method described above seems to be adequate. 

Figure 3.15: Example of two-link-adding-duty 



  

3.10 Implementation and results 

 

A computer program has been developed to implement the 2-opt heuristic approach using 

Borland C++ (Version 5.02). Many experiments and tests have been undertaken. Results for 

five of the test problems are presented below. For all the test problems, TRACS II was run by 

disallowing the generation of the duties with three and more spells. During such runs, some 

vehicle work remained uncovered in the duty generation process according to the labour 

agreement rules. The uncovered pieces of work were removed, and then the problems were 

solved by TRACS II and the 2-opt heuristic approach under the same conditions.  

 

During a real-life problem solution process, TRACS II may encounter the situation, in which 

some pieces of work remain uncovered according to the labour rule parameters, amongst which 

some are filtering rules added by TRACS II to prevent the set of potential duties generated from 

being prohibitively large. It is not allowed to simply remove the uncovered pieces of work. The 

usual practice is to adjust the parameters to cover all the pieces of work. This may be 

unachievable or may be achieved by many adjustments. Another practice is to make a special 

run, after the previous runs, to generate duties covering specially the uncovered pieces of work 

based on a set of relaxed rule parameters. It may need several special runs to cover all pieces of 

work, and finally the duties generated by all the runs are merged. The 2-opt heuristic approach 

does not have such a problem; it produces a solution in one go.  

 

3.10.1 Greater Manchester Buses 

 

A driver scheduling problem from the former Greater Manchester Buses (GMB) was chosen as 

a test problem. This problem contained 21 blocks and had a total bus working time of 227 hours 

and 52 minutes. The original problem allowed three and more spell duties. After switching off 



  

the generation of three and four spell duties, some work was uncovered. The modified GMB 

problem contained 15 buses into 16 blocks with 217 hours and 29 minutes of bus work per day. 

The total number of relief opportunities was 161. Table 3.4 summarises the solution and 

compares it with that obtained by TRACS II. 

Table 3.4 Comparison between 2-opt and TRACS II solutions to the GMB problem 

System No. 
Duties 

Cost  
(in hours) 

Elapsed Run Time 
(hh:mm:ss) 

TRACS II 32 273:34 More than 5 minutes 
2-opt 34 273:10 0:00:39 

 

A smaller problem called GMBmini was created, which utilised the labour agreement rules in 

GMB. The vehicle work was fictitious and contained fourteen pieces of work distributed in 

three blocks. The results are displayed in Table 3.5. 

Table 3.5 Comparison between 2-opt and TRACS II solutions to the GMBmini problem 

System No. 
Duties 

Cost  
(in hours) 

Elapsed Run Time 
(hh:mm:ss) 

TRACS II 4 24:58 More than 5 minutes 
2-opt 4 24:58 < 0:00:01  

 

 

3.10.2 Merseyside Transport 

 

A problem called MTLD was from Merseyside Transport, which had a total working time of 

508 hours and 35 minutes undertaken by 37 buses. Table 3.6 compares the 2-opt solution and 

the TRACS II solution to this problem. 

Table 3.6 Comparison between 2-opt and TRACS II solutions to the MTLD problem 

System No. 
Duties 

Cost  
(in hours) 

Elapsed Run Time 
(hh:mm:ss) 

TRACS II 77 605:10 More than 20 minutes 
2-opt 81 615:05 0:05:10 

 



  

 

A smaller problem called MTLDmini was derived from the MTLD problem by only retaining 

five blocks while removing the other blocks. The data had 70 hours and 24 minutes of vehicle 

work. The results are displayed in Table 3.7. 

Table 3.7 Comparison between 2-opt and TRACS II solutions to the MTLDmini problem 

System No. 
Duties 

Cost  
(in hours) 

Elapsed Run Time 
(seconds) 

TRACS II 13 88:04 More than 5 minutes 
2-opt 13 91:39 0:00:40 

 

 

3.10.3 Regional Railways North East 

 

A problem RRNE came from the former Regional Railways North East, which operated a large 

railway network service covering a wide area in northern England. The problem contained 197 

blocks and had a total working time of 1944 hours and 36 minutes. There were 1656 relief 

opportunities and 46 relief points, amongst which 20 were depots. This data could not be 

handled by TRACS II in one go and it was divided into four sub-problems when the scheduling 

work was first commissioned. To test the 2-opt approach, the four sub-problems were merged 

back to one big problem. Unfortunately, no solution was obtained after 20 hours of running and 

the program was terminated. It was decided to investigate whether the TRACS II solution could 

be improved instead. The decomposition of a large problem compromises solution optimality. 

There should be some room for improvement. A new experiment was therefore designed, in 

which the TRACS II solution, containing the solutions of the four sub-problems combined, was 

used as a starting solution. The computational results are shown in Table 3.8. 

 

 



  

Table 3.8 Comparison between 2-opt and TRACS II solutions to the RRNE problem 

System No. 
Duties 

Cost 
(in hours) 

Elapsed Run Time 
(hh:mm:ss) 

Sub-problem 1 96 782:18  
Sub-problem 2 111 910:01  
Sub-problem 3 47 328:21  
Sub-problem 4 76 581:35  

TRACS II (total) 330 2602:15 About a day 
2-opt N/A N/A  

2-opt (based on the 
TRACS II solution) 

329 2596:39 1:14:55 

 
 
 
3.10.4 Summary  

 

This section has presented five experiments carried out on a 233 mHz personal computer. The 

elapsed times recorded were actual clock times to obtain the solutions. TRACS II did not report 

on elapsed times but took considerably longer time in general. For example, for the smallest 

problem it spent more than 5 minutes and for the largest problem about a day. The TRACS II 

solutions presented above are the best after tuning the parameters, and different versions of the 

duty generation program (BUILD) specific to different test problems were used (the latest 

development in TRACS II is such that there is now only one version of BUILD for all 

problems). In contrast, the 2-opt solutions were obtained in just one go. The 2-opt solutions are 

generally not as good as the TRACS II solutions. For the very large problem, the 2-opt heuristic 

approach did not generate a solution based on the infeasible initial schedule it constructed, but 

improved the TRACS II solution benefiting from not having to decompose the problem. 

 

3.11 Conclusions 

 

A 2-opt heuristic approach has been presented in this chapter. Some of the basic operations in 

the swapping-link and replacing-ARO processes were tried in some very early heuristic 



  

approaches (e.g. Weaver, 1968; Weaver and Wren, 1970 and 1972). This research has designed 

a more elaborate scheme including heuristics for helping to escape from local optima. 

 

The 2-opt approach presented in this section is purely heuristic based and incorporates multi-

neighbourhood structures. It applies the 2-opt heuristics to driver scheduling not relying on 

specific problem knowledge. It is much more generally applicable to problems from different 

operators compared with the early heuristic systems. Since no specific problem knowledge is 

required, it is applicable to different situations subject to the simplified requirements. Compared 

with the generate-and-select based driver scheduling systems, the 2-opt heuristic system is 

much easier to manipulate because there are no artificial rule parameters for the user to adjust; 

and the computation time is considerably shorter.  

 

However, the 2-opt heuristic approach has significant limitations. The basic 2-opt heuristic does 

not have a specific means of escaping from local optima. Although the use of different link 

swapping rules is helpful, the swapping for creating favourable conditions is not very efficient. 

Designing and organising the search strategies is very difficult because the number of possible 

strategies and their combinations would be too many. Furthermore, it is extremely hard to rank 

the alternatives in fixing the framework of the 2-opt approach. The most significant limitation 

of this current 2-opt heuristic approach is that it cannot compile three or more part duties. When 

more-spell duties are considered, it would be significantly more complicated to expand the 

current approach.  

 

Despite the limitations, the 2-opt heuristic approach has its advantages and has demonstrated 

the potential of a constructive heuristic approach for driver scheduling. The experience is 

greatly helpful to the further research. The following summarises the crucial factors, identified 

for a more general approach. 



  

 

• Swapping links and replacing AROs are the most important processes contributing to 

solution improvement. The replacing-ARO process offers the constructive heuristic 

approach potential to handle windows of relief opportunities because the replacing-ARO 

process could possibly select any ROs in the windows of relief opportunities as AROs. 

• The use of a deliberately low target number of duties together with a carefully controlled 

increment of extra duties is helpful in minimising the number of duties.  

• The cost function and penalty function are established. 

• Multi-neighbourhood structures are defined by swapping-link and replacing-ARO 

operations.  

 

 



  

 

 

 

Chapter Four 

 

Modelling the Driver Scheduling 

Problem and Overview of HACS 
___________________________________________________________ 

 

 

4.1 Introduction 

 

After the research on the 2-opt driver scheduling approach presented in the previous chapter, 

research is carried further to solve the driver scheduling problem with the simplifications being 

removed: the number of spells in a duty is unlimited; the common labour agreement rules 

(listed in Section 1.1.5) are fully enforced on duties; more duty types are considered, and 

windows of relief opportunities are handled. Handling WROs and allowing an unlimited 

number of spells in a duty are currently beyond the capability of TRACS II.  

 

The review of driver scheduling methods in Chapter two has found that the most successful 

existing driver scheduling systems are based on ILP, while some other generate-and-select 



  

approaches have taken advantage of the LP relaxation solution. Inherent in the generate-and-

select approach, artificial restrictions are usually imposed at various stages to control the size of 

the problem and search space. The early heuristic approaches solved the driver scheduling 

problem by simulating human schedulers’ methods instead of building a general model. As 

discussed in Chapter two, a good constructive heuristic approach can be less dependent on 

domain knowledge and be free of artificial restrictions. This enables the building of a model, 

which better matches real-life problems, and hence has a chance of yielding better solutions.  

 

The research presented in the previous chapter has demonstrated the viability and potential of 

the constructive heuristic approach. This chapter will first present two formal models for the 

driver scheduling problem (Shen and Kwan, 2000a and 2001a). Based on these models, a 

constructive driver scheduling approach using the Tabu Search framework is developed, which 

is overviewed at the end of this chapter. 

 

4.2 A formal model for driver scheduling 

 

There are four main aspects in modelling bus and train driver scheduling problems, which are 

vehicle work, driver schedule, labour agreement rules, and objectives. 

 

4.2.1 Vehicle work 

 

As described in Chapter one, the work in a vehicle schedule can be represented as a set of 

blocks. For driver scheduling purposes, each block is usually presented in a graphical format 

identifying a sequence of relief opportunities. However, the existence of windows, which 

provide a range of time instead of a particular time, for relief opportunities are usually ignored. 

The reason of simplifying WROs into ROs by the existing approaches is that WROs 



  

dramatically increase the magnitude of problem to beyond the capability of the existing 

approaches. The following model for vehicle work incorporates WROs. The notations are 

extended from those in Chapter one. 

 

B =  {Bi| i=1,2,…,k}  a block set, i.e. a set of all the k blocks in a problem. 

(Bi, ≤ ) = {bi1< bi2<…< bimi} a block, defined by a linearly ordered set of WROs bij ordered 

by relief time, where mi is the number of WROs in Bi. 

bij = (uij , wij , vij) a WRO, defined by a ternary vector, where uij =  [t1, t2] denotes 

a time window from time t1 to time t2. wij is a relief point, 

vij ∈{0,1}, vij=0 if bij is an U-WRO and vij=1 if bij is an A-

WRO. 

 

In the above definition of a WRO, the first subscript identifies the block, to which the WRO 

belongs. For example, bij is the j th WRO in block Bi. The subscripts may be omitted when they 

are obviously unambiguous. 

 

A RO is a special case of a WRO, where t1 = t2. Sometimes we define a RO by an ordered pair 

(tij , wij), where tij and wij are relief time and relief point respectively.  

 

4.2.2 A driver schedule 

 

A driver schedule is a solution of the driver scheduling problem, which contains a set of valid 

driver duties that together cover all the vehicle work in B. Under the generate-and-select 

approach, only valid potential duties are generated, and then various methods can be employed 

to find a subset to form a schedule. In a constructive approach, only allowing valid duties at all 

stages may be difficult and computationally expensive. In contrast, covering all the vehicle 



  

work would be easy if validity of the duties is not a prerequisite. Also, allowing infeasible 

intermediate solutions may enable more flexible exploration of the solution search space.  

Therefore, we model a schedule simply as a set of duties that together cover all the vehicle 

work. Some duties may be illegal because either there is not enough time to make a connection 

between two successive spells, or the duty has violated some labour agreement rules.  

 

A duty starts with a sign-on activity, followed by a sequence of spells, and ends with a sign-off 

activity. Each spell includes one or more consecutive pieces of work and at least two ROs. The 

first and the last ROs are AROs, each of which corresponds to a unique WRO in a certain 

block. Figure 4.1 illustrates a duty, where an arrow denotes a link between two driver activities. 

Sign-on time at depot and sign-off time at depot are treated similar to AROs when linkages are 

considered. 

        

 

 

 

 

In Figure 4.1, a duty can be defined by a sequence of links (called spell-links). Each spell-link 

consists of an ordered pair of AROs (the first is called an arrival-ARO while the second is 

called a departure-ARO), which connects two successive spells in the duty, the sign-on activity 

to the first spell, or the last spell to the sign-off activity. Formally, a solution S to a problem 

with a block set B is defined as follows: let Di be a duty in S.  

 

pij = (tp, wp) an arrival-ARO, corresponding to a unique WRO blk = 

(ulk,wlk,vlk)∈Bl∈B such that tp∈ulk and wp = wlk.  

Figure 4.1: Illustration of a driver duty 

(Sign-on-at-depot   ARO)              (ARO       ARO)        (ARO             ARO)          (ARO     Sign-off-at-depot) 

Depot Spell Spell Spell Depot 



  

qij = (tq, wq) a departure-ARO, corresponding to a unique WRO blk 

= (ulk,wlk,vlk)∈Bl∈B such that tq∈ulk and wq = wlk.  

dij = (pij, qij) a spell-link, defined by a directed pair of an arrival-

ARO and a departure-ARO. 

    li         the number of links in Di. 

    (Di, ≤) =  {di1<di2<…<dil i
} a duty, defined by a linearly ordered set of links in the 

order they occur in the duty (the links may not be in 

chronological order). There is an associated function 

for returning the next link of a given link: 

 next(dij) = di,j+1,   j=1,2,…,l i-1.  

    n         the number of duties in the solution. 

    P = {pij|i =1,2,…,n; j = 1,2,…, l i} an arr ival-ARO set. 

    Q = {qij|i =1,2,…,n; j = 1,2,…, l i} a departure-ARO set. 

    S  =  (P, Q, D)    a solution, presented by a ternary vector, where 

D = �
n

1i
iD

=
. 

�
 = {Si | i= 1,2,…,N }  a solution space, i.e. a set of all possible solutions, 

where N is generally an enormous unknown constant 

in practical problems. 

 

The relationship between blocks and duties is illustrated in Figure 4.2, where 7901 and 7902 are 

two blocks while Di is a duty containing four links denoted by solid arrows. The duty Di covers 

three spells of vehicle work in the blocks 7901 and 7902, which are from 0609 to 1049 in 7902, 

from 1213 to 1530 in 7901, and from 1552 to 1825 in 7902. Hence there are six AROs: qi1 = 

(0609, G), pi2 = (1049, W), qi2 = (1212, W), pi3 = (1530, H), qi3 = (1552, H), and pi4 = (1825, G), 



  

Depot 

and two pairs pi1 = (sign-on-time, depot), qi4 = (sign-off-time, depot) associated with sign-on/off 

activities and treated similar to AROs.  

 

                                                                                    qi2                              pi3 

                          0607    0649-0659   0959 - 1019        1200-1215   1349-1359   1519 +1549      1815 

      7901 

                          G           H                 H                      W             H                  H               G 

 

                           qi1                                       pi2                                                                                     qi3                pi4 

                          0609   0649-0655 0940+1003  1049 +1205 1302-1315    1515-1520 1540-1552    1825 

      7902 

                           G         H             H                W               H                 H            H              G 

 

                  pi1    qi1                                      pi2             qi2                         pi3       qi3             pi4      qi4 

                            0609---------(7902)------------1049   dij    1212----(7901)------1530  1552--(7902)-1825 

 

                            G          H            H              W          W        H             H       H                G 

 

 

 

4.2.3 Labour agreement rules and costing functions 

 

Labour agreement rules are operator-specific. A general discussion has already been given in 

Section 1.1.5. In this model, the following rules are enforced on duties: 

 

1. The spreadover, the spells and the stretches fall within their respective limited ranges;  

2. The duty signs on/off and starts on/finishes off within their respective limited time 

periods; 

3. The duty signs on and signs off at the same depot; 

4. The working time of the duty does not exceed a specified limit; 

Figure 4.2: Relationship between blocks and duties 

Depot Di 



  

5. The mealbreak is not shorter than a specified minimum length of time, and the meal is 

taken within a restricted time range; 

6. For a split duty, the longest gap between two consecutive spells is not shorter than a 

specified minimum length of time. 

 

The labour agreement rules govern the legality of duties. There are different types of duty (see 

4.2.3.1). Each type has an associated set of labour agreements. The legality and payment of a 

duty is governed by the set of rules associated with its type, and can be quantified by penalty 

and cost functions. Every duty has a wage cost calculated based on the labour agreement rules. 

Different types of duty have different governing rules and different methods for calculating the 

wage costs. The wage cost of an invalid duty could be computed in the same way as that of a 

valid duty, but the results might not be very meaningful or relevant to the optimisation 

algorithm. A penalty function is defined to reflect how poorly a duty satisfies the governing 

rules. The penalty of a valid duty is always defined as zero. Drivers and operators may have 

different preferences to different types of duty. The preferences can be regarded as soft rules 

and be reflected by weighted cost function (see 4.2.3.2).  

 

4.2.3.1 Duty types 

 

A general discussion of duty types has been provided in Section 1.1.4. Figure 4.3 presents a 

formal classification defined in this model. In Figure 4.3, A, B and C denote respectively three 

types of straight duty with at least one mealbreak. They could be early duty, middle duty and 

late duty, or ordinary duty, shorter duty and longer duty respectively. The name used for other 

types are self-explanatory. This classification is adequate for normal problem situations, and the 

types of duty are normally mutually exclusive. In a particular problem, not all types of duty 

may be required, but at least one, say A in this model, is necessary. 



  

   Duty 
 
                 
                                      Split duty                   Straight duty 

 
 
 

               Single-spell duty        Non-mealbreak duty          A                B               C 
                                              (with two or more spells) 

 

Every type of duty required has an associated set of labour agreement rules governing the 

validity of duties.  

 

4.2.3.2 Costing a duty 

 

The cost and the penalty functions are duty type specific. A wage cost function h(Di), expressed 

in time units to be paid, can be computed according to the specific method expressed in the 

labour agreement rules. The following concepts, which are related to the computation of the 

wage cost function, are defined: 

 

1. Sign on time and sign off time ---- the shortest time for signing on and off at the same 

depot, this depot is called the best-depot for the duty; 

2. Start on time and finish off time ---- the earliest driving time after signing on and the 

latest driving time before signing off; 

3. Spreadover ---- the time duration from signing on to signing off at the depot; 

4. Spell ---- the driving time of a driver on one vehicle without a break; 

5. Gap ---- the time between two successive spells; 

6. Join-up ---- is a gap in which the driver leaves one vehicle and takes over the next 

vehicle; 

Figure 4.3: Classification of driver duties 



  

7. Mealbreak ---- is a gap in which the driver travels to/from the canteen to have a meal; 

8. Sign off/on before and after a long break ---- the time for the driver to sign off before a 

long break and to sign on after the break; 

9. Stretch ---- the time between sign-on to the first mealbreak, or between the end of the 

last mealbreak to sign-off, or between two consecutive mealbreaks if there are two or 

more of them; some operators stipulate that the join-up time is excluded from stretches. 

10. Working time ---- the time counted towards the driver’s payment, i.e. the wage cos t 

h(Di). It is operator and duty type specific and determined by costing rules stipulated in 

the labour agreement. For instance, the working time could be equal to the spreadover, 

the spreadover minus a constant (say 30 minutes), or the spreadover minus some 

unproductive work, e.g. mealbreak, sign on/off and travel to/from canteen before and 

after a long break.  

 

If a duty Di is valid, the wage cost h(Di) is defined as being equal to the working time of the 

duty. In driver scheduling, several types of duty may be allowed, but some types may be more 

preferable to others. For example, straight duties are often preferred to split duties and non-

mealbreak duties. Every type of duty may be assigned an associated subjective weight on its 

wage cost in order to distinguish the preference. The cost function f(Di) can be defined to reflect 

the wage cost of the duty Di and the preference by the following formula. 

 

f(Di) = 

C;duty   straightvalida  is D if       ,w* )h(D

B;duty   straightvalida  is D if       ,w* )h(D

A;duty   straightvalida  is D if      ,w* )h(D

  spells;moreor  two duty with mealbreak-non valida  is D if       ,w* )h(D

duty; spell- singlevalida  is D if       ,w* )h(D

duty;  splitvalida  is D if       ,w* )h(D

i6i

i5i

i4i

i3i

i2i

i1i

        (4.1) 

 



  

In Formula 4.1, w1, w2, w3, w4, w5, and w6 are the weights assigned to six different types of valid 

duty to distinguish their relative preferences. In the UK, straight duties with a mealbreak are 

usually preferable to the other types of duty. An appropriate assignment to w1, w2, w3, w4, w5, 

and w6 might use the values 2, 5, 5, 1, 1, 1 respectively. If the weights w1 to w6 are all assigned 

the value of one, there is no preference on any type of valid duty and the cost of a valid duty 

equals its wage cost. These weights are parameterised and are therefore adjustable for different 

problems. In the experiments to be presented in Chapter 6, the weights: w1, w2, w3, w4, w5, and 

w6 are set as 2, 5, 5, 1, 1, 1 respectively. Empirical evidence shows that this set of weights 

produces better schedules than by setting all the weights to one. The reason may be that the 

straight duties with a mealbreak are usually more efficient, besides being more preferable, than 

the split and non-mealbreak duties.  

 

If a duty Di is invalid, the value of h(Di) could be computed in the same way but the results 

might not be very meaningful. For instance, consider a two-spell duty: the sign on and off time 

allowances are both 5 minutes; the first spell is from 0605 to 1000; the second is from 0610 to 

0900. If we calculate the spreadover by subtracting the sign on time from the sign off time, the 

spreadover of the duty is 3 hours and 5 minutes; we can also calculate the spreadover as the 

sum of the sign on and sign off time allowances plus the length of the two spells, then the 

spreadover is 6 hours and 55 minutes. Suppose that the wage cost is defined as the spreadover, 

the wage cost of this duty is 3:05 or 6:55, but none of the values can reflect the real wage cost 

of the duty.  

 

A penalty function g(Di) is defined as a value reflecting the infeasibility of the duty Di, i.e., how 

poorly Di conforms to the labour agreement rules. In particular, if Di is a valid duty then g(Di)= 

0. Every labour agreement rule has a corresponding kind of penalty function. If the rule is 

obeyed, the corresponding penalty is defined as zero, otherwise it is defined as the difference 



  

between the actual value and the corresponding specified limit. For example, if the spreadover 

of a duty is 8:30 and the maximum length of spreadover for this type of duty is 8:00, the 

spreadover penalty of this duty is 30 minutes. The formulae given in Section 3.4 are applicable 

in this model while more formulae need to be defined similarly according to the labour 

agreement rules. The total penalty g(Di) is defined as the sum of all types of penalty of the duty 

Di.  

 

4.2.3.3 Costing a link 

 

Spell-links constitute the basis for the optimisation algorithm, which requires the definitions of 

penalty and cost functions of a given link. As already discussed in Section 3.3.3, it is generally 

not easy to assess precisely how much individual spells and links are contributing to the cost 

and penalty of a duty. For example, a duty might attract a penalty if there is not a suitable meal 

break between the third and fifth hour and all duties under eight hours might cost the same. 

Hence, all the links in the same duty will be assigned the cost and penalty of the duty, i.e., g(dij) 

= g(Di) and f(dij) = f(Di) for any link dij in a duty Di.  

 

4.2.3.4 Costing a schedule 

 

Given a solution S containing n duties, we define g(S) to be the total penalty of S, and f(S) to be 

the total cost of S, where 

g(S) = ∑
=

n

1i
i  )g(D                                                                     (4.2) 

 

f(S) = ∑
=

n

1i

i  )f(D                                                                     (4.3) 

 



  

 

4.2.4 Objectives 

 

The goal of driver scheduling is to compile a schedule such that: 

• Each piece of work is assigned to a duty; 

• Each duty obeys a set of rules, which govern the legality of duties; 

• The number of duties required is minimised; 

• The total cost of duties is minimised. 

 

According to the definition of a schedule (see Section 4.2.2), the first condition is always 

satisfied throughout the scheduling process. The last three conditions are the three objectives in 

our approach. The first objective is to make each duty valid, which is modelled as minimising 

g(S) until g(S)= 0. The second objective is to minimise n, the number of duties in a schedule, 

which is variable during the scheduling process. The third objective is to minimise total cost, 

which is modelled as minimising f(S). The first objective is overriding. The second and the third 

objectives may sometimes be in conflict. A trade-off is therefore needed dependent on the 

requirement of the operator. In UK, it is common that the second objective has priority over the 

third one. These two objectives can be combined as minimising: 

 

f(S) = ∑
=

n

1i

i  )f(D + n * W                                                     (4.4) 

 

where W >> f(Di) is a constant, and n is the number of duties in a schedule, which is variable 

during the scheduling process.  

 



  

A method exists (Sherali, 1982) which defines W as a Sherali weight that guarantees the 

reduction of duties as a priority. TRACS II uses a Sherali weighted objective function (Fores et 

al., 1999). The constant chosen in this model is 5000, which adequately prioritises the reduction 

of duties. The priority will be further guaranteed by rewarding the operations which can reduce 

the number of duties (see Section 5.6.2). 

 

4.3 An alternative model of a driver schedule 

 

In the previous model, called a spell-model, a driver schedule is modelled based on a set of 

spell-links and their associated AROs. The AROs are determined by how the blocks are cut into 

spells. Once a set of spells is formed, the AROs are fixed. The current schedule could be 

improved by breaking up some links and re-forming links in alternative ways. Even though an 

optimal set of spell-links could be obtained for a given set of spells, the schedule might not be 

optimal. This is because the initial set of spells and corresponding AROs are usually determined 

quite roughly. Determining a set of ‘good’ spells may be as hard as forming a ‘good’ schedule.  

  

In the spell-model, spells are basic units of driver activities, which can be broken down into 

smaller units called pieces of work (pieces for short), which are fixed covering the work 

between two consecutive WROs in a vehicle. A spell consists of a number of contiguous pieces. 

Similar to the spell-model, a duty can be represented as a linearly ordered set of piece-links. A 

piece-link, which sometimes is called a link if it is obviously unambiguous, connects either the 

sign-on activity to the first piece, two successive pieces, or the last piece to the sign-off activity. 

Each piece is defined by two ROs in its two WROs respectively (the first RO is called an 

arrival-RO while the second RO is called a departure-RO). The formal definition of a schedule 

S to a problem with a block set B is presented below, where the notations are the same as those 

used in the spell-model, but the definitions are slightly different.  



  

pij = (tp, wp) an arrival-RO, corresponding to a unique WRO blk = 

(ulk,wlk,vlk)∈Bl∈B such that tp∈ulk and wp = wlk.  

qij = (tq, wq) a departure-RO, corresponding to a unique WRO blk = 

(ulk,wlk,vlk)∈Bl∈B such that tq∈ulk and wq = wlk.  

dij = (pij, qij) a piece-link, defined by a directed pair of an arrival-

RO and a departure-RO. 

    li         the number of piece-links in Di. 

    (Di, ≤) =  {di1<di2<…<d ili
} a duty, defined by a linearly ordered set of piece-links 

in the order they occur in the duty. There is an 

associated function for returning the next link of a 

given link: next(dij) = di,j+1,   j=1,2,…,l i-1.  

    n         the number of duties in the solution. 

    P = {pij|i =1,2,…,n; j = 1,2,…, l i} an arrival-RO set. 

    Q = {qij|i =1,2,…,n; j = 1,2,…, l i} a departure-RO set. 

    S  =  (P, Q, D)    a solution, defined by a ternary vector, where 

 D = �
n

i

iD
1=

. 

�
 = {Si | i= 1,2,…,N }  a solution space, where N is generally an enormous 

unknown constant in practical problems. 

 

In the above definition, a schedule is modelled as a set of piece-links with their associated ROs. 

The other factors in driver scheduling such as vehicle work, labour agreement rules and 

objectives are identically modelled as in the spell-model. Similar to spell-links, all the piece-

links in the same duty are assigned the cost and penalty of the duty. This model is called a 

piece-model, in which pieces are fundamental timetabled activities and are fixed. However, the 

actual driver relief times may be variable within a WRO if it is used. 



  

 

4.4 Spell-model versus piece-model 

 

We have built a spell-model and a piece-model for the driver scheduling problem with WROs. 

These two models are analogous; the difference is in the definition of a schedule. Both models 

define a schedule as a set of links, but one refers to spell-links while the other to piece-links. 

 

Spell-model is built by a natural presentation of the problem, in which a spell is the basic unit of 

driving work in a duty. During the scheduling process, the compositions of spells are variable. 

Once an initial schedule is constructed, the set of spells is determined. Breaking up and 

reforming links may improve the schedule, but is not adequate for finding a good schedule. 

Even though the optimal combination of the spells could be found, an optimal solution cannot 

be ensured, because the initial set of spells and the corresponding AROs are usually determined 

roughly. Re-selecting AROs (i.e., reforming spells) from the entire set of WROs is essential to 

refining the current schedule. However, unlimited re-selection of AROs would be impractical 

because there would be too many combinations to consider. 

 

In the piece-model, fixed pieces are the basic units. Finding the optimal combination of pieces 

by breaking up and reforming the links would lead to an optimal solution. Hence, exchanging 

links would be the most important operation for improvement. However, exchanging links 

would be more time-consuming than that in the spell-model because there are many more 

piece-links than spell-links in a schedule. Moreover, exchanging piece-links would cause 

resulting duties to have too many fragmented pieces of work.  

 



  

By combined utilisation of the two models, an enhanced approach would be developed, which 

is anticipated to allow all ROs a chance of being used while the driver work would not become 

too fragmented and the computation is efficient. 

 

4.5 Overview of the HACS approach 

 

Based on the models, a heuristic approach for driver scheduling called HACS (Heuristics for 

Automatic Crew Scheduling) is developed. The fundamental idea of the HACS approach is that 

of neighbourhood search (NS), which first generates an initial schedule and then refines the 

schedule iteratively. The general scheme of the HACS approach is as follows: 

 

Step 1 Construct an initial schedule 

Step 2 Minimise total penalty using a tabu search technique 

Step 3 Minimise total cost using a tabu search technique without increasing penalty 

If the total cost is reduced and the currently best schedule is still infeasible, go 

back to step 2; otherwise go to step 4. 

Step 4 Reduce penalty by using extra duties 

If the currently best schedule is feasible, then terminate; otherwise, add an extra 

duty to reduce total penalty and then go back to step 2. 

 

This scheme attempts to improve the initial solution as much as possible by means of steps 2 

and 3. Adding duties is only a last resort. Note that in step 3 (i.e., during minimising cost) the 

total penalty is not allowed to be increased. Removing penalty is the overriding objective of 

HACS, which becomes more difficult after Step 2. A feasible schedule is not allowed to be 

turned into an infeasible schedule during the minimising cost process because the infeasibility 

cannot be guaranteed to be removed later without using extra duties.  



  

4.5.1 Construction of an initial schedule 

 

An initial solution is the starting point of a heuristic approach and its construction is problem-

oriented. Chapter three has presented a simple and quick method to construct an initial schedule 

for the driver scheduling problem. The initial schedule covers all the vehicle work using a 

deliberately low target number of duties. The process consists of the following main steps 

driven by labour agreement rules: first a tight target number of duties is estimated automatically 

and can be increased or reduced manually; then according to this target number, the block set B 

is partitioned into a set of spells; lastly, the spells are coupled while the last spell, if any 

remains, forms a one-spell duty. The HACS approach adopts this method to generate an initial 

solution, which consists of duties with up to two spells. Three and more spell duties may be 

yielded automatically during the scheduling process. 

 

The initial schedule generated is usually crude and very likely to be infeasible. However, this 

method is quick, easy to implement, and it is not sensitive to problem variations.  

 

4.5.2 Refinement of the schedule 

 

The initial schedule constructed is very likely to contain infeasible duties. The refining process 

will improve it iteratively. HACS has three refining process components: minimising penalty, 

minimising cost, and adding duties. The former two components are driven by the tabu search 

technique tailored for driver scheduling, which is presented in the next chapter. The major 

operations in these two minimising processes are swapping-link and recutting block. Swapping-

link improves the schedule by exchanging links while the AROs remain unchanged. Recutting-

block improves the schedule by reselecting AROs. Any RO, including those in WROs, has a 

chance of being selected as an ARO. Hence, the HACS approach could handle WROs. After the 



  

minimising processes using a tabu search, the current best schedule may still be infeasible 

because the tabu search cannot guarantee an optimal solution, and the target number may be 

lower than that achievable. Therefore, the adding-duties process is devised, analogous to that in 

the 2-opt approach presented in Section 3.9, to reduce infeasibility until a feasible schedule is 

obtained: 

• One duty is added at a time when the tabu search cannot lead to any improvement. 

• Some work from the infeasible duties is taken out to form the extra duty, such that the 

overall total infeasibility is reduced. 

 

4.6 Conclusions 

 

This chapter has presented two models: spell-model and piece-model for the driver schedule 

problem with WROs. The legality of duties according to the labour agreement rules has been 

quantified by a penalty function while the wage cost and weighted cost functions of duties are 

defined. These functions can be easily adjusted to different situations. A schedule is modelled 

as a set of links, which will constitute the basis for the refining operations. There is no limit on 

the number of spells in a duty as necessitated in the TRACS II system, and WROs could be 

handled. 

  

This chapter has also presented the general scheme of HACS, a constructive approach based on 

the models. HACS has four key processes: a) constructing an initial schedule, b) minimising 

penalty, c) minimising cost, and d) adding duties. The first and the last processes adopt the 

ideas in the 2-opt heuristic approach. HACS focuses on the processes of minimising penalty 

and minimising cost, which constitute the core of this research. During the minimising 

processes, tabu search is employed. The next chapter focuses on the tabu search technique 

tailored for the driver scheduling problem with WROs. 



  

 

 

 

Chapter Five 

 

Tabu Search Technique Tailored for the 

Driver Scheduling Problem with WROs 
___________________________________________________________ 

 

 

5.1 Introduction  

 

Many variations of neighbourhood search algorithms have been proposed based on studies of 

natural processes, which perform an analogy of optimisation (Aarts and Lenstra, 1997). 

Simulated Annealing (Kirkpatrick et al., 1983; Aarts et al., 1997), Tabu Search (Glover, 1989; 

Glover and Laguna, 1997), and Genetic Algorithms (Holland, 1975; Muhlenbein, 1997), are 

such popular methods and have been labelled as meta-heuristics (Reeves, 1993) or artificial 

intelligent approaches. In recent years, these meta-heuristics have attracted strong research 

interests (see for instance, Pham and Karaboga, 2000; Tian et al., 2000; Mori and Matsuzaki, 

2001; Nara et al., 2001). It is also of appeal that they have been widely and successfully used 

for seeking practical near-optimal solutions to NP-hard problems such as Travelling Salesman 



  

Problem (Reinelt, 1994), Job Shop Scheduling (Brandimarte, 1993; Madureira, 1999), Vehicle 

Routing (Gendreau et al., 1997; Ozdemir and Mohan, 2000), etc. 

 

An online computing dictionary (http://www.instantweb.com/d/dictionary/index.html) gives 

meta-heuristics the following definition: 

 

A top-level general strategy which guides other heuristics to search for feasible 

solutions in domains where the task is hard. 

 

Guiding the 2-opt heuristics, Tabu Search (Glover, 1986, 1989 and 1990) is investigated for the 

driver scheduling problem with WROs. Glover and Laguna (1993) indicate that a fundamental 

element underlying Tabu Search is the use of flexible memory, which creates and exploits 

structures to take advantage of history. Strategic use of memory can make dramatic differences 

in the ability to solve problem (Glover and Laguna, 1997), but Tabu Search is a general search 

scheme that must be tailored to the details of the problem at hand. Unfortunately, there is little 

theoretical knowledge that guides this tailoring process, and users have to resort to the available 

practical experience.  

 

This chapter first introduces the Tabu Search method, and then presents the main components 

of the Tabu Search technique tailored for the driver scheduling problem with WROs, in which 

objective functions are defined while multi-neighbourhoods and an appropriate memory scheme 

are devised. Before the Conclusions, the Tabu Search algorithms in HACS are outlined. The 

driver scheduling problem without WROs is a special case of that with WROs. Much of the 

work in this chapter has been published by Shen and Kwan (2001). 

 

 



  

 

5.2 Tabu Search  

 

Tabu Search (TS) was first proposed by Glover (1986) although its roots go back to the 1970s. 

Hansen (1986) then sketched the basic idea. Additional efforts of formalization were reported 

by Glover (1989, 1990) and de Werra & Hertz (1989). A comprehensive account of the basic 

concepts, and of recent developments was given by Glover and Laguna (1993). Later Glover 

and Laguna (1997) provided “hands -on” knowledge of TS and insight alike by presenting the 

major ideas of TS with examples that showed their relevance to multiple applications. New 

applications of TS are emerging frequently (i.e., Tian et al., 2000; Mori and Matsuzaki, 2001). 

The fundamental idea of TS is that of neighbourhood search. To avoid being trapped in local 

optima, TS allows the acceptance of non-improved solutions. In this way, the search is directed 

away from local optima, such that other parts of the search space can be explored. To prevent 

going back to recently visited solutions, a memory scheme is used to record the moves made in 

the recent past of the search. This recorded search history is usually denoted by H and presented 

by a tabu list of moves, which are forbidden for a certain number of iterations. However, a 

move labelled tabu is still acceptable if a certain aspiration criterion is satisfied, for instance, 

the move leads to a good enough solution. With the search history record H, the neighbourhood 

N(xnow) is modified to N(H, xnow). This history is dynamically updated during the search process.  

As a more elaborate neighbourhood search method, TS can be initially described as a steepest 

descent method with a dynamic neighbourhood associated with an exploration history. 

However, since finding a best solution in N(H, xnow) may often be too time-consuming, it is 

usually crucial to determine a candidate set as a subset of N(H, xnow). Table 5.1 shows a basic 

TS algorithm. 

 



  

Table 5.1: Tabu Search 

Step 1 (Initialisation) 

Get an initial solution xnow; 

Record the current best solution by setting xbest = xnow; 

Set history record H = ∅. 

Step 2 (Move choice and termination) 

Determine Candidate_N(xnow) as a subset of N (H, xnow); 

Choose a best solution xnext ∈ Candidate_N(xnow) such that  

c(xnext) ≤ c(x) for any x ∈ Candidate_N(xnow); 

If no solution qualifies to be xnext or other termination criteria 

apply, the method stops. 

Step 3 (Update) 

Set xnow = xnext; 

Set xbest = xnow if xnow is better than the current best solution; 

Update H; 

Then go to Step 2. 

 

TS has been applied to a large variety of problems with considerable success (see for instance 

Hertz and de Werra, 1991; Mori and Matsuzaki, 2001), although no clean proof of convergence 

is known and there has been no formal explanation of this good behaviour up to now (Hertz, 

Taillard and de Werra, 1997). There are investigations of theoretical aspects of TS (e.g. Faigle 

and Kern, 1992), but this research mainly concentrates on its tailoring for the driver scheduling 

problem. 

 

5.3 Objective functions 

     

The TS technique is employed in two phases: minimising penalty and minimising cost (see the 

general scheme in Section 4.5), in which the objective functions are defined (in Section 4.2.4) 

as min(g(S)) and min(f(S)) respectively, and in the phase of minimising cost, the total penalty is 

not allowed to be increased.  



  

5.4 Multi-neighbourhoods based on the spell model 

 

Tabu Search may be conveniently characterised as a form of neighbourhood search (see Glover 

and Laguna, 1993), where each solution S ∈ � has an associated set of neighbours N(S) ⊂ �  

called the neighbourhood of S. Any solution S' ∈N(S)  can be reached directly from S to S' by 

an operation called a move. 2-opt exchange is frequently used to define neighbourhoods in 

permutation problems, e.g. TSP and filtering sequence problems (Glover and Laguna, 1993). 

Applying 2-opt exchange and its variants to the HACS approach, neighbourhoods for the driver 

scheduling problem are defined by the following move operations: swapping-two-links, 

swapping-two-spells, insert-one-spell, and recutting-block. More than one move operations (i.e. 

multi-neighbourhoods) are employed in HACS, the reason is provided while defining the 

operations below, where D1 and D2 denote two duties, and D1 = {d11,d12, …,d 1i, … ,  d1s}, where s 

is the number of links in D1; D2 = {d21,d22, …,d 2j, … ,  d2t}, where t is the number of links in D2. 

 

5.4.1 Swapping two links 

 

This is a typical 2-opt swapping operation. Given two links d1i = (p1i,q1i)∈D1, d2j = (p2j,q2j)∈D2, 

the operation swapping-two-links(d1i,d2j) is defined as follows. 

 

If D1 = D2, this operation will do nothing, otherwise, it operates by the following steps: 

Step 1: Exchange-link1 ({d1i,d2j}) = { d′1i, d′2j}, where  

d′1i = (p1i, q2j), d′2j  = (p2j, q1i). 

Step 2: Exchange-duty1 ({D1, D2}) = { D′1, D′2}, where 

D′1 = {d11,d12, …,  d1,i-1, d′1i, d2,j+1, … ,  d2t},  

D′2 = {d21, d22, … ,  d2,j-1, d′2j, d1,i+1, … ,  d1s}. 



  

Step 3: d1i = d′1i;  d2j = d′2j; D1 := D′1; D2 := D′2. 

 

This operation replaces the given links d1i, d2j with two new links d′1i, d′2j. Figure 5.1 provides 

an illustration, where a thick line denotes a spell, a solid arrow denotes an original link and a 

dotted arrow denotes a new link generated by the operation. 

  

 
                                                                                              
 
 
      
                                                                                                  
 

 

 

 

In the 2-opt heuristic approach, we have considered all possible scenarios of 2-opt exchange  

(see Section 3.7). That is not practical for HACS, in which the number of links in a duty is 

unlimited. In addition, it is not necessary because any spell could be changed to any position in 

a duty after the operation, i.e., any spell could be changed into a start spell, an end spell, or a 

spell in the middle of a duty. Figure 5.2 shows an example, in which the spell denoted by the 

thickest line will become an end spell while the end spell in D2 will become a spell in the 

middle of a duty after the swapping-two-links operation.  

 

 
                                                                                              
 
 
      
                                                                                                  

 

Figure 5.1: Illustration of swapping two links 

Figure 5.2: Example of turning a spell into an end spell 
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Despite this, it is hard for the swapping-two-links operation to generate all possible links 

because each link is tied by the whole chain and there are many restrictions on the duty 

generation. Two other swapping operations have been designed to provide more chances of 

refining the solution. Later experiments show that the use of these three swapping operations 

together produces better solutions than the use of a single swapping operation.  

 

5.4.2 Swapping two spells 

 

Given two links d1i = (p1i,q1i) ∈ D1 , d2j = (p2j,q2j) ∈ D2, the operation swapping-two-

spells(d1i,d2j) is defined as follows. 

 

If D1 ≠  D2 and none of the links is a sign-off activity, i.e. there exist d1,i+1 =  (p1,i+1, q1,i+1) ∈ D1, 

d2,j+1 = (p2,j+1, q2,j+1) ∈ D2 such that next(d1i)= d1,i+1 and next(d2j)= d2,j+1, the operation will be 

done by the following steps, otherwise nothing will be done. 

 

Step 1: Exchange-link2 ({d1i, d2j}) = { d′1i, d′2j, d′1,i+1, d′2,j+1}, where 

d′1i = (p1i, q2j), d′2j  = (p2j, q1i),  

d′1,i+1 = (p1,i+1, q2,j+1), d′2,j+1  = (p2,j+1, q1,i+1). 

Step 2: Exchange-duty2 ({D1, D2}) = {D′1, D′2}, where 

D′1 = {d11, d12, …,  d1,i-1, d′1i, d′2,j+1, d1,i+2, … ,  d1s},  

D′2 = {d21, d22, …,  d2,j-1, d′2j, d′1,i+1, d2,j+2, … ,  d2t}. 

Step 3: d1i = d′1i;  d2j = d′2j; d1,i+1 = d′1,i+1;  d2,j+1 = d′2,j+1;  D1 := D’
1;  D2 := D’

2. 

 



  

D1    depot          … …           depot  

…           depot  

 

D2   depot          … 

This operation replaces the given two links d1i, d2j and their successors d1,i+1, d2,j+1, if they exist, 

with four new links d′1i, d′2j, d′1,i+1, and d′2,j+1 as illustrated in Figure 5.3, where the notations 

have the same meanings as those used in Figure 5.1. 

 
 
                                                                                              
 
 
      
                                                                     
 
 

 

 

5.4.3 Inserting one spell 

 

Given two links d1i = (p1i,q1i) ∈ D1 , d2j = (p2j,q2j) ∈ D2, the operation inserting-one-spell(d1i,d2j) 

is defined as follows. 

 

If D1 ≠  D2 and the link d1i is not a sign-off activity, i.e. there exists d1,i+1 = (p1,i+1, q1,i+1) ∈ D1 

such that next(d1i)= d1,i+1, the operation will be done by the following steps, otherwise, nothing 

will be done. 

 

Step 1: Exchange-link3 ({d1i, d2j}) = {d′1i, d′2j, d′1,i+1}, where 

d′1i = (p2j, q1i), d′2j  =(p1i, q1,i+1), d′1,i+1 =  (p1,i+1, q2j). 

Step 2: Exchange-duty3 ({D1, D2}) = {D′1, D′2}, where 

D′1 = {d11, d12, …,  d1,i-1,  d′2j,  d1,i+2, … ,  d1s},  

D′2 = {d21, d22, …,  d2,j-1, d′1i,  d′1,i+1,  d2,j+2, … ,  d2t}. 

Step 3: d1i = d′1i;  d2j = d′2j; d1,i+1 = d′1,i+1;  D1 := D′1;  D2 := D′2. 

Figure 5.3: Illustration of swapping two spells 

d1i 

d2j 

d′1,i+1 d′2j 

d2,j+1 

d1,i+1 

d′1i 
d′2,j+1 



  

…           depot  D1   depot          … 

D2    depot        …  …           dep ot 

This operation replaces the given two links d1i, d2j, and the link d1,i+1 (the successor of d1i), if it 

exists, with three new links d′1i, d′2j, and d′1,i+1 as illustrated in Figure 5.4, where the notations 

have the same meanings as those used in Figure 5.1. 

 

 

 
 
 
 
      
 
 
 

 

 

Note that the operation inserting-one-spell(d1i,d2j) is different from the operation inserting-one-

spell(d2j,d1i). The latter operation inserts the spell following the link d2j into the link d1i.  

 

5.4.4 Recutting block 

 

In the spell-based model, spells are the basic units of driver duties. The initial set of spells and 

corresponding AROs are determined quite roughly. Recutting blocks is therefore necessary and 

plays an important role in refining the current schedule by re-selecting AROs (i.e. re-compose 

spells).  

 

5.4.4.1 Definition of the potential alternatives of a given ARO 

 

In the process of recutting blocks (i.e. re-selecting AROs), the most important task is to define 

which ROs are to replace the current AROs. In HACS, only the ROs adjacent to the current 

AROs are considered as potential AROs, i.e. the predecessor and the successor of an ARO are 

Figure 5.4: Illustration of inserting one spell 
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defined as candidates. If this restriction were relaxed, the process would be impractical because 

there would be too many combinations to consider.  However, according to this stipulation, 

each RO still has potential opportunities to be an ARO. The reason is as follows: Once the 

predecessor or the successor of a current ARO is selected as an ARO, the predecessor or the 

successor of the new selected ARO has chance to be an ARO, and so on. Any RO could be an 

ARO.  

 

Further, we stipulate that an arrival-ARO may be replaced by its nearest previous RO 

(predecessor) while a departure-ARO may be replaced by its nearest next RO (successor). This 

stipulation is consistent with the previous one. The reason is as follows: 

• If a RO is at the beginning of a block, it must be a departure-ARO and only has a successor.  

• Similarly, if a RO is at the end of a block, it must be an arrival-ARO and only has a 

predecessor.  

• If an ARO is in the middle of a block, it must be included in two different spells. In one 

spell it is an arrival-ARO having a predecessor while in another spell it is a departure-ARO 

having a successor. 

 

5.4.4.2 Definition of the predecessor and successor of an ARO without considering WROs 

 

If WROs are not considered, a block (Bi, ≤) = {bi1< bi2<…< bimi
} can be simplified as (Bi, ≤)= 

{ri1< ri2<…< rimi
}, where rij is a RO, a special case of a WRO. Any ARO must be a RO rij in a 

certain block Bi. Therefore we can define the functions predecessor and successor as:  

predecessor(rij) = ri,j-1, 1< j ≤ mi,     where rij is a arrival-ARO.                       (5.1) 

successor(rij) = ri,j+1,  1 ≤  j < mi,     where rij is a departure-ARO.                   (5.2) 

 



  

 

5.4.4.3 Conversion of a time window into discrete times 

 

Before defining the predecessor and the successor of an ARO considering WROs, we convert 

time windows into discrete times. 

 

A WRO consists of a range of times. Since the HACS approach handles ROs as discrete times, 

a possible way to handle WROs is to expand explicitly each time window into individual 

minutes. Considering the difference between A-WROs and U-WROs, two different conversions 

are devised as follows:  

 

In an A-WRO a driver must be on duty but can be relieved by another. Therefore, an A-WRO 

can be modelled as a sequence of relief opportunities with one-minute intervals. For example, 

supposing bij = (uij, wij, vij) is an A-WRO and uij = [t1, t2], then bij can be treated as a sequence of 

ROs: r1, r2,…,rm, where m = t2 - t1 + 1, and rk = (t1 + k – 1, wij), k ∈ {1,2,…,m}. 

 

In contrast with an A-WRO, an U-WRO requires no driver. The usual practice, e.g. in TRACS 

II, is to either select only the arrival time and the departure time as relief times or divide a block 

containing several large gaps of U-WROs into several shorter blocks. This conversion does not 

compromise the property of U-WROs because the times in between U-WROs do not contribute 

to improving the schedule, and in contrast, they increase unproductive driver work. 

Consequently, HACS also selects only the arrival time and the departure time as relief 

opportunities. However, It is not necessary for HACS to split blocks containing large gaps of 

U-WROs. HACS stipulates that the arrival time is applied when the U-WRO is at the end of the 

spell while the departure time is applied when the U-WRO is at the beginning of the spell.  

 



  

|    depot Di        depot    | 

5.4.4.4 Enhanced definitions of the predecessor and successor of an ARO  

 

Based on the foregoing conversion of WROs into discrete ROs, the functions predecessor(pij) 

and successor(qij) involving WROs are defined below, by reference to Figure 5.5 and the 

notations in Sections 4.2.1 and 4.2.2. 

                                                                    dij = (pij, qij)    
 
  
                                                       ba,k-1      bak         bcl    bc,l+1   
 

 

In Figure 5.5, dij = (pij, qij) is a link in a duty Di. Suppose pij= (tp,wp), qij=(tq,wq) corresponding 

to bak = (uak, wak, vak) ∈  Ba  and bcl = (ucl, wcl, vcl) ∈  Bc respectively, where tp∈  uak =[tak1,tak2], 

tq∈ucl =[tcl1,tcl2], and wp= wak , wq= wcl.  If bak is an U-WRO, then vak = 0, otherwise, vak = 1. If bcl 

is an U-WRO, then vcl = 0, otherwise, vcl = 1. We define the predecessor of pij and the successor 

of qij as follows. 

predecessor(pij) =  
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successor(qij) =  
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These new definitions are also applicable to the problems without time windows, in which tp= 

tak1 = tak2 , tq= tcl1 = tcl2 and (ta,k-1,1, wp) = (ta,k-1,2, wp), (tc,l+1,1, wp) = (tc,l+1,2, wp), i.e. the formulae 

(5.3) and (5.4) embody the formulae (5.1) and (5.2) respectively.  

 

Figure 5.5: Duty with a selected link and its WROs 



  

5.4.4.5 Definition of recutting-block operation 

 

Given a link d1i = (p1i,q1i) ∈ D1, where p1i∈B1, q1i∈B2, and D1 = {d11,d12, …,d 1i, … ,  d1s}, where s 

is the number of links in D1, if there exists a link d2j = (p2j, q2j) such that  

- d2j ∈ D2 = {d21,d22, …,d 2j, … ,  d2t}, where t is the number of links in D2, 

- D1 ≠ D2, 

- p1i = q2j or p2j = q1i, 

 

The link d2j is called the relevant link of d1i. We then define the operation recutting-block by 

cases as follows: 

 

Case 1:  p1i = q2j 

Step 1: Search for a component r1v in B1 such that predecessor(p1i) = r1v. 

Step 2: Exchange-link4 ({d1i, d2j}) = {d′1i, d′2j}, where d′1i = (r1v, q1i), d′2j  = (p2j, r1v). 

Step 3: Exchange-duty4 ({D1, D2}) = {D′1, D′2}, where 

D′1 = {d11, d12, …,  d1,i-1,  d′1i, d1,i+1, … ,  d1s},  

D′2 = {d21, d22, …,  d2,j-1, d′2j, d2,j+1, … ,  d2t}. 

Step 4: Remove p1i from P. 

Step 5: Remove q2j  from Q. 

Step 6: Put r1v into P,Q. 

Step 7: d1i = d′1i;  d2j = d′2j; D1 := D′1;  D2 := D′2. 

 

Case 2:  q1i = p2j 

Step 1: Search for a component r1v in B2 such that successor(q1i) = r1v. 

Step 2: Exchange-link4 ({d1i, d2j}) = {d′1i, d′2j}, where d′1i = (p1i, r1v), d′2j  = (r1v, q2j). 

Step 3: Exchange-duty4 ({D1, D2}) = {D′1, D′2}, where 
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D′1 = {d11, d12, …,  d1,i-1,  d′1i, d1,i+1, … ,  d1s},  

D′2 = {d21, d22, …,  d2,j-1, d′2j, d2,j+1, … ,  d2t}. 

Step 4: Remove q1i from P. 

Step 5: Remove p2j  from Q. 

Step 6: Put r1v into P and Q. 

Step 7: d1i = d′1i;  d2j = d′2j; D1 := D′1;  D2 := D′2. 

 

An illustration of recutting-block of case 1 is given in Figure 5.6. Figure 5.6(a) shows two 

original duties while Figure 5.6(b) shows the corresponding new duties, where the piece of 

work presented as a hatched pattern is removed from D1 and then inserted into D2 after the 

recutting-block operation. 

  
 
                           
                                                   
                                                         (p1i = q2j) 
 
  
 
                                             
 
 

(a) Two original duties 
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(b) Two new duties 

 
Figure 5.6: Illustration of recutting blocks  



  

5.4.5 Summary 

 

Four move operations (corresponding to multi-neighbourhoods) have been defined in this 

section. Given the current solution S = (P,Q,D), the first three operations transform 

S=(P,Q,D)∈ � to S' =(P,Q,D')∈ � , where the sets of AROs P and Q remain unchanged. These 

three operations can be categorised as swapping-link (or swapping for short) operations denoted 

as swapping(d1i, d2j) because they involve swapping several links triggered by a given pair of 

links (d1i, d2j) while the set of AROs remains unchanged. The recutting-block operation is 

different from the swapping operations. It revises the selection of AROs, i.e. P, Q and D are 

changed when the move transforms a solution S=(P,Q,D)∈ �  to its neighbour S' = (P' ,Q' ,D')∈ � . 

Any link d1i and its relevant link d2j, which is uniquely determined by d1i, can trigger a unique 

recutting-block move, hence we can denote it as recutting(d1i, d2j). Referring to a non-specific 

move, the move is denoted as move(d1i, d2j) instead of swapping(d1i, d2j) or recutting(d1i, d2j). 

 

5.5 Multi-neighbourhoods with combined utilisation of the spell 

model and the piece model 

 

The previous section has defined three swapping-link operations and a recutting-block 

operation. In these operations, the spells are treated as basic units. In addition to swapping 

links, recutting blocks plays an important role in refining the current schedule because the 

initial set of spells and corresponding AROs were determined quite roughly. However, the 

recutting function is limited because only the ROs adjacent to the current AROs are considered 

as potential AROs. If this restriction were relaxed, the process would be impractical because 

there would be too many combinations to consider. 



  

In the above swapping-link and recutting-block operations, spells are the basic units of driver 

work. By considering the piece of work (piece for short) covered between two successive ROs 

as a more basic unit, a spell consists of a number of pieces contiguously linked together. The 

four operations could be applied to the links between the pieces instead of between spells. The 

new piece-based operations are swapping-two-links, swapping-two-pieces, inserting-one-piece, 

and recutting-block, which are analogous to the spell-based operations accordingly. The piece-

based new operations can be identically illustrated by Figures 5.1, 5.3, 5.4 and 5.6 respectively, 

but the thick lines denote pieces instead of spells. 

 

In the piece-based model, pieces of work are fixed indivisible units. During the swapping-link 

operations, each WRO has a chance of being tried as an active WRO. Hence, the piece-based 

swapping operations can be used to replace the spell-based recutting-block operation. The 

limitation that only the ROs adjacent to the current AROs are considered as potential AROs in 

the spell-based recutting-block operation is thus removed.  

 

When WROs are considered, an ARO may be replaced by another RO in the same WRO. The 

recutting-block operation is therefore retained to re-select an ARO from within its 

corresponding WRO. Limiting the recutting-block operation within WROs, the definitions of 

the predecessor of pij and the successor of qij in the formulae 5.3 and 5.4 (see Section 5.4.4.4) 

should be changed as follows. 

predecessor(pij) =  




>=
>=
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1akpakpp
                                     (5.5) 

successor(qij) =  
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; t , t1 ), if v,w1(t
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                                     (5.6) 

 

When no WROs are involved, the piece-based swapping-link operations would be adequate and 

the recutting-block operation is therefore not applied. Unfortunately, the piece-based swapping 



  

operations would be very time-consuming, and the resulting duties would have too many 

fragmented pieces of work. A compromise would be a combination of the following operations: 

spell-based swapping-two-links, swapping-two-spells and inserting-one-spell; piece-based 

swapping-two-pieces and inserting-one-piece; and recutting-block for WROs. 

 

The HACS approach incorporating the spell-model and the piece model (i.e., applying the five 

swapping operations and a recutting-block operation for WROs) is anticipated to be superior to 

the HACS approach based on a single model, because all ROs would have a chance of being 

used while the driver work would not become too fragmented. 

 

5.6 Memory schemes 

 

The aggressive aspect of TS is manifest in choice rules that seek the best available move that 

can be determined with an appropriate amount of effort (see Glover and Laguna, 1997). The 

meaning of ‘best’ in TS a pplications is customarily not limited to an objective function 

evaluation. In HACS, the best move is defined as the move with a highest move value amongst 

the moves either being non-tabu in the neighbourhood or satisfying a certain aspiration 

criterion, which determines when tabu activation rules can be overridden. In HACS, we employ 

the improved-best criterion, i.e., removing a tabu classification from a trial move when the 

move yields a solution better than the best obtained so far.  

 

For many situations, where the neighbourhood N(S,H) (which depends on the current solution S 

and the search history H) is large or its elements are expensive to evaluate, finding the best 

move in N(S,H) may often be too time-consuming. Cutting down the computational effort is 

vital. Before addressing the methods for cutting down the computational effort, some basic 

components of TS, e.g., move attribute, move value, tabu tenure and tabu status are defined. 



  

 

5.6.1 Move representation and move attribute 

 

The fundamental operation in TS is called a move. The move operations used in HACS have 

been defined in Sections 5.4 and 5.5. According to the definitions of the move operations, a link 

(a spell-link or a piece-link) is the basic unit of a move operation. Given a solution, a set of 

links is fixed and the number of links is known. We store all the links in a vector V = (d1, d2,… 

,dk), where k is the number of links in the solution. Each link corresponds to a unique index in 

the vector, hence we can use the index to denote a link, and a move swapping(di, dj) or 

recutting(di, dj) can be represented as a move(i,j), where i,j ∈ {1,2,…,k}.  

 

Each move has an associated attribute that can encompass any aspect that changes as a result of 

the move. After a move, indices for the original pair of links are reused for the new pair of 

links. Therefore, the attribute of a move(i,j) can be defined as the pair (i,j), in which the links di 

and dj change from the original ones to the current ones. 

 

Recorded move attributes are often used to impose tabu restrictions that prevent moves from 

being selected that would reverse the changes represented by these attributes. In the swapping 

operations, a move(i,j) is tabu if the move(i,j) has been executed previously. In the recutting 

operation, a move(i,j) is tabu if the move(j,i) has been previously executed.  

 

5.6.2 Move value 

 

Move values are used to measure moves. The value of a move(i,j) can be defined as f(S) - f(S') 

or g(S) - g(S'), where S is the current schedule and S' is the resultant schedule of the move, 

depending on the phase of the algorithm. According to this definition, a preferable move has a 



  

high value. The move values are updated from one iteration to another. Efficient updating of 

move values can reduce the effort of finding the best or near best moves. In driver scheduling, 

the move values can be calculated without a full evaluation of the objective function as follows: 

 

Obviously, only the duties altered by the move need to be evaluated. Since we have defined the 

cost and penalty of a link to be those of the duty it belongs to (see Section 4.2.3.3), the move 

value f(S) - f(S') or g(S) - g(S') can be equivalently represented as f(di) + f(dj) − f(d'i) − f(d'j) 

while g(S) − g(S') can be equivalently represented as g(di) + g(dj) − g(d'i) − g(d'j).  

 

As addressed in Section 4.2.4, the objective of minimising the total number of duties usually 

has priority over the objective of minimising cost. If a move can lead to the reduction of the 

number of duties without increasing infeasibility, we will prioritise the move by adding a large 

constant, say 5000, to the value of the move. Moreover, if a move is prohibited, e.g. both links 

of a move are in the same duty, the move will be assigned a very low value, say –5000.  

 

5.6.3 Tabu tenure and tabu status 

 

As already mentioned, the basic idea of TS is to allow the acceptance of non-improved 

solutions to avoid being trapped in local optima. To prevent going back to recently visited 

solutions, a memory is used to record the moves made in the recent past of the search. This 

memory is called a tabu list, in which the recorded moves are forbidden for a certain number of 

iterations. The certain number of iterations for which a move must remain tabu is called the 

tabu status of the move. Each move has a corresponding tabu status. If a move is not tabu, its 

tabu status is usually defined as zero; otherwise its tabu status depends on the tabu tenure and 

the current iteration. The tabu tenure decides the number of iterations for which the current 

executed move must remain tabu. Therefore, the tabu status of a current executed move can be 



  

defined as the tabu tenure, and then at each subsequent iteration the tabu status of the move is 

subtracted by one, continuing until the tabu status is zero. There are other ways (see Section 

5.6.4.2 for instance) to define the tabu status of a move but the meaning is similar.  

 

No single rule has been designed to yield an effective tenure for all classes of problems (Glover 

and Laguna, 1997). However, Glover and Laguna (1993) indicate that values between 7 and 20 

appear to work well for a variety of problem classes, while values between 0.5 n and 2 n  

appear to work well for other classes, where n is a measure of problem dimension. In HACS, 

min( n , 20) is defined as the tabu tenure, where n denotes the number of spell-links, which 

equals the sum of the number of spells and the number of duties in the current schedule. 

Experiments have shown that using this variable function is more effective than using a 

constant between 7 and 20, although the usual range for this function is between 7 and 20 for 

practical problems. For example, considering practical driver scheduling problems with about 

100 duties, which are mostly consisting of two or three spells (i.e. 3 or 4 spell-links per duty), 

n is usually less than 20. Considering small problems with 14 duties n  is approximately 

equal to 7.   

 

5.6.4 Candidate list and tabu list 

 

As already addressed, for many situations, where the neighbourhood N(S,H) is large or its 

elements are expensive to evaluate, finding the best move in N(S,H) may often be too time-

consuming. Cutting down the computational effort is vital. The usual method is to determine a 

candidate set as a subset of N(S, H) to restrict the number of solutions examined on a given 

iteration. The importance of determining a candidate set has been described a great deal in the 

literature. Glover and Laguna (1997) suggest some general classes of candidate set (or 



  

candidate list) strategies, such as aspiration plus, elite candidate list, etc. Employing the elite 

candidate list strategy, a memory scheme is designed for the driver scheduling problem. 

 

5.6.4.1 Elite candidate list 

 

The Elite Candidate List approach (Glover and Laguna, 1997) first builds a candidate list by 

examining all moves, selecting the k best moves encountered, where k is a parameter. Then at 

each subsequent iteration, the current best move from the candidate list is selected to be 

executed. This process terminates when such a move falls below a given quality threshold, or 

until a given number of iterations have elapsed. Then a new elite candidate list is constructed 

and the process repeats. As discussed by Glover and Laguna (1997), this method is created 

based on the assumption that a good move, if not performed at the present iteration, will still be 

a good move for some number of iterations. This assumption might be true in many situations, 

but our experiments have shown that this assumption is not appropriate for the HACS driver 

scheduling approach. The explanation is given by the following example. 

 

In the experiments, an elite candidate list is designed for driver scheduling using the above-

described method. The elite candidate list first records the best k moves, where the parameter k 

is arbitrarily defined to be equal to thirty. Suppose the current best move is move(i,j). The move 

move(i,x) may be also recorded in the candidate list. Figure 5.7 illustrates an example, in which 

link i, link j and link x are the invalid links involved in move(i,j) and move(i,x). Both moves 

move(i,j) and move(i,x) can make a considerable improvement on the schedule, such that they 

are selected into the elite candidate list. The improvement can be seen by comparing Figure 5.7 

and Figure 5.8, where the new links after the moves are shown. Suppose move(i,j) is executed, 

link i changes and the quality of move(i,x) becomes poor. 
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To avoid a very poor move being executed before there are still better moves in the candidate 

list, the elite candidate list approach is modified in the experiments as follows. After a move is 

executed and removed from the candidate list, the values of the remaining moves will be re-

Figure 5.7: Illustration of three invalid links involved in move(i,j) and move(i,x)  

Figure 5.8: Illustration of the new links after two elite candidate moves 
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computed, and then the moves are sorted by the order of move values. When the recent best 

most is below or equal to a given quality threshold, a new candidate list is constructed and the 

process repeats. In the experiments, the quality threshold was arbitrarily defined as where the 

move value is equal to a given small constant, say –500. If the constant is defined too high, all 

of the recorded moves in the candidate list may be below the quality threshold after a number of 

iterations. Then, the same elite candidate list will be constructed and the process repeats. This 

may form an endless loop if there is no limit on the number of iterations. If the constant is 

defined too low, e.g. –5000, the poor moves (which originally were elite moves but are turned 

into poor moves by the execution of their related moves) may be selected and executed at the 

very early stages.  

 

This elite candidate list, comparing with the entire neighbourhood, reduces the number of 

moves evaluated at a given iteration. However, at each iteration, the recorded moves have to be 

re-evaluated and the quality of the best move cannot be ensured since some recorded moves 

may be influenced by some other previously executed moves, especially when a low quality 

threshold is defined. Experiments have shown that this method (in which the threshold constant 

is defined as –500) worked well at the first iterations, but became inefficient thereafter. The 

reason is that there would be more and more recorded moves under the quality threshold after a 

number of iterations. The reconstruction of an elite candidate list would become more frequent. 

 

Several other candidate list approaches were designed as variants of the above candidate list 

approach, but none of them was satisfactory in terms of the quality of the best move and the 

computational effort. Consequently, we gave up the effort in designing a special candidate list 

(i.e. building a subset of the entire neighbourhood). Instead, HACS cuts down the 

computational effort by other means, which is described in the next section. 

 



  

 

5.6.4.2 An efficient memory scheme for driver scheduling 

 

Using the entire set of the neighbourhood as a candidate set (this can guarantee the quality of 

the best move at each iteration), HACS cuts down the computational effort by other means 

(diverting from using a subset of candidates), in which the number of solutions examined on a 

given iteration is greatly restricted as follows.  

 

Each move defined in HACS only alters two duties; therefore, only two duties need to be re-

evaluated after a move. The trial moves, not involving any link in the two altered duties, remain 

unaffected. The other trial moves, which are a minority, will be evaluated. Moreover, if the two 

links of a trial move are in the same duty, the move will not be considered and will be 

artificially assigned a very low move value. To fulfil this strategy, each link is assigned a link-

status, which indicates whether a link is in a currently altered duty.   

 

This memory scheme can guarantee the quality of the best move at an iteration while the 

computational effort is efficient. The implementation of the candidate list is discussed below. 

Different memory structures have been designed for the swapping move and the recutting move 

respectively. 

 

• Candidate list and tabu status for the swapping-link moves 

 

The candidate list is designed to be as large as the entire neighbourhood, which records all the 

move values in a lower triangular matrix C = [cij], where i>j; i = 2,3,…,n; j =  1,2,…,n-1; and n 

is the number of links in the current schedule. As addressed above, it would be very time-

consuming and unnecessary to update every value in C after a move. Only the moves 



  

containing the recently visited links need to be costed again and C is updated accordingly. Each 

move in C has a corresponding tabu status, which indicates the number of iterations for which 

the move must remain tabu. If a move is not tabu, its tabu status is defined as zero. The tabu 

statuses and the move values could be recorded in the same matrix, such that the move values 

would be recorded in the lower triangle while the tabu statuses in the upper triangle 

accordingly. However, most of the moves would not be recorded as tabu at a given iteration. It 

would therefore be more efficient to record the tabu status of only the moves that are tabu in a 

tabu list. 

 

The tabu list is designed as a fixed size (= tabu tenure) queue, which records a and b for a move 

move(a,b), and the tabu status of the move. The queue is initially empty. When the queue is full, 

its head record is removed and the tabu statuses of the remaining moves are decreased by one 

before a new record is added. The new added record always has its tabu status equal to the tabu 

tenure. If the tabu classification of a move is removed by an aspiration criterion, the 

corresponding record in the queue is transferred to the end of the queue, and the tabu status 

becomes equal to the tabu tenure. Any move not recorded in the queue is not tabu. 

 

• Candidate list and tabu status for the recutting-block moves 

 

Each link has two AROs (in the spell model) or two ROs (in the piece model), hence there are 

two possibilities to recut the blocks for each link. Suppose there are n links in a solution, the 

recutting-ARO operation on both AROs/ROs in each link can produce 2*n potential schedules 

in the neighbourhood. The candidate list is designed to be as large as the entire neighbourhood, 

which records all the links and their corresponding relevant links (i.e. all potential moves), the 

move values, and the tabu statuses in a four-column matrix C = [cij], where i = 1,2,3,4; j = 

1,2,…,2n.  



  

 

The tabu status is initialised to 0 and is used to identify the ending iteration of the tabu tenure 

for the corresponding move. For a move, iter is used to denote the current iteration, at which 

this move is selected. The tabu status of this move is defined as: 

tabu status(move) = iter + tabu tenure 

 

In conjunction with the above definition, a move remains tabu if the tabu status of the move is 

not less than the current iteration. 

 

5.7 Tabu search algorithms in HACS 

 

TS algorithms are employed in the two phases of HACS: minimising penalty and minimising 

cost (see the general scheme of HACS presented in Section 4.5). The algorithms are the same in 

both phases but the objective functions are different accordingly. The pseudo codes of the 

algorithms are as follows, where S* denotes the current best solution.  

 

The algorithm for minimising penalty or cost 

 

Given an initial solution S containing n duties, where S = (P, Q, D); 

S*
  := S;  

Tabu-mechanism := off; 

times := 0;  

While times < Given-limit do 

 A set of TS Algorithms* 1  

If (The current solution S is better than the best solution S*) 

  S* := S; 



  

  times := 0; 

 else if (Tabu-mechanism = off) 

  Tabu-mechanism := on; 

else 

   times := times + 1; 

 End if 

2 End while 

 

*1 The set of TS algorithms varies according to the model, on which the HACS approach is 

based. 

1. In the HACS approach based on the spell-model, the set contains the following algorithms:  

  TS Algorithm – swapping-two-links (spell-links); 

  TS Algorithm – swapping-two-spells; 

  TS Algorithm – inserting-one-spell; 

  TS Algorithm – recutting-block;  

2. In the HACS approach based on the piece-model, the set contains the following 

algorithms:  

  Tabu Search Algorithm – swapping-two-links (piece-links); 

 Tabu Search Algorithm – swapping-two-pieces; 

  Tabu Search Algorithm – inserting-one-piece; 

  TS Algorithm – recutting-block (limited with WROs); 

3. In the HACS approach utilising the spell-based and piece-based operations together, the 

set contains the following algorithms:  

  TS Algorithm – swapping-two-links (spell-links); 

  TS Algorithm – swapping-two-spells; 

  TS Algorithm – inserting-one-spell; 



  

 TS Algorithm – swapping-two-pieces; 

 TS Algorithm – inserting-one-piece; 

  TS Algorithm – recutting-block (limited within WROs); 

 

In the above minimising penalty or cost algorithm, multi-neighbourhoods (each operation 

decides a neighbourhood) are employed, each of which corresponds to a TS algorithm. Each TS 

algorithm is executed in turn until no further improvement can be made, taking the current best 

solution as its starting solution.  

 

An alternative could be to use a compound move to coordinate the move operations. A 

compound move (Glover and Laguna, 1993) consists of a series of simpler components. For 

example, the rejection chain method used by Cavique et al (see Section 2.4.1) consists of three 

component operations: shift operation, cut operation and merge operation. Cavique’s ejection 

chain method cannot compile duties consisting of more than two-spells. In driver scheduling, 

using a compound move would be very complicated if multi-spell duties are considered.  

 

In the minimisation algorithm, a steepest descent method is first applied by switching off the 

tabu-mechanism. Since at the first stage of minimisation process the penalty or the cost could 

be easily reduced, the steepest descent method could be applied to reduce the penalty or the cost 

with less computational effort than the TS method. After the steepest descent method terminates 

at the local optimum, the TS algorithms are applied by switching on the tabu-mechanism. 

 

The above minimisation algorithm contains a set of TS algorithms, each of which corresponds 

to a different move operation. They can be described by the following pseudo codes, where S is 

the current solution, S' is a trial solution, and S* is the currently best solution. 

 



  

 

Tabu Search Algorithm 

 

Given an initial solution S containing n duties, where S =  (P, Q, D); 

S* := S;  

T := Ø; (The tabu list is empty.) 

iterator := 0;  

While iterator < Given-iterator-limit do 

Search for the best move move*  such that move*  ∉T, or f(S')<  f(S*);*1 

S := S';  

If (Tabu-mechanism = on) 

  Update T; (put move*  into T and update the tabu status of moves ) 

End if 

Update the set of links D; 

Update the sets P and Q, if the current operation is recutting-block; 

iterator := iterator + 1; 

 If (f(S) <  f(S*)) 

  S* := S; 

End if  

End while 

 

*1 In this tabu search algorithm, the best move is defined as the move with a highest move value 

amongst the moves either being non-tabu in the neighbourhood (move*  ∉T) or satisfying the 

improved-best aspiration criterion ( f(S')<  f(S* )), i.e., a tabu classification on a trial move can 

be removed if the move yields a solution S' better than the best solution S* obtained so far. 

 



  

 

5.8 Conclusions  

 

This chapter has presented the Tabu Search technique tailored for the driver scheduling 

problem. Multi-neighbourhood structures and an appropriate memory scheme, which are 

essential elements of Tabu Search, have been designed. An effective and efficient memory 

scheme (candidate list and tabu list) is specially designed for the driver scheduling problem. 

The multi-neighbourhood structures are proposed to diversify the search and enable a more 

comprehensive coverage of the search space. Experiments on the foregoing technique and some 

alternative designs are presented in the next chapter, comparing the results with best known 

solutions drawn from real-life data sets.  

 

 

 



  

 

 

 

Chapter Six 

 

Evaluation and Computational 

Experiments 

___________________________________________________________ 

 

 

6.1 Introduction 

 

No clean proof of convergence for Tabu Search is known. Hertz et al (1997) describe Tabu 

Search to be like an engineering approach to large and difficult problems of optimisation, which 

may not possess the elegance of mathematics. Memory-based strategies are the hallmark of 

Tabu Search (Glover and Laguna, 1997). Memory, particularly in its adaptive forms, introduces 

too many degrees of freedom to be treated conveniently in ‘theorem and proof’ developments. 

Glover and Laguna (1997) suggest that researchers who prefer to restrict consideration to 

processes (and behaviour) that can be characterised by rigorous proofs must focus their efforts 

in other directions. Consequently, it is common to evaluate tabu search based approaches by 



  

experiments. The quality of solutions and the computational time are the major concerns. 

Throughout this thesis, Relative Percentage Deviation (RPD) over best known solutions is 

employed to measure the quality of solutions. 

RPD = (s−b)/b*100%                                                             (6.1) 

where, s denotes the solution to be assessed while b denotes the best known solution. 

 

The HACS approach presented in this thesis has been implemented using Borland C++ 

(Version 5.02) within an object-oriented framework. A large number of experiments have been 

carried out to assess HACS on the performance of individual components of the tabu search 

algorithm, the overall performance, and the capability of handling WROs. This chapter first 

presents the experiments related to the core of the tabu search technique in Sections 6.3 and 6.4. 

Experiments were first carried out on the spell-based operations to evaluate the neighbourhood 

structures and to compare tabu search with steepest descent search. Then, experiments were 

carried out on the piece-based operations and the combination of the spell-based and piece-

based operations. The experiments related to WROs are presented in Sections 6.5 to 6.7. Finally 

the conclusions drawn from the experiments are provided at the end of this chapter.  

 

6.2 Test problems and the best known solutions 

 

The School of Computing, University of Leeds has a long history (more than thirty years) on 

transport scheduling. Their scheduling packages, e.g. BUSMAN (Chamberlain and Wren, 

1992), OPENBUS (Wren and Kwan, 1999), and TRACS II, have been broadly installed in the 

UK and some other countries. Many practical problems have been successfully solved, from 

which we selected ten real-life driver scheduling problems as test data to evaluate the 

performance of the HACS system. The original problems have been accumulated over many 

years, during which the driver scheduling systems at Leeds have been evolving. We tested 



  

HACS with the problems formatted for the recent TRACS II system. In the data set, the original 

A-WROs were replaced with one or two ROs each because TRACS II cannot handle A-WROs, 

while the original U-WROs were either kept (with a small gap) or removed (with a large gap) 

by splitting the blocks. The properties of the problems and the TRACS II solutions (i.e. the best 

known solutions to the problems) are displayed in Table 6.1. TRACS II is one of the most 

successful driver scheduling systems. It has been successfully installed for many bus companies 

and used by many train operating companies (see Kwan et al, 1999; Wren and Kwan, 1999). In 

tests against other established bus driver scheduling systems, TRACS II has always produced 

the most efficient schedules.   

Table 6.1: Properties and best known solutions of test problems 

Best known solution 
Data 

Code 

Data 

Name 

Vehicle 

hours 

No. 

ROs 

No. 

Blocks 
Potential 

Duties 

No. 

Duties 

Cost 

(hours) 

Elapsed        

Time  

D1 AG66 165:56 130 10 8090 24 180:18 3 mins 

D2 AG62 178:46 200 13 58136 25 192:52 25 mins 

D3 NURS 216:28 248 16 32904 31 235:05 10 mins 

D4 GMB 227:52 175 21 11817 34 289:32 5 mins 

D5 GOLD 294:10 289 23 27068 42 327:48 10 mins 

D6 COM9 332:06 356 30 32000 39 363:26 10 mins 

D7 TRMX 349:37 574 21 29500 49 408:47 10 mins 

D8 LH7A 404:46 646 30 29021 54 427:04 10 mins 

D9 LHM2 552.07 799 41 671541 80 632:32 Over 5 hours 

D10 LHM1 786:47 859 63 999101 108 862:29 Over 15 hours 

     

The elapsed times recorded in this thesis were actual clock times to obtain the solutions running 

on a 333 mHz personal computer, any exception will be indicated. The elapsed times for HACS 

were obtained by calling a built-in timing function in C-libraries. Since TRACS II does not 

report on elapsed times, and the duty generation and the ILP selection process were run 

separately, the elapsed times were estimated. In D9 and D10, slack parameters were used in the 



  

TRACS II runs (on a Pentium III 1gHz personal computer), and much (over 85%) of the 

elapsed time reported was spent on generating the large number of potential duties. 

 

In the test data, there are no A-WROs, which have been removed from the original raw data for 

the sake of TRACS II. We have to restore or add them to test the ability of HACS on handling 

WROs because tackling WROs is one of the most important objectives of this research. In the 

test data, the U-WROs with large gaps were not restored because they could not provide any 

benefit. The other U-WROs were restored by merging the split blocks. Some A-WROs were 

restored by checking the actual vehicle work. Unfortunately, most of the original A-WROs 

cannot be restored without the original raw data. We extended ROs into WROs artificially as 

follows. In practice, when a vehicle stops at a location, there is often a gap between the arrival 

time and the departure time, for instance 5 minutes or 8 minutes. These gaps usually vary in 

size. Without the benefit of a real data set, it might be more appropriate to extend ROs into 

WROs with variable durations, but in practice a fixed duration will still enable us to see the 

effect of altering the time of the ARO within the window (The HACS approach itself does not 

impose any restrictions on the durations of WROs). Therefore, we extended all the ROs in the 

testing problems into A-WROs with 5 minutes each, except those already expressed as WROs 

(their durations are variable) and the first and the last ROs in each block (their durations are 

zero). After this has been done, the problems D1 to D10 in table 6.1 become the problems with 

WROs and are labelled W1 to W10. 

 

The experiments to be presented in this chapter were designed for evaluation of both HACS’ 

ability to handle WROs and its tabu search technique. When evaluating the technique (see 

Sections 6.3 and 6.4), the problems D1 to D10 were used in order to compare the solutions with 

the best known solutions, in which no A-WROs were imposed. When evaluating the ability of 

HACS to handle WROs (see Sections 6.5 to 6.7), the problems W1 to W10 were employed. 



  

6.3 HACS based on spell-model 

 

To assess the performance of HACS, a number of experiments were devised in this section to: 

• Compare the performance of different neighbourhood structures; 

• Compare the tabu search technique and a steepest descent method; 

• Evaluate the swapping processes. 

Throughout this section, the experiments are based on the spell-model presented in Chapter 4.  

 

6.3.1 Experiments on different neighbourhood structures  

 

Given an objective function, different neighbourhood structures may give rise to different 

“landscapes” of local optima. In HACS, three spell -based swapping neighbourhood structures 

have been defined, each of which has different local optima and leads to a different solution. 

Table 6.2 compares the solutions obtained using each swapping neighbourhood structure 

separately while the recutting neighbourhood structure is always applied. 

 

Obviously the quality of the solutions presented in Table 6.2 is poor. The average RPD in terms 

of number of duties is more than 6%. It is hard to conclude that one neighbourhood structure is 

superior to another.  

 

The following experiments employed all three swapping operations and the recutting operation 

together, in which each neighbourhood structure is applied in turn, starting from the current best 

solution, until no further improvement can be achieved. The computational results presented in 

Table 6.3 show that HACS with all the swapping neighbourhood structures together produced 

better solutions than with only a single one. The application of multi-swapping neighbourhoods 

diversified the search and led to much better results. The average RPD of the HACS solutions 



  

over the best known solutions was 3.24% in terms of number of duties and 1.27% in terms of 

cost. For the largest problem (D10) HACS produced a marginally better solution than TRACS 

II. 

Table 6.2: Results obtained by HACS with different single swapping neighbourhood structure 

Swapping-two-links Swapping-two-spells Inserting-one-spell Data 

No. 

Duties 

Cost 

(hours) 

Run Time 

(h:mm:ss) 

No. 

Duties 

Cost 

(hours) 

Run Time 

(h:mm:ss) 

No. 

Duties 

Cost 

(hours) 

Run Time 

(h:mm:ss) 

D1 28 199.24 0:00:05 26 191.02 0:00:02 25 188.03 0:00:03 

D2 26 192.37 0:00:14 26 199.21 0:00:08 26 200.41 0:00:13 

D3 33 244.06 0:00:19 34 239.20 0:00:17 34 242.13 0:00:31 

D4 36 285.57 0:00:10 36 289.16 0:00:10 37 292.37 0:00:17 

D5 45 330.32 0:00:24 46 333.13 0:00:11 45 333.25 0:00:31 

D6 44 388.13 0:00:16 44 384.00 0:00:23 46 393.12 0:00:36 

D7 53 419.25 0:00:36 51 416.08 0:00:23 52 415.18 0:00:35 

D8 58 457.10 0:01:11 58 457.22 0:00:59 59 470.33 0:01:11 

D9 87 685.26 0:01:25 83 654.12 0:00:37 87 688.27 0:01:14 

D10 113 889.11 0:03:32 110 865.26 0:02:15 118 927.02 0:05:10 

RPD 8.19%   6.73%   8.52%   

 

Table 6.3: The solutions obtained by HACS with multi-neighbourhoods 

Data No. 

Duties 

RPD 

(%) 

Cost 

(hours) 

RPD 

(%) 

Run Time 

(h:mm:ss) 

D1 25 4.17 182.26 1.18 0:00:07 

D2 25 0.00 196.50 2.06 0:00:25 

D3 33 6.45 239.33 1.90 0:00:30 

D4 35 2.94 287.48 -0.60 0:00:19 

D5 44 4.76 331.05 1.00 0:00:33 

D6 42 7.69 371.15 2.15 0:00:54 

D7 50 2.04 411.18 0.62 0:01:10 

D8 55 1.85 438.52 2.76 0:01:43 

D9 82 2.50 647.13 2.32 0:02:01 

D10 108 0.00 856.11 -0.73 0:06:11 

Avg. 3.24% 1.27%  

  



  

6.3.2 Experiments on a steepest descent method 

 

As a more elaborate neighbourhood search method, tabu search can be described as a steepest 

descent method with a dynamic neighbourhood associated with an exploration history. Turning 

off the up-hill move operation (i.e. forbid any non-improved solutions), the tabu search 

approach becomes a steepest descent approach (i.e., from a given solution the move that leads 

to the best improved solution amongst the neighbourhood of the given solution is selected). The 

steepest descent method presented here was adapted from the HACS approach with all the 

neighbourhood structures. The computational results displayed in Table 6.4 show that the 

steepest descent method is inferior to the HACS approach based on the tabu search technique. 

However, the steepest descent method produced better solutions than the HACS approach with 

a single swapping neighbourhood structure. 

 

Table 6.4: Results obtained by a Steepest Descent method 

Data No.  

Duties 

RPD  

(%) 

Cost 

 (hours) 

RPD 

(%) 

Run Time 

(h:mm:ss) 

D1 26 8.33 198.49 10.27 0:00:07 

D2 27 8.00 192.15 -0.32 0:00:14 

D3 33 6.45 244.28 3.99 0:00:25 

D4 35 2.94 295.04 1.91 0:00:15 

D5 45 7.14 334.31 2.05 0:00:26 

D6 43 10.26 373.39 2.81 0:00:30 

D7 51 4.08 415.46 1.71 0:00:30 

D8 58 7.41 453.14 6.13 0:01:32 

D9 83 3.75 650.27 2.83 0:01:53 

D10 110 1.85 864.00 0.18 0:06:20 

Avg.  6.02% 3.16%  

 

 



  

6.3.3 Evaluation of the swapping processes 

 

In the tabu search algorithms of HACS, there are two main operations: swapping and recutting. 

Once a set of spells are fixed, the swapping function attempts to improve the solution as much 

as possible by re-linking the units of vehicle work. The recutting function attempts to improve 

the solution by re-selecting AROs. Both functions play very important roles in refining the 

schedule. Their performances will affect the solution quality of HACS although the cooperation 

of all components of HACS determines the ultimate solution quality. This subsection intends to 

investigate the individual performance of the tabu search swapping algorithms; the recutting 

function is not independently tested because there is no appropriate way to judge its individual 

performance. 

 

To evaluate the tabu search swapping algorithms, we design an experiment in which the initial 

schedule formed is based on a ‘good’ set of spells. The swapping fun ction, including all of the 

three swapping operations, is used solely to refine the schedule while the recutting-block and 

the adding-duties functions are switched off. The ‘good’ set of spells is taken from the best 

known solutions, i.e. TRACS II solutions.  

 

• Forming initial solutions based on the spells in TRACS II solutions 

 

The method of forming an initial schedule needs to be adjusted to use the spells in TRACS II 

solutions. In a TRACS II solution, some duties contain two-spells while the others may contain 

one, three or four spells (TRACS II only produces the duties with up to four-spells). However, 

HACS only initially forms the duties with up to two-spells. The number of duties in an initial 

schedule would be larger than that in the TRACS II solution containing three or four spell 

duties. Although it would be possible for the swapping process to reduce the number of duties 



  

used, it is anticipated that the current HACS would have difficulty in reducing many duties. To 

focus on the performance of the tabu search swapping algorithms, the non-two-spell duties are 

adopted into the initial schedule while the spells in the other duties are re-coupled to form new 

two-spell duties. We use two different methods to couple the spells in order to test the swapping 

algorithms from different starting solutions. One method is the HACS’ initialisation method. 

Another method forms an initial schedule by first sorting the spells by starting time, and then 

coupling two adjacent spells. The duties generated by one of the methods plus the original non-

two-spell duties constitute an initial schedule. The HACS approach modified to test the 

swapping algorithms is denoted as HACS-1 or HACS-2 respectively according to the 

initialisation method incorporated. 

 

• Experiment 1 

 

The problem D6 was first selected for this experiment because the RPD, in terms of number of 

duties, over the best known solution is the highest amongst the test data listed in Table 6.3. It 

was expected that a better solution would be produced by using the ‘good’ set of spells in the 

best known solution. The best known solution to D6 costs 363 hours and 26 minutes and 

contains 39 duties, but only 18 of which are two-spell duties while the other duties are three-

spell duties. Based on the 36 spells included in the 18 two-spell duties, two starting solutions 

and the corresponding final solutions are generated, which are summarised in Table 6.5, in 

which the similarity to the best known solution is analysed. In the initial solutions, the number 

of non-two-spell duties is presented in the first column, which is constant in both methods. 

When a solution is infeasible, the penalty of which is presented with ‘p’ following the number. 

The cost of a feasible solution is followed by a ‘c’.   

 



  

Table 6.5: The starting solutions and the corresponding final solutions to D6 obtained by HACS 

based on the spells in the TRACS II solutions. 

Initial Schedule Final schedule System 

No. 

Same 

duties 

No. 

Diff. 

Duties 

No. 

Invalid 

Duties 

Total 

Cost or 

Penalty 

No. 

Same 

duties 

No. 

Diff. 

Duties 

No. 

Invalid 

Duties 

Total 

Cost or 

Penalty 

HACS-1 21 13 5 0 364:18c 30 9 0 363:23c 

HACS-2 21 0 18 18 13256p 18 21 3 147p 

 

From Table 6.5, we can see that HACS-1 produces a solution 3 minutes cheaper than the best 

known solution starting from a more expensive feasible solution, and HACS-2 does not produce 

a feasible solution starting from a very poor initial solution. However, HACS-2 has improved 

the initial schedule considerably. In the initial schedule of HACS-2, every newly generated duty 

is illegal and different from the original duties. After swapping, most of the duties are still 

different. In HACS-1, the number of different duties has increased after swapping although the 

total cost is very close. The results indicate that there may be many possible combinations to 

form good feasible solutions based on the same set of spells. 

 

• Experiment 2 

 

In the previous experiments, the best known solution only contains 46% two-spell duties. This 

has reduced the difficulty to form a good initial schedule for HACS-1 because 54% of the 

duties are already formed and are valid. That case is not very common; in many cases two-spell 

duties are the majority in a solution. In this experiment, we select D7 as the test problem. The 

best solution to D7 has 408 hours and 47 minutes in cost and contains 49 duties, 48 of which 

are two-spell duties while only one is a three-spell duty. HACS-1 forms an initial schedule 

containing two infeasible duties. This initial schedule differs greatly from the best known 

solution. After swapping, a feasible solution is obtained, which is 48 minutes more expensive 



  

and 55% of the duties are different from those in the best known solution. HACS-2 forms an 

extremely poor initial schedule, from which a considerably better solution is obtained after 

swapping although it is still infeasible. The details are shown in Table 6.6. 

Table 6.6: The starting solutions and the corresponding final solutions to D7 obtained by HACS 

based on the spells in the TRACS II solutions. 

Initial Schedule Final schedule System 

No. 

Same 

duties 

No. 

Diff. 

Duties 

No. 

Invalid 

Duties 

Total 

Cost or 

Penalty 

No. 

Same 

duties 

No. 

Diff. 

Duties 

No. 

Invalid 

Duties 

Total 

Cost or 

Penalty 

HACS-1 1 12 36 2 935p 22 27 0 409:35c 

HACS-2 1 0 48 48 29188p 22 27 3 223p 

 

Similar to the previous experiment, this experiment shows that the HACS initialisation method 

produces a better initial solution than the method in HACS-2, and the better initial solution 

leads to a better final solution.  

 

• Experiment 3 

 

This experiment selects D9 as the test problem, which is the second largest amongst the test 

problems. The best known solution to D9 has 632 hours and 32 minutes in cost and contains 80 

duties, 54 of which are two-spell duties. HACS-1 forms an initial schedule containing 8 

infeasible duties. This initial schedule differs greatly from the best known solution. After 

swapping, a feasible solution is obtained, which is 1 hour and 56 minutes more expensive. 

HACS-2 forms an extremely poor initial schedule, from which a considerably better solution is 

obtained after swapping, which contains two invalid duties with 40 minutes penalty. The details 

are shown in Table 6.7. In this experiment, the solutions obtained by HACS-1 and HACS-2 are 

considerably different from the TRACS II solution, and the number of different duties is not 

explicitly counted.  



  

 

Table 6.7: The starting solutions and the corresponding final solutions to D9 obtained by HACS 

based on the spells in the TRACS II solutions. 

Initial Schedule Final schedule System 

No. Same 

duties 

No. Diff. 

Duties 

No. Invalid 

Duties 

Total Cost 

or Penalty 

No. Invalid 

Duties 

Total Cost or 

Penalty 

HACS-1 26 15 39 8 8420p 0 634:28c 

HACS-2 26 0 54 54 51546p 2 40p 

 

The foregoing experiments show that the HACS-1 solutions to the three problems are of a 

quality comparable to the best known solutions. Hence, the tabu search swapping algorithms 

have reached an acceptable level of performance because we do not expect an optimal solution. 

As for the HACS-2 solutions, which are not good enough, the tabu search swapping algorithms 

do improve the extremely poor starting solutions considerably. For local search methods, better 

initial solutions usually lead to better final solutions.  

 

6.3.4 Summary 

 

This section has presented a series of experiments on the HACS approach with the spell-model. 

The experiments have shown the importance of multi-neighbourhood structures and the tabu 

search framework. The multi-neighbourhood structures used in combination are superior to a 

single neighbourhood structure used in isolation, and the tabu search technique is superior to 

the steepest descent method. Compared with TRACS II, HACS can produce solutions 

considerably quicker and is very easy to manipulate because many parameters in TRACS II 

requiring careful setting are not needed. The experiments on solely evaluating the swapping 

function have shown that the swapping function has reached an acceptable level of 

performance. Given a good set of spells, HACS could generate a good solution. However, 



  

without this condition, the HACS solutions may be unsatisfactory. The next section will focus 

on the enhancement of the recutting function by incorporating the piece-model. 

 

6.4 HACS with combined utilisation of the spell model and the piece 

model 

 

It was anticipated that the piece-based operations would improve the results because more ROs 

would be considered than the spell-based recutting operation, in which only the ROs adjacent to 

the current AROs are considered as potential AROs. A number of experiments have been done, 

in which the same memory structure was used since links are still the basis of the memory 

structure.  

 

As discussed in Section 5.5, an enhanced HACS approach, having a combined utilisation of the 

spell-model and the piece model, is anticipated to allow all ROs a chance of being used while 

the driver work would not become too fragmented. In this enhanced approach, the five 

swapping operations (swapping-two-links, swapping-two-spells, inserting-one-spell, swapping-

two-pieces, inserting-one-piece) and a recutting-block (only applicable to WROs) operation are 

applied in turn. The test problems in this set of experiments do not contain WROs, hence no 

blocks need to be re-cut. The computational results (presented in Table 6.8) show: 

 

• The HACS approach with the spell-based and piece-based operations combined produced 

better solutions than the other variant HACS approaches.  

• In most cases, the improved HACS solutions to the test problems are close to the best 

known solutions. The average RPD over the best known solutions is 1.36% in terms of 

number of duties and 1.30% in terms of total cost. 



  

• For the largest problem in the table, HACS produced a better solution than TRACS II. 

• The HACS approach can produce solutions very quickly. 

Table 6.8: Results obtained by the HACS approach with the spell-based and piece-based 

operations combined 

Data No. 

Duties 

RPD    

(%) 

Cost 

(hours) 

RPD 

(%) 

Run Time 

(h:mm:ss) 

D1 24 0 182:29 1.21 0:00:24 

D2 25 0 196:14 1.74 0:00:54 

D3 32 3.22 239:15 1.77 0:01:02 

D4 34 0 291:56 0.83 0:00:36 

D5 44 4.76 330:18 0.76 0:00:59 

D6 40 2.56 362:48 -0.17 0:01:40 

D7 49 0 414:05 1.30 0:02:53 

D8 56 3.70 450:34 5.50 0:09:17 

D9 81 1.25 643:41 1.76 0:03:33 

D10 106 -1.85 847:55 -1.69 0:17:54 

Avg. RPD 1.36 1.30  

 

 

So far, the HACS approach, incorporating the spell-based and piece-based operations, has been 

developed. This approach is superior to the other variant HACS approaches and has produced 

the solutions close to the best known solutions. It will be applied in the following experiments 

in order to test its ability in handling WROs. 

 

6.5 Demonstration of handling WROs 

 

This section will demonstrate by experiments that HACS can take advantage of WROs. A small 

artificial test problem was first created for the demonstration. In order to assess the quality of 



  

the solution, two methods were used to apply TRACS II to obtain solutions to the test problem, 

although TRACS II cannot handle WROs practically. 

  

6.5.1 The TEST problem and the HACS solution 

 

The artificial problem created is called TEST, in which the set of labour agreement rules was 

selected from a real-life problem while the vehicle work was fictitious and contained fourteen 

pieces of work distributed in three blocks as shown in Figure 6.1. In the labour agreement rules, 

three types of duty: split duty, straight duty with mealbreak and non-mealbreak duty, are 

allowed, and the maximum length of spreadover is 12:30, 8:06, or 5:30 respectively. For each 

duty, the maximum length of spell is stipulated as 5 hours.  

 

Figure 6.1 also illustrates the solution obtained by HACS. The schedule, produced within less 

than one minute, contains three duties and costs 24 hours and 13 minutes. 

 

                          0812  0950-0955  1152-1157         1332-1337     1455-1500         1655 

vehicle 1 

                            G       H                   H                         H                     H                   G 

                             +-------Duty 1--------+-------------------Duty 2--------------------------+ 

 

 

                                                                       1240 1330-1335  1430-1435  1550-1555    1710-1715  1855 

vehicle 2 

                                                                          G      H                     H               H                     H          G 

                                                                           +----------------Duty 1----------+----------Duty 3----------+ 

 

 

                                 0920   1112-1117 1230-1235      1350-1400        1505 

vehicle 3 

                                   G             H               H                      H                  G 

                                   +--Duty 2--+-----------------Duty 3-------------------+ 

 

Figure 6.1: The TEST problem and the HACS solution 



  

 

6.5.2 TRACS II solutions to the TEST problem and analyses 

 

It has already been mentioned that none of the existing systems can directly handle windows of 

relief opportunities. There are only two possible ways for TRACS II to tackle the TEST 

problem. They are discussed separately below. 

 

1) Shrink a WRO into a RO by selecting only the arrival time as a relief time 

 

This is a common method for the existing approaches to solve practical driver scheduling 

problems. After the change, the blocks included in the TEST problem were converted into those 

as displayed in Figure 6.2, where no WROs existed. 

 

                          0812  0950             1152                    1332               1455               1655 
vehicle 1 
                            G       H                   H                         H                     H                   G 
 
 
                                                                       1240   1330            1430           1550               1710      1855 
vehicle 2 
                                                                          G       H                   H                H                     H          G 
 
 
                                 0920       1112          1230                 1350             1505 
vehicle 3 
                                   G             H               H                      H                  G 
 

 

TRACS II was then run and produced a solution as shown in Figure 6.3. This solution 

contained four duties with a total wage cost of 24 hours and 58 minutes, which was worse than 

the HACS solution in the terms of both the number of duties and the cost.  

 

Figure 6.2: Blocks in the TEST problem after shrinking each WRO into a RO 



  

                          0812  0950             1152                    1332               1455               1655 

vehicle 1 

                            G       H                   H                         H                     H                   G 

                             +-------Duty 1-------+-----Duty 4------+--------Duty 2----------------+ 

 

 

                                                                       1240   1330            1430           1550               1710      1855 

vehicle 2 

                                                                          G       H                   H                H                     H          G 

                                                                           +----------------Duty 1------------+---------Duty 3---------+ 

 

 

                                 0920       1112          1230                 1350             1505 

vehicle 3 

                                   G             H               H                      H                  G 

                                   +--------Duty 2--------+-----------Duty 3--------------+ 

 

 

 

 

Comparing the TRACS II solution with the HACS solution, we found that the TRACS II 

solution contained seven spells while the HACS solution had six. Further investigation found 

that TRACS II partitioned the first block into three spells while HACS divided it into two 

spells. The explanation is: the length of the first block is 8:43, which is longer than the 

maximum length of spell (five hours). The block therefore has to be partitioned into at least two 

spells. The longest early spell could be from 8:12 to 13:12 (the sum of 8:12 plus 5:00). 

However, since 13:12 is not a relief time, an earlier relief time 11:52 was selected. Similarly, 

the longest spell covering the end of the block could be from 11:55 to 16:55. Since 11:55 is not 

a relief time, the later time 13:32 was selected. The work between 11:52 and 13:32 was not 

covered; hence, three spells were essential to cover all the work in the first block.  

 

Figure 6.3: TRACS II solution to the TEST problem 

after shrinking each WRO into a RO   



  

However, in the original TEST problem presented in Figure 6.1, the time 11:55 in the first 

block was a relief time falling in the time window from 11:52 to 11:57. It was possible to 

partition the block into two at the time 11:55, 11:56, or 11:57. The WROs enabled the use of 

one fewer spell and to produce the better solution. This experiment has exemplified the 

improvement that WROs may bring and that shrinking WROs might lose some opportunities to 

produce a better solution. 

 

2) Expand explicitly each WRO into a sequence of individual ROs at one-minute intervals 

 

This method would not normally be practical because it will increase considerably the number 

of ROs, and is thus not suitable for the generate-and-select based approaches, e.g. TRACS II, in 

which the magnitude of a problem is largely dependent on the number of ROs. Since the TEST 

problem is artificially tiny in terms of vehicle work to be covered, it would be worth trying. 

Two experiments were carried out: one used slack filtering rule parameters while another used 

tight parameters.  

 

Theoretically, using slack filtering parameters enlarges the search space providing more chance 

of producing a good solution. HACS does not need any filtering rules because it only refines 

the small solution set of duties constructed. However, TRACS II has to apply filtering rules so 

that the set of potential duties generated would not be prohibitively large. In the duty generation 

process, TRACS II first generates the set of potential legal spells, the length of each is limited 

in a time range stipulated by parameters. It then generates the set of potential legal stretches 

based on the set of spells. Finally by combining the stretches a large set of potential duties is 

generated. There are upper bound limits for the number of potential spells, stretches generated. 

 



  

To run TRACS II in a similar condition to HACS, slack filtering rule parameters were used in 

the first experiment. Unfortunately, TRACS II terminated before finishing the duty generation 

process because the number of stretches exceeded TRACS II’s limit (899 spells and 26637 

stretches had been formed before the termination). 

 

The second experiment was then designed using tighter parameters in order to reduce the 

number of stretches to be formed. The minimum lengths of spells and stretches were set to one 

hour and three hours respectively. A solution was obtained in about ten minutes, which 

contained four duties and the total cost in hours and minutes was 23:53. Figure 6.4 

demonstrates the schedule, where the times underlined are active relief times. Duty 1 is a 

straight duty with a meal break and the other duties are non-mealbreak duties, amongst which 

duty 4 contains two spells. 

                 0957        1157      1337    1500 
                 0956        1156      1336    1459 
                 0955        1155      1335    1458 
                0954        1154      1334     1457 
                0953        1153      1333     1456 
      0812      0952        1152      1332     1455        1655 
     1 G---------h-----------h---------h--------h-----------G 
       +       duty 1        +            duty 3            + 
 
 
 
                                       1335  1435    1555 1645  1745 
                                       1334  1434    1554 1644  1744 
                                       1333  1433    1553 1643  1743 
                                      1332  1432    1552 1642  1742 
                                      1331  1431    1551 1641  1741 
                                 1240 1330  1430    1550 1640  1740    1855 
     2                            G----h-----h-------h----h-----h-------G 
                                  +     duty 1       +     duty 4       + 
 
 
 
                   1015  1117    1235    1355 
                   1014  1116    1234    1354 
                   1013  1115    1233    1353 
                  1012  1114    1232    1352 
                  1011  1113    1231    1351 
             0920 1010  1112    1230    1350     1505 
     3        G----h-----h-------h-------h--------G 
              +          duty 2          + duty 4 + 

Figure 6.4: TRACS II solution to the TEST problem after expanding 

each time window into individual minutes 



  

 

In the foregoing experiment, WROs were represented in the same way as in HACS, but the 

solution contained one more duty. The reason was investigated below. 

 

Comparing the solutions, we found in the HACS solution that the shortest stretch, which 

contained only one spell, was 1 hour and 55 minutes. This stretch was shorter than the 

minimum length of stretch stipulated in TRACS II. Therefore, it was impossible for TRACS II 

to produce such a solution.  

 

6.5.3 Summary 

 

This section has demonstrated that HACS can take advantage of WROs, but the generate-and-

select approaches, e.g. TRACS II, cannot because shrinking WROs or using tight parameters 

compromises the quality of solutions while the slack parameters cause the set of potential 

stretches or duties generated to be too large even for trivial problem instances with WROs. It is 

impractical to expand explicitly each time window into individual minutes using the existing 

generate-and-select approaches. 

 

6.6 Experiments on real-life problems with WROs 

 

Further experiments were carried out on the real-life problems presented in Table 6.1. Since 

these problems (D1 to D10) do not contain WROs, HACS was run on the problems W1 to 

W10, which were derived from D1 to D10 by imposing WROs (see Section 6.2). This enables 

us to see further the ability of HACS to tackle WROs. The computational results are displayed 

in Table 6.9. 

 



  

Table 6.9: HACS solutions involving WROs 

Best solutions to D1 to D10 by HACS solutions 

(to the problems W1 to W10) TRACS II 

(see Table 6.1) 

HACS 

(see Table 6.8) 

       

DATA 

No. 

Duties 

RPD 

(%) 

Cost 

(hours) 

RDP 

(%) 

Elapsed 

Time  

No. 

Duties        

Cost  

(hours)     

No. 

Duties        

Cost  

(hours)     

W1 24 0 181:50 0.85 0:00:08 24 180:18 24 182:29 

W2 25 0 193:56 0.55 0:00:37 25 192:52 25 196:14 

W3 32 3.23 240:42 2.39 0:01:03 31 235:05 32 239:15 

W4 34 0 288:31 -0.35 0:00:19 34 289:32 34 291:56 

W5 44 4.76 330:31 0.83 0:00:39 42 327:48 44 330:18 

W6 39 0 364:25 0.27 0:00:46 39 363:26 40 362:48 

W7 49 0 410:08 0.33 0:04:05 49 408:47 49 414:05 

W8 54 0 433:29 1.50 0:07:48 54 427:04 56 450:34 

W9 81 1.25 645:04 1.98 0:08:09 80 632:32 81 643:41 

W10 104 -1.89 830:18 -2.08 0:31:16 108 862:29 106* 847:55 

Avg. RPD 0.74% 0.63%      

 
* The best known solution to D10 was produced by HACS. The best known solutions to the 

other problems (D1 to D9) were generated by TRACS II.  

 

The computational results presented in table 6.9 show: 

• HACS produced better solutions to all the ten problem instances with WROs imposed (W1 

to W10) than to those without A-WROs (D1 to D10). The best HACS solutions to D6, D8 

and D10 were considerably improved, in which the number of duties was reduced, by 

taking advantage of WROs.  

• In most cases, the HACS solutions to the test problems are close to the best known 

solutions. The average RPD over the best known solutions is 0.74% in terms of number of 

duties and 0.63% in terms of total cost. 

• For the largest problem (W10) in table 6.9, HACS produced a better solution than TRACS 

II. (A larger problem usually has more WROs, which provide more chances of improving 

the schedule). 



  

6.7 Experiments to improve best known solutions 

 

Theoretically, WROs provide more chances of compiling a good schedule. This experiment 

investigates if HACS could improve the best known solutions by taking advantage of WROs. 

This experiment was carried out using the best known solutions as initial solutions for HACS. 

The best known solutions were obtained by solving the test problems without WROs. Table 

6.10 shows the results, from which it can be seen that the best known solutions to all the test 

problems have been improved by HACS, taking advantage of WROs, in terms of cost. The 

average RPD of the HACS solutions over the best known solutions is –0.85%. This implies that 

HACS could be used as a post process for TRACS II or other systems to improve their 

solutions by WROs. One of the most recent experiments, which was on scheduling train staff 

for London Underground Metropolitan Line, provides further proof. 

 

Table 6.10: HACS solutions based on the best known solutions  

HACS solutions Best known solutions Data 

No. 

Duties 

Cost 

(hours) 

RDP 

(%) 

Elapsed Time 

(h:mm:ss) 

No. 

Duties 

Cost 

(hours) 

W1 24 179:08 -0.65 0:00:03 24 180:18 

W2 25 190:25 -1.27 0:00:05 25 192:52 

W3 31 234:41 -0.17 0:00:05 31 235:05 

W4 34 279:41 -3.40 0:00:08 34 289:32 

W5 42 326:57 -0.26 0:00:07 42 327:48 

W6 39 361:23 -0.56 0:00:16 39 363:26 

W7 49 407:36 -0.29 0:00:20 49 408:47 

W8 54 424:54 -0.51 0:00:32 54 427:04 

W9 80 625:16 -1.15 0:00:52 80 632:32 

W10 106 845:44 -0.26 0:01:41 106 847:55 

Avg. RPD 0% −0.85%    

 



  

Neasden Depot 

Rickmansworth 

CLFO 

CLFX 

WPKO

LFO 

5:32 

5:38 

6:01 

6:09 

(6:31--24:42) 

(24:50-24:55) RKYI 

WPKI 25:13 

Neasden Depot 25:19 

 

The exercise on scheduling train staff for London Underground Metropolitan Line was mainly 

carried out by Professor A. Wren and his colleagues. Since there were some time windows 

involved, it was anticipated that HACS could improve the best solution generated by TRACS 

II.  

 

This problem had 569 ROs and 17 relief points, of which two were depots. Amongst the ROs, 

37 were WROs, which together contained 4 hours and 45 minutes of daily work in one vehicle. 

Figure 6.5 illustrates the vehicle work diagram, where the dotted lines denote WROs. This 

vehicle operates a shuttle service from CLFX to another point and back. Most of the round 

journeys last 22 minutes each and then wait at CLFX for 8 minutes.   

  

    

 

 

 

 

 

 

 

 

 

There were some special conditions: the ability to sign on or sign off at relief points other than 

depots at certain times of day, and the ability to provide different latest sign off times at certain 

relief points.  

 

Figure 6.5: Illustration of a vehicle work with WROs in the                   

London Underground Metropolitan Line 



  

 

To solve the problem with the special conditions, an intelligent manipulation of the data for 

TRACS II was under taken while each WRO was shrunk into two ROs. The best solution 

obtained by TRACS II at the time used 79 duties with a cost of 598 hours and 17 minutes. It 

was anticipated that the TRACS II solution might be improved in cost by taking advantage of 

WROs using HACS. Starting from the TRACS II solution, HACS generated a solution with 596 

hours and 10 minutes in cost. The HACS solution improved the TRACS II solution by saving 2 

hours and 7 minutes in terms of cost while the number of duties used was the same. 

 

6.8 Conclusions 

 

This chapter has presented a series of experiments to evaluate the HACS approach. The tabu 

search technique in HACS has been evaluated first. The experiments have shown the 

importance of the multi-neighbourhood structures and the tabu search framework. By 

combining spell-based and piece-based operations, HACS has improved the chance of all ROs 

to be used while the driver work would not become too fragmented and the computation is 

efficient. The computational results are generally nearly as good as the TRACS II solutions. 

 

After testing the technical aspects of HACS, this chapter has also presented the experiments on 

handling WROs. The demonstration on solving the TEST problem shows that HACS can take 

advantage of WROs but TRACS II cannot. We can deduce that it is impractical to expand 

explicitly each time window into individual minutes using the existing generate-and-select 

approaches.  

 

The further experiments on solving the ten real-life problem instances with WROs have shown 

that HACS is able to handle WROs while producing solutions generally close to the TRACS II 



  

solutions using significantly shorter computational time. By employing the best known 

solutions as initial solutions, HACS can improve the best known solutions by taking advantage 

of WROs. The case of London Underground Metropolitan Line indicates that HACS has 

practical significance for improving existing solutions by taking advantage of WROs. 

 

From all the experiments presented in this chapter, we can see that HACS can produce solutions 

in one-go and is considerably quicker than TRACS II, an ILP-based generate-and-select 

approach. Theoretically, using slack labour rule parameters enlarges the search space providing 

more chance to produce a good solution. However, the duty generation process could take a 

very long time when the labour rule parameters are slack. Hence, TRACS II uses some 

parameterised filtering rules to prevent too many potential duties from being generated. The 

HACS approach does not need any filtering rules because it only refines the small solution set 

of duties constructed. Although the current HACS solutions are generally only close to the 

TRACS II solutions, HACS has the potential of being developed to yield solutions better than 

TRACS II because its search space is not limited by the filtering rules and it can take advantage 

of WROs. This feature (no soft rules under consideration) also provides HACS another 

advantage: easy to manipulate. 



  

 

 

 

Chapter Seven 

 

Conclusions 

___________________________________________________________ 

 

 

7.1 Summary 

 

The bus and train driver scheduling problem has been presented. While reviewing the 

approaches for solving the driver scheduling problem, the shortcomings of the current 

approaches have been identified. Early heuristic approaches are heavily dependent on problem 

domain knowledge and hard to adapt between organisations. Although generate-and-select 

approaches, e.g. TRACS II and HASTUS, are at present the most successful for driver 

scheduling, they still cannot be regarded as black boxes that produce working schedules and 

they cannot guarantee to yield optimal solutions within practical computational limits. 

Windows of relief opportunities, which often exist in real-world driver scheduling problems, 

cannot be handled by them. Filtering rules are often applied so that the set of potential duties 

generated would not be prohibitively large. The adjustment of the parameterised filtering rules 

is sometimes frustrating and time-consuming. The ILP-based approaches cannot ensure a 



  

solution at the first attempt, and it is likely that there will always be problems for which 

decomposition is necessary on size grounds. 

 

Constructive approaches have been investigated in this thesis, under which filtering rules are 

unnecessary. Initial research was aimed at investigating the applicability of a 2-opt heuristic 

local search method for driver scheduling. The 2-opt heuristic approach is much less dependent 

on domain knowledge than the early heuristic approaches and is easier to adapt to different 

situations. The initial research was limited to form the duties with up to two-spells. The 2-opt 

approach can produce solutions very quickly and is very easy to manipulate because there is no 

filtering rule parameters to be adjusted by users. Development and experiments on the 2-opt 

approach have demonstrated the feasibility of a constructive heuristic approach for driver 

scheduling and inspired the tabu search approach. 

 

Benefiting from the experience in the 2-opt heuristics, two models have been built for the driver 

scheduling problem with WROs. In these models the labour agreement rules governing the 

legality and payment of duties have been formulated by quantified penalty and cost functions. 

These functions can be easily adjusted to different situations. A schedule is modelled as a set of 

links, which constitutes the basis for the refining operations. Adjusting the set of links may 

improve the schedule, and any ROs in windows of relief opportunities may have the chance to 

be selected as AROs during the scheduling process. Hence, it is possible for the constructive 

approach to handle WROs based on the models. In addition, there is no limit on the number of 

spells in a duty as necessitated in the TRACS II system.  

 

Based on the models, a constructive approach, HACS, employing Tabu Search, has been 

developed. In the HACS approach, the tabu search technique has been appropriately tailored for 



  

the driver scheduling problem with WROs. A large number of experiments have been 

undertaken, of which the computational results have been presented in detail.  

 

7.2 Research Contributions 

 

This research has investigated two local search methods, 2-opt heuristics and Tabu Search, for 

the bus and train driver scheduling problem with WROs. The problem without WROs is a 

special case, in which all WROs have zero durations. Despite extensive literature search and 

discussions with colleagues, it appears that this is the first time that research is focussed on time 

windows in driver scheduling.  

 

Two models for bus and train driver scheduling problem have been built. Based on the models a 

heuristic driver scheduling approach, called HACS, has been developed. The core of the HACS 

approach is the Tabu Search technique, which has been appropriately tailored for the driver 

scheduling problem with WROs. HACS does not need any filtering rules to reduce problem 

size. Consequently, HACS is easy to manipulate and has the potential of being developed to 

yield schedules better than TRACS II, although the current HACS solutions are only close to, 

generally not as good as, the TRACS II solutions. 

 

Experiments have shown that the HACS tabu search approach has met the proposed goals: 

 

1. HACS can take advantage of WROs, which cannot be practically handled by other 

existing systems; 

2. HACS does not use any artificial rules and is easy to manipulate (unlike generate-and-

select approaches, which have to apply a set of filtering rules to reduce problem size, 



  

and require manipulation of these parameterised filtering rules; this is often frustrating 

to human schedulers). 

 

In addition, HACS has the following features: 

 

a) HACS can compile duties, in which the number of spells is unlimited. (Generate-and-

select approaches limit the number of spells in a duty so that the set of potential duties 

generated would not be prohibitively large); 

b) HACS can produce solutions quickly (considerably quicker than TRACS II). 

c) It can be applicable to different transport operators since the most common labour 

agreement rules have been considered in formulating the penalty and cost functions. 

d) During the scheduling process, HACS produces a sequence of intermediate solutions. 

Some infeasible intermediate solutions might be useful for the scheduler who might be 

able to adjust the operations to reduce the number of drivers. 

 

Experiments on the ten sets of real-life problems have shown that HACS has produced results 

closely comparable to the best known solutions. The average RPD over the best known 

solutions is 1.36% in terms of total number of duties and 1.30% in terms of total cost. The 

results would be better if the WROs could be restored (this has been demonstrated by 

experiments). With better starting solutions, e.g. the blocks are first cut according to the 

TRACS II solutions, the results could be improved further. It should be noted that HACS has 

only been developed after about three person-years work while perhaps 100 person-years have 

been devoted to the developments of TRACS II (Kwan et al, 2000). 

 

It has practical significance that HACS can improve the TRACS II solutions by taking 

advantage of WROs within a short computational time. Consequently, HACS could be 



  

incorporated into existing systems such as TRACS II to improve the solution by taking 

advantage of WROs. The extra relief opportunities, within time windows, chosen for use in the 

improved solution could be inserted into the original TRACS II data for re-running. The whole 

process could be repeated until HACS cannot make any further improvement.  

 

The research presented in this thesis is concerned with bus and train driver scheduling; 

however, it is anticipated that the modelling method, the idea of allowing infeasible 

intermediate solutions, and the tailored tabu search technique (especially the efficient memory 

scheme and multi-neighbourhood structures) could be applied to many combinatorial problems, 

such as vehicle routing problems, job shop scheduling and travelling salesman problems.  

 

7.3 Future Work 

 

HACS could benefit from further development in both methods of constructing an initial 

schedule and adding duties. HACS might be advanced by more complex compound moves, 

involving intermixing the swapping moves and the recutting moves. 

 

In a large operating area, an individual driver may not know all the routes. However, the usual 

assumption is that each depot, and therefore its drivers, is associated with knowledge of a set of 

routes. In a vehicle schedule, specific driver route knowledge may be required for individual 

pieces of work. Similarly in the train situation, each block in a train schedule may have specific 

traction knowledge required of the drivers. Further research may cater for route knowledge, 

traction knowledge and other practical driver scheduling constraints, so that HACS would be 

more versatile for the transport industry. 

 



  

In real-time operation, vehicle delay, accident or some other unexpected events may happen. 

This may need the adjustment of the vehicle schedules and the driver schedules. Further 

research may adapt HACS to produce quickly a revised driver schedule with least changes 

according to the newly adjusted vehicle schedule. 

  

Combining tabu search with other meta-heuristics such as simulated annealing and genetic 

algorithms is also worthy of further research. 
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Glossary 

 

In public transport scheduling areas, different transport companies may have different meanings 

for some terms. Below is a glossary of some transport scheduling terms used in this thesis.  

Active relief opportunity (ARO): A special relief opportunity, in which a driver is actually 

relieved.  

Attended window of relief opportunities (A-WRO): A window of relief opportunities, 

during which a vehicle must be attended by a driver. 

Block: A sequence of journeys to be operated by one vehicle during one day, beginning with a 

pull-out from, and ending with a pull-in to a depot. 

Depot: A place where vehicles and drivers are dispatched from at the start of their work period 

and returned to at the end of their daily work. 

Duty: The work to be performed by a driver during one day from signing on until signing off at 

a depot. 

Join up (join-up): The time allowance between two spells of work for the driver to get off 

from the current vehicle to take over the next vehicle, which is not a 

mealbreak.  

Labour agreement rules: Rules agreed by government, the transport operators and the union, 

which govern the legality of duties. 

Meal break (mealbreak): The time allowance between two spells of work for the driver to 

travel to the canteen having a meal and then travel to take over the next vehicle. 

 



  

 

Over cover (over-cover): When a piece of work is assigned to two or more driver duties. 

Piece of work (piece): An indivisible period of driving work, between two windows of relief 

opportunities. 

Relief opportunity (RO): A time/location pair, at which a driver can be relieved. 

Relief point: Designated locations on vehicle work where drivers may be relieved. 

Relief time: A time when a vehicle passes a relief point. 

Spell: a section of continuous vehicle work to be operated by a driver without a break. 

Spilt duty: a type of duty that has a longer spreadover than standard duties and has a long break 

in the middle. 

Stretch: The time period that a driver can work without a mealbreak, consisting of one or more 

successive spells in a duty. 

Time window: The time range between the arrival time and the departure time when a vehicle 

stops at a location. 

Unattended window of relief opportunities (U-WRO): A window of relief opportunities, 

during which the vehicle is left without a driver.  

Window of relief opportunities (WRO): The time range that a vehicle remains at a relief 

point, during which the driver can be relieved. 

 

 

 


