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Abstract

The use of dynamical information, which is temporally and spatially explicit,

to quantify environmental impacts is gaining importance in recent years. Life

Cycle Assessment has been applied to identify environmental impacts of, for

example, wheat production. However, conventional Life Cycle Assessment is

typically limited by its static nature and cannot explicitly consider temporal

and spatial variability in its matrix-based mathematical structure. To address

this limitation, a novel dynamical Life Cycle Assessment framework that ap-

plies spatio-temporal mathematical models in Life Cycle Inventory is intro-

duced. This framework employs the existing Enhanced Structural Path Anal-

ysis (ESPA) method paired with a spatial dispersion model to determine the

localised emissions over time within the Life Cycle Inventory. The spatially

explicit calculations consider emissions to the surrounding area of an origin. A

case study was undertaken to demonstrate the developed framework using the

production of wheat at the Helford area in Cornwall, UK. Results show the

spatio-temporal dispersion for four example emissions atmosphere, soil, flowing

and groundwater. These outcomes show that it is possible to implement both

spatial and temporal information in matrix-based LCI. We believe this frame-

work could potentially transform the way LCA is currently performed, i.e., in

a static and spatially-generic way and will offer significantly improved under-

standing of life cycle environmental impacts and better inform management of
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processes such as agricultural production that have high spatial and temporal

heterogeneity.

Keywords: Life Cycle Assessment, wheat, spatio-temporal model,

environmental impacts, agriculture, Life Cycle Inventory.

1. Introduction

The relation between agriculture and climate change has become an impor-

tant issue (Edwards-Jones et al., 2009). The food sector is one of the largest

industries in the world and hence uses a large amount of energy and resources

and contributes to global warming and total CO2 emissions (Roy et al., 2009).5

The demand on food will drastically increase in the coming decades. Therefore,

the pressure on food production and cultivation of land will rise, as well. At the

same time, climate change will cause more challenges in the agricultural sec-

tor (van der Werf et al., 2014): Agriculture is supposed to meet the principles

of sustainability, therefore, it is expected to produce a large amount of food to10

feed growing populations and at the same time ensure food security (Brentrup

et al., 2004). Furthermore, one of the main concerns is the impacts of increas-

ing input levels during the production of grain. These impacts include land use

change and emissions through a higher demand for soil tillage, fertilisers, pes-

ticides and irrigation. All these influence the level of greenhouse gases (GHG)15

released during agricultural production (Goglio et al., 2012). Hence, enhancing

global food security while reducing emissions and environmental impact — two

seemingly conflicting goals — requires a rigorous analysis of food production

practices and technologies to develop more sustainable agriculture.

Accounting for approximately 30% of the global grain cultivation, wheat is20

one of the most important contributors to global food production (Röder et al.,

2014). According to the FAO Food Prospects and Food situation report 70% of

the wheat produced is for food production and the rest is used for other purposes

such as animal feed. In 2014/15, a global wheat yield of 716 million tonnes is

expected (FAO, 2014). Linquist at al. (2001) calculated in their meta-analysis25
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of GHG Global Warming Potential (GWP) values of CH4 and N2O of 662kg

CO2e/1t of wheat. Furthermore, they found 1.21% of N applied was emitted

as N2O (Linquist et al., 2012).

Life Cycle Assessment (LCA) is commonly used to evaluate the environ-

mental impacts of different products, processes and activities. Assessments30

can consider the entire life cyle or a determined time interval of the life cycle

(Edwards-Jones et al., 2009; Roy et al., 2009). A LCA can be performed to

identify ways to reduce pollution, excessive use of resources and may stop the

mitigation of environmental impacts between different production stages (Mc-

Manus, 2010). Within a LCA environmental impacts such as climate change,35

stratospheric ozone depletion, smog eutrophication and acidification and influ-

ences on human health and ecosystems are analysed (Rebitzer et al., 2004).

LCA can be seen as a comprehensive assessment which is standardised in ISO

14040 and includes all attributes of natural environment, human health and

resources (Technical Committee ISO/TC 207, 2010). A life cycle approach is40

useful to avoid problems in the process from shifting from one stage, country

or environmental problem to another (McManus, 2010). In recent years LCA

has become an important decision support tool for policy makers as well as

product developers and designers to assess the cradle to grave impacts of prod-

ucts. Three forces support the current position of LCA: Due to a movement45

from government regulations closer to ”life-cycle accountability” point of view,

manufacturers are responsible for direct product impacts, but also for impacts

in life cycle stages after a product’s purchase. Some businesses also take part

in sustainable actions or schemes which demands ”for continuous improvements

through better environmental management systems” (Srinivas, 2014). And last50

for consumer markets and government procurement guidelines environmental

performance of products has a high level of importance (Srinivas, 2014).

On the other hand, LCA is “primarily a steady-state-tool” that does not con-

sider temporal or spatial information (Udo de Haes, 2006). These limitations

impact on results from conventional LCA and many, in particular, environ-55

mental issues cannot be determined explicitly (Levasseur et al., 2010; Owens,

3



1997; Dyckhoff and Kasah, 2014). In recent years more studies include either

temporally or spatially explicit information, and new methodologies for time-

dependent LCA (Levasseur et al., 2010; Dyckhoff and Kasah, 2014; Commission,

2010) and spatial LCA (Geyer et al., 2010; Mutel and Hellweg, 2009) have been60

developed. To the best knowledge of the authors, however, no studies have been

performed that include time- as well as space-dependent information in conven-

tional matrix-based LCA. Hence the aim of the present study is to: integrate

both, temporal and spatial information in a novel dynamical LCA framework

that is capable of producing more detailed results and hence offering more in-65

sights for sustainability assessment. We apply this new approach to evaluate

the environmental burdens of wheat production as an illustration. The Dynam-

ical Life Cycle Assessment (DLCA) sections summarises previous studies and

current implementation of time and space in LCA. The calculation approach

used in our study is outlined in the Method section. The Case Study section70

introduces the used data, followed by the results. Conclusions for the study and

also recommendations for implementing time and space information in future

studies are drawn in the Conclusion section.

2. Dynamical Life Cycle Assessment

ISO 14042 mentions the absence of time in LCA, but at the same time does75

not provide a guideline for an inclusion of time in LCA (Technical Committee

ISO/TC 207, 2010) and previous studies explore different ways in doing so.

Broadly, it differs between time included in the Life Cycle Inventory (LCI) and

in the Life Cycle Impact Assessment (LCIA) stage of a LCA. According to Collet

et al. (2011) the temporal information of emissions is lost by aggregation and80

the ensuing concentrations of emissions in the air are unknown. On the other

hand, time in LCIA is only considered as timescales to gain information about

the emissions that influence the environmental impacts (Collet et al., 2011).

Dyckhoff and Kasah (2014)) define DLCA as an useful tool to “assesses the

impacts of a system at a determined point in time.85
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Pehnt (2006); Zhai and Williams (2010) and Viebahn et al. (2011) perform

dynamical studies in the renewable energy sector and assessed future green-

house gas (GHG) emissions by past and potential developments of material

and operation methods to improve efficiency of production. Zhai and Williams

(2010) perform a LCA of photovoltaic (PV) systems and consider technology-90

dependent dynamics of embodied energy and GHG emissions. The study fo-

cusses on energy-related flows, but with some improvement of the model other

impact categories could be included. Zhai and Williams (2010) conclude that

the environmental processes have a significant effect on reducing emissions of

PV systems.95

Pehnt (2006) introduces in his paper a dynamic approach towards LCA of re-

newable energy systems. For his dynamical approach, he develops a background

system with the state of the best available technology and uses extrapolation

of future developments to calculate the emissions for energy resource consump-

tion, emissions of GHGs, acidification and eutrophication. Within his DLCA he100

includes only parameters, that are environmentally significant and at the same

time exhibit an important time-dependency.

Viebahn et al. (2011) perform a study about concentrated solar power (CSP)

by using a dynamical LCI approach. Within the LCI the environmental impacts

between 2007-2050 were calculated considering six development steps such as105

increase of lifetime, up-scaling, increase of storage time, higher efficiency, re-

duction of material use and adapting background processes. The development

scenarios were assumed to follow a pessimistic, an optimistic-realistic and a very

optimistic trend. The study shows that CSP can be deployed in the long-term,

depending on the development of energy policy. Furthermore, the emissions110

from CSP plants are relatively low in comparison with fossil fuel-based systems,

and further reductions of emissions are possible and likely to happen in the

future.

In a more recent study, Beloin-Saint-Pierre et al. (2014) develop a calculation

tool that uses temporal information to describe a system by differentiating ele-115

mentary and process flows. The authors modify the traditional LCI calculation
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method to be able to consider time dependent information. This new method

is called Enhanced Structural Path Analysis (ESPA) Beloin-Saint-Pierre et al.

(2014). Beloin-Saint-Pierre et al. (2014) compare different LCA studies and

found that results obtained, considering evolving process flows over time, differ120

from those obtained by more traditional approaches in LCA. Also including time

variance indicated an effect of industrial dynamics on DLCA results. In their

comparison of different DLCA studies they also found that most approaches

used in these studies did not clearly “differentiate at a temporal level”.

Porsö and Hansson (2014) describe time-dependent absolute and instanta-125

neous indicators to calculate the global mean surface temperature.

In 2005, Spatari et al. (2005) used a dynamical model with an annual time

series for production steps, an empirical model to calculate waste flows and a

residence-time model to determine post-costumer flows of the copper production

in North America.130

A different approach has been proposed by Levasseur et al. (2010), see also

Kendall et al. (2009); Kendall (2012) and Yang and Chen (2014) with time

dependent characterisation of global warming factors and the timing of fixed

time horizons, which applies in the LCIA. Levasseur et al. (2010), improve the

results of LCA “by addressing the inconsistency of temporal assessment” (Lev-135

asseur et al., 2010) and by including time dependent characterisation factor in

the LCI stage. The results of the study show that a chosen time horizon creates

inconsistency with time range, which the LCA covers. Nevertheless, using this

method for a case study of biofuels revealed differences in the results of a statical

approach and a DLCA that are significant enough to change the conclusion of140

the entire study.

In another recent study by Dyckhoff and Kasah (2014), the time-dependent

global warming impact using radiative forcing and a new method to define

time horizons was developed. They indicate that the accuracy of DLCA stud-

ies depends on chosen time horizons. Therefore, they develop instantaneous145

and cumulative time dominance criteria. This study was based on the work

of Levasseur at al. (2010), which has been, according to Dyckhoff and Kasah
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(2014), the most elaborated work within the DLCA field so far. But the same

time they criticise time horizons as “highly subjective assumptions” without

scientific foundations and in addition an “implicit weighting of emissions” takes150

place. To improve these factors the authors introduced their concept of time

dominance regarding the study of (Levasseur et al., 2010) (Dyckhoff and Kasah,

2014).

Bright et al. (2012) performed a study on climate impacts of bioenergy. They

consider “two dynamic issues, first the temporary changes to the terrestrial car-155

bon changes and second temporary changes to land surface albedo” Bright et al.

(2012) in the context of active land use management for bioenergy. Hellweg

et al. (2003) see LCA as a tool that treats past, presence and future emissions,

divided into equal sections and integrated over time, but Bright et al. (2012)

criticise the limitation of this method applied on biomass systems. They use the160

neglect of CO2 emissions from biomass conversion or combustion due to “the

carbon and climate neutrality principle”. According to the authors, this princi-

ple is acceptable for fast growing biomass, but is less feasible for slow growing

biomass (Bright et al., 2012). As the study of (Levasseur et al., 2010), Bright

et al. (2012) calculate GWP indices. In contrast to Levasseur’s approach,Bright165

et al. (2012) apply the carbon radiative forcing within the LCIA stage. Further-

more, they use Impulse Response Functions combined with the time distributed

emissions and removals of CO2 from biomass to calculate the change in atmo-

spheric CO2 concentrations. As (Levasseur et al., 2010), (Bright et al., 2012)

and Arbault et al. (2014) calculate Characterisation Factors (CFs) using Im-170

pact Assessment Models. The CFs used in their study are related to Human

Health, Natural Resources and Natural Environment. The authors point out

that CFs and LCIA indicators evolve “with regard to the usefulness of natural

resources for human purposes” Arbault et al. (2014). The incomplete involve-

ment of ecosystem services (ES) in the current LCIA application represents a175

notable limitation of LCA to several sectors, which are influenced by the ES.

This study uses integrated earth systems dynamic modelling to solve this issue.

Furthermore, a Global Unified Metamodel of the biosphere is selected and CFs

7



are calculated. Although the model indicates the possibility to retrieve CFs, a

simple conversion into LCIA calculations is not functional so far Arbault et al.180

(2014).

Another study calculating CFs in LCIA was undertaken by Seppälä et al.

(2006). The study developes new site-dependent characterisation factors for

emissions occuring during acidification and eutrophication in Europe. The cal-

culation of the CFs has been based on accumulated exceedance (AE). The cal-185

culation method was introduced by the United Nations Economic Commission

for Europe Convention on Longrange Transboundary Air pollution (UNECE,

2014). Seppälä et al. (2006) found that the CFs were independent of the reduc-

tion percentage that was normally used to calculate CFs. Because the errors

calculated for each CF turned out to be 0, the CFs were unable to describe ef-190

fects of small changes of most emissions included in LCA. Also their study shows

significant differences in CFs calculated for many countries in the EU Seppälä

et al. (2006).

Another important issue with Life Cycle Assessments is lack of spatial in-

formation. Spatial LCA can be applied in every stage of the life cycle. If it195

is applied in LCI usually GIS and spatial databases are used, while in LCI a

CF is developed (Nitschelma et al., 2015). Typically, to receive localised LCA

results, this is often performed at country scale, with little information where

emissions arise within the country. Also, localised CFs are used. The use of

those CFs is described in two methods, that were developed in the past two200

decades. The TRACI model was proposed by the U.S. Environmental Pro-

tection Agency, and includes acidification CFs for each U.S. state and for the

country as a whole (Bare et al., 2003). The other method developed is called

GLOBOX and includes around 250 countries and seas (Wegener Sleeswijk and

Heijungs, 2010). But so far no method was developed that regionalises LCI. Ear-205

lier attempts are based on using regional output percentages (ROP) to allocate

life cycle emissions to different regions (Hill et al., 2009; Tessum et al., 2014). In

his study Hill analyses the impacts of PM2.5 emissions of corn ethanol, gasoline

and cellulosic ethanol for human health. Depending on the source of land he
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found out that cellulosic ethanol can offer health benefits from PM2.5 reduc-210

tion. Tessum et al. (2014) uses temporally, spatially and chemically life cycle

emission inventories. They found out that using “corn ethanol, coal based or

‘grid average’ electricity increases [...] environmental health impacts by 80O”.

Kim et al. (2015) develop Regional Emission Information (REI) and linked

with the characterisation results in LCIA. They compare their results with stud-215

ies without REI and found out that not using regionalised information underes-

timated environmental impacts (Kim et al., 2015). They use exiting LCA cal-

culation methods such as ReCiPe and CFs and then include outside emissions

such as air emissions by using REI. Outside emissions are defined as emissions

that occur outside of the actual system boundary, but that still influence the220

environmental impact, such as emissions from a busy road next to a field of

wheat that is studied (Kim et al., 2015).

Gasol et al. (2011) combined LCA with Geographic Information System

(GIS) to present a method to determine an energy crop implementation strategy.

Therewith, a reduction of energy and CO2 is possible. They concluded that the225

combination of LCA and GIS is beneficial to obtain “environmental results from

energy and material flows based on territorial organisation” (Gasol et al., 2011).

Engelbrecht et al. (2013) study GHG mitigation in grain production in Aus-

tralia. They used Integrated Spatial Technologies (IST). Therefore, LCA, Re-

mote Sensing (RS) and GIS are interlinked with each other. IST consists of230

two stages using RS data from satellite images and aerial photographs as inputs

into GIS and the application of a stream linked LCA. LCI results are integrated

into a RS and GIS database to analyse the spatial distribution of agricultural

systems (Engelbrecht et al., 2013). The results show that using IST may result

in choosing another mitigation option than with using the a traditional LCA235

approach, but so far only includes carbon footprint modelling.

Humpenöder et al. (2013) use a model called AEZ-BLS to calculate the

effects on land use change on the carbon balance of 1st generation biofuels.

The agro-ecological zonde model (AEZ) includes spatial information, while the

general equilibrium model of world food economy (BLS) works on a regional240
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basis. The AEZ-BLS is the combined with the LCA approach of the EU Re-

newable Energy Directive. The results show a GHG emission saving from 1st

generation biofuels compared with fossil fuels of -2-13% in the most realistic

scenario (Humpenöder et al., 2013).

A spatialised territorial LCA (STLCA) method for agricultural territories245

was developed by Nitschelma et al. (2015). This method considers the spa-

tial variability of emissions and impacts within a territory and represents an

extension to conventional LCA studies. In comparison with other studies men-

tioned above, this studies aims to include the spatial approach in all life cycle

stages (Nitschelma et al., 2015).250

Roy et al. (2014) analyse terrestrial acidification at the global scale. They

used characterisation factors for atmospheric fate, sensitivity factor and effect

factors. Spatial variability was added by calculating 2◦x2.5◦ emission grids

worldwide for each pollutant (Roy et al., 2014).

3. Method255

The proposed DLCA framework consists of two main parts. In the first

part time-dependent LCI is calculated. These results provide the basis for the

second part spatial LCI calculation. Both approaches are explained in detail

below after describing the static LCI matrix calculation. LCI data flows are

extracted from Ecoinvent 3 database (Weidema et al., 2013). All calculations260

are performed using Matlab (Version 2015b) algorithms (Matlab, 2015).

During the LCI stage of a LCA all energy, material and economic in- and

output flows are identified and quantified. For the calculation these flows are

split into single processes. Each of these processes considers inputs from other

processes, which creates an interlinked system of all process flows. The processes265

are linear functions of their inputs and therefore, the system can be written in

matrix form (1) (see Table 1) (Heijungs, 1994; Suh and Huppes, 2005).

g = B × s = B × (I −A)−1 × f, (1)
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Table 1: LCI matrix calculation parameter

Symbol Name Dimension Definition

f final demand vector m vector of economic flows

A technology matrix m×m exchange between processes

B intervention matrix n×m exchange between environment

s scaling vector m vector of scaling factors

g inventory results n vector of environmental flows

I identity matrix m×m square matrix with ones on the

main diagonal, rest 0

where I is the identify matrix, A is the technology matrix and B is the envi-

ronmental intervention matrix. All process flows are defined in the columns of

matrix A, with each element in the columns representing inflows and outflows270

of commodities necessary for the process to happen. Every row in B defines

an elementary flow, describing the amounts released to or extracted from the

environment by the corresponding processes in the columns (Saurat and Rit-

thoff, 2013). g, s and f are the inventory, the scaling and final demand vectors,

respectively (see Table 1).275

3.1. Time-dependent LCI Model

The dynamic method integrated in the proposed framework in this study is

the Enhanced Structural Path Analysis developed by Beloin-Saint-Pierre (Beloin-

Saint-Pierre et al., 2013). This method uses relative temporal distributions

(see Figure 1a) to specify elementary and process flows of a system and the280

system network they create. With the specific information format the calcu-

lation of temporally descriptive LCI are possible (Beloin-Saint-Pierre et al.,

2013). Beloin-Saint-Pierre et al. (2014)) extends equation (1) to obtain a time-

dependent expression for the vector g of the temporally explicit LCI.

In a static LCI matrix equation (1), it is straightforward to obtain the in-

ventory vector g by matrix-matrix and matrix-vector products of environment
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matrix B, matrix (I−A)−1 of process flows and scenario vector f . However, ma-

trix product do not simply allow for temporal information of the process-related

distributions included in a dynamical LCI calculation. To retain temporal in-

formation, convolutions of the time-dependent process and environmental data

are calculated. A convolution induces an ”overlay” of two time-distributions to

produce a third distribution, see Figure 1b. Within the ESPA method discrete

time convolution is used and in this case the two distributions, one distribution

for A and one for B, are summed up to receive a third one Pinsonnault et al.

(2014).

It is not possible to obtain a matrix inverse (I−A)−1 without losing the tempo-

ral information in technology matrix A. A power series expansion is therefore

applied to obtain

(I −A)−1 =

∞∑
k=0

Ak. (2)

Equation (2) is only applicable if A has eigenvalues with absolute values less

than 1. For the application to data from realistic processes this may require a

scaling of A. Assuming a time-varying technology matrix, the power series (2)

is altered as a series of convolutions of A with itself:

(I −A)−1 = I +A+A ∗A+A ∗A ∗A+ . . . . (3)

Here, the ∗-symbol indicates the convolution operation which is considered as

component wise convolution, while the matrix-matrix multiplication rules apply

to the time-distribution entries of the matrices. Applying (3) to the inventory

equation (1) gives

g = B ∗ (I +A+A ∗A+A ∗A ∗A+ . . . ) ∗ f

= B ∗ f +B ∗A ∗ f +B ∗A ∗A ∗ f +B ∗A ∗A ∗A ∗ f + . . . . (4)

In computational implementations, the power series has to be truncated after285

a maximum number k ∈ N of convolutions of A. Typically this can be done

by setting k or via threshold as the maximum of the A ∗ · · · ∗A︸ ︷︷ ︸
k times

is decreasing

exponentially with k.
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(a) Examples of distributions as matrix

entries for the B and A matrices.

(b) Application of time-convolutions in

DLCA.

Figure 1: Examples distribution and use of convolutions.

3.2. Spatial Propagation Model

The result from the time-dependent LCI equation serves as input to the290

spatial propagation model. For the spatial propagation model a study site of

a particular size is designated as a raster R of grid cells. As initial condition

a time-dependent and localised inventory vector is chosen and the inventory

entries are propagated through time. Localised in this case means only emissions

are considered in the spatial propagation model that are attributed to the study295

site. This requires an intermediate step of mapping temporal varying LCI entries

to a location. The propagation model is based on two operators generated from

(a) geographical or atmospherical data, and (b) dynamical dispersion models.

Both operators may be individualised to the emission type, category or possibly

individual emissions and inventory impacts.300

Hence, topographic details, land use information, soil properties, as well as

data about water flows, characteristics of currents, ground water occurrence or

regional atmospheric flows are used to generate an impact parameter map MG

(see Figure 2). For a location (x, y) and an inventory entry/emission gi, the

application of the operators MG,i(x, y) quantifies the proportion of interaction305
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of the emission i (of a particular type or category) with the present geography

or atmospheric flows at (x, y). MG,i can be modelled as linear (matrix) or

nonlinear (functional) operation.

The dynamical dispersion models ND calculate the accumulated proportion

of emissions propagating from and between neighbouring cells (see Figure 3) in310

the raster. An emission i at cell (ξ, η) and time t with amount e(ξ, η, t) is then

dispersed as ND,i(e(ξ, η, t)) which gives the amount of emission i at time t+ 1

for all (neighbouring) cells within the raster. The considered dispersion models

can define velocity, reach and direction of propagation for any emission.

The accumulated emissions after one time step at location a (x, y) is then

obtained as the product of geographic/atmospheric model and dispersion model

summed over all “origin-cells” in the raster

e(x, y, t+ 1) =
∑
ξ,η∈R

MG,i(x, y)ND,i(e(ξ, η, t)). (5)

As initial emissions, the i-th inventory entry sequence (gi(ξ, η, 1), gi(ξ, η, 2), . . . ),

distributed in time and designated to the production grid cells (ξ, η) ∈ P, is

considered which allows iterative calculation of the emissions at location (x, y)

and time t+ 1 ≥ 2:

e(x, y, t+ 1)

=
∑
ξ,η∈P

MG,i(x, y)ND,i(gi(ξ, η, t)) +
∑

ξ,η∈R\P

MG,i(x, y)ND,i(e(ξ, η, t)). (6)

With the geographical or atmospheric data and resulting maps, the dynamic315

dispersion is directing the impact, for example, flow direction of a river for

emissions transport. The spatial propagation model may help to identify im-

pacts on, for example, land and seascape, water cycles, emissions and impact

on climate, weather conditions, and surface interactions.

While the temporal aspect of the method runs over several stages of the320

life cycle, the spatial aspect is very localised for the operation stages at the

study site. Therefore, a selection process identifying localised LCIs is applied.

Currently, we use an empirical approach identifying localised processes at the
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Figure 2: Example impact parameter map (red = high impact, blue = low impact).

Origin of emissions. 

Reach: Surrounding areas reached by 

emission in one time step; 

Proportion of emission dispersed to a 

grid cell depends on its proportion 

within the reach. 

Figure 3: Conceptual propagation model for spatial dispersion of impacts.
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study site to rule out ”donwstream and upstream” emissions.

4. Case study325

4.1. Data

In order to illustrate the proposed theoretical framework a case study on

wheat production is chosen. Information for the environmental and process ma-

trices used for the ESPA calculation can be found in the Ecoinvent database

3.1 (process dataset used: Wheat grain (GLO); market for; Alloc Def; U) Wei-330

dema et al. (2013). All processes in the A-matrix are assigned into seven main

activities:

• Agricultural machinery operations (integrated emissions as used in all

other activities)

• Fertiliser application335

• Harvesting

• Irrigation

• Pesticides application

• Sowing

• Tillage340

All activities are on field operations and upstream or downstream emissions

outside the field (such as production of fertilisers and pesticides) are not in-

cluded in this study. These activities spread over time and several activities

(such as irrigation, application of fertiliser) are repeated in possibly different

proportions within one wheat production cycle. One cycle of activities is shown345

in the bar chart 4 where the process distributions accumulate 100% over one

production cycle. For the example implementation the production cycle is re-

peated a number of times (in the presented calculations 5 times) with inactivity

of 4 intermediate time steps after each cycle. The temporal occurrence of these
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activities represent an empirical characterisation of process distributions and350

aim to demonstrate the methodology introduced in Section 3.

In the case of wheat production LCI calculation, matrix B includes a collection

of n = 332 types of emission during the wheat production cycle while matrix

A specifies m = 71 flows and exchanges between the sub-processes of the sys-

tem (Pinsonnault et al., 2014). The demand or scenario vector f collects the355

cumulated inputs for a specified functional unit of end product or service Mutel

and Hellweg (2009). Processes within the B-matrix were assigned to the same

seven main activities as the A-matrix in the columns, rows are divided into

the chemicals occurrence in air (e.g. CO2), soil (e.g. chromium) or water (e.g.

nitrogen in rivers or salts in ground water) or as a raw material. The chosen360

chemicals are representatives and only serve as examples to test the framework.

These include gas emissions to atmosphere, metal emissions to soil, acids to

flowing water and salt in ground water. One year is assumed to be the timeline

for a wheat production cycle, with each time step covers a two week period.

As mentioned above for this case study a example site in South-West Cornwall365

was chosen. The top soils in this area are freely draining slightly acid loamy

soils and freely draining slightly acid loamy soils over rock closer to the river

bed. This loamy soils have a low fertility, and water contaminations with nitrate

can be possible. Siltation and nutrient enrichments of streams from soil erosion

can occur as well (Cranfield Soil and AgriFood Institute, 2016). Cornwall has370

a temperate Oceanic climate (Köppen climate classification), with the mildest

and sunniest summers in the UK thanks to the southerly latitude and the in-

fluence of the Gulf Stream (MetOffice, 2000). Precipitation occurs during the

entire year with more rain through winter months. Cornwall is also the second

windiest location in the UK (MetOffice, 2015). Using ArcGIS we determined375

the topography data as well as water flows and ground water resources. Mas-

termaps with a scale of 1:50000 of tiles SW74NE, SW72NW was used (Edina

Digimap, 2015). Within GIS a 50× 50 grid cells with 50m× 50m measurement

was used. The information is then imported into grid cells to create an im-

pact parameter map. Within the case study three locations in the study area380
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Figure 4: Main activities of the A-matrix distributed over time, expressed as the proportion

of the overall activities, where each activity sums up to 100%, only one cycle shown

for the production of wheat are selected. Therefore, the origin coordinates are

identified for the field and time-varying emissions are calculated.

In the considered wheat production case study, the locations (ξ, η) represent

the area of an agricultural field, from where the environmental emissions are

released and dispersed. The above model may lead to a better understanding385

of emissions from application of fertilisers and pesticides, harvesting and other

processes in the life cycle of wheat production. With harvesting, direct emissions

diminish before a new growing season starts, but may have longer-term and

slower decreasing repercussions on the surrounding areas.

4.2. Results390

In this section we present a qualitative analysis of the spatio-temporal LCI

calculations for the considered case study of wheat production. First, the tem-

poral distributions using the ESPA methodology are obtained, see Figure ??,
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for the cumulative occurrence over a time horizon of 200 weeks of four example

inventory entries. The outputs of that temporal calculations are then used for395

the spatial dispersion model, obtaining the distribution of all inventory entries

in the study area at every time step. Figure 5 shows how salts in ground water

spread over time, the distribution is visualised at t = 20n+1, n = 1, . . . , 8. Salts

in ground water propagate from the location of deployment to the surrounding

areas. Emissions spread on land masses first before reaching the rivers from400

where they are spread into the sea. At a certain point the emissions start to

decrease, first at the deployment coordinates then at surrounding areas. Fig-

ure 6 shows the cumulative emissions relative to the time-distribution with out

spatial dispersal (compare 6 for all chemicals in the study area with CO2 on the

top left, salt in ground water in the top right, nitrogen in river at the bottom405

left and chromium in soil on the bottom right. A video showing the relative

cumulative emissions over time is available in online supporting material. Emis-

sion spread slower in soil, but soon follow the flow directions of rivers, sea and

groundwater, which confirms the expected outcome.

5. Discussion410

In this paper we introduced a new spatio-temporal framework using tem-

poral distributions and spatial dispersion models to obtain localised Life Cycle

emissions over time. The aim of the framework is to implement time and spa-

tial information into LCI. Therefore, we developed a spatial propagation model,

which runs after the temporally explicit LCI is produced using the existing415

ESPA method. We then tested the framework using a wheat production as an

example. The results show how emissions from an origin spread in soil, air,

groundwater and river and how those emissions accumulate over time. This

study highlights the accumulation of emissions during the operation stage of a

life cycle, and also informs about when emissions occur and spread. The out-420

come of the proposed method is influenced by the availability of data. While

performing a case study we have noticed that Ecoinvent or other LCI databases
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Figure 5: Emissions results for an example inventory entry at t = 20n + 1, n = 1, . . . , 8. The

graph shows relative concentrations taken at different time steps
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Figure 6: Emissions in time accumulated in study area as proportion of the overall temporal

emission distribution for four example inventory entries a) CO2 , b) Salt, c) Nitrogen and

Chromium
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are not sufficiently detailed to satisfy all the information spatial LCA as well as

temporal LCA require for comprehensive and realistic results. Therefore alter-

native ways for collecting data needs to be considered. Local data for example425

can be gathered by regional statistics or surveys. Downscaling of national data

is also an option if regional data could not be easily obtained. On the other

hand different strategies to fill data gaps are currently used: proxy data sets,

extrapolating data and streamlined LCA (Milà i Canals et al., 2011; Nemecek

et al., 2011; Roches et al., 2010). Further improvement should also include the430

integration of soil types and characteristics, more detailed current data and cli-

mate data to eliminate the deficiency of the proposed model. Another future

step is the mathematical optimisation of the LCI vector g in respect to the scal-

ing vector s. This optimisation step should result in the optimum temporal and

spatial allocation of the LCI vector and hence inform implementation time and435

localisation of processes within the life cycle. In conventional LCI calculations

the scenario vector has only one non zero input, the reference flow. The scenario

vector ensures the required performance of the studied system, for example the

reference flow could be 1000 kg of wheat. Studying the system over time though

allows us to spread the total amount of the reference flow into smaller sections440

over given time without changing the total amount. Therewith, the produc-

tion of the amount stated in the reference flow can be divided along the time

frame and for example production planning to meet emission thresholds can be

performed. In this study, the method is only applied to a part of the wheat

production life cycle, focusing on activities that happen at the wheat field. Our445

next step is to expand the application to cover the entire life cycle of wheat

production. The spatial propagation model will be used around the locations

of the production of raw material such as seed and fertilisers, along the trans-

port links and at other upstream and downstream processes produce a life cycle

emission map over time. A further step would be to try and integrate wheat pro-450

duction with the life cycle of other linked system such as livestock production.

Both steps will results in significantly improved understanding of environmental

impacts with spatially and temporally explicit life cycle emissions.
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6. Conclusion

This paper proposed a novel spatio-temporal LCI approach with two main455

parts in order to address the static nature of conventional LCA. In the first

part temporal distributions are used to represent when and how often system

processes occur. This information is used to calculate a time dependent LCI vec-

tor. In the second part, the time-dependent LCI vector in a spatial propagation

model to produce temporally and spatially explicit LCI. The method is then460

illustrated in a case study of wheat production in Cornwall, UK. The presented

results so far only include the agricultural operation stage of the wheat pro-

duction life cycle and all upstream (e.g., fertiliser production) and downstream

production (e.g., wheat transportation) processes are excluded. But the results

already show that it is possible to implement both spatial and temporal informa-465

tion in matrix-based LCI. As mentioned the results are not conclusive for wheat

production due to the availability of data. With improved LCI databases, the

method can be used to get more detailed calculations such as comparing win-

ter and spring wheat, also water flow data can be updated using time-varying

and up-to-date data. This could potentially transform the way LCA is cur-470

rently performed, i. e., in static and spatially-generic way. We believe this

framework will offer significantly improved understanding of life cycle environ-

mental impacts and better inform management of processes such as agricultural

production that have high spatial and temporal heterogeneity. Further work

is needed to fully demonstrate the framework over entire life cycles and much475

more detailed LCI databases as well as temporally and spatially explicit LCIA

methods are required to realise its full potential.
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