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Lattice thermal conduction in ultra-thin nanocomposites
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(Received 14 February 2016; accepted 11 June 2016; published online 27 June 2016)

We have studied the lattice thermal conductivity of Si/Ge periodic nanocomposites (superlattice,

nanowire, and nanodot structures) of sample sizes in the range of 30 nm–30 lm, periodicities

1.1 nm and 2.2 nm, with reasonably dirty interfaces, and n-type doping concentration in the range

of 1023–1026 m�3. Our calculations employ a judicious combination of ab initio and physically

sound semi-empirical methods for detailed calculations of estimates of phonon scattering rates due

to anharmonicity and interface formation. Based upon our results we conclude that the formation

of ultra-thin nanocomposites in any of the three structures is capable of reducing the conductivity

below the alloy limit. This can be explained as a result of combination of the sample length depend-

ence, the on-set of mini-Umklapp three-phonon processes, mass mixing at the interfaces between Si

and Ge regions, and the sample doping level. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954678]

I. INTRODUCTION

Investigation of lattice thermal conduction in nanostruc-

tures and nanocomposites is important, both scientifically and

technologically. On one hand, nanostructuring of a material is

capable of producing thermal conductivity larger than that of

the corresponding bulk material. Clear examples are carbon

nanotubes1 and graphene,2 whose thermal conductivities are

larger than that of bulk diamond. On the other hand, nano-

structures and nanocomposites have been reported to produce

thermal conductivity values that can be lower than that of

alloys or amorphous materials (see, e.g., Ref. 3). Clearly,

from technological point of view, the lattice thermal conduc-

tivity of such structures is capable of playing an important

role at several levels. In this work we will consider a compos-

ite structure as a periodic insertion of one material in a homo-

geneous matrix of another material. We will further use the

terminologies “nanocomposite” and/or “nanocomposite super-

lattices” for such periodic structures with sample sizes in the

large nanometer to low micron range and periodicity in the

low nanometer range.

One important area of technological applications of

reduced thermal conductivity is thermoelectricity.

Thermoelectric (TE) materials have potential applications

in power generation and refrigeration, resulting from their

ability to interconvert thermal gradients and electric fields.

The TE properties of a material are usually discussed in

terms of its figure of merit ZT, which describes its TE effi-

ciency and is defined as

ZT ¼ rS2T

jtot

; (1)

where r is the electrical conductivity, S is the Seebeck coeffi-

cient (or thermopower), and jtot is the total thermal conduc-

tivity. The total thermal conductivity jtot can be expressed as

jtot ¼ jel þ jph, where the electronic part jel is the sum of

the charge carrier (electron or hole) and bipolar (electron and

hole) contributions, and jph is the lattice (phonon) thermal

conductivity. Theoretical studies4–6 have indicated that there

should be no real upper limit to ZT. However, over the past

several decades it has been found that heavily doped semicon-

ductor alloys are the best TE materials, with ZT � 1.7,8

Doped BiTeSe, PbTeSe, and SiGe provide examples of low-,

intermediate-, and high-temperature TE systems, respectively.

However, some commercial applications of TE devices

require greater efficiency in order to be viable. It has been

apparent since the 1990s that this goal could be reached

through the use of low-dimensional nanocomposite materi-

als,7,9–16 where nano-scale structures of different materials are

interwoven in a variety of different ways. It has long been

maintained that phonon properties in such structures are likely

to play a key role in enhancing ZT.4,8,13,17 In particular,

Slack17 has suggested that materials prepared using techni-

ques which produce glass-like hugely reduced lattice thermal

conductivity jph without significantly reducing the power fac-

tor PF ¼ S2r, should help enhance ZT. Experimental stud-

ies10,18 have clearly indicated the role of strong interface

scattering of phonons in generating large reduction in jph for

thin-period superlattice (SL) structures. However, no full-

scale and accurate calculations of phonon scattering rates and

conductivity for nanocomposites of different dimensionalities

and different volume fractions have been carried out that

assess the full extent of the role of phonons in the enhance-

ment of ZT with a high degree of confidence.

Increasing ZT is more difficult than it might seem: while

it seems that this could be done by increasing S and r and

decreasing jel, in practice these quantities are not independ-

ent, so that increasing r increases jel and increasing S will

typically reduce r. Whether or not ZT increases depends

then on the complex relationship between these quantities.

Despite the effort involved in its calculation, jph plays a

more simple and direct role in determining ZT. It should also

be noted that jph is typically large for bulk Si than for bulk
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Road, Durham DH1 3LE, United Kingdom.

0021-8979/2016/119(24)/244309/11/$30.00 Published by AIP Publishing.119, 244309-1

JOURNAL OF APPLIED PHYSICS 119, 244309 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  144.173.130.17 On: Mon, 27 Jun 2016

14:58:20

http://dx.doi.org/10.1063/1.4954678
http://dx.doi.org/10.1063/1.4954678
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4954678&domain=pdf&date_stamp=2016-06-27


Ge.19 There are therefore two main lines of attack when

attempting to improve ZT via nanostructuring: one concen-

trating on improving the power factor rS2 beyond the

enhancement arising from a reduction in dimensionality, and

another focusing on reducing the phonon thermal conductiv-

ity. Venkatasubramanian et al.10 demonstrated the effective-

ness of dimensionality-driven reduction in the phonon

(lattice thermal) conductivity for Bi2Te3/Sb2Te3 superlatti-

ces. Broido and Reinecke20 found that the increased carrier

scattering rates that occur with increasing confinement in

superlattice structures cause the power factor S2r to remain

near the bulk value for all barrier heights. Attempts to further

improve the power factor through techniques such as carrier

pocket engineering are viable but more difficult to imple-

ment experimentally.15,21

In this work we concentrate on the role of phonons in

enhancing ZT, as a decrease in jph is somewhat easier to

engineer in real systems. Si/Ge flat plate superlattices of

periodicities 4 nm and thicker have been successfully fabri-

cated by many groups using the molecular beam epitaxy

method.22–25 It is hoped that nanowire (NW) and nanodot

(ND) composite structures similar to those studied in this

work can be fabricated using techniques such as matrix

encapsulation26 and spinodal decomposition and nuclea-

tion.27 The thermal conductivity of Si/Ge nanocomposite

superlattices of periodicities 4 nm and thicker has also been

measured.22–25 Theoretical efforts have been made to exam-

ine the role of nanocomposite superlattice structure forma-

tion with periodicities much thicker than 5 nm in achieving

thermal conductivity below the alloy limit.28–30,32–36 More

recently, a systematic study of the size and dimensionality

dependent phonon conductivity of PbTe-PbSe nanocompo-

sites (flat plate superlattices, embedded nanowires, and em-

bedded nanodots) of thicker periodicities (100 nm and

larger) has been made in the framework of an effective me-

dium theory.37 Such simplified theoretical schemes are very

highly dependent on the use of empirically adjusted phonon

interaction parameters in order to fit the thermal conductiv-

ities of the bulk materials comprising the nanocomposites

and cannot be routinely applied to predict results for

ultrathin-period nanocomposite structures of different sym-

metries, different periodicities, and varying interface qual-

ities. More fundamentally, use of bulk-derived phonon

relaxation rates makes these theoretical approaches inappli-

cable for structures with repeat period sizes smaller than the

phonon mean free path (typically smaller than 10 nm).38

Using reasonable arguments but assuming constant mean

free paths (K) of the phonons, Simkin and Mahan39 have

shown that the conductivity of (flat plate) superlattices has a

minimum value for a layer thickness somewhat smaller than

K. In addition to the lack of full-scale Brillouin-zone integra-

tion that considers the full phonon spectrum and an accurate

treatment of phonon anharmonic interactions involving all

phonon branches in the presence of two (or more) materials

in every unit cell, such theoretical approaches do not incor-

porate the important effects of atomic-level impurities and

defects at the internal boundaries (interfaces) in such struc-

tures. To the best of our knowledge there has been no publi-

cation of a study incorporating an ab initio or semi-ab initio

theoretical formalism of phonon anharmonic interactions in

order to calculate the lattice thermal conductivity of nano-

composites of different symmetries and sizes using a single

computational approach. This primarily is due to a lack of

thorough investigation of two mechanisms of phonon scatter-

ing: that due to interface formation and that due to anharmo-

nicity in the presence of more than one material. In the

present work our calculations of jph address these two types

of phonon-interface scattering mechanism by using the semi-

empirical extension of ab initio techniques that we have out-

lined previously in Refs. 40–44. This is intermediate

between the traditional approaches that treat crystals as an

isotropic continuum (see, e.g., Ref. 45) and more recent

attempts46,47 to calculate the jph using wholly ab initio
approaches that are not yet fully mature. We have justified

our choice of approach in Refs. 42 and 44; our approach is

capable of picking out which nanostructures provide suffi-

cient improvements to jph to be worthy of a more intensive

investigation that examines both their phononic and elec-

tronic properties in exhaustive detail in order to obtain an

accurate calculation of ZT.

In this paper we detail our formalism for the phonon-

interface and three-phonon interaction rates and evaluate the

lattice thermal conductivity for Si/Ge nanocomposites of

sample sizes in the range 30 nm–30 lm, ultrathin periodici-

ties 1.1 nm and 2.2 nm, and n-type doping concentration in

the range 1023–1025 m�3. In particular, we consider three

types of nanocomposite structures: (flat plate) Si/Ge[001]

superlattices, rectangular Si nano-wires embedded in a Ge

host, and cubic Si nanodots embedded in a Ge host. jph was

examined for undoped ultrathin-period superlattices of vari-

ous thicknesses in our earlier study;44 here we focus on the

effects of doping and sample size on the thermal conductiv-

ity of a superlattice with a thickness that (in the undoped

case) gives an optimum (i.e., low) jph in the cross-barrier

direction, and compare these effects with those seen in em-

bedded dots and wires of similar sizes. This allows us to

examine the influence of the structure of the system (e.g., the

presence of interfaces) on jph, and draw some conclusions as

to how best to enhance ZT by reducing jph through

nanostructuring.

II. METHOD

The lattice thermal conductivity tensor jph (also

expressed in this work as j for simplicity) within the single-

mode relaxation time approximation is given by48

jl� ¼
�h2

N0XkBT2

X
qs

x2 qsð Þcs; l qð Þcs; � qð Þs qsð Þ�nqs �nqs þ 1ð Þ;

(2)

where N0 is the number of unit cells, X is the volume of a

unit cell, xðqsÞ and cs; lðqÞ are, respectively, the frequency

and the velocity component in the lth direction of the pho-

non mode with wave vector q and polarization s, �nqs is the

equilibrium Bose–Einstein distribution for that mode, and

sðqsÞ is the relaxation time of phonon in mode fqsg. For a

nanostructure the total phonon relaxation time is obtained by

244309-2 I. O. Thomas and G. P. Srivastava J. Appl. Phys. 119, 244309 (2016)
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summing scattering rates from boundary (bs), point defects

(including isotopic mass defects) (md), donor electrons in n-

doped samples (ep), interface mass mixing (ims), and anhar-

monicity (anh): sðqsÞ�1 ¼ s�1
bs þ s�1

md þ s�1
ep þ s�1

ims þ s�1
anh.

The scattering rates s�1
bs ; s�1

md, and s�1
ep were computed using

the well-established expressions for bulk semiconduc-

tors.42,48 We also took the carrier concentration to be approx-

imately Nd, since scattering from impurity donor electrons

should be dominant in the low temperature regions where

s�1
ep is important, and we included frequencies of up to

170 cm�1 in our calculation of s�1
ep , which should include

most of the important contributions from the acoustic modes.

s�1
ims was calculated using the current version43 of our

approach to interface mass-mixing effects,40,41,43 and is dis-

cussed in what follows, as is the calculation of the anhar-

monic contribution s�1
anh, for which we use a generalization of

the approach given in Ref. 43; we also correct some errors in

previous statements of these equations.

The present study is restricted to ultra-thin Si/Ge nano-

composite structures in the form of superlattice (SL), embed-

ded nanowire (NW), and embedded nanodot (ND). The

considered unit cells and atomic positions are shown in

Figure 1 for the SL structure, Figure 2(a) for the NW struc-

ture, and Figure 2(b) for the ND structure. The embedding in

NW and ND is of Si (atoms of higher thermal conductivity

material) in Ge matrix (atoms of lower thermal conductivity

material).

A. Anharmonic scattering

In order to properly describe the anharmonic contribu-

tion to the phonon relaxation time in a periodic nanocompo-

site material, we follow48,49 and explicitly derive

expressions for the Fourier components of the third-order

interatomic force constant tensor. The essence of this

approach is easily grasped through examining the eigenvalue

equation of diatomic linear chain connected with a real-

space force constant K, considered as a one-dimensional

superlattice with a unit cell of size 2 a containing two atomic

species of masses m1 and m2. The eigenvalue equation for

such a system can be written as x2A ¼ UA, where U is a 2

� 2 dynamical matrix and A is a two-component column ma-

trix describing the detachment amplitudes of the two atoms

in the unit cell. An element of the dynamical matrix Uij can

be expressed as48

Uij ¼
2K
mi
� 2K

mj

mj

mi

Aj

Ai
cos qa

� �
;

¼ 2Keff

mi
;

(3)

with Ai and Aj as the displacement amplitudes of the atoms

of masses mi and mj, respectively. The first term of the effec-

tive force constant K eff in the above equation, 2K/mi, is sim-

ply the dynamical matrix for the monoatomic linear chain

with atomic mass mi, i.e., for the i-th species of the superlat-

tice. The second term shows that the dynamical matrix for

the j-th species (2K=mj) is phase-multiplied by
mj

mi

Aj

Ai
cos qa.

Similar phase-related expression(s) for effective force

constants will exist in superlattices of realistic dimensions.

Thus, the Fourier components of the third-order force con-

stant tensor must also exhibit suitable phase relationships

between the atomic vibrational amplitudes of the various ma-

terial segments of a composite material.

Although in the rest of this article we will adopt a form

of cubic anharmonic continuum potential that accounts for

both acoustic and optical phonons, for the purpose of explain-

ing our extension of the cubic part of the Hamiltonium in

order to account for a two-component composite, we will fol-

low Ref. 48 and write the cubic anharmonic potential for a

single-component isotropic elastic continuum as

V3 ¼
1

3!

X
qs;q0s0;q00s00

a†
qs � a�qs

� �
a†

q0s0 � a�q0s0

� �

� a†
q00s00 � a�q00s00

� �
F qs; q0s0; q00s00ð ÞdG;qþq0þq00 ; (4)

with Fðqs; q0s0; q00s00Þ expressed as

FIG. 1. Atomic structure representation of the Si(4)Ge(4)[001] SL. Gold and

blue-gray spheres represent Si and Ge atoms, respectively. Figures were

generated using Jmol.57
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F qs; q0s0; q00s00ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8q3NoX

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xx0x00
p

cc0c00
A qs; q0s0; q00s00ð Þ;

(5)

where Aðqs; q0s0; q00s00Þ is a Fourier component of the third-

order elastic constants tensor fAlmn
ijk g

Aðqs; q0s0; q00s00Þ ¼
X
lmn

Almn
ijk ele

0
me00n q̂iq̂

0
jq̂
00
k ; (6)

where e � eðqsÞ � eðrjqsÞ, etc., are the displacement vectors

at point r in the medium. These contain some periodic func-

tion of q and a lattice spacing that is analogous to the cos qa
term in the case of the diatomic lattice discussed above.

Following the discussion above for the diatomic linear

chain, we seek to express Aðqs; q0s0; q00s00Þ=q3=2 for a two-

component continuum in terms of a set of n1 patches of den-

sity q1 and n2 patches of density q2 in the form:

A qs; q0s0; q00s00ð Þ
q3=2

! A qs; q0s0; q00s00ð Þ
n1 þ n2ð Þ3

� e1e01e001

q3=2
1

A12 þ
e2e02e002

q3=2
2

A21

 !
;

(7)

where the quantities Aij are defined as

Aij ¼
Ciq

3=2
i

eie0ie
00
i

n1e1

q1=2
1

þ n2e2

q1=2
2

� � n1e01

q1=2
1

þ n2e02

q1=2
2

 !

� n1e001

q1=2
1

þ n2e002

q1=2
2

 !
; (8)

with C1 and C2 ¼ 1� C1 being the relative proportions of

species 1 and 2, respectively. Replacing both e1e01e001 and

e2e02e002 with an overall average eAVGe0AVGe00AVG we may then,

by comparing the approximate relation48

jA qs; q0s0; q00s00ð Þj2 ¼ 4q2
0

�c2
c2cc0c00 (9)

with Eq. (7), define a dual mass term Dðq; q0; q00Þ, given by

D q; q0; q00ð Þ ¼ 1

n1 þ n2ð Þ6
A12

q3=2
1

þ A21

q3=2
2

 !2

: (10)

The values of n1 and n2 for the systems we are (or have

been) interested in can be determined by the following pro-

cedure. We divide each system into D-dimensional sections

of equal size (i.e., containing an equivalent number of atoms)

and identical species, and take n1 to be the number of sec-

tions containing atoms of species 1 and n2 to be the number

of sections containing atoms of species 2. This can be illus-

trated most easily with reference to the (n, n) superlattices

which can be divided into two sections, both consisting of n
atoms of species 1 and species 2, and hence n1¼ 1 and

n2¼ 1. This results in the form of Dðq; q0; q00Þ used in previ-

ous studies (Refs. 42 and 43; see also the earlier, less

adequate discussion of this term given in Ref. 50). With a lit-

tle thought, it can be seen from Figure 2 that for the nano-

wire system that we consider in this paper, n1¼ 1 and n2¼ 3,

whereas for the nanodot we have n1¼ 1 and n2¼ 7.

For a two-component composite A/B made from materi-

als A and B, we use the following expression for the anhar-

monic scattering rate, taken and corrected from our previous

work:43

s�1
anh qsð Þ ¼

p�hc2q2
0

N0X�c2

X
q0s0; q00s00;G

Rqs; q0s0; q00s00ð Þ2

x qsð Þx q0s0ð Þx q00s00ð Þ D q; q0; q00ð Þ

�
�

�nq0s0 �nq00s00 þ 1ð Þ
�nqs þ 1ð Þ

d x qsð Þ þ x q0s0ð Þ � x q00s00ð Þ
� 	

� dqþq0; q00þGþ
1

2

�nq0s0 �nq00s00

�nqs

� d x qsð Þ � x q0s0ð Þ � x q00s00ð Þ
� 	

dqþG; q0þq00 �: (11)

Here for the composite material q0 is the density, c is mode-

averaged Gr€uneisen’s constant, �c is the average of the speeds

of the acoustic branches, and

FIG. 2. Atomic structure representation of (a) Si nanowire embedded in Ge

host and (b) Si nanodot embedded in Ge host. Gold and blue-gray spheres

represent Si and Ge atoms, respectively. Figures were generated using

Jmol.57
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Ri;j;k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðiÞxðjÞ

p
ðxðiÞþxðjÞÞjxCðkÞ�xðkÞj

þ similar terms with i; j and k interchanged�=3!;

(12)

where xCðkÞ is the frequency for phonon branch k at the

Brillouin zone centre (the C point), i, j, k label various fq sg,
while the effects of nanostructuring are accounted for by the

dual-mass term Dðq; q0; q00Þ, which, as discussed above,

depends on the ratio eB

eA
of the amplitudes of the vibration in

the two materials inside a unit cell of the system. The sums

over the zero reciprocal vector G¼ 0 and the finite reciprocal

vectors G 6¼ 0 account for momentum conserving (Normal)

and momentum non-conserving (Umklapp) three-phonon

processes, respectively. Periodic composite structures are

characterized with G vectors that can be mapped with the re-

ciprocal lattice vectors of the constituent bulk materials as

well as some new, and smaller than bulk, reciprocal lattice

vectors. The presence of the latter set can be described to

produce “mini-Umklapp” processes.49 For the amplitude ra-

tio, we use an approximation based on a generalization of

the linear chain model (see, for example, Refs. 48 and 51)

eB

eA
¼

1

M0

� D
1

M

� �� 
X
l

cos qlllð Þ

d

M0

� �2

þ A
MAMB

" #1=2

� dD
1

M

� � ;

A ¼ d2 �
X

l

cos qlllð Þ
� �2

; (13)

where M0 ¼ ðM�1
A þM�1

B Þ=2 and Dð1=MÞ ¼ ðM�1
A �

M�1
B Þ=2; MAðBÞ is the mass of species A(B) and ll is half the

length of the cell in the direction l, and d represents the

number of phonon confinement directions due to composite

structuring. The phase relationship encoded in the dual-mass

term must reflect the periodicity of the nanostructure in ques-

tion. This means that in Eq. (13), for superlattices we set

d¼ 1 and sum only over l¼ z, for nanowires we set d¼ 2

and sum only over l ¼ x; y and for quantum dots we set

d¼ 3 and sum over l ¼ x; y; z.

B. Interface mass-smudging (IMS) scattering

For an ultra-short-period nanocomposite A/B, we treat

interface scattering to solely arise from mass mixing (i.e.,

mass swapping) across the interface between the materials A

and B in each unit cell. With A/B taken as Si/Ge, we consider

mass swapping between diamond-structure bi-layers across an

interface within each nanocomposite unit cell. We use the

approach of Ref. 43 in order to treat phonon scattering due to

interface mass mixing (IMS scattering) in superlattice struc-

tures. It is generalized to the case of three-dimensional (3D)

cells in the Appendix to this paper. Accordingly, the IMS

scattering rate for a phonon qs can be written as

s�1
ims qsð Þ ¼

pCims

6N0

X
q0s0

x qsð Þx q0s0ð Þd x qsð Þ � x q0s0ð Þ
� 	

� �nq0s0 þ 1ð Þ
�nqs þ 1ð Þ

; (14)

with

Cims ¼ P2 DM

M

� �2

1� eAe0A
eBe0B

" #2

þ 1� eBe0B
eAe0A

" #2
0
@

1
A; (15)

where P is the overall probability of a pair of atoms (i.e.,

atoms in a bi-layer in species A exchanging with some pair

of atoms (i.e., atoms in a bi-layer) in species B and is de-

pendent on some choice of two parameters: B and a.

Essentially, a controls the probability of a bilayer exchange

across an interface and Ba controls the probability of inter-

change for adjacent bilayers. For this scattering rate we

should use a definition of the amplitude ratio eB/eA that is

consistent with the nature of the cell we are discussing: only

one-dimensional exchange is meaningful for the simple

superlattice (SL) cell that we examine, so we take l ¼ z; for

both the nanodot and nanowire cells used here the bilayer

exchange can occur in all three directions, so we take

l ¼ x; y; z.

C. Calculation of phonon eigensolutions

The phonon dispersion relations and phonon velocity

components in the Si/Ge nanocomposite structures were

computed by employing the ab-initio density-functional per-

turbation theory as implemented in the Quantum Espresso

package.52 We utilized the local density approximation and

norm-conserving pseudopotentials,53 and a plane wave basis

up to the kinetic energy cutoff of 15 Ry. Brillouin zone sum-

mations required for calculations of electronic structure, pho-

non frequencies, phonon velocities, and phonon scattering

rates were performed using the Monkhorst–Pack (MP) spe-

cial wave-vectors method.54 The chosen energy cutoff is suf-

ficient to obtain reasonably well converged results for

phonon frequencies and velocities.55 It is well established

that the mode-average Gr€uneisen constant c generally

increases with temperature T. For T> 150 K, we made the

choice c0 1þ ðT�150Þ
150

� �0:56

, taking the SL value43 c0¼ 0.45

for all of the nanostructures; this value is also consistent with

the experimental data for SiGe alloys.56

The unit cell for the Si/Ge[001] superlattice was con-

structed with the basis vectors a1 ¼ aSLð1=
ffiffiffi
2
p

; 0; 0Þ;
a2 ¼ aSLð0; 1=

ffiffiffi
2
p

; 0Þ, and a3 ¼ aSLð0; 0; 4Þ, with a lattice

constant aSL. Each unit cell, shown in Fig. 1, contains 8 Si

atoms (4 bilayers) and 8 Ge atoms (4 bilayers). The cubic lat-

tice constant was chosen to be aSL¼ 5.54 Å, the average of the

experimental lattice constants of bulk Si and bulk Ge, in ac-

cordance with Vegard’s law. With this lattice constant,

relaxed inter-atomic bond lengths were calculated employing

the force minimization technique. For this system, the energy

minimization and dynamical matrix calculation were per-

formed on a 10� 10� 2 MP grid and the phonon eigensolu-

tions were derived from those using a 16� 16� 12 MP grid,

which gives reasonably good numerical convergence.43 All

allowed three-phonon Normal processes, as well as Umklapp

processes involving reciprocal lattice vectors up to magni-

tude G ¼ 2� 2p=aSL, were included.
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The periodic embedded NW and ND structures were

constructed by using the basis vectors a1 ¼ aNW;NDð2; 0; 0Þ;
a2 ¼ aNW;NDð0; 2; 0Þ, and a3 ¼ aNW;NDð0; 0; 2Þ, with the lat-

tice constants aNW,ND. The nanowire unit cell contains 16 Si

atoms and 48 Ge atoms (Fig. 2(a)), and the nanodot unit cell

contains 8 Si atoms and 56 Ge atoms (Fig. 2(b)). The relaxed

inter-atomic bond lengths were determined. The cubic lattice

constants of aNW ¼ 5:56 Å and aND ¼ 5:59 Å for the nano-

wire and the nanodot structures, respectively, were deter-

mined using Vegard’s law. Numerically converged thermal

conductivity results for these systems are computationally

prohibitive for us, due to the large number of q-points

needed to do so and due to the parallelization constraints of

the Quantum Espresso package.58 This renders a search for a

q-point converged sanh as unfeasible at this point since such

a converged system would require many q-points. Instead a

Monkhorst–Pack grid of 4� 4� 4 was used for both sys-

tems. For this reason our results should be taken to be ex-

ploratory rather than final. Phonon quantities were calculated

using eigensolutions generated on the 20 q-point grid and

symmetry rotations of the nanowire in order that we might

compare systems that are as similar as possible. The shortest

18 reciprocal lattice vectors were used for the nanodot and

32 for the nanowire; beyond this value the Umklapp scatter-

ing saturates.

III. RESULTS

We first present a brief analysis and discussion of the

jph results for the [001] superlattice structure. We note that

Si/Ge SL structures are characterized by large structural mis-

match (compared with Si, bulk Ge is characterized by a lat-

tice mismatch of �4%, a mass ratio of 2.58, and a density

ratio of 2.29) and that the resulting phonon spectrum for the

ultra-thin SLs is very different from those of bulk Si and

Ge.40 In particular, branches become flatter and several pho-

nonic gaps appear in the spectrum, giving rise to changes in

the anharmonic relaxation rate of phonon modes. Although

ultra-thin Si/Ge superlattices do not appear to contain many

dislocations,22,59,60 mass-smudging occurs in a rather unpre-

dictable and uncontrolled manner, dependent upon growth

conditions and preparation methods,24 and will have a no-

ticeable effect on the lattice thermal conductivity: “dirtier”

interfaces with more mass-mixing will give rise to a greater

reduction in jph than “cleaner” interfaces since in the former

case the phonon-interface scattering is stronger. Note that a

“dirty” enough interface is likely to cause the system to

behave like a phonon glass where electrons are still affected

by the underlying crystal structure. Figure 3 shows the com-

puted results for the components of the lattice thermal con-

ductivity tensor for a “dirty” interface (modeled with the

interface mass-smudging scattering parameters a¼ 2 and

B ¼ 1 using the notation described in the Appendix and in

Ref. 43) for the (4,4) SL (periodicity 2.2 nm along [001])

with sample length L¼ 3.0� 10�7 m and n-type P-doping of

various concentrations.

The results at room temperature and above for both the

in-plane components jxx
ph and jyy

ph are significantly lower than

the typical values for bulk Si or bulk Ge (see, e.g., Ref. 19).

The cross-planar component jzz
ph shows an even more signifi-

cant reduction, typically more than two orders of magnitude

lower than the values for bulk Si or bulk Ge, and also signifi-

cantly lower than results obtained previously by us for the

Si0.75Ge0.25 alloy42 even for dopant concentrations that are

orders of magnitude smaller than that of the sample consid-

ered in that study, where jph was the dominant contribution

to the thermal conductivity. This is consistent with the intu-

ition that thermal conduction in the growth direction (and so

across interfaces) will be more affected by the presence of

interfaces than thermal conduction in the planar directions

where the thermal current will not cross interfaces.

Qualitatively, jxx
ph and jyy

ph are similar but not quite identical;

FIG. 3. Components of the lattice thermal conductivity tensor jph for the

Si(4)Ge(4)[001] superlattice when LB¼ 3� 10�7 m, a¼ 2.0, and B ¼ 1:0
(see text and Ref. 43 for notation).
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this small discrepancy arises from our choice of the [110]

and ½1�10� directions as x and y and is discussed in Ref. 44. In

general, the effect of increasing carrier concentration Nd is to

decrease jph at low temperatures; as we reach high tempera-

tures the values for different concentrations tend to converge,

as scattering processes other than electron-phonon scattering

become dominant, although for jzz
ph the Nd¼ 1026 m�3 results

remain noticeably smaller than the rest. Our prediction of the

conductivity of these ultrathin-period Si/Ge (flat plate)

superlattices in the sub-1 W m�1 K�1 region is consistent

with previously reported results in this range from other

groups for thicker-period superlattices.30 However, a direct

numerical comparison of the results for different periodicity

sizes, and obtained by employing different levels of theory,

would be inappropriate. Recently, Garg and Chen31 com-

puted the thermal conductivity of Si/Ge superlattices using an

ab initio theoretical formalism similar to that of ours. The

results presented in this paper as well as in our previous

work43 for the 2.2 nm period Si/Ge superlattice are similar to

the results obtained by Garg and Chen.31 However, a detailed

numerical comparison of our results with the Garg–Chen

results cannot be made. This is because Garg and Chen consid-

ered an undoped sample, did not specify the sample length,

and did not clearly specify the interface mass-mixing region.

Figure 4 displays the effects of doping on the lattice

contribution to the thermal conductivity for both the nano-

wire and the nanodot structures. In general, we see a

decrease of the thermal conductivity as both the doping and

the temperature increase, with the lowest values at 1000 K

being just below 2 W m�1 K�1 for the nanowire jph in the x-

direction and just above 1 W m�1 K�1 for the nanodot. For

the nanowire, jph in the x-direction (across the barrier) is

less than that in the z-direction (along the direction of the

nanowire), which is expected since the presence of an inter-

face in the x-direction should impede the flow of heat. At

T¼ 100 K and large dopings, jph is noticeably larger for the

nanodot than for the jxx value of the nanowire. This is a

result of the interface mass-mixing probability P value of

0.24 for the nanodot being smaller than 0.36 for the nano-

wire, since the effect disappears if interface scattering is

neglected. Despite there being more interfaces in the nanodot

system, the number of possible exchanges between sites in

the nanodot and the bulk is smaller than it is in the case of

the nanowire, as there are fewer atoms in the dot compared

with the nanowire (that is, the volumetric fraction of Si, the

constituent with higher j, in the nanowire composite is

larger than the volumetric fraction of nanodots in the nano-

dot composite). A similar effect has been observed in numer-

ical comparisons of different volumetric fractions of Si

nanowires36,61 and also of Si nanodots in a Ge matrix.35

However, even in the absence of interface mass-mixing scat-

tering effects, nano-structuring effect will be observed due to

the presence of the dual mass term in Eq. (11) and also due

to its effects on the eigensolutions that represent the raw

input to our calculation of jph. Our prediction of the conduc-

tivity results of these ultrathin-period Si/Ge NW and ND

superlattices is qualitatively consistent with previously

reported results from other groups for thicker-period super-

lattices.33,34 However, a direct numerical comparison of the

results for different periodicity sizes, and obtained by

employing different levels of theory, would be inappropriate.

It is also instructive to examine the effects of varying

the sample size L on the thermal conductivity. In Fig. 5 we

display the effects of changing L on the behavior of jph for

the superlattice. At high-temperatures, the values of jph for

L¼ 3� 10�5 m and L¼ 3� 10�6 m are also almost identi-

cal, indicating that at sufficiently large values of L and T, jph

becomes independent of sample size. However, this is not so

at lower temperatures, where we find a much larger peak for

the larger L values, as we would expect since boundary scat-

tering has strong effect in this region.62 Results for the nano-

dot and nanowire are similar: Figure 6 shows that above

600 K, the jph values become insensitive to the nanowire

sample sizes L> 3� 10�7 m and nanodot sample sizes

L> 3� 10�6 m.

IV. DISCUSSION

The presently reported reduction of jph due to increased

interface scattering in ultrathin SLs receives favorable sup-

port from experimental measurements made on thin-period

samples of Bi2Te3/Sb2Te3 (with ZT¼ 2.5)10 and PbSnSe/

PbSe.18 In particular, the work by Jeffers et al.18 echoes our

prediction that the significant reduction in the cross-plane

thermal conductivity of SLs of periods shorter than 5 nm is

the result of stronger scattering of phonons by interfaces. To

the best of our knowledge, there are no reports of the
FIG. 4. Lattice contribution to the thermal conductivity for (a) nano-wires

and (b) nanodots for a sample length of 3� 10�7 m.
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thermoelectric properties of Si/Ge ultrathin SL samples of

the period sizes considered in this work. Therefore, at this

stage it is difficult to quantify or gauge the effect of nano-

structuring in enhancing ZT via the reduction in jph.

However, our results indicate that improving ZT through

nanostructure-induced reduction of jph is a promising

approach.

Accurate comparisons of the nanodot and nanowire

results with the SL results are difficult as neither system is

well converged. Moreover, the relative change in the cross-

barrier results for different geometrical constructs for the

nanocomposites (i.e., SL, NW, and ND) considered in this

work depends strongly on two parameters:29,35,37 volume

fraction and the interface density of the insert (Si) within the

matrix (Ge). Clearly, these parameters differ significantly for

the SL, NW, and ND considered in our work. Nevertheless,

we can confidently say that our predicted lattice thermal con-

ductivities of the considered Si/Ge ultrathin nanocomposite

structures are lower than that of structured or random

SixGe1–x alloys63 and amorphous-Si.22 We expect similar

comparative results between other nanocomposite structures

and corresponding alloys or amorphous structures.

The lattice thermal conductivity of thicker-period nano-

composites is usually quantified by using two structural pa-

rameters: the insertion size and the insertion volume fraction

Vf (for Si embedded in the Ge host in the present case). These

two parameters help define the interface density U, with the

conductivity varying as jph / 1=
ffiffiffiffi
U
p

.37 Such a quantification

of structural parameters is not very meaningful for ultrathin-

period nanocomposites, e.g., those considered in this work.

Instead, it is more meaningful to consider the ultrathin-period

Si/Ge nanocomposites as new materials consisting of Si and

Ge as two material mass (or density) patches within each unit

cell, with the possibility of mixed atomic species at the inter-

nal interfaces, as has been done in this work. Using this pic-

ture one can describe the reduced thermal conductivity of the

nanocomposites as a result mainly of a combination of the

sample size dependence, the onset of mini-Umklapp three-

phonon processes,49 and from the interface mass-mixing. The

phonon scattering rate from the interface mass-mixing is

greater for thinner-period nanocomposites.40 The combined

effect of the mini-Umklapp and interface scatterings in a peri-

odic nanocomposite structure is stronger than that achieved

from the alloy formation. Consequently, the thermal conduc-

tivity of ultrathin-period nanocomposite structures is lower

than the conductivity of an alloy formed by the same two ma-

terial constituents (Si and Ge in the present case).

Notwithstanding these issues, the arrangement of the

array of nanowires in the matrix is such that along the x-axis

there exists a pathway through which heat can flow unim-

peded by interfaces which is absent in the case of cross-

FIG. 5. Length dependence of phonon conductivity in the (a) x-direction and

(b) z-direction for the (4,4) Si/Ge[001] superlattice with interface parameters

a¼ 2.0, B¼ 1, and Nd¼ 1025 m�3. (Results in the y-direction are similar to

those in the x-direction.)

FIG. 6. Lattice thermal conductivity for different sample sizes of the (a)

nanowire and (b) nanodot composite structures shown in Fig. 2, with

Nd¼ 1025 m�3.
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planar heat-flow in the superlattice, and so one might expect

jph in the x-direction to be larger than that in the SL case. A

similar argument applies in the case of the nanodot, where

one might expect a decrease in a better converged result for

jph, but due to the existence of pathways in all three direc-

tions where heat can flow unimpeded by interfaces, this

decrease might not reduce jph below the SL values. This

would not be the case if the behavior of jph along the xy face

diagonal (nanowire) or the xyz body diagonal (nanodot) were

examined, where in an ideal case no pathway would be unin-

terrupted by an interface, but one might also consider other

arrangements. Suitable examples would be a checker-board

array of nanowires or a staggered 3D checker-board arrange-

ment for nanodots (see Figure 7); these not only ensure that

there is no cross-barrier direction where one can trace a path

through the matrix that avoids the presence of an interface,

but they also share the volumetric fraction of the equivalent

superlattice, allowing a more simple comparison of the

effects of interface scattering. This is still an idealization,

since one might not be able to produce perfectly square

nanowires or cubic quantum dots arranged in such a fashion,

but it would provide some idea of how regularly spaced

interfaces operating over the entirety of a nanostructure in

more than one dimension might reduce jph and so improve

ZT.

V. CONCLUSION

In conclusion, the present investigation reveals that fab-

rication of a nanocomposite in the form of doped Si/Ge

ultra-thin SLs produces results for the lattice thermal con-

ductivity jph that are typically lower than the conductivities

of SiGe alloys and of a-Si. This results from a combination

of the sample length dependence, the onset of mini-Umklapp
three-phonon processes, mass mixing at the interfaces

between Si and Ge regions, and the sample doping level. The

reduction of jph by dirty interfaces (modeled with the inter-

face mass-mixing probability parameters a¼ 2.0 and B ¼ 1)

supports the phonon-glass electron-crystal concept8,17 that

has been advocated in the search for TE materials with

enhanced ZT. It is possible that an improvement in the coeffi-

cient of performance for thermionic refrigerators5,15 con-

structed from superlattices might also be observed due to the

reduction of jph by both interface scattering and electron-

phonon scattering.

Extending our theoretical approach for the superlattice

structure, we have also examined the behavior of jph in

ultra-thin nanodot and nanowire array structures. We have

found that configurations of the kind discussed here do pro-

duce a reduction in jph relative to that found in bulk systems.

However, our numerical results suggest that the reduction is

not as pronounced as it is for the cross-planar SL conductiv-

ity. This may in part be due to a lack of convergence in our

calculations (the improvement of which should be an aim of

future investigations), but may also be due to the presence of

pathways through the Ge matrix that are uninterrupted by

interfaces. We have suggested some possible changes to the

nanostructures that may address this problem.
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APPENDIX: CALCULATING THE IMS PROBABILITY IN
THREE DIMENSIONS

In the following, we provide a generalization of the pro-

cedure for calculating the mixing probability P in Ref. 43 to

the three-dimensional unit cells used in this work to examine

nanowire and nanodot systems.

Figure 8 gives a schematic illustration of the nanowire

and nanodot cells under consideration. Each site in the sys-

tem is labeled as follows: ll with l ¼ x; y; z labels the co-

ordinates of a given atomic site within the cell, and sl labels

the atomic sites that are part of the nanowire or of the nano-

dot (note that fsg � flg). A nanowire is equivalent to a

nanodot with sMAX
z ¼ lMAX

z , where sMAX
l and lMAX

l are the

largest values of sl or ll in the direction l. A “site” is taken

to be the location or potential location of a pair of atoms sim-

ilar to the bilayers of the superlattice case; we take interface

mixing to involve the exchange of a pair of basis atoms in

FIG. 7. Proposed array arrangements for (a) a checker-board array of nano-

wires (viewed from the top down) and (b) a staggered three-dimensional

checker-board arrangement for nanodots as discussed in the text. Shaded

squares (cubes) represent nanowires (nanodots); clear areas represent the

matrix.

FIG. 8. Schematic of a nanowire and nanodot cell. The filled region repre-

sents the wire or dot and the unfilled region is the matrix.
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the bulk diamond structure for Si and Ge within the nano-

structure with a pair external to it. The cells under considera-

tion consist of a three dimensional cubic lattice with pairs

occupying every other site.

We begin with a generalization of equation (A3) in Ref.

43 to three dimensions:

Psl
OCC ¼

1

8NSWAP

X8

i

1

S� 3þ Bð Þa ; (A1)

where NSWAP ¼ 1
2

lXlylz is the number of occupied sites, Ba

is a parameter determining the deviation of the probability

of swapping at the interface from what one would expect

given the principle of indifference, and where S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j¼x;y;z ðjjsj � ljj � di;jj � XjÞ2

q
. The di are vectors

included to account for the periodicity of the system:

d1 ¼ ð0; 0; 0Þ; d2 ¼ ðlMAX
x ; 0; 0Þ; d3 ¼ ð0; lMAX

y ; 0Þ;
d4 ¼ ð0; 0; lMAX

z Þ; d5 ¼ ðlMAX
x ; lMAX

y ; 0Þ;
d6 ¼ ðlMAX

x ; 0; lMAX
z Þ; d7 ¼ ð0; lMAX

y ; lMAX
z Þ;

d8 ¼ ðlMAX
x ; lMAX

y ; lMAX
z Þ: (A2)

The value of X depends on the presence or absence of an

interface between the two points in a given direction. For

nanowires, X ¼ 0 unless:

• If si< li and li> lj where i, j¼ x, y and i 6¼ j, then Xi¼ 1

and all other components of X are zero.
• If sx¼ sy and lx¼ ly then Xx¼Xy¼ 1 and Xz¼ 0.

For nanodots, X ¼ 0 unless:

• If si< li, li> lj and lx> lz where i, j¼ x, y and i 6¼ j, then

Xi¼ 1 and all other components of X are zero.
• If sz< lz, lz> lx and lz> ly then Xz¼ 1 and all other compo-

nents of X are zero.
• If sx ¼ sy, lx¼ ly and lx > sMAX

x then Xx ¼ Xy ¼ 1 and

Xz¼ 0.
• If sz ¼ si, lz¼ li and lz > sMAX

z where i ¼ x; y then Xz ¼
Xi ¼ 1 and the remaining component of X is zero.

• If sz ¼ sx ¼ sy; lz ¼ lx ¼ ly, and lz > sMAX
z then X¼ 1.

We now define the probability of exchange between site

s and site l as:

Psl
SWAP ¼

Psl
OCC if s and l are occupied

0 otherwise:

�
(A3)

Following Ref. 43, we now calculate the probability that

site s within the nanoparticle (viz. the insert) exchanges with

site l within the matrix:

Ps
SWAP ¼

X
l 62fsg

Psl
SWAP; (A4)

the probability that it does not exchange

Ps
NOSWAP ¼ 1�Ps

SWAP; (A5)

the probability that no sites at all are exchanged

PNOSWAP ¼
Y

occupied s sites

Ps
NOSWAP; (A6)

and hence the overall value of P

P ¼ 1�PNOSWAP: (A7)

Note that our use of P in Eq. (15) is a simplification; in

general one would have a more complicated expression for

the overall IMS probability, which we have replaced with an

overall approximation. However, given that there is no

known a priori model for interface “dirtiness” to begin with,

we feel that making this replacement is justified, will be sim-

pler to implement for more complex systems, and will cap-

ture much of the relevant qualitative behavior. We should

add that with respect to the d vectors, which account for the

periodicity of the system, more could be included in order to

account for swaps from cells that are further afield, but

unless a is chosen so that the decay of Psl
OCC with distance is

very gradual, this should not have much effect.
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