Variations in the Characteristic Amplitude of Tectonic Tremor Induced by Long-Term Slow Slip Events

著者	Nakamoto Keita, Hiramatsu Yoshihiro, Matsuzawa Takanori, Mizukami Tomoyuki
著者別表示	平松 良浩, 松澤 孝紀, 水上 知行
journal or	Journal of Geophysical Research. Solid Earth
publication title	
volume	126
number	5
page range	e2020JB021138
year	2021-04-10
URL	http://doi.org/10.24517/00062386

doi: 10.1029/2020JB021138

1	Variations in the characteristic amplitude of tectonic tremor induced by long-term
2	slow slip events
3	
4	Keita Nakamoto ¹ , Yoshihiro Hiramatsu ² , Takanori Matsuzawa ³ , and Tomoyuki Mizukami ²
5	
6	¹ Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa,
7	920-1192, Japan
8	
9	² School of Geosciences and Civil Engineering, College of Science and Engineering, Kanazawa
10	University, Kakuma, Kanazawa, 920-1192, Japan
11	
12	³ National Research Institute for Earth Science and Disaster Resilience, 3-1 Tennodai, Tsukuba, 305-
13	0006, Japan
14	
15	Correspondence author: Yoshihiro Hiramatsu
16	
17	
18	
19	Key points:
20	• Long-term slow slip events change characteristic amplitudes of tectonic tremor in the
21	episodic tremor and slip zone
22	• Variations in characteristic amplitude reflect the heterogeneous effective strengths of tremor
23	patches
24	• Fluid migration during long-term slow slip events might control the stress state and strength
25	of tremor patches

26 Abstract

28	Long-term slow slip events (L-SSEs) often excite short-term slow slips events (S-SSEs) and tectonic
29	tremor in the zone of episodic tremor and slip (ETS). However, the factors controlling the occurrence
30	of primary versus excited tremor events remain unclear. To elucidate these factors, we analyzed
31	tectonic tremor events in and around the Bungo Channel (Nankai subduction zone), where L-SSEs
32	are known to excite tremor and S-SSEs in the ETS zone. We focused on the spatial distribution of the
33	characteristic amplitude (CA) of tremor, determined from the duration-amplitude distributions of
34	tremor events, as an indicator of the properties of the tremor source. CAs are large in L-SSE slip areas
35	and small in adjacent areas. The difference between CA values during tremor-excitation periods (L-
36	SSEs) and the intervening periods (ΔCA) is positive in the slip area, negative in adjacent areas, and
37	tends toward zero in the far field. We suggest that the heterogeneous distributions of CA and ΔCA
38	reflect the heterogeneous effective strengths of tremor patches, which might be related to petrological
39	properties, and stress and pore-fluid pressure variations induced by L-SSEs, respectively. The upward
40	migration of fluid from the ETS zone along the plate interface might modulate the effective stress and
41	strength states of tremor patches during L-SSEs.

44 Plain Language Summary

45

In subduction zones, slow earthquakes have inspired great interest in the connection between slow 46 47 and megathrust earthquakes. Long-term slow slip events (L-SSEs) are known to excite short-term slow slip events and tectonic tremor. To understand the factors controlling the occurrence of primary 48 49 and excited tremors, we investigated the characteristic amplitude (CA) of tremor events (representing 50 the properties of a tremor source) during tremor-excitation periods and the intervening periods. CAs 51 are larger in L-SSE slip areas than in adjacent areas during both periods. This contrast may result from differences in pore-fluid pressure arising from differences in petrological properties between the 52 53 two areas. Moreover, relative to CAs during the intervening periods, CAs during tremor-excitation periods are larger in the slip area, smaller in adjacent areas, and almost the same far from the slip area. 54 These variations in CA are the combined effects of (1) stress changes accompanying L-SSEs and (2) 55 upward fluid migration along the plate interface from the tremor source area during L-SSEs, because 56 57 fluid migration reduces the pore-fluid pressure and increases the strength of tremor source areas. Our 58 findings emphasize that CA can be a useful tool for monitoring fluid migration in the source areas of 59 tremor events.

60

1. Introduction

64	Recent discoveries of slow earthquakes have revealed the diversity of slip phenomena and subduction
65	dynamics worldwide. Slow earthquakes are usually classified into long-term slow slip events (L-
66	SSEs, durations of months to years; e.g., Ozawa et al., 2002), short-term slow slip events (S-SSEs,
67	durations of days to weeks; e.g., Dragert et al., 2001), very-low-frequency (VLF) earthquakes (e.g.,
68	Ito et al., 2007), low-frequency earthquakes (LFEs; e.g., Katsumata & Kamiya, 2003), and tectonic
69	tremor (e.g., Obara, 2002). Slow earthquakes show characteristic scaling relationships that separate
70	them from regular earthquakes. For example, Ide et al. (2007) proposed that the seismic moment of
71	a slow earthquake is proportional to its duration, although the seismic moments of SSEs in Cascadia
72	(Michel et al., 2019) and LFEs in Shikoku, Japan (Supino et al., 2020), are reported to be proportional
73	to the cube of their duration, as observed for regular earthquakes. The duration-amplitude distribution
74	of tremor events obeys an exponential distribution rather than a power-law distribution as usually
75	observed for regular earthquakes (Watanabe et al., 2007). This indicates the existence of a
76	characteristic or mean tremor amplitude that is proportional to the geometric dimensions of the tremor
77	source (Benoit et al., 2003). Exponential distributions have also been reported for the size-frequency
78	(Hiramatsu et al., 2008) and size-energy rate distributions of tremor events (Yabe & Ide, 2014).
79	However, power-law distributions with and without an exponential taper were observed in the size-

80	frequency distributions of shallow tremors in the Nankai Trough (Nakano et al., 2019) and LFEs in
81	Cascadia (Bostock et al., 2015), respectively. These features are well explained by statistical models
82	of slow earthquakes; for example, a Brownian model reproduces well the exponential scaling of
83	duration-amplitude distributions (Ide, 2008) and the power-law scaling with an exponential taper of
84	cumulative size distributions (Ide & Yabe, 2019).
85	
86	The spatial distribution of slow earthquakes is highly variable among subduction zones and, therefore,
87	is regarded as a unique feature providing insight into the relationship between slow and megathrust
88	earthquakes (e.g., Nishikawa et al., 2019; Obara & Kato, 2016). Interactions between slow
89	earthquakes are also an important process in subduction dynamics. Spatiotemporally coincident S-
90	SSEs and tremor are termed episodic tremor and slip (ETS) events (e.g., Rogers & Dragert, 2003). L-
91	SSEs are distributed around the source areas of megathrust earthquakes in the Nankai (Suito & Ozawa,
92	2009), Hikurangi (Wallace & Beavan, 2010), and Mexican subduction zones (Correa-Mora et al.,
93	2008; Radiguet et al., 2012), and L-SSEs have been observed to trigger ETS events (e.g., Hirose &
94	Obara, 2005).
95	

The Bungo Channel (western Shikoku, Japan; Figure 1), in the Nankai subduction zone, is one of the 96 most active regions of slow earthquakes. There, L-SSEs are known to modulate ETS events (Hirose 97

98	& Obara, 2005; Ozawa et al., 2013). Tremor beneath the Bungo Channel is characterized by higher
99	radiation of seismic energy relative to that in the surrounding area (Kano et al., 2018; Yabe & Ide,
100	2014). Kano et al. (2018) attributed this to heterogeneity of effective strength in tremor source patches,
101	which is controlled by pore-fluid pressure. Obara (2010) found that tremor on the up-dip side of the
102	ETS zone is triggered by L-SSEs, and that increased tremor activity there is coincident with L-SSE
103	occurrence. Interestingly, the up-dip side is included in the slip area of L-SSEs (Nakata et al., 2017).
104	In contrast, tremor is steadily active on the down-dip side of the ETS zone, irrespective of L-SSE
105	occurrence. This complicated relationship between L-SSEs and ETS events beneath the Bungo
106	Channel raises the question of whether there are any differences in the physical conditions of tremor
107	sources during L-SSEs and intervening periods. If such differences exist, the characteristics of tremor
108	signals might be expected to change accordingly.
109	
110	In this study, to understand the variable occurrence of tremor in western Shikoku, Japan, we separately
111	analyzed tremor events during L-SSEs and intervening periods in the Bungo Channel. We used the
112	characteristic amplitude (CA), which is estimated from the duration-amplitude distribution of a
113	tremor event, as an indicator of the properties of the tremor source. We detected a significant
114	difference in the CA of tremors between the two periods. Based on spatial and temporal variations in
115	CA, and previous tremor observations, we document that the strengths of tremor patches are

CA, and previous tremor observations, we document that the strengths of tremor patches are

116 modulated by stress disturbances and fluid migration associated with L-SSEs.

117

118 **2. Data**

119

120 Our study area was in the Bungo Channel (Figure 1a), where past L-SSEs are known to have activated 121 tremor and S-SSEs (Hirose & Obara, 2005; Ozawa et al., 2013). We analyzed the vertical component 122 of velocity waveform data recorded at five National Research Institute for Earth Science and Disaster 123 Resilience (NIED) Hi-net stations in western Shikoku (HIYH, KWBH, OOZH, TBEH, and IKKH; Figure 1b), which have also been used in previous studies (Daiku et al., 2018; Hirose et al., 2010b). 124 125 Hirose et al. (2010b) reported that these stations provide high S/N (signal-to-noise ratio) waveform data for tremors. In general, the horizontal components are useful for analyzing S waves. However, 126 127 the S/N of the vertical component is usually higher than that of the horizontal ones, and Ueno et al. (2010) used vertical-component waveform data from arrays in western Shikoku for this reason. We 128 used tremor catalogues provided by NIED: the hybrid catalogue (Maeda & Obara, 2009) was used to 129 130 search for tremor events and to visually check waveforms (see subsection 3.1). Therefore, the tremors analyzed in this study correspond to at least one hypocenter in the hybrid catalog. The location of a 131 132 tremor event was assigned to a hypocenter in the hybrid clustering catalog (Obara et al., 2010) 133 corresponding to the time of the tremor.

135	Data on tremors occurring after February 2016 were not included in our analysis because tremors
136	activated by the 2016 L-SSE have not yet been confirmed, and because the timing of the end of that
137	L-SSE is unclear (Ozawa, 2017). Therefore, we analyzed the period from January 2001 to January
138	2016 (Figure 1b), excluding two periods during which L-SSEs in nearby central-western Shikoku
139	were active (Takagi et al., 2016). Takagi et al. (2016) suggested that these L-SSEs triggered tremor,
140	even in western Shikoku, although the triggered tremors were minor and are hard to recognize in
141	Figure 1b. These L-SSEs were M_w 6.0–6.3, comparable to short-term SSEs in this region. In contrast,
142	the magnitudes of L-SSEs in the Bungo Channel, especially the M_w 7.1 and 6.9 events in 2003 and
143	2010, respectively (Nakata et al., 2017), are much larger than those of L-SSEs in central-western
144	Shikoku, implying that the L-SSEs in central-western Shikoku have less impact on tremor activity.
145	Furthermore, the fault models for these L-SSEs were estimated by using rectangular faults with
146	uniform slip (Takagi et al., 2016), making it difficult to evaluate the spatial relationship between the
147	slip areas of the L-SSEs and tremor characteristics, as was conducted for L-SSEs in the Bungo
148	channel. Thus, it is not appropriate to treat L-SSEs in central-western Shikoku in the same way as
149	those in the Bungo Channel.

3. Method

153 **3.1 Reduced Displacement, Apparent Moment, and Apparent Moment Rate**

154

152

We used reduced displacement (Aki & Koyanagi, 1981) as tremor amplitude in our analysis. The reduced displacement of a body wave, corrected for geometrical spreading, is calculated as $D_R =$ $A \cdot r$ (Aki & Koyanagi, 1981), where *A* is the root-mean-squared peak-to-peak amplitude (m) and *r* is the source-station distance (m). To calculate *A*, we applied a band-pass filter between 2 and 10 Hz to the vertical component of the velocity waveform and a moving average with a time window of 6 s (Watanabe et al., 2007).

161

To identify tremor events, we defined the noise level in D_R hourly at each station, and manually 162 163 excluded regular earthquakes and other impulsive noises by visual inspection. We calculated the noise level from 5-minute signal-free records in which no earthquakes, tremors, or artificial signals 164 were included (Hirose et al., 2010b). Tremor events were then identified as events (1) starting and 165 ending when D_R exceeded and fell below the noise level, respectively, (2) with durations longer 166 167 than 1 minute, and (3) with maximum D_R at least two times the noise level (Figure 2a). We used 168 apparent moment, the time integral of D_R over the tremor duration, as an indicator of tremor magnitude (Hiramatsu et al., 2008). The apparent moment rate was estimated as the apparent 169

170 moment divided by tremor duration.

171

172 **3.2 Characteristic Amplitude of Tremor**

173

Here we introduce characteristic amplitude, CA, a new parameter sensitive to the size and growth of 174 175 a tremor source. We investigated the scaling relationship between tremor duration and amplitude by 176 varying the amplitude threshold (Figure 2a) and measuring the sum of the durations when tremor amplitude exceeded that threshold (Watanabe et al., 2007). We then compared exponential and 177 power-law scaling models of the duration-amplitude distribution. The exponential model is 178 179 expressed as: $\mathrm{d}(D_R^*) = d_t e^{-\lambda D_R^*},$ (1)180 where $d(D_R^*)$ is the total duration (s) for which the tremor amplitude exceeds the threshold value 181

182 (D_R^*) , λ is the slope of the best-fit line estimated by the least-squares method (Figure 2b), and d_t is

183 the prefactor (s). Thus, d_t is interpreted as the noise-free (zero-amplitude) duration.

184

185 The power-law model is expressed as:

186
$$d(D_R^*) = d_t (D_R^*)^{-\gamma}, \qquad (2)$$

187 where γ is the slope of the best-fit line (Figure 2c). The goodness of fit, represented by the

188	distribution of the coefficients of determination (R^2) , of each model shows that the exponential
189	model better fits observed tremor duration-amplitude distributions than the power-law model
190	(Figure 3). A similar result has been reported for tremor characteristics in the Tokai region, central
191	Japan (Watanabe et al., 2007), implying that exponential tremor duration-amplitude distributions are
192	common to much of the Nankai subduction zone.
193	
194	For each tremor event, we calculated λ by fitting the exponential model to the duration-amplitude
195	distribution at each station, averaged λ over the stations with $R^2 \ge 0.8$, and adopted the inverse of
196	the average λ as the CA for that event. The inverse of λ at each station was typically within a factor
197	of 2 of the CA for an event.
198	
199	3.3 Determination of Tremor-excitation Periods
200	
201	We hereafter refer to periods in which an L-SSE was geodetically detected in the Bungo Channel as
202	'L-SSE periods' (Ozawa, 2017; Ozawa et al., 2013) and periods in which no L-SSE was detected
203	around western Shikoku (Ozawa, 2017; Ozawa et al., 2013; Takagi et al., 2016) as 'inter-L-SSE
204	periods'. It is known that tremor events in western Shikoku are activated during L-SSE periods

206	L-SSE periods than during inter-L-SSE periods (Figure 4a), indicating the excitation of tremor
207	events by L-SSEs (Annoura et al., 2016; Daiku et al., 2018; Kono et al., 2020). However, observed
208	tremor activity varies greatly, even among L-SSE periods. Therefore, to focus only on tremors
209	causally induced by an L-SSE, we define 'tremor-excitation periods' as follows.
210	
211	To quantitatively evaluate tremor-excitation periods, we defined a $0.05^{\circ} \times 0.05^{\circ}$ grid and collected
212	tremor events observed within 10 km of each grid point. We calculated a tentative tremor excitation
213	ratio as the ratio of the apparent moment rate during one month to that during inter-L-SSE periods.
214	The apparent moment rate during inter-L-SSE periods was calculated as the total apparent moment
215	during those periods divided by their total duration.
216	
217	To emphasize the change of the cumulative apparent moment, we used only events at grid points
218	with tentative excitation ratios >4.0. The distribution of tremor events with high excitation ratios
219	was restricted to the up-dip side of the ETS zone in the western part of the study area (Figure 1b),
220	consistent with previous studies (e.g., Hirose et al., 2010a; Obara et al., 2010). We then smoothed
221	the cumulative apparent moment trend using a moving average with a window of 101 events, i.e.,
222	50 events before and after a target event (Figure 4b), to reduce spike-like variations in apparent
223	moment release rate.

225	Finally, using the smoothed cumulative apparent moment trend, we determined tremor-excitation
226	periods as periods (1) coincident with one of the geodetically determined L-SSE periods, (2) with
227	apparent moment rates more than twice the average during inter-L-SSE periods, and (3) with
228	maximum apparent moment rates at least five times the average during inter-L-SSE periods (Figure
229	4c). The determined tremor-excitation periods are shown as red bars in Figures 1b and 4c. The
230	period of the L-SSEs in central-western Shikoku (gray zones in Figures 4a and 4b) was
231	characterized by a low apparent moment rate. We then analyzed tremor events during tremor-
232	excitation periods separately from those during inter-L-SSE periods to reveal differences in the CAs
233	of tremors between those periods.
234	
235	4. Results and Discussion
236	
237	4.1 Relationship between CA, Apparent Moment, and Apparent Moment Rate
238	
239	To clarify the meaning of CA, we here investigated the relationships between CA, apparent
240	moment, and apparent moment rate of tremor events (Figure 5). The estimated CA and apparent
241	moment, together with the start time, duration, and location of tremor events, are summarized in

242 Table S1 in the supporting information. For the 8,484 tremors analyzed herein, we obtained statistically significant positive correlations ($p < 10^{-15}$) between CA and the other parameters. This 243 244 means that events with larger CAs had relatively large apparent moments and apparent moment rates. Because a large apparent moment rate corresponds to a large seismic-energy radiation rate, 245 246 these results show that CA is a fundamental parameter closely related to the size and seismic-energy radiation rate of a tremor event. Integrating equation (1) from 0 to infinity for D_R^* provides the 247analytical relationship among the apparent moment, CA, and d_t : apparent moment = CA· d_t . This 248 249 formula indicates that CA is the average apparent moment rate and that the size of tremor scales as d_t . Given that d_t is the noise-free duration and is generally larger than the observed duration of a 250251 tremor event, the observed duration roughly satisfies this relationship (Figure 5a). Furthermore, the 252 apparent moment rate appears to be independent of the observed tremor duration (Figure 5b). 253 4.2 Spatial Distribution of CA 254255

Figure 6 shows examples of size-frequency distributions for CA, during both the tremor-excitation and inter-L-SSE periods, on the same grid (Figures 7a and 7b). The exponential distribution shows a better fit than the power-law distribution, as was shown for seismic energy radiation rate (Yabe & Ide, 2014). Figure 7 compares the spatial distribution of median CA values during tremor-excitation

260	and inter-L-SSE periods to the slip distribution of the 2010 L-SSE (Nakata et al., 2017). The median
261	CA values calculated for tremor events within 10 km of each grid point can be regarded as typical
262	of the area around each grid point; a similar treatment was adopted for tremor seismic-energy
263	radiation rate by Yabe and Ide (2014). Only grid points including more than 100 events in both
264	periods are included in the maps.
265	
266	The obtained CA values were mostly restricted at the up-dip side of the ETS zone (Figure 7).
267	Median CA values were relatively high within the slip area of the 2010 L-SSE and relatively low
268	outside that area. The area characterized by high median CA values overlapped the area in which
269	tremor events were strongly excited during L-SSEs (Figure 1b). The spatial distribution of CAs
270	during tremor-excitation periods was similar to that during inter-L-SSE periods, suggesting that the
271	observed tremor characteristics reflect inherent structures on the plate interface.
272	
273	Obara et al. (2010) reported a bimodal depth distribution for tremor events in and around the Bungo
274	Channel. Interestingly, tremor activity of nearly constant magnitude occurs regularly on the down-
275	dip side of the ETS zone, whereas increased tremor activity occurs on the up-dip side during L-
276	SSEs. Obara et al. (2010) suggested that the plate-coupling strength on the up-dip side is stronger
277	than that down dip. Yabe and Ide (2014) reported high seismic-energy radiation rates for tremor

278	events on the up-dip side (confirmed by Kano et al., 2018) and suggested the existence of tremor
279	patches with high strength there. Therefore, considering the positive correlation between CA and
280	apparent moment, and apparent moment rate (Figure 5), we interpret that high (low) CA values
281	indicate the existence of large (small) and/or strong (weak) tremor patches.
282	
283	The high-CA tremors identified herein occurred within the down-dip portion of the L-SSE area
284	beneath the Bungo Channel. Numerical studies have shown that bimodal slow-slip behaviors
285	similar to that observed in the Nankai subduction zone can be reproduced by slightly less-elevated
286	pore pressures in L-SSE areas relative to ETS zones (Matsuzawa et al., 2010). Our results thus
287	highlight an intermediate state of plate coupling between the weak, chattering ETS zone and the
288	strong, silent L-SSE area that is possibly controlled by the fluctuation in pore pressures.
289	
290	Ando et al. (2012) proposed a theoretical model for tremor generation, termed the 'patch model',
291	according to which tremor results from sequential ruptures of brittle tremor patches distributed
292	within a ductile fault area. In western Shikoku, Kano et al. (2018) found that the energy radiated by
293	tremor events is positively correlated with tremor migration speed and SSE slip rate, and they
294	updated the patch model of Ando et al. (2012) to account for the V_P/V_S distribution of the overriding
295	plate (Nakajima & Hasegawa, 2016). Tremor patches of different strengths are heterogeneously

296	distributed depending on pore-fluid pressure variations. This model explains the observations of
297	heterogeneous tremor properties in Shikoku; that is, tremor patches with high effective strength and
298	caused by low fluid pressure occur in the western part, whereas ones with low effective strength
299	caused by high fluid pressure occur in the central part. The CA distribution observed herein is
300	consistent with this model, although we must consider this new constraint that strong tremor
301	patches are dominant in the L-SSE area beneath the Bungo Channel.
302	
303	The spatial variation in the strength of tremor sources might also be explained from a petrological
304	viewpoint. Mizukami et al. (2014) proposed that fluid pressure on the plate interface may vary
305	depending on the mineral assemblages in the hanging wall mantle beneath western Shikoku. The
306	dominant mineral assemblage in the hydrated mantle wedge changes from Atg (antigorite) + Brc
307	(brucite) to Atg + Ol (olivine) with increasing temperature. The petro-structural nature of these
308	serpentinites implies that Atg + Brc assemblages are more permeable, and thus can absorb more
309	water, than Atg + Ol assemblages. The metamorphic transition is variable depending on the bulk
310	chemistry of the mantle (Mg/Fe ratio, Al ₂ O ₃ content, etc.), among other factors (Mizukami et al.,
311	2014). A mixed lithology comprising both Atg + Brc and Atg + Ol serpentinites in the mantle
312	wedge may explain the intermediate state of plate coupling revealed by our CA analysis.
313	

314	Ji et al. (2016) made a model calculation for the thermal structure of the Nankai subduction zone in
315	which the effects of corner flow in the mantle wedge are considered more significant than indicated
316	in previous works, and, as a result, temperatures on the plate interface are higher. If such hot
317	geothermal conditions are developed beneath western Shikoku, spatial variations in the serpentinite
318	mineral assemblage cannot be assumed for this region, and another petrological explanation for the
319	heterogeneous pore-fluid pressure distribution is required.
320	
321	Tectonically, the coincident distribution of high-CA areas in the L-SSE area may suggest a possible
322	contribution of the occurrence of L-SSEs to the development of the strong tremor patches there.
323	Semi-continuous and repeated displacements during L-SSEs likely cause fractures along the slip
324	plane that may connect fluid pathways between the down-dip ETS zone of higher pore pressure and
325	the up-dip L-SSE area of lower pore pressure. The intermediate pore pressures expected for high-
326	energy and high-CA tremors could thus be attained under a fluid flux along the plate boundary
327	between these contrasting areas.
328	
329	4.3 Effects of L-SSEs on CA Variations
330	
331	To examine the effects of L-SSEs on tremor strength, we compared the CA values during tremor-

332	excitation periods with those during inter-L-SSE periods at each grid point. In general, if relatively
333	high-strength patches (i.e., large patches and/or those with sustained stresses) are activated during
334	L-SSEs, the difference between the CAs during the two periods ($\Delta CA_1 = CA_{tremor-excitation} - CA_{inter-L-}$
335	$_{SSE}$) is positive, whereas ΔCA_1 is negative if weaker patches are activated by L-SSEs. We applied
336	the nonparametric bootstrap method to evaluate the relative error on the median CA value. The
337	bootstrap sample size is the same as that used at each grid point. From 2,000 bootstrap estimations,
338	we obtained averages and standard deviations on the relative errors of the median CA values of
339	0.056 and 0.014, respectively, for tremor excitation periods and 0.055 and 0.016, respectively, for
340	inter L-SSE periods. Therefore, a typical error on ΔCA_1 is approximately 1×10^{-6} m ² .
341	
342	Figure 7c shows a distinct spatial variation of ΔCA_1 in terms of distance from the 2010 L-SSE in
343	the Bungo Channel (see Figure 1b for temporal variations of CA). Based on the along-strike
344	variations in ΔCA_1 , we divided the study area into three zones from west to east: zone A with
345	positive ΔCA_1 , zone B with negative ΔCA_1 , and zone C with ΔCA_1 values around zero (Figure 7c).
346	ΔCA_1 values are positive within the slip area of the L-SSE, negative in the eastern periphery of the
347	slip area, and tend toward zero in the far field. Values of zero indicate that the stress conditions and
348	dynamic properties of tremor sources are not affected by L-SSE occurrence, as for the regular
349	tremor activity in zone C (Figure 1b). Furthermore, we adopted the Brunner-Munzel test (Brunner

350	& Munzel, 2000; Neubert & Brunner, 2007), a nonparametric test of stochastic equality between
351	two samples, to evaluate the statistical significance of ΔCA_1 values at each grid point (Figure 7d).
352	Orange to red grid points in Figure 7d, which correspond mainly to positive ΔCA_1 values in zone A
353	and negative ΔCA_1 values in zone B, indicate that the ΔCA_1 values at those grid points are
354	statistically significant at a significance level of 0.05.
355	
356	To examine whether the variations in median CA values shown in Figure 7 may be typical of L-
357	SSEs, we investigated the variations in median CA values of each L-SSE in the Bungo Channel
358	(Figure 8). Here, we defined ΔCA_2 as the difference in median CA value between each L-SSE
359	period (limited to tremor-excitation) and the inter L-SSE periods ($\Delta CA_2 = CA_{L-SSE + tremor-excitation} - CA_{L-SSE + tremor-excitation}$
360	CA _{inter-L-SSE}). In Figure 8, we used grid points including more than 50 events in the tremor-
361	excitation periods of each L-SSE because of the small number of events during those periods;
362	therefore, the ΔCA_2 trends in Figure 8 tend to emphasize temporally localized variations in median
363	CA. The median CA and Δ CA ₂ values in zones A and B are consistent with those in Figure 7,
364	although the observations are insufficient for the 2014 L-SSE, the smallest ($M_w \sim 6.2$) of the three L-
365	SSEs (Ozawa, 2017). The differences in CA and ΔCA_2 values in zone C among the L-SSEs suggest
366	that these variations might not have a common origin nor be related to the occurrence of L-SSEs
367	because the tremor activity in zone C appears to be little modulated by the L-SSEs (Figure 1b).

369	To test whether stress disturbances due to L-SSEs are a dominant cause of the observed variations
370	in median CA values in zone B (Figure 7), we focused on median CA and the difference in CA
371	values in the initial stages of the 2003 and 2010 L-SSEs (Figure 9), that is, the median CA values
372	during the L-SSE period before tremor-excitation (the portions of blue bars preceding red bars in
373	Figures 1b and 4c) compared to the median CA value during the L-SSE period with tremor-
374	excitation ($\Delta CA_3 = CA_{L-SSE - tremor-excitation} - CA_{L-SSE + tremor-excitation}$) (top and middle panels, Figure
375	9). We used grid points including more than 50 events in each L-SSE period excluding/including
376	tremor-excitation. For the 2003 event, we obtained median CA and positive ΔCA_3 values mainly at
377	grid points in zone C (top-left, Figure 9), which might be a temporally localized variation. Indeed,
378	stacking the 2003 and 2010 L-SSE data shows ΔCA_3 values around zero at most grid points in zone
379	C (bottom-right, Figure 9). For the 2010 event, the median CA values are relatively small in all
380	zones, and negative ΔCA_3 values are observed in zone A (middle panels, Figure 9). In the stacked
381	$2003 + 2010$ data, ΔCA_3 values are strongly negative in zone A and weakly negative in zone B
382	(bottom panels, Figure 9). The strongly negative ΔCA_3 values in zone A suggest that stress
383	disturbances during the initial stages of L-SSEs might increase the rupture of tremor patches with
384	weak effective strengths. In contrast, the weakly negative ΔCA_3 values in zone B might indicate
385	that the initial stress disturbances do not greatly alter the CA values of ruptured tremor patches

386 compared to those during the tremor-excitation periods.

387

388	Figure 10 shows changes of the frequency distributions of CA in zones A and B, depicting the
389	proportions of tremors causally responsible for positive and negative ΔCA_1 values. To reduce the
390	effect of CA fluctuations, all panels of Figure 10 include only grid points with ΔCA_1 values
391	\geq 1.0×10 ⁻⁶ m ² or \leq -1.0×10 ⁻⁶ m ² . Positive Δ CA ₁ values in zone A result from the increased
392	occurrence of high-CA tremor and the decreased occurrence of low-CA tremor during tremor-
393	excitation periods (bottom panel, Figure 10b). The increased occurrence of high-CA tremor
394	suggests that the effective strength of tremor patches during tremor-excitation periods is larger than
395	that during inter-L-SSE periods. This result can be interpreted as an increased probability of
396	rupturing stronger and/or larger patches under the increased shear stresses associated with L-SSEs.
397	The relatively decreased occurrence of low-CA tremor may represent that tremor patches easily
398	grow to larger sizes under conditions of greater stress.
399	
400	Annoura et al. (2016) attributed increased tremor activity around the Bungo Channel to stress

401 disturbances induced by L-SSEs. Here, we consider that zone B (negative ΔCA_1 , Figure 7c)

402 corresponds to the area of relatively large stress change during the SSE, whereas zone C is

403 sufficiently distant from the slip area that no significant stress change occurred. In zone B, we

404	recognize the increased occurrence of tremor with intermediate CA and the decreased occurrence of
405	high-CA tremor (bottom panel, Figure 10c). As mentioned above, a small CA value reflects a
406	relatively weak effective strength of a given tremor patch. Therefore, these results imply that stress
407	disturbances effectively enhance the rupture of tremor patches with weak to moderate effective
408	strengths in zone B. Moreover, the decreased occurrence of high-CA tremor in zone B suggests that
409	tremor sources were unable to grow markedly during the tremor-excitation period. Such suppressed
410	tremor-source growth might be possible if the increases in strength of high-CA tremor patches
411	outweighed the increases in stress induced by L-SSEs.
412	
413	If these geodynamic interpretations of positive and negative ΔCA_1 values are correct, fluid
414	migration might be responsible for the increased effective strength of tremor patches during tremor-
415	excitation periods (Figure 11). Recently, Tanaka et al. (2018) observed temporal gravitational
416	changes related to L-SSEs in Tokai, which they reproduced by numerically modeling poroelastic
417	fluid flow up-dip from the ETS zone along the plate interface. Kano et al. (2019) also stressed the
418	importance of upward fluid migration from the ETS zone, through the L-SSE zone, and to the
419	down-dip edge of the locked seismogenic zone to explain simultaneous transient slip in the two
420	major slip patches, i.e., the ETS zone and the down-dip edge of the locked seismogenic zone. If
421	such upward fluid migration through the slip plane occurs during L-SSEs in western Shikoku,

422	reduced pore-fluid pressure in the ETS zone could result in the increased effective strength of
423	tremor patches. Therefore, we conclude that the stress increase during L-SSEs, which is large
424	enough to rupture tremor patches with high effective strength, generates high-CA tremors (Figure
425	11).
426	
427	4.4 Implications of CA for slow earthquakes
428	
429	The envelope of the reduced displacement may be interpreted as an apparent moment rate function
430	(Hiramatsu et al., 2008). Therefore, by applying appropriate corrections, we can convert CA to a
431	characteristic moment rate, although it is a band-limited estimation. Assuming that each tremor
432	pulse consists of an S wave, we multiplied CA by $4\pi\rho\beta^3$, and corrected for the effects of intrinsic
433	attenuation and the average radiation pattern using the intrinsic attenuation factor $Q = 184$, center
434	frequency $f = 6$ Hz, S-wave velocity $\beta = 3,500$ m/s, density $\rho = 2,700$ kg/m ³ (Maeda & Obara,
435	2009), the average S-wave radiation pattern of 0.63. This rough estimation provides the term for the
436	conversion from CA to characteristic moment rate as 10^{16} N/m/s, resulting in characteristic moment
437	rates of 10^{10} – 10^{12} Nm/s.

439	Interestingly, this estimated characteristic moment rate is similar to seismic moment rates
440	previously reported for slow earthquakes. Kao et al. (2010) reported the seismic moments of tremor
441	bursts with durations 1–5 s in Cascadia to be 10^{10} – 10^{12} Nm, resulting in seismic moment rates on
442	the same order as the characteristic moment rate obtained herein. Sweet et al. (2019) found that the
443	seismic moment size-frequency distributions of four LFE families in Cascadia follow an
444	exponential rather than a power-law distribution. They estimated a characteristic seismic moment
445	on the order of 10 ¹¹ Nm. This provides a characteristic LFE moment rate consistent with that
446	estimated in this study, 10^{10} Nm/s, if the typical duration of those LFEs is 10 s. The linear
447	relationship between the areas of tremor episodes and the seismic moments of SSEs in the Nankai
448	subduction zone (Obara et al., 2010) might similarly reflect the characteristic moment rate of
449	tremor.
450	
451	Some VLF events provide seismic moment rates of 10 ¹³ Nm/s (Ide et al., 2008; Matsuzawa et al.,
452	2009), an order of magnitude higher than the characteristic moment rate of tremor estimated herein,
453	whereas others show similar seismic moment rates of 10 ¹¹ –10 ¹² Nm/s (Ide & Yabe, 2014; Ide, 2016;
454	Maury et al., 2016). SSEs in the Nankai, Cascadia, and Mexico subduction zones show seismic
455	moment rates of 10 ¹² –10 ¹³ Nm/s (Sekine et al., 2010; Schmidt & Gao, 2010; Graham et al., 2016;
456	Rousset et al., 2017), close to or above the upper bound of our estimate, and Hawthorne et al.

457	(2016) reported seismic moment rates on the order of 10 ¹² Nm/s for SSEs during rapid tremor
458	reversals. We suggest that the order-of-magnitude similarity between the seismic moment rates of
459	slow earthquakes and the characteristic moment rate is a fundamental property of the broad linear
460	relationship between seismic moment and duration for slow earthquakes (Ide et al., 2007).
461	
462	The characteristics of slow earthquakes can be reproduced by conceptual models such as the
463	Brownian model (Ide, 2008; Ide & Maury, 2018) and the patch model (Ando et al., 2010, 2012;
464	Nakata et al., 2011). One of the key parameters of the Brownian model is the characteristic time, the
465	reciprocal of which is the dampening coefficient for a temporally varying source radius; a larger
466	characteristic time thus provides a larger moment rate. However, as shown by Ide and Maury
467	(2018), the dependence of seismic moment rate on the characteristic time is systematically less
468	obvious for seismic moments $\leq 10^{14}$ Nm. Therefore, variations in the characteristic time might not
469	be plausible as the cause of the observed variations in CA values induced by L-SSEs.
470	
471	The patch model consists of clusters of frictionally unstable patches on a stable background, where
472	each cluster of patches corresponds to a tremor source. The variation in the patch distribution and/or
473	the viscosity of the patch/background controls the moment rate function. A higher moment rate is
474	reproduced by a denser patch distribution or a lower patch/background viscosity (Nakata et al.,

475	2011). The positive ΔCA_1 values in zone A imply a relatively higher characteristic moment rate for
476	tremors during tremor-excitation periods. If this is the case, an increase in CA may be interpreted as
477	an increase in the size of a single patch and/or in the density of patches in the tremor source, with
478	the increased patch size or density enhancing the effective strength of the tremor source.
479	
480	5. Conclusions
481	
482	We investigated tectonic tremor events in and around the Bungo Channel (Nankai subduction zone),
483	where L-SSEs are known to induce ETS events, to reveal the difference between primary and
484	induced tremor events. We used the characteristic amplitude (CA), estimated from the duration-
485	amplitude distribution of a tremor event, as an indicator of the size and the strength of a tremor
486	source patch. The spatial distribution of CA is characterized by large and small values in L-SSE slip
487	areas and adjacent areas, respectively, suggesting that stronger tremor patches are distributed in the
488	slip area and weaker patches outside the slip area. This distribution might reflect variations in pore-
489	fluid pressure, which is controlled by serpentinite mineral assemblages. The difference between the
490	CA values during tremor-excitation periods and those during inter-L-SSE periods (ΔCA_1) is positive
491	in the L-SSE slip area, negative in adjacent areas, and tends toward zero in the far field. We suggest
492	that this spatial distribution results from increased stress, which decreases with distance from the

493	slip area, and increased effective strength of tremor patches during L-SSEs, which may result from
494	upward fluid migration from the ETS zone along the plate interface. This heterogeneous distribution
495	of effective stress/tremor-patch strength, modulated by stress changes and fluid migration induced
496	by L-SSEs, might cause the heterogeneous ΔCA_1 distribution. In other words, the observed CA
497	heterogeneity illustrates transient states of heterogeneous fluid pressure fluctuations caused by L-
498	SSEs along the plate interface.
499	
500	Acknowledgments. We used waveform data recorded by Hi-net and the NIED catalogue of tectonic
501	tremor hypocenters. The figures were produced using Generic Mapping Tools (Wessel and Smith,
502	1998). Comments from anonymous reviewers were useful to improve the manuscript.
503	
504	Data Availability Statement
505	The Hi-net waveform data used herein is available online through the NIED Hi-net website
506	(https://www.hinet.bosai.go.jp/?LANG=en). The NIED hybrid clustering tremor catalogue can be
507	downloaded from the Slow Earthquake Database (http://www-solid.eps.s.u-tokyo.ac.jp/~sloweq/)
508	and the NIED hybrid tremor catalog is available online through the NIED repository
509	(https://quaketm.bosai.go.jp/~tkmatsu/tremor_catalog/NIED_tremor_hybrid_W_Shikoku_Jan2001-
510	Jan2016.txt).

512	References
513	Aki, K., & Koyanagi, R.Y. (1981). Deep volcanic tremor and magma ascent mechanism under
514	Kilauea, Hawaii. Journal of Geophysical Research, 86, 7095-7109.
515	https://doi.org/10.1029/JB086iB08p07095
516	
517	Ando, R., Nakata, R., & Hori, T. (2010). A slip pulse model with fault heterogeneity for low-
518	frequency earthquakes and tremor along plate interfaces, Geophysical Research Letters, 37,
519	L10310. https://doi.org/10.1029/2010GL043056
520	
521	Ando, R., Takeda, N., & Yamashita, T. (2012). Propagation dynamics of seismic and aseismic slip
522	governed by fault heterogeneity and Newtonian rheology. Journal of Geophysical Research:
523	Solid Earth, 117, B11308. https://doi.org/10.1029/2012JB009532
524	
525	Annoura, S., Obara, K., & Maeda, T. (2016). Total energy of deep low-frequency tremor in the
526	Nankai subduction zone, southwest Japan. Geophysical Research Letters, 43, 2562–2567.
527	https://doi.org/10.1002/2016GL067780

530	tremor. Journal of Geophysical Research: Solid Earth, 108(B3), 2146
531	https://doi.org/10.1029/2001JB001520
532	
533	Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L., & Rubin, A. M. (2015). Magnitudes and
534	moment-duration scaling of low-frequency earthquakes beneath southern Vancouver
535	Island, Journal of Geophysical Research: Solid Earth, 120, 6329–6350.
536	https://doi.org/10.1002/2015JB012195
537	
538	Brunner, E., & Munzel, U. (2000). The Nonparametric Behrens-Fisher Problem: Asymptotic Theory
539	and a Small-Sample Approximation. <i>Biometrical Journal</i> 42 (1): 17–25.
540	https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
541	
542	Correa-Mora, F., DeMets, C., Cabral-Cano, E., Marquez-Azua, B., & Diaz-Molina, O. (2008).
543	Interplate coupling and transient slip along the subduction interface beneath Oaxaca, Mexico.
544	Geophysical Journal International, 175, 269–290. https://doi.org/10.1111/j.1365-
545	246X.2008.03910.x

Benoit, J.P., McNutt, S. R., & Barboza, V. (2003). Duration-amplitude distribution of volcanic

547	Daiku, K., Hiramatsu, Y., Matsuzawa, T., & Mizukami, T. (2018). Slow slip rate and excitation
548	efficiency of deep low-frequency tremors beneath southwest Japan. Tectonophysics, 722, 314-
549	323. https://doi.org/10.1016/j.tecto.2017.11.016
550	
551	Dragert, H., Wang, K., & James, T. S. (2001). A Silent slip event on the deeper Cascadia subduction
552	interface. Science, 292, 1525–1528. https://doi.org/10.1126/science.10160152
553	
554	Graham, S., DeMets, C., Cabral-Cano, E., Kostoglodov, V., Rousset, B., Walpersdorf, A., Cotte, N.,
555	Lasserre, C., McCaffrey, R., & Salazar-Tlaczani, L. (2016). Slow slip history for the Mexico
556	subduction zone: 2005 through 2011. Pure and Applied Geophysics, 173(10–11), 3445–3465.
557	https://doi.org/10.1007/s00024-015-1211-x
558	
559	Hawthorne, J. C., M. G. Bostock, A. A. Royer, & A. M. Thomas (2016). Variations in slow slip
560	moment rate associated with rapid tremor reversals in Cascadia, Geochemistry, Geophysics,
561	Geosystems, 17, 4899-4919. https://doi.org/10.1002/ 2016GC006489
562	
563	Hiramatsu, Y., Watanabe, T., & Obara, K. (2008). Deep low-frequency tremors as a proxy for slip
564	monitoring at plate interface. Geophysical Research Letters, 35, L13304.

https://doi.org/10.1029/2008GL034342

566

567	Hirose, H., & Obara, K. (2005). Repeating short-and long-term slow slip events with deep tremor
568	activity around the Bungo channel region, southwest Japan. Earth Planets Space, 57(10), 961-
569	972. https://doi.org/10.1186/BF03351875
570	
571	Hirose, H., Asano, Y., Obara, K., Kimura, T., Matsuzawa, T., Tanaka, S., & Maeda, T. (2010a).
572	Slow earthquakes linked along dip in the Nankai subduction zone. Science, 330, 1502.
573	https://doi.org/ 10.1126/science.1197102
574	
575	Hirose, T., Hiramatsu, Y., & Obara, K. (2010b). Characteristics of short-term slip events estimated
576	from deep low-frequency tremors in Shikoku, Japan. Journal of Geophysical Research: Solid
577	Earth, 115, B10304. https://doi.org/10.1029/2010JB007608
578	
579	Ide, S. (2008). A Brownian walk model for slow earthquakes, Geophysical Research Letters, 35,
580	L17301, doi:10.1029/ 2008GL034821
581	

582 Ide, S. (2016). Characteristics of slow earthquakes in the very low frequency band: Application to

583	the Cascadia subduction zone, Journal of Geophysical Research: Solid
584	Earth, 121, 5942-5952. https://doi.org/10.1002/2016JB013085
585	
586	Ide, S., Beroza, G., Shelly, D., & Uchide, T. (2007). A scaling law for slow
587	earthquakes. Nature, 447, 76–79. https://doi.org/10.1038/nature05780
588	
589	Ide, S., Imanishi, K., Yoshida, Y., Beroza, G. C. & Shelly, D. R. (2008). Bridging the gap between
590	seismically and geodetically detected slow earthquakes, Geophysical Research Letters, 35,
591	L10305, doi:10.1029/2008GL034014
592	
593	Ide, S., & Maury, J. (2018). Seismic moment, seismic energy, and source duration of slow
594	earthquakes: Application of Brownian slow earth- quake model to three major subduction zones.
595	Geophysical Research Letters, 45, 3059-3067. https://doi.org/10.1002/ 2018GL077461
596	
597	Ide, S., & Yabe, S. (2014). Universality of slow earthquakes in the very low frequency band.
598	Geophysical Research Letters, 41(8), 2786–2793. https://doi.org/10.1002/2014GL059712
599	

600	Ide, S., & Yabe, S. (2019). Two-Dimensional Probabilistic Cell Automaton Model for Broadband
601	Slow Earthquakes. Pure and Applied Geophysics, 176, 1021–1036.
602	https://doi.org/10.1007/s00024-018-1976-9
603	
604	Ito, Y., Obara, K., Shiomi, K., Sekine, S., & Hirose, H. (2007). Slow earthquake coincident with
605	episodic tremors and slow slip events. Science, 315, 503-506.
606	https://doi.org/10.1126/science.1134454
607	
608	Ji, Y., Yoshioka, S., & Matsumoto, T. (2016). Three-dimensional numerical modeling of
609	temperature and mantle flow fields associated with subduction of the Philippine Sea plate,
610	southwest Japan. Journal of Geophysical Research: Solid Earth, 121, 4458-4482.
611	https://doi.org/10.1002/2016JB0112912
612	
613	Kano, M., Kato, A., Ando, R., & Obara, K. (2018). Strength of tremor patches along deep transition
614	zone of a megathrust. Scientific Reports, 8, 3655. https://doi.org/10.1038/s41598-018-22048-8
615	

616	Kano, M., Kato, A., & Obara, K. (2019). Episodic tremor and slip silently invades strongly locked
617	megathrust in the Nankai trough. Scientific Reports, 9, 9270. https://doi.org/10.1038/s41598-
618	019-45781-0
619	
620	Kao, H., Wang, K., Dragert, H., Kao, J. Y., & Rogers, G. (2010). Estimating seismic moment
621	magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the "seismic efficiency"
622	of episodic tremor and slip, Geophysical Research Letters, 37, L19306.
623	doi:10.1029/2010GL044927
624	
625	Katsumata, A., & Kamaya, N. (2003). Low-frequency continuous tremor around the Moho
626	discontinuity away from volcanoes in the southwest Japan, Geophysical Research Letters, 30(1),
627	1020. https://doi.org/10.1029/2002GL015981
628	
629	Kono, Y., Nakamoto, K., & Hiramatsu, Y. (2020). Temporal variation in seismic moment release
630	rate of slow slips inferred from deep low-frequency tremors in the Nankai subduction zone. Earth
631	Planets Space, 72, 12. https://doi.org/10.1186/s40623-020-1142-3
632	
633	Maeda, T., & Obara, K. (2009). Spatiotemporal distribution of seismic energy radiation from low-

634	frequency tremor in western Shikoku, Japan. Journal of Geophysical Research: Solid Earth, 114,
635	B00A09. https://doi.org/10.1029/2008JB006043
636	
637	Matsuzawa, T., Obara, K., & Maeda, T. (2009). Source duration of deep very low frequency
638	earthquakes in western Shikoku, Japan, Journal of Geophysical Research: Solid Earth, 114,
639	B00A11, doi:10.1029/2008JB006044
640	
641	Matsuzawa, T., Hirose, H., Shibazaki, B., & Obara, K. (2010) Modeling short- and long-term slow
642	slip events in the seismic cycles of large subduction earthquakes. Journal of Geophysical
643	Research: Solid Earth, 115, B12301. https://doi.org/10.1029/2010JB007566
644	
645	Maury, J., Ide, S., Cruz-Atienza, V. M., Kostoglodov, V., Gonzáles-Molina, G., & Péres-Campos, X.
646	(2016). Comparative study of tectonic tremor locations: Characterization of slow earthquakes in
647	Guerrero, Mexico. Journal of Geophysical Research: Solid Earth, 121, 5136-5151.
648	https://doi.org/10.1002/2016JB013027
649	
650	Michel, S., Gualandi, A., & Avouac, J. P. (2019). Similar scaling laws for earthquakes and Cascadia
651	slow-slip events. <i>Nature</i> , 574 , 522–526, https://doi.org/10.1038/s41586-019-1673-6

653	Mizukami, T., Yokoyama, H., Hiramatsu, Y., Arai, S., Kawahara, H., Nagaya, T., & Wallis, S. R.
654	(2014). Two types of antigorite serpentinite controlling heterogeneous slow-slip behaviors of
655	slab-mantle interface. Earth and Planetary Science Letters, 401, 148-158.
656	https://dx.doi.org/10.1016/j.epsl.2014.06.009
657	
658	Nakano, M., Yabe, S., Sugioka, H., Shinohara, M., & Ide, S. (2019). Event size distribution of
659	shallow tectonic tremor in the Nankai trough. Geophysical Research Letters, 46, 5828–5836.
660	https://doi.org/10.1029/ 2019GL083029
661	
662	Nakata, R., Ando, R., Hori, T. & Ide, S. (2011). Generation mechanism of slow earthquakes:
663	Numerical analysis based on a dynamic model with brittle-ductile mixed fault heterogeneity,
664	Journal of Geophysical Research: Solid Earth, 116, B08308, doi:10.1029/2010JB008188
665	
666	Nakata, R., Hino, H., Kuwatani, T., Yoshioka, S., Okada, M., & Hori, T. (2017). Discontinuous
667	boundaries of slow slip events beneath the Bungo Channel, southwest Japan. Scientific Reports,
668	7, 6129. https://doi.org/10.1038/s41598-017-06185-0

670	Nakajima, J., & Hasegawa, A. (2016). Tremor activity inhibited by well-drained conditions above a
671	megathrust. Nature Communications, 7(1), 13863. https://doi.org/10.1038/ncomms13863
672	
673	Neubert, K., & Brunner, E. (2007). A studentized permutation test for the non-parametric Behrens-
674	Fisher problem. Computational Statistics & Data Analysis, 51(10), 5192–5204.
675	https://doi.org/10.1016/j.csda.2006.05.024
676	
677	Nishikawa, T., Matsuzawa, T., Ohta, K., Uchida, N., Nishimura, T., & Ide, S. (2019). The slow
678	earthquake spectrum in the Japan trench illuminated by the S-net seafloor observatories. Science,
679	365 , 808-813. https://doi.org/10.1126/science.aax5618
680	
681	Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science,
682	296 , 1679-1681. https://doi.org/10.1126/science.1070378
683	
684	Obara, K. (2010). Phenomenology of deep slow earthquake family in southwest Japan:
685	Spatiotemporal characteristics and segmentation. Journal of Geophysical Research: Solid Earth,
686	115, B00A25. https://doi.org/10.1029/2008JB006048

688	Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge earthquakes. Science,
689	353 (6296), 253-257. https://doi.org/10.1126/science.aaf1512
690	
691	Obara, K., Tanaka, S., Maeda, T., & Matsuzawa, T. (2010). Depth-dependent activity of non-
692	volcanic tremor in southwest Japan. Geophysical Research Letters, 37, L13306.
693	https://doi.org/10.1029/2010GL043679
694	
695	Ozawa, S. (2017). Long-term slow slip events along the Nankai trough subduction zone after the
696	2011 Tohoku earthquake in Japan. Earth Planets Space, 69, 56. https://doi.org/10.1186/s40623-
697	017-0640-4
698	
699	Ozawa S., Murakami, N., Kaidzu, M., Tada, T., Sagiya, T., Hatanaka, Y., Yarai, H., & Nishimura,
700	T. (2002). Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan.
701	Science, 298, 1009–1012. https://doi.org/10.1126/science.1076780
702	
703	Ozawa, S., Yarai, H., & Imakiire, T. (2013). Spatial and temporal evolution of the long-term slow
704	slip in the Bungo Channel, Japan. Earth Planet Space, 65, 67–73.
705	https://doi.org/10.5047/eps.2012.06.009

707	Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., & Kostoglodov,
708	V. (2012). Slow slip events and strain accumulation in the Guerrero gap, Mexico. Journal of
709	Geophysical Research: Solid Earth, 117, B04305. https://doi.org/10.1029/2011JB008801
710	
711	Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The
712	chatter of silent slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783
713	
714	Rousset, B., Campillo, M., Lasserre, C., Frank, W. B., Cotte, N., Walpersdorf, A., Socquet, A., &
715	Kostoglodov, V. (2017). A geodetic matched-filter search for slow slip with application to the
716	Mexico subduction zone. Journal of Geophysical Research: Solid Earth, 122, 10,498–10,514.
717	https://doi.org/10.1002/2017JB014448
718	
719	Schmidt, D. A., & Gao, H. (2010). Source parameters and time-dependent slip distributions of slow
720	slip events on the Cascadia subduction zone from 1998 to 2008. Journal of Geophysical
721	Research: Solid Earth, 115, B00A18. https://doi.org/10.1029/2008JB006045
722	

723 Sekine, S., Hirose, H., & Obara, K. (2010). Along-strike variations in short-term slow slip events in

725 B00A27. https://doi.org/10.1029/2008JB006059 726 Shiomi, K., Matsubara, M., Ito, Y., & Obara, K. (2008). Simple relationship between seismic activity 727 along Philippine Sea slab and geometry of oceanic Moho beneath southwest Japan. Geophysical 728 Journal International, 173, 1018-1029. https://doi.org/10.1111/j.1365-246X.2008.03786.x 729 730 Suito, H., & Ozawa, T. (2009). Transient crustal deformation in the Tokai district. Journal of the 731 732 Seismological Society of Japan, 2(61), 113–135. (in Japanese with English abstract) 733 Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., & Obara, K. (2020). Self-similarity of 734 735 low-frequency earthquakes. Scientific Reports, 10, 6523. https://doi.org/10.1038/s41598-020-63584-6 736 737 Sweet, J. R., Creager, K. C., Houston, H., & Chestler, S. R. (2019). Variations in Cascadia low-738 739 frequency earthquake behavior with downdip distance. Geochemistry, Geophysics, Geosystems, 74020, 1202-1217. https://doi.org/10.1029/2018GC007998 741

the southwest Japan subduction zone. Journal of Geophysical Research: Solid Earth, 115,

724

742	Takagi, R., Obara, K., & Maeda, T. (2016). Slow slip event within a gap between tremor and locke	
743	zones in the Nankai subduction zone. Geophysical Research Letters, 43, 1066–1074.	
744	https://doi.org/10.1002/2015GL066987	
745		
746	Tanaka, Y., Suzuki, T., Imanishi, Y. (2018). Temporal gravity anomalies observed in the Tokai area	
747	and a possible relationship with slow slips. Earth Planets Space, 70, 25.	
748	https://doi.org/10.1186/s40623-018-0797-5	
749		
750	Ueno, T., Maeda, T., Obara, K., Asano., Y., & Takeda, T. (2010) Migration of low-frequency	
751	tremors revealed from multiple-array analyses in western Shikoku, Japan. Journal of	
752	Geophysical Research: Solid Earth, 115, B00A26. https://doi.org/10.1029/2008JB006051	
753		
754	Wallace, L. M., & Beavan, J. (2010). Diverse slow slip behavior at the Hikurangi subduction	
755	margin, New Zealand. Journal of Geophysical Research: Solid Earth, 115, B12402.	
756	https://doi.org/10.1029/2010JB007717	
757		
758	Watanabe, T., Hiramatsu, Y., & Obara, K. (2007). Scaling relationship between the duration and the	
759	amplitude of non-volcanic deep low-frequency tremors. Geophysical Research Letters, 34,	

L07305. https://doi.org/10.1029/2007GL029391

762	Wessel, P., & Smith, W. H. G. (1998). New improved version of the generic mapping tools	
763	released. Eos Trans. AGU, 79, 579	
764		
765	Yabe, S., & Ide, S. (2014). Spatial distribution of seismic energy rate of tectonic tremors in	
766	subduction zones. Journal of Geophysical Research: Solid Earth, 119, 8171-8185.	
767	https://doi.org/10.1002/2014JB011383	
768		
769	Figure captions	
770	Figure 1. (a) Distribution of tectonic tremor events (dots) and the location of the study area around	
771	the Bungo Channel (rectangle, indicating the area of the map in the left panel of (b)). Green dashed	
772	lines indicate depth contours of the subducting Philippine Sea plate (Shiomi et al., 2008). (b) Spatial	
773	(left panel) and temporal (right panel) distributions of tremor epicenters (dots, from the NIED	
774	hybrid clustering catalogue; Obara et al., 2010) and Hi-net stations (blue triangles) used in this	

- study. Red dots represent tremor events at grid points with tentative excitation ratios exceeding 4.0
- (see section 3.3). The magenta circle shows the location of the event for which the reduced
- displacement waveform is shown in Figure 2a. In the right panel of (b), blue and red bars indicate

778	periods during which L-SSEs were geodetically observed (Ozawa, 2017; Ozawa et al., 2013) and
779	tremor-excitation periods (see section 3.3 for the definition of the tremor-excitation periods),
780	respectively, and gray-shaded areas represent periods in which an L-SSE occurred in central-
781	western Shikoku (Takagi et al., 2016; excluded from this study). The color scale in the right panel
782	of (b) denotes the value of the characteristic amplitude (CA) of each tremor event analyzed in this
783	study, whereas black circles indicate tremor events that were not analyzed.
784	
785	Figure 2. (a) Example of the reduced displacement (D_R) of a tremor event recorded at station
786	KWBH at 19:00 JST on 19 September 2006. The location of the event is shown by the magenta
787	circle in the left panel of Figure 1b. Vertical dashed black lines mark the start and end times of the
788	tremor event. The horizontal dashed red line indicates the noise level at that station around the time
789	of the tremor event. The blue line is the threshold value (D_R^*) , and parts of the waveform used to
790	measure tremor duration (i.e., exceeding the threshold value) are traced in green (see section 3.2).
791	(b) Exponential and (c) power-law models of the waveform shown in (a). The red lines in (b, c) are
792	the best fit to the models.
793	
794	Figure 3. Frequency distributions of the coefficient of determination, R^2 , for the (a) exponential and
795	(b) power-law models.

797	Figure 4. (a) The cumulative apparent moment for all events in the study area and period. (b) The		
798	smoothed cumulative apparent moment for only those events at grid points with tentative excitation		
799	ratios exceeding 4.0 (see section 3.3). (c) Temporal variations of the apparent moment rate		
800	calculated from (b); solid, dotted, and dashed horizontal lines indicate one, two, and five times the		
801	average apparent moment rate during inter-LSSE periods. Red circles indicate events that meet		
802	criteria (1)–(3) for determining tremor-excitation periods (see section 3.2), whereas events indicated		
803	by blue circles only meet one or two criteria. Blue and red bars and gray-shaded areas are as in		
804	Figure 1b.		
805			
806	Figure 5. Correlations of CA with (a) apparent moment and (b) apparent moment rate. <i>R</i> and <i>p</i>		
807	denote the correlation coefficient and p -value, respectively. Gray dashed lines in (a) highlight the		
808	relation between CA and apparent moment (= CA· d_t) for specific values of d_t . The color scale		
809	indicates observed tremor duration.		
810			

Figure 6. Cumulative frequency plots of CA during tremor-excitation periods (upper panels) and
inter-L-SSE periods (lower panels) at the grid point outlined by the black square in Figure 7a and
7b. Left and right panels show exponential and power-law fits to the distribution, respectively. Red

814 lines show the best-fit line and R^2 indicate the coefficient of determination for each distribution for 815 CA $\geq 5 \times 10^{-6} \text{ m}^2$.

817	Figure 7. Spatial distributions of (a) the median CA value during tremor-excitation periods, (b) the	
818	median CA value during inter-L-SSE periods, (c) ΔCA_1 (= $CA_{tremor-excitation} - CA_{inter-L-SSE}$), and (d)	
819	the statistical significance (<i>p</i> -values) of ΔCA_1 . Green dashed lines show areas in which the slip was	
820	greater than 0.2 m and 0.1 m during the 2010 L-SSE (Nakata et al., 2017). Zones A, B, and C	
821	(bounded by black rectangles) denote areas in which ΔCA_1 is positive, negative, or near zero,	
822	respectively.	
823		
824	Figure 8. Spatial distributions of the median CA value and ΔCA_2 (= $CA_{L-SSE + tremor-excitation} - CA_{inter-}$	
825	L-SSE) for the L-SSEs in (top panels) 2003, (middle panels) 2010, and (bottom panels) 2014. All	
826	symbols are as in Figure 7.	
827		
828	Figure 9. Spatial distributions of the median CA value during L-SSEs prior to tremor-excitation	
829	periods and ΔCA_3 (= $CA_{L-SSE - tremor-excitation} - CA_{L-SSE + tremor-excitation}$) for the L-SSEs in (top panels)	
830	2003 and (middle panels) 2010, and (bottom panels) the stacked data for both L-SSEs. All symbols	
831	are as in Figure 7.	

0	2	n
o	3	Δ

833	Figure 10. Changes of the CA distributions between tremor-excitation periods (L-SSE periods) and
834	inter-L-SSE periods. (a) The spatial distribution of grid points at which ΔCA_1 is greater than 1.0
835	(red, zone A) and lower than -1.0 (blue, zone B). ΔCA_1 values between -1.0 and 1.0 are omitted
836	from this plot to reduce fluctuations in CA. Frequency distributions of tremor CA values are shown
837	for (b) zone A and (c) zone B during (upper) tremor-excitation periods, (middle) inter-L-SSE
838	periods, and (lower) the change of the distributions between the two periods.
839	
840	Figure 11. Schematic diagram of the plate interface beneath the Bungo Channel (zone A). (upper)
841	During inter-L-SSE periods, high pore-fluid pressure (light blue area) caused by dehydration (light
842	blue arrows) of the subducting slab generates tectonic tremor in the ETS zone (pink zone). (lower)
843	During tremor-excitation periods, L-SSEs (red zone) induce increased stress in the ETS zone and
844	result in upward fluid migration (open purple arrow), causing high-CA tremors in the up-dip part of
845	the ETS zone (the area enclosed by the dashed line).

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Tremor-excitation periods

Figure 6.

Figure 7.

Figure 8.

2010 L-SSE

Figure 9.

Figure 10.

Figure 11.