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Abstract  

This paper presents a systematic study of the helical auxetic yarn (HAY) via careful in-house 

fabrication and characterisation of a wide range of polymeric fibres and yarns. It provides a 

better understanding of the auxetic behavior of the HAY in order to tailor their properties for 

specific applications. The study focused on three parameters: component moduli, the 

core/wrap diameter ratio and the initial wrap angle. The results show that a larger difference 

in component moduli, a higher core/wrap diameter ratio and a lower initial wrap angle can 

produce a larger maximum negative Poisson’s ratio value and thereby a better auxetic 

performance for HAYs. All three parameters could be carefully utilised when in combination 

to achieve the required auxetic behaviour of HAYs. Moreover, the instantaneous true 

Poisson’s ratio analysis accurately presents the instantaneous behaviour of highly strain 

dependent HAYs.  
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1. Introduction  

In comparison to convectional materials, auxetic materials exhibit a negative Poisson’s ratio, 

they expand laterally when stretched and contract laterally when compressed [1, 2]. Auxetic 

materials are of interest because of their capability to enhance mechanical properties such as 

shear modulus, indentation resistance, and fracture toughness [3]. As a consequence, they 

have potential in many practical applications such as impact absorbing foams, fasteners, 

composites, auxetic textiles for military use, sandwich panels for aircraft, biomedical and 

nanotechnology applications [3-8].   

The helical auxetic yarn (HAY) [9] is a novel structure comprised of two components: an 

elastic core and a stiff wrap in the form of a helically wound structure, see Fig. 1. When a 

tensile load is applied the yarn becomes effectively wider, as the wrap straightens out and 

Nomenclature                  

 

εx engineering longitudinal strain 

εy engineering transverse strain 

𝜀!!"#  instantaneous true longitudinal strain  

𝜀!!"#  instantaneous true transverse strain 

ν Poisson’s ratio 

νxy engineering Poisson’s ratio  

𝜈!"!"#  instantaneous true Poisson’s ratio  

θ initial wrap angle (deg) 

λ cyclic pitch of wrap fibre (m) 
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displaces the core, causing a lateral expansion of the core, and thereby exhibiting an auxetic 

effect. This type of structure has been considered for several applications, such as healthcare 

[10], body armour [9], blast curtains, and filtration [11]. According to previous studies [12-

15], the auxetic behaviour of the HAY can be carefully controlled by selecting fibre 

diameters, component modulus, the initial geometry and also the applied strain. However, to 

date, the manufacture and characterisation of the HAY was limited to a narrow range of 

candidate core fibres, which did not enable the maximum advantage of the auxetic behavior 

effect. Hence, only a narrow diameter range has been investigated in the previous studies [12-

17]. This paper describes the expansion, optimisation and tailoring of the utilisation of the 

HAY through careful in-house fabrication and characterisation of a wide range of polymeric 

fibres and yarns. We focus here on the variation in component modulus, the core/wrap 

diameter ratio and the initial wrap angle on the auxetic behaviour of the HAY. 

2. Methods  

Extrusion was employed to fabricate cores of varying diameters. Elastollan® Thermoplastic 

polyurethane (TPU) - CA85A granules (polyester-based TPU) were purchased from BASF to 

fabricate monofilament core fibre. Monofilament core fibres with various diameters were 

fabricated using a Rondol (www.rondol.com) 18mm diameter bench top single screw 

extruder (model-Linear 18). Ultra-high-molecular-weight polyethylene (UHMWPE) fibre and 

stainless steel wire utilised as the wrap fibres due to their high strength and modulus, were 

sourced from Monofil Technik. Accurate diameters of core and wrap fibres were measured 

by optical stereo microscope, see Table 1. Surface morphology of failed HAYs were 

characterised by Dino-Lite Pro (HR AD7013MZT) digital microscope and scanning electron 

microscope (SEM) (Hitachi S-3200N). 
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Helical auxetic yarns were fabricated using a bespoke spinner, which was developed and 

described in the previous study [13]. Typical properties for fibres and HAYs are presented in 

Table 1. Three types of monofilament core fibres and two types of wraps were utilised to 

manufacture HAYs. The wrap angle was only varied while using the largest core fibre to 

fabricate HAYs.  

Tensile measurements of monofilament core, wrap fibres and HAYs were performed using 

previous described methods, and engineering longitudinal strain measurements of 

monofilament core fibres and HAYs were also computed using a previous described image 

analysis method [13].  Engineering transversal strain measurements of monofilament fibres 

and HAYs were carried out automatically with the assistance of image processing 

implemented in MatLab R2011b. For each image, the sample object (the ensemble of the core 

and wrap) is identified via Sobel edge detection [18] (which creates an image with an 

emphasis of edges and transitions), followed by morphological operations (dilate, fill and 

erode). This identification gives a binary image; one colour for the object and the other for 

the background. The upper and lower boundary curves of the resulting binary image are 

smoothed using a moving average filter. Local peaks of the upper smoothed boundary, and 

troughs of the lower smoothed boundary are then identified. To measure the time dependent 

transversal strain, a pair of local peaks and troughs is chosen at the first image to be that in 

the oscillation cycle on the wrap near the right end of the HAY. The transversal strain is then 

calculated as the absolute difference between that local peak and trough in the transverse 

direction. For the subsequent transversal strain measurements, a series of pairs of local peaks 

and troughs is determined in such a way that the pair in the current image is closest to that in 

its previous image along the pulling direction, except at a critical time point where the pair is 

updated to be on the core near its previous position. Thus pairs of peaks and troughs before 
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the critical time are on the wrap, while pairs after the critical time are on the core. This image 

processing gives a series of transversal strains from a series of images automatically. 

Finally, the engineering Poisson’s ratio for all samples was calculated using measured 

engineering strains εy and εx. 

𝜈!" = − !!
!!

                                                                                                                              (1) 

However, the Poisson’s ratio is a measure of instantaneous behaviour and it is not possible to 

accurately represent the instantaneous behaviour of a highly nonlinear material by using the 

ratio of engineering stains [19]. Therefore, in this study the instantaneous true Poisson’s ratio 

was calculated by taking local tangents from true strain-true strain graphs. The procedure for 

computing the instantaneous true Poisson’s ratio of the HAY is described in detail in a 

previous study [20] . 

𝜈!"!"# = − !!!"#

!!!"#
                                                                                                                           (2) 

3. Results and discussion 

The Young’s moduli of samples A to E were calculated using the small strain region (0.05-

0.25% [21]), see Table 1. All of the HAYs manufactured and tested in this work failed due to 

failure of the wrap fibre. Surface morphology of failed HAYs is shown in Fig. 2. Fig. 2a-d 

shows the core indented by the UHMWPE wrap fibre after the HAY was tested with large 

strain deformations. A more pronounced core indentation effect is observed when the stiffer 

stainless steel wrap is employed, see Fig. 2e-g. The SEM images of sample K and O provide 

more details of the core indentation effect as shown in Fig. 3. As proposed in a previous 

study [15], the core indentation effect can cause a reduction in the negative Poisson’s ratio, 



6 
 

by reducing the lateral displacement of the core and thereby a decrease in the auxetic 

performance of the HAY.  

Engineering stress-strain curves for HAYs with various core/wrap diameter ratios and initial 

wrap angles are shown in Fig. 4. Three yarn samples were tested for each combination, and 

the Young’s modulus of all HAYs was calculated using these stress-strain curves. The 

variations in the stress-strain curve for HAYs are mainly due to sample preparation and 

experimental errors. Fig. 4a and b indicate that the HAY with a smaller core/wrap diameter 

ratio is shown to have a higher tensile strength. Variation in the initial wrap angle shows less 

impact on the tensile strength of the HAY compared to the core/wrap diameter ratio, however 

it has a significant impact on the elongation of the HAY, see Fig. 4c and d. Table 1 indicates 

that the tensile strength of UHMWPE wrap is larger than that of stainless steel wrap, and this 

leads to HAYs with UHMWPE wrap having a higher tensile strength than HAYs with 

stainless steel wrap as shown in Fig. 4b and c. Fig. 4e shows the effect of wrap material on 

the energy absorption of the HAY and it indicates that the HAY with stainless steel wrap 

(sample L) is able to absorb more energy than the HAY with UHMWPE wrap (sample F). 

Fig. 4f demonstrates that sample O with a higher initial wrap angle absorbs more energy. The 

variation of the core/wrap diameter ratio on the energy absorption of the HAY is presented in 

Fig. 4g and it indicates that the HAY with a lower core/wrap diameter ratio (sample F) is able 

to absorb more energy. It is also interesting to note that multifilament wrap fibre is able to 

spread the load during the tensile test, and cause less core indentation effect to the HAY in 

comparison with stainless steel wrap, see Fig. 2 and 3.     

Figure 5 shows instantaneous true Poisson’s ratio analysis of the HAY with TPU core and 

stainless steel wrap. The instantaneous true ν of two monofilament TPU core fibres shows a 

computed value in the range of 0-2.5 over a strain of 0.35. As shown in Fig. 5a, the 

instantaneous true ν of the HAY with 1302.1 µm core (sample M) has a rapid decrease at 
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very low strains of 0.015. However, the instantaneous true ν of the HAY with 394.5 µm core 

(sample L) has a sharp increase at the beginning followed by a rapid decrease until it reaches 

the maximum negative value at strains of 0.1. A sharp increase in 𝜈!"!"# at low strains is mainly 

due to the internal helix diameter of the wrap fibre conforming to the unstrained diameter of 

the core and hence a rapid decrease in the net width of the yarn [13]. A sharp increase in 𝜈!"!"# 

does not appear for sample M, due to early activation of the auxetic effect. When computed 

𝜈!"!"# of HAYs reaches its maximum negative value, it starts to increase gradually and 

approaching zero and remains negative until the failure of the wrap. It is also interesting to 

note that the activation of true auxetic behaviour for HAY with larger core/wrap diameter 

ratio is much earlier than the HAY with smaller core/wrap diameter ratio. In addition, the 

instantaneous true ν of the HAY with larger core/wrap diameter ratio reaches its maximum 

negative value is also much earlier than the HAY with smaller core/wrap diameter ratio, and 

the maximum negative 𝜈!"!"# is also higher (-14.38 vs -12.21), resulting in a better auxetic 

performance. Rapid activation of true auxetic behaviour of the HAY could be a great 

advantage in certain applications.  

Fig. 5b shows the variation of the instantaneous true ν as a function of strain for HAYs with 

the same core/warp diameter ratio and various initial wrap angles. It indicates that the HAY 

with lower initial wrap angle has an earlier activation and a better auxetic behaviour. This 

aligns well with previous studies [13-15, 17] when only the engineering ν was considered. 

Sample N with a 20o initial wrap angle presents an initial positive increase in 𝜈!"!"# followed 

by a sharp decrease to its maximum negative value at a strain of 0.04. The sharp decrease of 

𝜈!"!"# for sample N at a strain of 0.04 is mainly caused by a sudden change in the net width of 

the HAY from decreasing to increasing, resulting a lateral expansion of the HAY. Similar 
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phenomena have been observed for some HAYs in the previous study and it has been well 

discussed in detail using original dimension data [20].   

According to the previous study [13], variation in core/wrap diameter ratio showed less 

impact on the auxetic performance of a HAY. However, the previous study was limited in 

choices of fibres, only the wrap fibre was varied. In this work, monofilament stainless steel 

wrap has been replaced by multifilament UHMWPE wrap and three TPU core fibres of 

diameters 394.5µm, 683.6µm, and 1302.1µm were employed to fabricate HAYs. The 

instantaneous true ν of these HAYs is shown in Fig. 6. The instantaneous true Poisson’s ratio 

curve of HAYs with 683.6µm (sample G) and 1302.1µm (sample H) TPU core present very 

similar trends, see Fig. 6a. Both HAYs trigger auxetic behaviour almost at the same time, at a 

strain of 0.04 however, the HAY with 1302.1µm TPU core has a larger maximum negative  

𝜈!"!"# . As expected, the HAY with 394.5µm TPU core (sample F) has a late activation of the 

auxetic effect compared to other two HAYs and it has the smallest maximum negative 𝜈!"!"# in 

this group. Once again, these phenomena demonstrate that a higher core/wrap diameter ratio 

provides a better auxetic performance of a HAY. Fig. 6b shows the variation of the 

instantaneous true ν as a function of strain with the same TPU core and UHMWPE wrap and 

various initial wrap angles. All of the HAYs have the initial positive 𝜈!"!"# versus strain 

followed by decreasing to negative value, and then remain negative, and finally approaching 

zero until the failure of the wrap. It shows that variation in the initial wrap angle has a great 

impact on the auxetic performance of the HAY. These results are demonstrated that by Figs. 

5b and 6b.  

Variations in component modulus and core/warp diameter ratio on the auxetic performance of 

HAYs are presented in Fig. 7. It demonstrates that HAYs could be tailored using these two 

parameters to provide significantly large maximum negative Poisson’s ratio. 



9 
 

Figure 8 compares the instantaneous true and engineering ν for HAYs. The Poisson’s analysis 

for the HAY with UHMWPE wrap and the smallest core/wrap diameter ratio (sample F) is 

shown in Fig. 8a, the engineering ν remains positive until the failure of the wrap; however, 

the instantaneous true ν approaches the zero-crossing at a strain of 0.075 and remains 

negative until the failure of the wrap. The results for the HAY with stainless steel wrap and 

the smallest core/wrap diameter ratio (sample L) is presented in Fig. 8d, the engineering ν 

becomes negative at a strain of 0.08 and remains negative until the failure of the wrap while 

the instantaneous true ν crosses the zero line at a strain of 0.06 and remains negative until the 

failure of the wrap. HAYs with a lower initial wrap angle (samples H and M) trigger the 

auxetic effect at lower strains, and a higher wrap angle (sample K) enables the auxetic effect 

at higher strains in both cases of engineering and instantaneous true ν, see Fig. 8b, c and e. 

Overall, the instantaneous true and engineering ν both have an initial positive ν, then the 

instantaneous true ν becomes negative while the engineering ν remains positive. Finally they 

both remain negative until the failure of the wrap. The initial positive engineering ν of HAYs 

is caused by the net width of the yarn in the first part of strain ranges is smaller than the 

starting net width of the yarn. At the engineering activation strain for auxetic effect the net 

width of the yarn becomes greater than the starting net width of the yarn and then there is a 

zero-crossing of the engineering ν [12, 13]. The initial positive instantaneous true ν is 

attributed to the net width of the yarn in the first part of strain ranges decreases. At the true 

activation strain for auxetic behaviour the net width of the yarn starts to increase so that the 

instantaneous true ν becomes negative [20].    

The initial wrap angle is a significant parameter that has been employed to tailor the 

Poisson’s ratio of the HAY. Fig. 9 shows the maximum negative instantaneous true and 

engineering ν as a function of the initial wrap angle. TPU core fibre with 1302.1µm diameter 

was employed for all the HAYs in Fig. 9. Both instantaneous true and engineering maximum 



10 
 

negative ν become less negative with an increase of the initial wrap angle, and HAYs with 

stainless steel wrap demonstrate a better auxetic performance than that of HAYs with 

UHMWPE wrap when a lower initial wrap angle is employed. The engineering maximum 

negative ν of the HAY with stainless steel wrap and a 10o wrap angle shows a large error bar. 

This behaviour may be attributed to the poor conformance between the core and wrap fibre.  

4. Conclusions  

This paper presents a systematic study of HAYs in terms of their fabrication, characterisation 

and mechanical properties. This work is the first study presenting a comprehensive auxetic 

performance analysis of a wide range of core/wrap geometries and properties regarding the 

instantaneous true and engineering Poisson’s ratio of HAYs, and it is also the first use of a 

stiff stainless steel wire as the wrap.	The instantaneous true Poisson’s ratio analysis should 

always be carried out as the engineering Poisson’s ratio is misleading in practice. The auxetic 

performance of HAYs becomes more observable with an instantaneous true Poisson’s ratio 

analysis. Three significant parameters were identified and selected to tailor the auxetic effect: 

the core/wrap diameter ratio, the initial wrap angle and component moduli. It was found that 

a larger difference in component moduli, a higher core/wrap diameter ratio and a lower initial 

wrap angle led to an earlier and better auxetic behaviour, and these parameters should be 

carefully balanced to tailor the auxetic behaviour of HAYs for a wide range of potential 

applications.   
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  a 

 

  b 

 

Fig. 1.  Illustration of a HAY comprising a core and a helically wound wrap at initial angle θ 

: (a) HAY at zero strain and (b) HAY at maximum strain (after [12]). 
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Fig. 2. Surface morphology of failed HAYs obtained by digital microscope: (a) sample H; (b) 

sample I; (c) sample J; (d) sample K; (e) sample M; (f) sample N; (g) sample O. 
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Fig. 3. Surface morphology of failed HAYs obtained by SEM: (a) and (b) sample K; (c) and 

(d) sample O. 
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Fig. 4. Stress-strain curve of: (a) sample L; (b) sample M; (c) sample H; (d) sample K; (e) 

samples F and L; (f) samples M and O; (g) samples F and H.  
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Fig. 5. Instantaneous true Poisson’s ratio analysis of HAY with TPU core and stainless steel 

wrap: (a) various core to wrap diameter ratios; (b) various initial wrap angles. 
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Fig. 6. Instantaneous true Poisson’s ratio analysis of HAY with TPU core and UHMWPE 

wrap: (a) various core to wrap diameter ratios; (b) various initial wrap angles. 
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Fig. 7.  Comparison of instantaneous true Poisson’s ratio analysis between samples.  
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Fig. 8. Comparison of engineering and instantaneous true Poisson’s ratio analysis: (a) sample 

F; (b) sample H; (c) sample K; (d) sample L; (e) sample M. 
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Fig. 9. Maximum negative instantaneous true (a) and engineering (b) Poisson’s ratio of 

HAYs as a function of the initial wrap angle. 
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Table 1. Typical properties for fibres and HAYs.  

Sample  Type  TPU 

core 

(µm) 

UHMWPE 

wrap 

(µm) (+/- 

27µm) 

Stainless 

steel wrap 

(µm) (+/- 

0.3µm) 

Initial 

wrap 

angle 

(o) 

Young’s 

modulus 

(MPa) 

Tensile 

strength 

(MPa) 

A Fibre 394.5 + 

23.8 

- - - 12.5 + 2.2 - 

B Fibre 683.6 + 

30.5 

- - - 14.7 + 3.6 - 

C Fibre 1302.1 + 

23.4 

- - - 14.8 + 1.4  

D Fibre  - 370 - - 23,000 + 

3,000 

4,300 + 

160 

E Wire  - - 139.8 - 43,000 + 

1,700 

3,600 + 

100 

F Helical 

auxetic 

yarn 

394.5 + 

23.8 

370 - 12.8 + 

1.8 

- - 

G Helical 

auxetic 

yarn 

683.6 + 

30.5 

370 - 12.4 + 

1.4 

- - 

H Helical 

auxetic 

yarn 

1302.1 + 

23.4 

370 - 12.5 + 

1.5 

- - 

I Helical 

auxetic 

yarn 

1302.1 + 

23.4 

370 - 20.6 + 

1.2 

- - 

J Helical 

auxetic 

yarn 

1302.1 + 

23.4 

370 - 30.9 + 

1.4 

- - 

K Helical 

auxetic 

yarn 

1302.1 + 

23.4 

370 - 40.7 + 

1.9 

- - 

L Helical 

auxetic 

394.5 + 

23.8 

- 139.8 13.0 + 

0.4 

- - 
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yarn 

M Helical 

auxetic 

yarn 

1302.1 + 

23.4 

- 139.8 10.9 + 

1.5 

- - 

N Helical 

auxetic 

yarn 

1302.1 + 

23.4 

- 139.8 19.8 + 

1.1 

- - 

O Helical 

auxetic 

yarn 

1302.1 + 

23.4 

- 139.8 31.4 + 

1.5 

- - 

 

 

 

 


