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Abstract 

There has been an increase in research activity recently regarding the visualisation of many-
objective populations. Two of the main drivers for this have been (i) to aid decision makers in 
comparing and selecting designs returned from a many-objective optimisation run, and (ii) to 
help in the selection of solutions in interactive optimisation. In both of these situations there is 
often a dynamic element – populations evolving over time change their relative relationships, 
and the quality comparison measure itself can be altered, redefining member relations. Here 
we illustrate how a number of existing visualisations from various domains may be applied to 
many-objective populations to aid the understanding of population relations using the d3 
package. d3 is inherently dynamic, and will automatically respond to any changes in the base 
document underpinning the visualisation, allowing the visualisation package to 'bolt-on' to any 
other program that can produce or update the underlying file.  

Keywords: Visualisation; Multi-objective optimisation 

1. Introduction  

Although evolutionary many-objective optimisation is a relatively young topic of research, 
only gaining a distinction from multi-objective optimisation in the early 2000s, many of the 
most popular data visualisation techniques used within it have a long history. The genesis of 
pairwise coordinate plots may be traced back to the 17th century work of Descartes, parallel 
coordinate plots were in use by at least the late 1800s (see e.g. Hewes and Gannett (1883)) 
and matrix heatmaps were in use by the 1950s (Sneath, 1957). Recent work has started 
developing approaches that are specifically tailored to visualising aspects of many-objective 
optimisation. These are typically concerned with conveying quality relationships between 
putative solutions derived from their D-dimensional objective space locations (such as Pareto-
dominance) via a planar representation (e.g. (Köppen and Yoshida, 2007; Fieldsend and 
Everson, 2013)), and the relationships between objective space and decision space (see e.g. 
(Pryke et al, 2007; Walker et al, 2013)). Methods which have been developed more broadly 
by the data visualisation community may also be applied to aspects of many-objective 
optimisation, for instance visualising the search path of a genetic algorithm (Raper, 2012).  

Here we limit ourselves to the consideration of approaches for visualising the putative 
solutions of a many-objective optimisation algorithm in objective space, both during and at 
the end of an optimisation run. We develop an open source JavaScript tool, which enables the 
dynamic visualisation of search populations, exploiting the recent d3 framework of Bostock et 
al. (2011), which has gained rapid popularity in a wide variety of data visualisation settings.  
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The tool allows both multiple exploratory visualisations of a single dataset, and dynamic 
regeneration of a visualisation based on user variation of the relationship measure, and in 
response to changes in the underlying document driving the visualisation (due to e.g. a 
population changing during an optimiser run). Currently seven distinct visualisation 
approaches are present in the toolkit, of which we provide examples of five here. 

Unfortunately, the dynamic element of the data visualisation is less easy to convey in a static 
medium such as this, we therefore concern ourselves principally here with a brief discussion 
of some of the different visualisations available, which will be made accessible on 
https://github.com/fieldsend, and the use of one relationship measure to drive the 
visualisation.  

2. Many-objective optimisation 

A general multi-objective optimisation problem seeks to simultaneously maximise/minimise 
D objectives, where each objective depends upon a vector x of K parameters or design 
variables.  

The parameters may also be subject to equality and inequality constraints that, for simplicity, 
we assume can be evaluated precisely. When faced with only a single objective an optimal 
solution is one that maximises/minimises the objective given the model constraints. However, 
when there is more than one objective under consideration, solutions may exist for which 
performance on one objective cannot be improved without reducing performance on at least 
one other. Such solutions are said to be Pareto optimal.  

2.1. Pareto optimality  

The notion of dominance may be used to make Pareto optimality clearer. Assuming, without 
loss of generality, that the goal is to minimise the objectives and there is no noise, a design 
vector is said to dominate another if it is equal or better on all criteria, and strictly better on at 
least one. A set of design vectors is said to be a mutually non-dominating set if no member of 
the set is dominated by any other member.  

A solution to the optimisation problem is thus Pareto optimal if it is not dominated by any 
other feasible solution. The non-dominated set of all Pareto optimal solutions is known as the 
Pareto set. 

Pareto dominance comparisons tend to drive the ranking and quality comparisons of solutions 
in multi-objective optimisers, however, when there are many objectives (typically this is 
deemed as being four or more), then the discriminatory ability of dominance breaks down. 
This is because increasingly designs are categorised as being mutually non-dominated (the 
proportion of objective space which is mutually non-dominated with a solution being 
1 − !

!!!!
). Because of this, a number of other quality measures have been proposed in the 

literature, which address the discriminatory shortcomings of Pareto dominance in higher 
dimensions. These include the favour relation (Dreschler et al., 2001), k-optimality (Di Pierro 
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et al., 2007), controlling dominance area of solutions (Sato et al., 2007), average ranking and 
sum of ratios (Bentley and Wakefield, 1997).  

We focus on the Pareto comparison measure in the visualisations here, but note that the other 
approaches can also be embedded, although due to their complexity not all are amenable to 
the real-time calculations required for dynamic visualisation. 

3. Visualisations 

Rather than visualise optimiser runs in the illustrations here, we use a running example using 
data provided by the UK government under the open data initiative, available at 
https://data.gov.uk. This makes the visualisations reproducible, and uses data that the general 
reader may already have an inherent understanding of. Specifically we use data on football 
banning orders from the 2014-15 season, according to offences laid out in the Football 
Spectators Act 1989. There are 11 different offences for which statistics are available per 
club, across a range of leagues. Here we restrict the view to just the Premier League. The 
criteria are counts of banning orders in the season which fall under each of the following 
categories: violent disorder; public disorder; throwing missiles; racist and indecent chanting; 
pitch incursion; alcohol offences; ticket touting; possession of an offensive weapon; 
possession of pyrotechnics; breach of banning order; offences against the property. From a 
Pareto dominance point of view, we wish to minimise the number of individuals banned 
under each of these categories for each club. A club is therefore said to dominate another if it 
has the same or fewer banned individuals compared to another club on all categories (and 
strictly fewer on at least one). 

3.1. Parallel coordinate plots 

Parallel coordinate plots have been used extensively by both the multi-objective optimisation 
community and the wider research community (see e.g. Wegman (1990) for an early 
discussion of the technique). Figure 1 illustrates a parallel coordinate plot of the running 
example used in this paper. Although the visualisation is ‘lossless’ (there is no compression of 
the objective values), it can rapidly become quite cluttered (there are only 20 football teams in 
this example; in many datasets there are considerably more population elements to plot).  

Each member is illustrated by a sequence of line segments connecting the element name (in 
this case on the left hand side), progressively through the values corresponding to each 
criteria (the coordinate plumb lines arranged left to right). The ordering of the criteria itself in 
such a plot can be an optimisation problem, however here we order the coordinates according 
to the original data source. As all criteria are to be minimised the lower values are at the 
bottom, and therefore a club with a sequence of connected line segments which are lower is 
better. Parallel coordinate plots do have the advantage that the raw data can be extracted fairly 
accurately directly from the visualisation – Figure 2 for instance shows the values 
corresponding to Arsenal football club, and reading off the values of the different coordinate 
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axis gives a good indication of the underlying data. This property is not evident in many 
alternative plotting approaches.  

 

Figure 1 Parallel coordinate plot of the 11-dimensional football banning order data set. All team criteria 
values highlighted. 

 

Figure 2 Parallel coordinate plot with a single individual highlighted. 
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3.2. Pairwise scatterplots 

Pairwise scatterplots are another lossless representation, and can aid in detecting correlations 
between pairs, however they rapidly become unwieldy as the number of objectives increases, 
as amply illustrated in Figure 3. 

 

Figure 3 Pairwise scatterplots of the 11 football banning order criteria. 

3.3. Hive plots 

Hive plots (Krzywinski et al., 2011) are a relatively new visualisation technique, which 
attempts to bring order to network connectivity graphs. As far as the author is aware they 
have not been used previously to examine multi-objective data. A variant for displaying a 
multi/many-objective population is shown in Figure 4. Individuals (football clubs in this 
illustration) are represented as nodes, with edges between nodes representing domination 
relationships. The top vertical line of nodes is the non-dominated subset of the data (shell 0 
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when non-dominated sorting is used (Deb et al., 2001)). The members of the final shell are 
shown in the bottom left. All edges connecting to the top vertical line of nodes are therefore 
outgoing domination links, as they are dominating the other nodes they connect to. 
Conversely, all edges connecting to the final shell member are incoming domination links (as 
by definition the final shell extracted from non-dominated sorting contains elements which do 
not dominate any other in the population). The edges are coloured according to the 
dominating node (with each shell being coloured differently). This allows rapid determination 
regarding a link’s dominating/dominated relationship to connecting nodes. The remaining 
intermediate shells are denoted in the lower right two lines of nodes. These lines are 
duplicated. The top line of nodes shows incoming domination links from shell 0, and 
domination links between these intermediate shells are shown via edges between these two 
duplicate lines. The lower line of nodes is connected to the final shell, showing the outgoing 
domination links to this last shell. 

 

 

Figure 4 Hive plot illustration of the football banning order data. The blue nodes at the top are shell 0 
members (the non-dominated set). The red node at the lower left is the final non-dominated shell  (the 
worst performing shell), and the members of the two intermediate middle shells (coloured orange and 

green) are duplicated on the two lower right lines of nodes. Domination links are coloured according to 
the shell membership of the dominator.  
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3.4. Circle packing 

Circle packing can usefully illustrate the number of solutions lying behind (dominated) by 
different elements of a population, and facilitate the dynamic ‘drilling down’ into data. Figure 
5 illustrates the use of the circle packing plot for many-objective data. At the top level the 
shell 0 individuals are shown, with the number they dominate indicated by the size of the blue 
container they label. Note the two members in the centre of the plot which are in shell 0 but 
do not dominate any others (hence they are the smallest circles, coloured white, and are not 
containers). The same property of these two shell 0 individuals can be identified in Figure 4, 
where two shell 0 nodes are not linked to any others. The other subplots in Figure 5 show the 
progressive selection and expansion of the region behind particular individuals. 

 

 

Figure 5 Circle packing illustration. Top-left: top-level view showing the seven members of 
shell 0, and the different groups of members that lie under (are dominated) by them. Top-right: 

drilling into the region dominated by Southampton. Bottom: drilling down further, into the 
region dominated by Burnley. 
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As with hive plots, the author is not aware of the use of circle packing visualisation within the 
multi-objective optimisation community (however, the related treemap has been used, e.g. 
Walker (2015)).  

3.5. Domination wheel 

The dependency wheel plot links items that are dependent on each other. The elements circle 
the outside and links plotted as lines or ribbons between elements that pass by the centre of 
the plot. It can readily be used to denote domination (dominating and dominated) 
relationships between individuals (although we are not aware of this graph being used in such 
a way previously). In the context of multi/many-objective population visualisation, we refer 
to such a graph as a domination wheel. An example is shown in Figure 6 on the running 
example.  

 

Figure 6 Domination wheel. Links between labelled clubs indicate there is a domination relationship. 
Clubs have been grouped by shell. 
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Figure 7 shows two different solutions (football clubs) being selected in each of the subplots. 
Red links denote connections to dominating clubs, and green links to dominated clubs. 
Unconnected clubs are therefore mutually non-dominating with the selected individual. Note 
the number of links and prevalence of a particular colour quickly gives a visual indication of 
the overall quality of a solution with respect to the other set members. 

 

Figure 7 Two views of the domination wheel with different individuals selected. Left: A shell 0 
solution is selected (Hull City), all links are green as only dominated solutions are connected to it. 

Right: A shell 1 solution is selected (Tottenham Hotspur). Red lines connect to the shell 0 members 
that dominate it, and green lines connect to the members of shell 2 and 3 it dominates.  

 

4. Conclusion 

A number of different visualisations of many-objective population data have been illustrated 
here, some which are already widely used by the multi- and many-objective optimisation 
community, but also a number which hitherto have had limited or no exposure in this domain. 
Many of them present useful structural information about the relationships between members 
of the population, and, although the dynamic nature of the visualisations is difficult to convey 
in this static medium, the visualisations are ideally suited to the dynamic optimisation 
environment (subject to the complexity of the relationship measure used). 
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