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ABSTRACT

This study describes a systematic approach to selecting optimal statistical recalibration methods and

hindcast designs for producing reliable probability forecasts on seasonal-to-decadal time scales. A new

recalibrationmethod is introduced that includes adjustments for both unconditional and conditional biases in

the mean and variance of the forecast distribution and linear time-dependent bias in the mean. The com-

plexity of the recalibration can be systematically varied by restricting the parameters. Simple recalibration

methods may outperform more complex ones given limited training data. A new cross-validation method-

ology is proposed that allows the comparison of multiple recalibration methods and varying training periods

using limited data.

Part I considers the effect on forecast skill of varying the recalibration complexity and training period

length. The interaction between these factors is analyzed for gridbox forecasts of annual mean near-surface

temperature from the CanCM4 model. Recalibration methods that include conditional adjustment of the

ensemble mean outperform simple bias correction by issuing climatological forecasts where the model has

limited skill. Trend-adjusted forecasts outperform forecasts without trend adjustment at almost 75% of grid

boxes. The optimal training period is around 30 yr for trend-adjusted forecasts and around 15 yr otherwise.

The optimal training period is strongly related to the length of the optimal climatology. Longer training

periods may increase overall performance but at the expense of very poor forecasts where skill is limited.

1. Introduction

Reliable projections of future climate on seasonal-to-

decadal time scales have enormous potential value for

adaptation purposes. In response to rising demand for

such forecasts, the World Meteorological Organization

designated 12 Global Producing Centres for Long

Range Forecasts (WMO 2007). Decadal prediction ex-

periments were also included in CMIP5, with results

contributed by 16 institutions (Taylor et al. 2012).

However, long-range forecasts are subject to large un-

certainties arising from a variety of sources (e.g., initial

conditions, model parameters, and model structure).

Decision makers need to know the range of possible

outcomes in order to make informed choices about ad-

aptation measures, not just the most likely outcome.

Therefore, probability forecasts that reliably quantify

the uncertainty in long-range forecasts are required.

Dynamical forecast models are valuable tools for

predicting future climate, but they are far from perfect.

Climatemodels suffer from a variety of biases and errors

that can lead to probabilistically unreliable forecasts.

Therefore, forecasts on seasonal-to-decadal time scales

benefit from statistical recalibration based on past per-

formance. The term ‘‘bias correction’’ is often used in-

terchangeably to refer to adjustments applied within the

forecast model (e.g., flux corrections) or simply re-

moving the mean difference between a set of historical

forecasts and observations. This study only considers

adjustments that are performed outside of the forecast

model. The term ‘‘recalibration’’ is used to distinguish
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these from both adjustments made inside themodel, and

from the practice of tuning model parameters (calibra-

tion). Recalibration can refer to any adjustment of the

statistics of the forecast ensemble (e.g., the mean or

variance).

A number of methods have been proposed in the lit-

erature for recalibrating probability forecasts. These

include best member dressing (Roulston and Smith

2003), logistic regression (Hamill et al. 2004), Bayesian

model averaging (Raftery et al. 2005), forecast assimi-

lation (Stephenson et al. 2005), and ensemble model

output statistics (Gneiting et al. 2005). Comparisons by

Wilks (2006) and Williams et al. (2014) concluded that

Bayesian model averaging, best member dressing, and

ensemble model output statistics all perform similarly.

Some of these methods also allow forecasts to be com-

bined from multiple models simultaneously. Combining

forecasts from multiple models adds an additional layer

of complexity. Therefore, this study is restricted to

methods for recalibrating forecasts from a single model.

Excellent reviews of the issues surrounding multimodel

combination are provided by Tebaldi and Knutti (2007),

Knutti et al. (2010), and Stephenson et al. (2012).

Different studies have emphasized different types of

recalibration for long-range forecasts. Unconditional

biases are defined as differences between forecasts and

observations that are constant between forecast times.

Constant biases in the forecast means are routinely re-

moved by the use of anomalies about a long-term mean

(e.g., Stockdale 1997). Figure 1b shows the effect of

removing a constant bias from the synthetic forecasts in

Fig. 1a. Unconditional biases are usually interpreted as a

discrepancy between the equilibrium state of a model

and the Earth system.

Time-dependent biases can occur if the model re-

sponse to anthropogenic climate change differs from

that of the Earth system, or if there is a systematic error

in the observations. Time-dependent biases in the

forecast mean are often adjusted by removing a linear

trend estimated from the forecasts and adding back a

linear trend estimated from the observations (Kharin

et al. 2012). Figure 1c shows the effect of linear trend

adjustment on the bias-adjusted forecasts in Fig. 1b.

Conditional biases in the forecast mean are systematic

errors in the strength of the predictable signal. Conditional

biases in the forecast means can be minimized by linear

scaling (Weigel et al. 2009; Eade et al. 2014). Figure 1d

shows the effect of linear scaling on the trend-adjusted

forecasts in Fig. 1c. Conditional biases in decadal forecasts

can be so large that model forecasts are outperformed in

mean-square error by climatological forecasts (i.e., the

mean and variance of the observational record), even

though the forecasts may be highly correlated with the

observations (Goddard et al. 2013, their Figs. 5 and 6).

FIG. 1. Examples of the impact of different types of recalibration of the forecast ensemble mean. Synthetic time

series of ensemble mean forecasts (black) and observations (gray) (a) before recalibration, (b) after unconditional

adjustment, (c) after unconditional and trend adjustment, and (d) after unconditional, trend, and conditional

adjustment.
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Different forms of recalibration are sometimes rec-

ommended depending on whether forecasts are initial-

ized from full-field observations or anomalies (ICPO

2011). Full-field initialization can lead to sudden shocks

or gradual drifts in individual forecasts that must be

corrected based on historical performance. These effects

are caused by differences between the equilibrium state

of the model and the Earth system. Initialization by

anomalies is intended to minimize these effects. In

practice, anomaly initialized forecasts have also been

found to benefit from recalibration based on past per-

formance (Smith et al. 2013). Linear trend adjustment

has also been applied to correct systematic drifts within

individual forecasts in order to recalibrate multiple lead

times simultaneously (Kharin et al. 2012). For a fixed

lead time, systematic drifts within individual forecasts

appear as unconditional biases. This study develops re-

calibration methods applicable to both full-field and

anomaly initialized forecasts at fixed lead times.

To obtain reliable probability forecasts, the forecast

uncertainty may also require adjustment. The forecast

uncertainty is often estimated by the mean-square error

of a set of recalibrated historical forecast means (e.g.,

Kharin and Zwiers 2003; Glahn et al. 2009). The mean-

square error estimate assumes that the forecast un-

certainty is constant over time. If the uncertainty varies

over time (e.g., during ENSO events), then the mean-

square error may under- or overestimate the uncertainty

of a particular forecast. Ideally, the spread of the fore-

cast ensemble should provide a measure of the uncer-

tainty in a particular forecast. However, the ensemble

spread may also be systematically biased. Linear scaling

has also been applied to correct conditional biases in the

ensemble spread (Weigel et al. 2009; Eade et al. 2014).

Figure 2b demonstrates the effect of linear scaling on the

overconfident forecasts in Fig. 2a. Unconditional biases

in the ensemble spread have also been estimated on

shorter time scales (e.g., Gneiting et al. 2005).

Adjustment of each type of bias requires the estimation

of at least one parameter. Both historical forecasts and

corresponding observations are required in order to es-

timate the required adjustments based on past perfor-

mance. Measurement error in the observations is an

additional source of uncertainty when estimating the pa-

rameters of each adjustment (Weijs and van de Giesen

2011). The short length of the observational record and

the computational expense of large hindcast experiments

limit the amount of data available for training recalibra-

tion methods for seasonal-to-decadal forecasts. Fewer

than 30 years of data (i.e., fewer than 30 forecasts) are

commonly used (e.g., Arribas et al. 2011). If too many

parameters are estimated using too few data, then the

data can be overfitted. The fitted parameters may predict

the noise in the training data, rather than any systematic

relationship between the forecasts and the observations.

Recalibrating new forecasts using those parameters may

actually decrease the skill of the forecasts.

On the other hand, training on too much data may

be as bad as training on too little. Much predictability

on seasonal-to-decadal time scales is thought to arise

from slowly varying processes in the oceans. The oceans

experience long-term variability on time scales from a

few months (the seasonal cycle) to a few years (e.g.,

ENSO; Trenberth et al. 2007, section 3.6.2), or a few

decades [e.g., the Atlantic multidecadal oscillation

(AMO); Trenberth et al. 2007, section 3.6.6]. Multi-

decadal fluctuations may give rise to long-term but re-

versible trends. Predictability itself may also vary over

time (Goddard and Dilley 2005). Many seasonal fore-

casting centers now update their recalibration pa-

rameters before each forecast, by retraining on only

the most recent p years; examples include ECMWF

System 4 (Molteni et al. 2011) and the Met Office

Global Seasonal Forecast System, version 5 (GloSea5;

MacLachlan et al. 2015). This approach has the ad-

vantage that the recalibration will adapt to any changes

FIG. 2. Example of the impact of recalibration of the forecast variance. Synthetic time series of overconfident forecast

ensembles after conditional, unconditional, and trend adjustment of the ensemble mean, (a) before and (b) after linear

scaling of the ensemble variance. Box-and-whisker plots represent the spread of the forecast ensembles.
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in long-term trends, time-varying predictability, the

observing network, etc.

This raises two key questions: What is the optimal

training period for a particular recalibration method?

What is the optimal recalibration method given a fixed

amount of training data? The aim of this study is to

provide a flexible methodology to address these ques-

tions, and to draw general conclusions based on analysis

of existing forecast systems and hindcast experiments

where possible.

When evaluating the performance of a recalibration

method, the data should be split ideally into a training set

and an evaluation set (i.e., out-of-sample evaluation). If

recalibrated forecasts are evaluated on the same data that

the recalibration was trained on, then performance may

be overestimated (Wilks 2011, section 6.4.4). A large

evaluation set is required to reliably establish the ex-

pected performance of the recalibrated forecasts. Fixing

the size of the evaluation set determines the maximum

training period that can be evaluated given the available

observation and forecast data. Out-of-sample evaluation

of a sufficiently large sample of forecasts may not be

possible given the data limitations noted above.

Cross validation is often used when out-of-sample

evaluation is not possible. Cross validation involves

holding back one or more forecasts to form a validation

set; the recalibration is then trained on the remaining

forecasts, and applied to the validation data. When

considering training periods shorter than the length of

the available data, there are many possible training and

evaluation sets to choose from. If training sets are se-

lected at random, then the training data could come

from times when the state of the climate system and the

observing network were quite different from the eval-

uation set. Appropriate cross-validation methods are

required to allow the comparison of different recali-

bration methods and training periods using limited data.

The remainder of this paper is structured as follows:

Section 2 introduces a family of statistical recalibration

methods that includes all of the common adjustments to

the forecast mean and variance; section 3 describes a

cross-validation procedure for comparing different re-

calibration methods and training periods; section 4 ap-

plies the methodology developed in the previous

sections to data from the CMIP5 near-term experi-

ments; and section 5 discusses how widely the conclu-

sions of this analysis might be expected to apply and how

the methodology can be extended.

2. Recalibrating probability forecasts

This study is concerned with techniques for obtaining

calibrated probability forecasts of a climate variable yt

observed at time t, from an ensemble ofm deterministic

forecasts xt5 {xt1, xt2, . . . , xtm} output by a climatemodel.

It is assumed that T observation–ensemble pairs {yt, xt}

are available, relating to forecast times t 5 1, . . . , T. If

multiple lead times are required, theymust be recalibrated

separately to account for the possibility of systematic er-

rors evolving as the model integrations extend further into

the future. The methodology developed here is applicable

to both absolute value and anomaly forecasts.

a. A general recalibration framework

An extended version of the ensemble model output

statistics (EMOS) technique introduced by Gneiting

et al. (2005) is proposed. The observable climate yt at

time t is represented by a linear function of the forecast

time t and the mean of the forecast ensemble xt 5
m21�m

i51xti,

y
t
5 a1 bx

t
1 tt1 «

t
, (1)

where a, b, and t are parameters to be estimated and

«t is a random error with zero expectation. The constant

offset a represents unconditional bias in the ensemble

mean. The scale parameter b represents conditional

bias in the ensemble mean. The second scale parameter

t represents (linear) time-dependent bias in the en-

semble mean. A perfect unbiased forecast model would

have a 5 0, b 5 1, and t 5 0.

The variance of the random error «t is allowed to

depend linearly on the sample variance of the forecast

ensemble s2t 5 (m2 1)21�m

i51(xti 2 xt)
2,

var(«
t
)5 c2 1 d2s2t , (2)

where c and d are also parameters to be estimated. The

constant offset c2 represents unconditional bias in the

ensemble variance, and the scale parameter d2 repre-

sents conditional bias in the ensemble variance. Writing

the forecast variance in terms of c2 and d2 rather than c

and d ensures that var(«t) . 0 for all s2t . The random

errors «t are assumed to be normally distributed and

independent between forecast times t. Therefore, the

forecast distribution can be written compactly as

y
t
;N(a1bx

t
1 tt, c2 1 d2s2t). (3)

It is common practice in seasonal-to-decadal fore-

casting to detrend both the observations yt and the en-

semblemeans xt prior to recalibration (e.g., Kharin et al.

2012; Smith et al. 2012; Eade et al. 2014). Detrending is

usually performed by estimating linear trends in yt and

xt separately using ordinary least squares, and removing

them. The method of ordinary least squares is equiva-

lent to simple linear regression. In appendix A, it is
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shown that simple linear regression of yt and xt on the

forecast time t separately is precisely equivalent to

multiple linear regression of yt on both xt and t. This

result extends naturally to the case where d 6¼ 0 (see

appendix B for details). Therefore, Eq. (3) reduces the

procedure of detrending and recalibrating seasonal-to-

decadal forecasts to a single step.

b. A family of recalibration methods

Training the recalibration framework in Eq. (3) re-

quires the estimation of the five parameters a, b, t, c, and

d. A family of recalibration methods of systematically

varying complexity can be constructed by imposing re-

strictions on individual parameters (e.g., t5 0 or d5 0).

The notation abtcd refers to the most general method

where all five parameters are free to vary. A number in

place of any parameter (or parameters) indicates that

the parameter is fixed at that value; for example, ab0cd

indicates that t 5 0 (i.e., EMOS).

The family of recalibration methods described by

Eq. (3) includes both the climatological (a00c0) and

trend (a0tc0) forecasts. These are classed as statistical

forecasts, since the forecast mean and variance are both

independent of the forecast ensemble (i.e., b5 d5 0). If

the ensemble is not informative for the forecast mean,

then it does not seem reasonable to assume that it is

informative for the forecast variance. Therefore, methods

where the forecast variance depends on the ensemble

(d 6¼ 0), but the forecast mean does not (b 5 0), are not

considered in this study.

Neglecting time-dependent biases for a moment (i.e.,

let t 5 0), the selected family contains four methods of

estimating the forecast mean that do depend on the

ensemble mean: the raw ensemble mean (010), the

scaled ensemble mean (0b0), unconditional bias ad-

justment (a10), and conditional bias adjustment (ab0).

If an adjustment for time-dependent biases is included

(i.e., t 6¼ 0), then there are four additional methods of

estimating the forecast mean (01t, 0bt, a1t, and abt).

For each of the eight methods of estimating the fore-

cast mean, there are five possible methods of estimat-

ing the forecast uncertainty: the mean-square error of

the recalibrated forecast means (c0), the ensemble

variance (01), the scaled ensemble variance (0d), the

shifted ensemble variance (c1), and the shifted and scaled

ensemble variance (cd). Therefore, Eq. (3) describes a

family of 42 recalibration methods, including the two

statistical forecasts.

c. Mean-centered recalibration

Methods of similar complexity may appear to perform

similarly, particularly when applied to absolute value

forecasts. For example, the black ellipse in Fig. 3

represents the joint distribution of observations and

ensemblemean forecasts from a hypothetical model that

has a small unconditional bias in the mean, but no un-

conditional or time-dependent biases (a 6¼ 0, b 5 1, and

t5 0). The theoretical regression lines corresponding to

only unconditional bias correction (a10c0; Fig. 3, solid

black line) and only conditional bias correction (0b0c0;

Fig. 3, dashed black line) are almost coincident inside

the forecast ellipse. Therefore, forecasts recalibrated using

either method will exhibit very similar performance.

Different types of bias can be more easily distin-

guished by mean-centering the ensemble means xt and

forecast times t. The mean-centered form of the general

framework in Eq. (3) is given by

y
t
;N[~x1 a1 b(x

t
2 ~x)1 t(t2 ~t), c2 1 d2s2t], (4)

with

~x5

�
t2g

w
t
x
t

�
t2g

w
t

and ~t5

�
t2g

w
t
t

�
t2g

w
t

,

where g5 ft1, . . . , tpg is the set of p forecast times in

the training set and

FIG. 3. Comparison of the mean-centered and general frame-

works applied to absolute value forecasts. The black ellipse rep-

resents the joint distribution of observations and ensemble mean

forecasts from a hypothetical model that has a small unconditional

bias in the mean, but no conditional bias (a 6¼ 0, b 5 1). The red

ellipse represents the same forecasts after mean centering. The

center of an ellipse corresponding to a ‘‘perfect’’ model with no

unconditional bias would lie on the dotted line (a 5 0, b 5 1).
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w21
t 5 var(«

t
)5 c2 1 d2s2t . (5)

The weighted means ~x and ~t simplify to unweighted

means when d 5 0.

The red ellipse in Fig. 3 represents the same forecasts

after mean centering. The theoretical regression line

corresponding to only unconditional bias correction is

still the solid black line. However, the theoretical re-

gression line corresponding to only conditional bias

correction is now the dotted line (a5 0, b5 1). This line

does not intersect the forecast ellipse at all. Therefore,

the performance of the conditionally recalibrated fore-

casts will be very poor, as expected. Similar problems

occur when trying to distinguish between two-parameter

mean adjustments (i.e., ab0, 0bt, and a0t) estimated us-

ing the general framework.

The mean-centered framework also simplifies the in-

terpretation of the recalibration parameters. It can be

shown that themaximum likelihood estimate of a always

has the form

â5 ~y2 ~x ,

where ~y is defined analogously to ~x and ~t. Therefore, â

can always be interpreted as an estimate of the expected

bias between the forecasts and the observations.

d. Parameter estimation

The parameters of either the general or mean-

centered families can be estimated by standard maxi-

mum likelihood methods. When c5 0 or d5 0, analytic

expressions are available for the parameter estimates.

Analytic expressions for the maximum likelihood esti-

mates are not available when the forecast uncertainty is

modeled by the shifted (c1) or shifted and scaled en-

semble variance (cd). Therefore, parameter estimates

must be obtained by numerical maximization of the

likelihood. Full details are given in appendix B.

The scale parameter b is related to the correlation

between the forecasts and observations. Negative

correlations are difficult to interpret without a detailed

understanding of the underlying physical processes. In

this study, if a negative estimate of b was obtained an-

alytically or numerically, then the parameters were re-

estimated with the additional constraint that b 5 0.

e. Comparison to existing methods

Table 1 includes a number of examples of existing

recalibration methods that can be considered special

cases of the general framework presented here. In par-

ticular, when t 5 0, Eq. (3) is equivalent to the EMOS

method of Gneiting et al. (2005). Similarly, when d 5 0,

EMOS is equivalent to the traditional method of model

output statistics (MOS; Glahn and Lowry 1972). Normal

distributions have also previously been fitted to the raw

ensemble forecast (i.e., 01001; Wilks 2002). The clima-

tological forecast (a00c0) is often used as a benchmark

for forecast skill (Stockdale 1997).

Kharin et al. (2012) performed a deterministic re-

calibration by estimating an unconditional adjustment

after linearly detrending the observations yt and the

ensemble means xt separately by ordinary least squares.

The observed trend was then added back to the de-

trended ensemble means to obtain recalibrated forecast

means. As discussed in section 2a, this is equivalent to

multiple linear regression of yt on both xt and t.

Therefore, the method of Kharin et al. (2012) is equiv-

alent to a1tc0.

The ratio of predictable components (RPC) method

of Eade et al. (2014) involves a conditional adjustment

of the ensemble mean after first removing the mean bias

compared to the observations. The RPC estimate of the

linear scaling parameter [Eq. (2); Eade et al. 2014] is

equal to the maximum likelihood estimate from simple

linear regression (Krzanowski 1998). Therefore, RPC

correction of the ensemble mean is equivalent to ab0c0.

RPC correction differs from the methodology presented

here by issuing ensemble forecasts rather than proba-

bility forecasts. The individual ensemble members are

TABLE 1. Comparison of the complexity of existing forecast recalibration methods.

Complexity Notation Parameters Method

0 01001 — Raw ensemble forecast (Wilks 2002).

1 a1001 (a) Mean bias adjustment.

2 a00c0 (a, c) Climatological forecast (Stockdale 1997).

3 a0tc0 (a, t, c) Trend forecast.

a1tc0 (a, t, c) Linear trend adjustment (Kharin et al. 2012).

ab0c0 (a, b, c) MOS (Glahn and Lowry 1972).

ab00d (a, b, d) Ratio of predictable components (Kharin and Zwiers 2003; Eade et al. 2014).

4 ab0cd (a, b, c, d) EMOS (Gneiting et al. 2005).

abtc0 (a, b, t, c) MOS with linear trend adjustment.

abt0d (a, b, t, d) Ratio of predictable components after detrending (Eade et al. 2014).

5 abtcd (a, b, t, c, d) EMOS with linear trend adjustment.
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rescaled about their recalibrated means, subject to the

constraint that the total variance in the observations yt is

equal to the sum of the variance explained by the re-

calibrated ensemble means and the variance in the in-

dividual members xti. Thus RPC correction can be seen

as a hybrid between mean-square error (ab0c0) and

scaled variance (ab00d) methods. The recalibrated fore-

cast means will be equal to those from ab0c0. The forecast

variances will be proportional to those estimated by

ab00d, but not equal. An optional step in the RPC

methodology is to first detrend both the observations yt
and the ensemble means xt. In that case, RPC correction

can be considered a hybrid of abtc0 and abt0d.

Coelho et al. (2004) also suggest an ab00d-type re-

calibration, but use a Bayesian approach to combine the

ensemble forecast with a statistical forecast. The re-

sulting posterior forecast distribution has a form similar

to an ab0cd (EMOS) recalibration.

3. Comparing recalibration methods

The relative performance of different recalibration

methods and training periodsmust be compared fairly in

order to determine the most appropriate method and

period for a particular forecast model and variable.

Forecast performance is usually quantified using scoring

rules. A score is assigned to each forecast by comparing

it to a verifying observation according to the scoring

rule. Proper scores have the desirable property that the

forecaster cannot improve their expected score by hedging

their forecasts (Jolliffe and Stephenson 2011, chapter 3).

Examples of proper scores for probability forecasts in-

clude the ignorance score

S( f , y)52log f (y) , (6)

where f is the forecast density and y is the verifying

observation, and the continuous ranked probability

score (CRPS)

S(F, y)5

ð1‘

2‘

[F(u)2H(u2 y)]2 du , (7)

where F(u) 5
Ð
z#u

f (z)dz is the cumulative forecast

distribution and H(u 2 y) is the Heaviside function

(Matheson and Winkler 1976). Both are negatively

oriented scores (i.e., lower values indicate better per-

formance). Scores must be averaged over many fore-

casts in order to estimate the expected performance of a

forecast system.

A structured cross-validation procedure is proposed

to allow the comparison of training periods of differ-

ent lengths given limited data. The cross-validated

score at time t is defined as the average score obtained

from recalibrating the forecast for time t using all

possible continuous sets of p 1 1 hindcasts that con-

tain t, but with t omitted from each set (i.e., trained on

p years of data). Let Ft,j be the forecast distribution

[Eq. (4)] for time t, derived from a recalibrationmethod

trained on the p 1 1 hindcasts beginning at time j, but

excluding the forecast time t. The score at time t is

defined as

S(F
t
, y

t
)5

1

U(t)2L(t)1 1
�
U(t)

j5L(t)

S(F
t,j
, y

t
), (8)

where Ft 5 fFt,jjL(t)# j#U(t)g is the set of cross-

validated forecast distributions Ft,j for time t, de-

termined by the limits

L(t)5max(1, t2p) and (9a)

U(t)5min(t,T2p). (9b)

This definition ensures that the training data are always

contemporary to the forecast being evaluated. The

procedure is illustrated in Fig. 4 for 1995, based on a

training period of 13 years (p 5 13), using 30 years

of hindcast and observation data from 1981 to 2010

(T5 30). The score assigned to the forecast for 1995 is

the average of 14 scores (Fig. 4, gray box). The time-

varying bounds L(t) andU(t) fix the number of scores

to be averaged over at each time t.

Using the definition above, a cross-validated score can

be computed for any time 1 # t # T for any length of

training period p , p , T, where p is the number of

mean parameters (a, b, t) to be estimated. An average

cross-validated score can then be taken over any

FIG. 4. Schematic representation of the proposed cross-validation

procedure for a forecast of the period December–February in

1995 with a lead time of onemonth. The training period is 13 years

(p 5 13) and 30 years of hindcasts and corresponding observations

are available (T5 30). Hindcasts are started every 12 months. Gray

lines around forecasts indicate averaging over scores.
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evaluation period required (i.e., any set of times t). The

evaluation period should be as long as possible in order

to evaluate performance during different regimes and

states of the climate system. Using the methodology

proposed here, performance can be evaluated over all

available forecast times.

This proposed cross validation is immediately appli-

cable to seasonal forecasts where the successive fore-

casts do not overlap. The procedure is easily adapted to

the case of overlapping forecasts (e.g., decadal fore-

casts) by excluding from each training set a block of one

or more forecasts before or after the forecast being

recalibrated. The same block adaptation can also be

used to offset any other autocorrelation between suc-

cessive forecasts.

4. Results from the CMIP5 near-term experiments

The methodology developed in sections 2 and 3 was

applied to forecasts of monthly mean near-surface (2m)

temperature from the extended suite of CMIP5 near-

term experiments (Taylor et al. 2012). The extended

design consisted of 10 ensemble members initialized

every year between 1960 and 2010. Only the CCCma

CanCM4, Met Office Hadley Centre HadCM3, and

NOAA/GFDL GFDL CM2.1 models completed the

extended set of core experiments. The CanCM4 and

GFDL CM2.1 models use full-field initialization. The

HadCM3 model uses anomaly initialization by default.

Similar results were obtained from the analysis of each

model. Therefore, only results from the Canadian

Centre for Climate Modelling and Analysis (CCCma)

CanCM4 model are presented here (Merryfield et al.

2013). The CanCM4 hindcasts were initialized on

1 January each year. The ensemblemembers varied only

in their initial conditions.

Forecast performance was evaluated for the mean

temperature averaged over months 1 through 12

(January–December) following each start date. This

forecast period was chosen as a compromise between

the short lead times of seasonal forecasts and the lon-

ger averaging periods of decadal forecasts. It is also one

of the evaluation periods recommended by Goddard

et al. (2013). Forecasts were verified against obser-

vations from the Hadley Centre/Climatic Research

Unit Temperature, version 3v (HadCRUT3v), dataset

(Brohan et al. 2006). The HadCRUT3v data consist

of anomalies relative to the period 1961–90. The

HadCRUT3v anomalies were added to the climatology

produced by Jones et al. (1999) to obtain absolute

temperatures for comparison with the CanCM4 hind-

casts. Before recalibration, the hindcasts were bili-

nearly interpolated to the latitude–longitude grid of

the observations (58 3 58). Only grid boxes with no

missing monthly observations over the whole period

1961–2010 were included.

Training periods of 9, 13, 17, 21, 25, 29, 33, 37, 41, 45,

and 49 yr were considered. All 42 recalibration methods

belonging to the family described in section 2 were

evaluated for all 11 training periods. The mean-centered

recalibration framework (section 2c) was used through-

out. Forecast performancewas evaluated using the CRPS

[Eq. (7)]. Scores were averaged over the whole period

1961–2010 using the cross-validation methodology de-

scribed in section 3.

Current practice is to apply the same recalibration

method and training period at all grid points, but to es-

timate the recalibration parameters separately for each

grid point (e.g., Goddard et al. 2013; Molteni et al. 2011;

MacLachlan et al. 2015). This practice is also adopted

here. The average area-weighted score over all grid

boxes with nomissing observations is used as a summary

measure to compare the performance of the different

recalibration methods and training periods.

a. What is the optimal estimate of the forecast
uncertainty?

The relative performance of the five methods of esti-

mating the forecast uncertainty was similar for all eight

methods of estimating the forecast means. Performance

after conditional recalibration and trend adjustment of

the forecast mean (abt) is compared in Fig. 5a. The

mean-square error of the recalibrated ensemble mean

(c0) consistently outperforms all other methods of esti-

mating the forecast uncertainty when scores are aver-

aged over all grid boxes. No contiguous spatial regions

were found where the mean-square error was out-

performed by any other method (not shown). There is

no evidence of a useful skill–spread relationship be-

tween the ensemble variance and the forecast un-

certainty. Only the shifted and scaled ensemble variance

(cd) is able to approach the performance of the mean-

square error as the training period increases and more

data are available to estimate the additional variance

parameter. However, the ensemble variance tends to be

damped toward the mean-square error (d ’ 0, not

shown). Therefore, no additional information is gained

by including the ensemble variance, and the mean-

square error estimate is preferred. The estimates of

the scale parameter d from the scaled variance method

(0d) suggest that the ensemble variance is too small in

CanCM4 (d . 1, not shown). The shifted variance esti-

mate (c1) is also able to inflate the forecast uncertainty

compared to the raw ensemble variance (c . 0). How-

ever, there is less variation in the forecast uncertainty

when the scaled variance method is used. Therefore, the
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shifted variance is closer in performance to the mean-

square error.

b. What is the optimal estimate of the forecast mean?

The performance of the four methods of estimating the

forecast mean that include unconditional bias adjustment

is compared using the mean-square error estimate of the

forecast uncertainty in Fig. 5b. The performance of

methods not including unconditional bias adjustment was

so poor that it would not be visible on the same scale

(CRPS ’ 0.65–0.67). Without unconditional bias adjust-

ment, the forecast variance is inflated to account for the

errors in the mean. This leads to forecasts with limited

resolution and poor overall scores. This result emphasizes

the importance of adjusting for unconditional biases as a

minimum standard of recalibration.

However, conditional bias adjustment (ab0c0) clearly

outperforms unconditional bias adjustment (a10c0) of

the forecast mean. Trend-adjusted recalibration meth-

ods match or exceed the performance of their un-

adjusted equivalents when the training period is greater

than 20 years. Similarly, the trend forecast (a0tc0) is able

to outperform the climatological forecast (a00c0) if

more than 15 years of observations are available.

c. Why is conditional bias adjustment important?

Figure 6b shows that conditional bias adjustment

(ab0c0) consistently damps the ensemble mean toward

the climatology (b , 1). Conditional bias adjustment

with trend adjustment (abtc0) exhibits almost identical

behavior (not shown). This agrees with previous studies

that found that the ensemble mean may exhibit too

much variability compared to the observations at the

gridbox level (e.g., Goddard et al. 2013; Eade et al.

2014). The relative skill of the conditional and uncon-

ditional recalibrations was quantified by the continu-

ous ranked probability skill score (CRPSS; appendix C).

In CanCM4, the regions of strongest damping (b ’ 0)

coincide with some of the largest gains in skill by

conditional (ab0c0) compared to unconditional (a10c0)

recalibration (Fig. 6a). In these regions, linear scaling

of the ensemble mean (b 6¼ 1) allows the flexibility to

issue climatological forecasts (a00c0) where the model

has limited skill otherwise. Scaling the ensemble mean

does not improve the minimum achievable score over

all grid boxes (Fig. 7a). Instead, the average score is

improved compared to unconditional bias adjustment

by decreasing the number of grid boxes with high (poor)

scores. Trend-adjusted conditional bias adjustment (abtc0)

shows similar improvements compared to trend-adjusted

unconditional recalibration (a1tc0; Fig. 7a).

d. What is the effect of trend adjustment?

Conditional bias adjustment (ab0c0) makes clear im-

provements to both the average score (Fig. 5b) and the

distribution of scores (Fig. 7b) compared to unconditional

bias adjustment (a10c0) alone. In contrast, the improve-

ment in average score due to trend adjustment is small

when optimal training periods are compared (Fig. 5b).

There is almost no visible difference in the score distri-

butions of similar recalibrations with and without trend

adjustment (Fig. 7a). A direct comparison shows that

trend-adjusted forecasts actually outperform equivalent

forecasts based on conditional recalibration alone at al-

most 75% of grid boxes (Fig. 7b).

Trend adjustment is particularly effective in the tropics

and at high latitudes (Fig. 6c). The rain forests in northeast

Amazonia andWest Africa have experienced particularly

strong warming trends in recent decades (Malhi and

Wright 2004). In the Arctic, climate models are known to

have strong biases in their reproduction of recent trends

in sea ice extent (Wang and Overland 2009). However,

observation uncertainty may also play an important role

at high latitudes, because of limited data. Recent trends

in monsoon onset and rainfall in India have been linked

to natural variability on interdecadal time scales as well

as anthropogenic climate change (Krishnamurthy and

Goswami 2000; Goswami et al. 2010; Sinha et al. 2015).

FIG. 5. Globally averaged scores comparing (a) methods of recalibrating the forecast uncertainty and (b) methods

of recalibrating the forecast mean, computed using cross validation over 1961–2010.
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Some of the largest improvements due to trend ad-

justment (e.g., Iceland, India, and the coast of Brazil;

Fig. 6c) occur where the ensemble mean is strongly

damped (Fig. 6b). When trend adjustment is included,

the ensemble mean is damped toward the trend forecast

(a0tc0) rather than a flat climatology. Trend adjustment

in combination with conditional recalibration (abtc0)

allows well calibrated trend forecasts (a0tc0) to be is-

sued where both the forecast model and a flat clima-

tology (a00c0) perform poorly.

In some locations, trend-adjusted forecasts can be

outperformed by conditional or unconditional recalibra-

tion alone (Fig. 6c). However, the relative decrease in

performance at these locations is generally small com-

pared to the relative increase in performance elsewhere

(Fig. 7c). Conditional bias adjustment with trend adjust-

ment (abtc0) is able to achieve positive skill compared to

an optimal trend forecast (a0tc0) at almost 85% of grid

boxes (Fig. 6d).

e. What is the optimal training period?

The average score of recalibrated forecasts both with

and without trend adjustment exhibits a nonlinear

response to increasing training period (Fig. 5b). For

trend-adjusted methods (t 6¼ 0), there is a locally opti-

mum training period of around 29–33 yr, similar to the

optimal trend forecast (25 yr). The optimal training pe-

riod for methods without trend adjustment (t 5 0) is

shorter, around 17–21 yr, similar to the optimal clima-

tological forecast (9–13 yr). In both cases, the average

score degrades once the training period exceeds the

local optimum, before improving again above 40 years.

In terms of the gridbox-averaged score, the optimum

training period for both unconditional and conditional

bias adjustment with trend adjustment is actually

49 years.

Without trend adjustment, the optimum period tends

to be either very long or very short (Figs. 8a,c). After

trend adjustment, the number of grid boxes where very

long training periods are preferred increases by almost

50% (Figs. 8b,d). Short training periods are only optimal

at a small number of locations. However, training pe-

riods close to the optimal trend forecast (21–33 yr) are

preferred at many grid boxes.

Increasing the training period of trend-adjusted condi-

tional bias adjustment from the local optimum of 33 years

FIG. 6. (a) Skill of conditional bias adjustment (ab0c0) trained on 21 years of data compared to unconditional bias adjustment (a10c0)

trained over 17 years; (b) average ensemble mean scale parameter b estimated by conditional bias adjustment (ab0c0) trained over 21

years; (c) skill of conditional bias adjustmentwith trend adjustment (abtc0) trained over 33 years, compared to conditional bias adjustment

without trend adjustment (ab0c0) trained over 21 years; and (d) skill of conditional bias adjustment with trend adjustment (abtc0) trained

over 33 years, compared to a trend forecast (a0tc0) trained over 25 years. All computed using cross validation over 1961–2010. Relative

skill is compared using the CRPSS (appendix C).
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to the maximum of 49 years increases performance at

more than 60% of grid boxes (Fig. 9a). However, per-

formance decreases where shorter training periods

are preferred. Performance near Iceland, the coast of

Brazil, southern Europe and the Mediterranean region,

India, and the Arabian Sea is particularly badly af-

fected. These regions were previously identified as re-

gions where trend adjustment increases performance

(Fig. 6c), but where the ensemble mean is strongly

damped toward the trend forecast (Fig. 6b). Acceptable

performance in these regions is dependent on making

well-calibrated statistical (trend) forecasts. Thus, per-

formance is strongly affected by increasing the training

period away from the optimal trend forecast. Small in-

creases in performance at the majority of grid boxes are

balanced by large decreases where the model has lim-

ited skill and well-calibrated trend forecasts are re-

quired (Fig. 9b). As a result, the area-averaged skill

score actually favors the shorter training period.

The optimum training period is a compromise. Long

training periods are optimal at many grid boxes without

trend adjustment. However, performance at many other

locations is optimized by a climatological forecast with a

short training period (9–13 yr). The optimal training

period without trend adjustment (17–21 yr) is a balance

between these competing factors. Long training periods

are optimal at even more locations when trend adjust-

ment is applied. However, the increase in performance

at the majority of locations is outweighed by strong re-

ductions in performance where well-calibrated (25 yr)

FIG. 7. Distribution of (a) gridbox scores using unconditional or conditional recalibration, with or without trend adjustment;

(b) difference in gridbox scores between conditional recalibration with (abtc0, 33 yr) and without (ab0c0, 21 yr) trend adjustment; and

(c) gridbox skill comparing conditional recalibration with (abtc0, 33 yr) and without (ab0c0, 21 yr) trend adjustment. All computed using

cross validation over 1961–2010. The whiskers of the box-and-whisker plots indicate the lowest and highest data points within 1.5 times the

interquartile range of the lower and upper quantiles respectively. Data points outside this range are marked with circles. Crosses indicate

the area-weighted mean score (or skill score, as appropriate).
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trend forecasts are optimal. Again, the overall optimal

training period (29–33 yr) strikes a balance between the

two time scales. Higher overall performance may be

possible using very long (.50 yr) training periods, but at

the expense of very poor performance in a few locations.

f. Comparison with out-of-sample performance

Cross validation might be expected to overestimate

forecast performance through the inclusion of training

data that postdate the forecasts. Some studies have

found that cross validation can actually underestimate

forecast performance (Smith et al. 2013). Forecast per-

formance estimated by cross validation was compared to

out-of-sample performance using a shorter evaluation

period. Out-of-sample forecasts for 1991–2010 were

produced using rolling training periods of between 9 and

29 yr. Cross-validated average scores were produced for

the same period [Eq. (8)]. The results of both analyses

are qualitatively in good agreement. The mean-square

error consistently outperforms other methods of esti-

mating the forecast uncertainty analyses (not shown).

Conditional bias adjustment consistently outperforms

unconditional bias adjustment (Figs. 10a,b). Trend-

adjusted methods outperform equivalent unadjusted

methods when trained on more than 20 years of

hindcasts.

FIG. 8. The optimal training period (a),(c) before (ab0c0) and (b),(d) after (abtc0) trend adjustment. The optimal training period is based

on the minimum score after conditional trend adjustment, computed using cross validation over 1961–2010.

FIG. 9. (a) The spatial distribution and (b) box-and-whisker plot of the distribution of the skill of conditional recalibration with trend

adjustment (abtc0) for 1961–2010 after training on 49 years of data compared to training on 33 years of data. The whiskers of (b) are

computed as in Fig. 7.
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Cross validation tends to overestimate the perfor-

mance of all methods, particularly for short training

periods (Figs. 10a,b). The optimal training period also

tends to be slightly overestimated. Both overestimates

are likely to be caused by the inclusion of training data

that postdate the forecasts during cross validation. The

spatial pattern of skill of trend-adjusted compared to

unadjusted conditional bias adjustment is reproduced

well by cross validation (Fig. 10c). However, the per-

formance of trend adjustment tends to be overestimated

in regions where it may not be optimal (e.g., the north-

eastern and northwestern Pacific). As a result, the overall

advantage of trend adjustment (estimated by the area-

averaged skill score) may be overestimated by the cross-

validated results (Figs. 10e,f). Overall, the conclusions

from the cross-validated analysis are consistent with the

out-of-sample analysis. The conclusions of both analyses

of 1991–2010 are also consistent with the cross-validated

analysis of the full period 1961–2010.

g. Selection bias

By restricting the analysis to only grid boxes with no

missing observations the study area is substantially re-

stricted. This represents a potential source of bias in the

results. To assess the robustness of the results to this

selection bias, a similar analysis was performed after

training and verifying using ERA-Interim (Dee et al.

2011) rather than HadCRUT3v. ERA-Interim is only

available from 1979 onward. Therefore, the maximum

training period is 30 years, and a cross-validated analysis

is required.

The results are qualitatively consistent with those

from the analysis using HadCRUT3v (Fig. 11a).

Conditional bias adjustment consistently outperforms

FIG. 10. Comparison of methods of recalibrating the forecast mean computed using (a) out-of-sample forecasts and (b) cross validation.

Comparison of gridbox skill of conditional recalibration with (abtc0, 29 yr) and without (ab0c0, 13 yr) trend adjustment based on (c),(e)

out-of-sample forecast and (d),(f) cross validation. All scores are averaged over 1991–2010. The whiskers of the box-and-whisker plots are

computed as in Fig. 7. Crosses in (e),(f) indicate area-averaged skill.
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unconditional bias adjustment. Trend-adjusted methods

outperform their unadjusted equivalents when trained on

more than 20 years of data. The optimal training period

after trend adjustment is around 30 years. The main dif-

ference compared to the analysis based on HadCRUT3v

in Fig. 10 is that trend-adjusted additive recalibration

(a1tc0) is consistently outperformed by the trend forecast

(a0tc0). Examination of the scale parameter b shows that

the ensemble mean is strongly damped toward the clima-

tological or trend forecast over large areas (not shown).

Therefore, the overall poor performance of unconditional

recalibration is unsurprising.

Trend-adjusted conditional bias adjustment (abtc0)

outperforms unadjusted conditional bias adjustment

(ab0c0) at only 45% of grid boxes (Fig. 11c). However,

the relative decrease in performance where trend

adjustment is not optimal is small compared to the

relative increase elsewhere. Therefore, trend-adjusted

conditional recalibration (abtc0) is still preferred

overall.

The largest increases in performance due to trend

adjustment occur over tropical landmasses and around

the Arctic ice edge in ERA-Interim (Fig. 11b). Similar

performance increases due to trend adjustment occur

when trained and verified against HadCRUt3v (Fig. 10d).

Although the overall results from ERA-Interim and

HadCRUT3v are qualitatively consistent, there are

also differences (e.g., southern Europe). It is important

to remember that reanalysis data are not observations.

If the reanalysis model and the forecast model possess

similar deficiencies, then the forecasts may appear

more skillful than if they had been verified against real

observations. However, reanalysis data provide a valu-

able check for selection bias due to incomplete obser-

vation data.

5. Discussion

This study has developed a unified framework for the

evaluation of statistical recalibration methods for

seasonal-to-decadal probability forecasts. The process

of detrending forecasts and observations to adjust for

differences in linear time trends has been integrated into

the recalibration procedure by exploiting results from

multiple linear regression. The concept of a family of

recalibration methods of systematically varying com-

plexity has been introduced. A new cross-validation

methodology has been developed to address the

unique features of seasonal-to-decadal climate fore-

casts. Analysis of the CMIP5 hindcasts shows that con-

ditional adjustment of the ensemble mean is required to

obtain reliable forecasts where the model has limited

skill. Conditional adjustment combined with trend ad-

justment allows the use of long training periods and

further increases forecast skill.

The general approach developed here can be broken

down into four stages. First, a family of recalibration

methods is identified. Second, a range of training periods

is selected. Third, an evaluation period is selected and

cross validation applied to obtain recalibrated forecasts

from each method and training period. Finally, scoring

rules are applied to evaluate the performance of each

recalibration method and training period.

The family of recalibration methods introduced here

is very flexible, but not without limitations. The current

framework is restricted to linear adjustments of the

forecasts’ mean, variance, and time trends. This as-

sumption is likely to be overly simplistic, but trying to

fit a more complicated model to so little data would risk

overfitting. The assumption of normally distributed

forecast errors will not be appropriate for all variables.

FIG. 11. (a) Comparison of methods of recalibrating the forecast

mean and (b),(c) the distribution of gridbox skill after conditional

bias adjustment with (abtc0, 29 yr) and without (ab0c0, 13 yr) trend

adjustment, computed using cross validation over 1991–2010, re-

calibrated and verified relative to ERA-Interim. The whiskers of

the box-and-whisker plot are computed as in Fig. 7.
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Other studies have extended the EMOS method to

other error distributions (e.g., Scheuerer 2014; Baran

and Nemoda 2016). The approach developed here to

selecting an optimal method and training period can also

be applied to those frameworks. The assumption of in-

dependent forecast errors may also be a limiting factor

for some slowly evolving variables. This can be partially

addressed by the use of blocking in the cross-validation

step; however, further research is required to fully

address this issue. The effect of uncertainty in the re-

calibration parameters is also routinely ignored. This

issue has recently been addressed for regression frame-

works, such as the one presented here, by Siegert et al.

(2016). However, additional development is still re-

quired to account for observational uncertainty during

recalibration.

The optimal recalibration method and training period

will vary for different models, lead times, and forecast

variables. However, the analysis of the CanCM4 hind-

casts demonstrated some features that are expected to

be present in other forecasts. Similar conclusions were

also drawn from analysis of other CMIP5 models with

varying initialization strategies (not shown). In particu-

lar, conditional bias adjustment allows the ensemble

mean to be damped toward a suitable statistical forecast.

At the gridbox level, there are always likely to be re-

gions where a particular model has limited skill and

might be outperformed by a well-calibrated statistical

forecast. Therefore, the apparent relationship between

the optimal training period and the length of the optimal

statistical forecast is likely to be a general one. The

strength of that relationship will depend on the pro-

portion of grid boxes where the statistical forecast is

optimal.

Trend adjustment also had a positive impact on

forecast skill. In general, trend adjustment acts to

lengthen the optimal training period by reducing time-

dependent biases. Performance was improved both

where little scaling of the ensemble mean was required,

and where the ensemble mean was strongly damped.

However, at locations where trend adjustment was not

required or had no effect on the optimal training period,

the forecast performance was reduced. So the overall

increase in performance tended to be small. The ten-

dency to issue strongly damped, trend-adjusted forecasts

in regions experiencing rapid climate change empha-

sizes the need for seasonal-to-decadal forecast models to

correctly reproduce climate trends.

In the analysis presented here, a single optimal reca-

libration method and training period were selected on

the basis of the average area-weighted score over all grid

boxes. Box-and-whisker plots of gridbox scores, score

differences, and skill scores were also shown to be useful

tools for analyzing the relative performance of different

recalibration methods and training periods. For the

CanCM4 hindcasts, training periods approaching 50

years were shown to have similar overall skill to training

periods of around 30 years. Small increases in skill at the

majority of grid boxes were balanced by large decreases

in skill where trend forecasts were preferred. The ben-

efits of long training periods appear to be limited com-

pared to the additional computational expense. A more

focused analysis might allow different recalibration

methods or/and training periods to be selected in dif-

ferent regions.

The mean-square error of the recalibrated forecasts

consistently outperformed other methods of estimating

the forecast uncertainty in the analysis of CanCM4. It is

possible that the ensemble size was too small to allow

the reliable estimation of any skill–spread relationship

in the ensemble variance. The effect of ensemble size

shall be investigated further in Part II of this study. It is

unlikely that the mean-square error is the optimal esti-

mate of the forecast uncertainty for all models, vari-

ables, lead times and spatial scales. Also, it is important

to test all combinations of appropriate mean and vari-

ance adjustments. In the analysis presented here, the

relative performance of the five forecast variance esti-

mates was similar across all of the forecast mean esti-

mates. However, it is simple to construct cases where

there would be strong interactions; for example, the raw

ensemble variance might be an excellent estimate of the

forecast uncertainty, but only after any biases in the

mean have been removed.

The cross-validation methodology introduced here

allows the comparison of different recalibration

methods with varying training periods given limited data

for any required validation period. The cross-validated

analysis agreed qualitatively with the out-of-sample re-

sults. Cross validation tends to slightly overestimate the

length of the optimal training period. However, the ex-

istence of an optimal training period less than the

maximum training period was well captured, and the

overestimation was small. The overall skill was also

relatively insensitive to small changes in the training

period when close to the optimum. Therefore, the cross-

validation methodology presented here is recom-

mended for the analysis of competing recalibration

methods and training periods.

This study has focused on the common practice of

recalibrating each grid box separately. However, this

can lead to unexpected results such as the anomalous

strong positive scale parameters estimated at a handful

of grid boxes in Fig. 6b. Smoothing the data prior to

recalibration may help to reduce the occurrence of such

anomalies (Goddard et al. 2013). A more holistic
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approach would be to specify a covariance structure

between the grid boxes and to estimate the recali-

bration parameters at each location simultaneously.

This would lead to smoothly varying recalibration

parameters that might be interpreted more easily.

Ensemble copula coupling provides an intermediate

approach that retains the spatial covariance struc-

ture in the forecasts, but does not require that the

recalibration parameters vary smoothly (Schefzik

et al. 2013).

In Part II of this study, the cross-validation method-

ology is extended to analyze the effects of ensemble size

and hindcast frequency, and the optimal design of new

forecast systems and hindcast experiments. In addition,

the optimal recalibration methods and training periods

of other forecast models, lead times, and averaging pe-

riods are investigated.
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APPENDIX A

Multiple Linear Regression

To see that Eq. (3) is equivalent to regression of the

observations yt on the forecast means xt after first re-

gressing both on the time t, write

y
t
5 a

y
1 t

y
t1 «

yt
,

x
t
5 a

x
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Substitute first for «yt, and then for «xt to obtain
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where a 5 ay 2 bax and t 5 ty 2 btx.

APPENDIX B

Maximum Likelihood Estimation

The log–likelihood for the general framework in Eq.

(3) is given by

logL (a, b, t, c, d; y)52
p

2
log2p1

1

2
�
t2g

logw
t

2
1

2
�
t2g

w
t
(y

t
2m

t
)2 ,

with

m
t
5 a1 bx

t
1 tt and w21

t 5 c2 1 d2s2t ,

where g5 ft1, . . . , tpg is the set of forecast times in the

training set, and p is the length of the training set.

Provided theweightswt are knownup to amultiplicative

constant, maximizing the log–likelihood is equivalent to

minimizing the sum of squares

logL } (y2m)TW(y2m) ,

where y is the p vector of observations, m is the p vector

of forecast means, and W is the diagonal p 3 p matrix

with elements Wtt 5 wt and zero everywhere else. The

mean vector can bewritten asm5Xb, whereb5 [a b t]T

is the vector of mean parameters and X is the p 3 3

matrix with rows [1 xt t] for t in 1, . . . , p.

When d 5 0 so that w21
t 5 c, the maximum likelihood

estimates of the parameters b are equal to the ordinary

least squares estimates given by

b̂5 (XTX)21XTy

and

ĉ2 5
1

p
(y2Xb̂)T(y2Xb̂) .

Similarly, when c 5 0 so that w21
t 5 d2s2t } s2t , the max-

imum likelihood estimates of the parameters b are equal

to the weighted least squares estimates given by

b̂5 (XTWX)21XTWy

and

d̂2 5
1

p
(y2Xb̂)TW(y2Xb̂) .

When the forecast uncertainty is modeled by the

shifted (c1) or shifted and scaled ensemble variance

(cd), the parameter estimates must be obtained by nu-

merical maximization of the likelihood. This procedure

can be simplified by noting that the log–likelihood de-

pends on the variance parameters c and d only through

the weights wt. So for given values of c and d, the

maximum likelihood estimates of the mean parameters

a, b, and t are obtained by weighted least squares. Given

initial guesses for c and d, estimation proceeds by
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alternating between weighted least squares steps for the

mean parameters, and Newton–Raphson (or similar)

steps for the variance parameters.

This simplification reduces the dimension of the nu-

merical optimization problem from five parameters to

just two. The simplified optimization is more robust than

maximizing the full five-dimensional log–likelihood,

particularly when b5 0 where the solution was found to

be very sensitive to the initial guesses for the parame-

ters. This iterative procedure is equivalent to maximiz-

ing the profile log–likelihood for c and d (Garthwaite

et al. 2002). Therefore, the parameter estimates will be

identical to those obtained by maximizing the full five-

dimensional likelihood.

The mean-centered framework in Eq. (4) can be fitted

using the same procedure, but substituting y 5 y0 and
X5 X0, where y0 5 y2 ~x, with ~x the p vector of weighted

ensemble means, and X0 is the p 3 3 matrix with rows

[1 xt 2 ~x t2 ~t]. Note that the weighted means ~x and

~tmust be recomputed after eachNewton–Raphson step,

since the weights depend on c and d.

Gneiting et al. (2005) suggested minimizing the con-

tinuous ranked probability score as an alternative to

maximizing the likelihood. However, Williams et al.

(2014) found little difference in the performance of

forecasts estimated by either procedure, but noted that

the computational cost of minimum CRPS estimation

was much greater than that of maximum likelihood.

APPENDIX C

The Continuous Ranked Probability Skill Score

The continuous ranked probability skill score (CRPSS)

can be used to compare the relative performance of two

recalibration methods, or a set of recalibrated forecasts

and a set of reference forecasts. If CRPSfor and CRPSref
are the average scores of the recalibrated forecasts and

reference forecasts respectively, then theCRPSS is given by

CRPSS5
CRPS

ref
2CRPS

for

CRPS
ref

.

The skill score provides a direct comparison of the perfor-

mance of two sets of forecasts on a dimensionless scale. If

there is no difference in average performance, then the skill

score should equal zero. The skill score is bounded above at

one for a perfect forecast, but has no fixed lower bound.
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