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Abstract
Accurate and on-demand animal population counts are the holy grail for wildlife conserva-

tion organizations throughout the world because they enable fast and responsive adaptive

management policies. While the collection of image data from camera traps, satellites, and

manned or unmanned aircraft has advanced significantly, the detection and identification of

animals within images remains a major bottleneck since counting is primarily conducted by

dedicated enumerators or citizen scientists. Recent developments in the field of computer

vision suggest a potential resolution to this issue through the use of rotation-invariant object

descriptors combined with machine learning algorithms. Here we implement an algorithm to

detect and count wildebeest from aerial images collected in the Serengeti National Park in

2009 as part of the biennial wildebeest count. We find that the per image error rates are

greater than, but comparable to, two separate human counts. For the total count, the algo-

rithm is more accurate than both manual counts, suggesting that human counters have a

tendency to systematically over or under count images. While the accuracy of the algorithm

is not yet at an acceptable level for fully automatic counts, our results show this method is a

promising avenue for further research and we highlight specific areas where future research

should focus in order to develop fast and accurate enumeration of aerial count data. If com-

bined with a bespoke image collection protocol, this approach may yield a fully automated

wildebeest count in the near future.
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Introduction
Aerial surveys, in which the abundance of a population is estimated by flying transects over its
habitat and counting the number of animals within a given sampling strip, are an essential tool
for assessing wildlife population numbers [1, 2]. Many species are monitored in this way,
including birds [3–5], land mammals [6–9], and aquatic fauna [10, 11]. While in-air counts are
still used (i.e. animals are enumerated as they are encountered by observers), a common
approach, especially with aggregated species living in high densities, is to employ aerial photog-
raphy and then later count animals within images. The second stage of this process is fre-
quently a labour-intensive procedure [12] that requires highly-skilled counters.

Automating the process of counting animals in images would therefore relieve a significant
burden on governmental and non-governmental conservation organizations. Repeated mea-
sures of the population size over time allows managers to not only develop accurate estimates
of the true population size, but it also enables the estimation of critical parameters about the
population such as rates of recruitment, mortality, immigration and emmigration. These diag-
nostic parameters provide an early warning indicator of a population’s health and are core met-
rics of any adaptive management system. Therefore, increasing the accuracy and the
processing speed of a population count enables managers to access critical data and implement
preemptive management strategies at an early stage, rather than waiting months for the results
to be counted. Furthermore, an automated counting system could increase the frequency
between consecutive population counts and thereby increase the temporal resolution of trends.

Achieving automated animal counts has been the subject of extensive research [13–17]. This
research forms part of the rapidly evolving field of machine learning and computer vision [18].
Applications of these techniques are diverse and recent advances include the accurate detection
of faces [19], facial expressions [20], pedestrians [21], and handwritten text [22]. In the context
of ecology and conservation, machine learning has been deployed to classify species based on
vocalisations [23], to identify behavioural states [24], and to track and identify moving animals
[25]. However the most significant application has been in the automation of animal census
methods, either through direct enumeration of animals [13, 14], or through computer-aided
mark recapture methods based on automatic identification of individuals [26–28].

In this work, we evaluate the performance of a recently proposed method for the classifica-
tion of objects [29]. The method is based on the popular histogram of oriented gradients tech-
nique [21] but has the distinct advantage of extracting only rotationally invariant features; thus
making it suitable for aerial survey images in which animals may be oriented in any direction.
We apply the method to the complete set of survey images taken during the 2009 Serengeti
National Park wildebeest count. The wildebeest count is performed every 2 to 3 years and
involves flying transects at an altitude of 350–400ft above ground. The aircraft travels at a
speed of 120–180kph (subject to wind speed and direction), with images taken every 10 sec-
onds from a camera mounted through the floor of the aircraft [30]. The result is approximately
2000 images that take 3 weeks for a single individual to count. To test whether the method pro-
posed by [29] is able to automate the counting of wildebeest we implemented the algorithm,
automatically counted the 2009 images, then compared the performance of the method to the
manual totals. By testing the method on this dataset we are able to comprehensively evaluate
its performance in an applied setting on a task of genuine ecological importance.
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Materials and Methods

Rotation-invariant image classifiers
For completeness we include here a brief description of the method employed to extract invari-
ant features from images. This is based on [29] and we refer interested parties to that work for
a more complete description of their method.

The histogram of oriented gradients (HOG) technique [21] is a popular method that uses
the distribution of gradients within regions of images to classify objects. Liu et al. [29] modified
this approach so that instead of using a discrete grid, HOG cells are treated as continuous func-
tions that may be approximated using Fourier series. The advantage of this approach is that the
extracted features of the image are constant even if the underlying object within the image
rotates.

As in [29], to process an image we first construct a matrix of gradients in complex form
from the grayscale image I using a finite-difference scheme

G ¼ @

@x
þ i

@

@y

� �
I: ð1Þ

Hence, each element of G denotes the gradient at the corresponding image pixel in the form
Δx + iΔy. In polar coordinates this may be written as reiθ. If we consider each element of G as
an individual cell [21] then the distribution of gradients is effectively a Dirac delta function,
centred at θ,

Hð�Þ ¼ rdðy� �Þ: ð2Þ

Performing a Fourier series expansion of a Dirac delta function leads to

Hð�Þ ¼
X1
m¼�1

Fme
�2pim� ¼

X1
m¼�1

re2pimðy��Þ ð3Þ

Truncating this series at some maximum mode means we are left with a sequence of complex
valued coefficients which represent the Fourier transform of the image gradient. The gradient
at each pixel is therefore encoded by a sequence of Fourier coefficients and the full transformed
image is stored in a 3-dimensional complex array, representing x and y coordinates and the
modes of the Fourier transform. We denote the 2-d array of modem coefficients as Fm.

Next we introduce the Fourier basis functions Uj, k shown in Fig 1. By performing a convo-
lution between a basis function Uj, k and a Fourier gradient field Fm we obtain a Fourier HOG
feature

Xk;m ¼ Uj;k � Fm ð4Þ

which encodes information about the image gradients in the region covered by the basis func-
tion. These radially symmetric basis functions act in a manner equivalent to the cells of the
original HOG method.

If the original image I is rotated then each of the complex valued features Xk, m will also be
altered, i.e. in this form they are not invariant to rotations. However due to the shift property
of Fourier analysis, rotations of the original image can be mapped to multiplications of the
Fourier coefficients. A rotation of the original image by an angle α will result in the movement
of pixels to another location and a rotation in the orientation of the gradients. These two effects
can be mapped to the HOG feature by firstly rotating the Fourier transform of the gradient
field Fm by α, and secondly by rotating the basis functions Uj, k by −α.
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If Xk, m is the original HOG feature, and X0
k, m is the corresponding feature calculated after

the image has been rotated by α, then

X 0
k;m ¼ e�iakUj;k � eiamFm

¼ eiaðm�kÞðUj;k � FmÞ
¼ eiaðm�kÞXk;m

ð5Þ

From this equation we can see that ifm = k then image rotations have no impact on the
descriptor and it is rotation invariant. Also, by taking the product of two descriptors, Xk1, m1

and Xk2, m2, a composite descriptor is formed,

Xk1;m1Xk2;m2 ¼ eiaðm1�k1þm2�k2Þ Uj;k1 � Fm1

� �
Uj;k2 � Fm2

� �
ð6Þ

Again we note that the composite descriptor remains constant for all angles of rotation angle α
if (m1 − k1 +m2 − k2) = 0. We may therefore construct rotational invariant features of the
image from the features defined by Eq 4, by firstly using features for whichm − k = 0, and sec-
ondly by taking the product of any two features for which (m1 − k1 +m2 − k2) = 0.

Implementation
The 2009 wildebeest count resulted in 2,018 images taken with a Nikon D2X 35mm camera
shooting 4288x2848 pixel JPG images. Three separate counts of the aerial images were per-
formed. Firstly, two independent counts were performed simultaneously by two different indi-
viduals. A third count was then performed by three individuals for images where there was a
discrepancy between initial counts. This final count is taken to be the correct count for our
comparison metrics. To evaluate the Fourier HOGmethod, the full 2009 image set was counted
using machine learning software. The adaboost algorithm [31] was employed with a decision
tree underlying classifier. Training images were drawn from 100 images taken from the 2012
survey.

Fig 1. The basis functions,Uj, k, for performingconvolutions are constructed from Fourier modes on
concentric circles. The parameter j determines the radial distance from the centre of the object, while k is
the wavenumber. The images show the real and imaginary part of the basis function.

doi:10.1371/journal.pone.0156342.g001
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The code was written in Python 2.7 (www.python.org) using OpenCV [32] for image opera-
tions and the sci-kit learn package [33] for classification. The classification code was paralle-
lized using PyCUDA [34] and the code was run on an NVIDIA GeForce GT 630 graphics card.
All code is based on open source libraries and is available here https://github.com/ctorney/
wildCount

An iterative process was employed to train the classifier based on the 2012 images. First a
set of sample images was generated from the 2012 image set by manually locating wildebeest.
Next the classifier was trained on this small training data set and several further images were
automatically counted. The results from this count were manually checked and corrected then
used to create a larger training data set of 3000 positive samples and 3000 negative samples.

The trained classifier was then applied to the 2009 image set. Images were converted to gray-
scale then they were scanned for regions above a threshold level of local contrast. Regions that
were uniform were discarded. Next each pixel that was in a non-uniform region was taken to
be the centre of an object to be classified and rotation-invariant Fourier HOG features were
extracted. Each pixel was then classified either as a wildebeest or not, then contiguous blocks of
pixels were grouped and counted as a single individual.

Results
To assess the accuracy of the method, total wildebeest counts are compared to the multiple
counts performed by human counters. When using 3000 training examples for each class (posi-
tive or negative) we find good agreement between the automated totals and the manual counts
as shown in Table 1. In Fig 2 performance of the algorithm is assessed against the final manual
count and the two prior counts are shown for comparison. We note that while the automated
total is more accurate than either initial counts, the root mean square error per image is greater.

This metric, calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
D2

i

p
where Di is the difference in the count for image i and the

summation is taken over all N images, reveals that the greater overall accuracy is due to the
lack of any systematic bias in the machine learning algorithm. The mean error (defined as
1
N

P
Di) in Table 1 shows that each first pass manual count had either a positive or negative

bias, whereas the algorithm displayed little systematic bias and was therefore able to obtain a
more accurate total count, despite displaying a greater RMS error.

To measure the precision and recall of the method, 100 images were randomly selected and
the number of true and false positives, and true and false negatives, were recorded. These
results are shown in Table 2.

Discussion
The advance in new technologies such as earth-orbiting satellites [14] or unmanned aerial vehi-
cles [9], has led to a rapid increase in high-resolution, easily accessible image data. To keep
pace with this progress, computational tools are required to automate image processing and
ensure that these vast amounts of data are transformed into useful information. One area

Table 1. Comparison of counts between manual and automated methods.

Total Mean (per image) Coefficient of variation RMS error Mean error

First manual count 33644 16.67 2.61 15.64 -4.14

Second manual count 51918 25.73 2.21 19.75 4.91

Final manual count 42007 20.82 2.32 - -

Automated count 42147 20.89 1.83 31.70 0.07

doi:10.1371/journal.pone.0156342.t001
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where modern computer vision techniques have the potential to significantly improve current
practices is in the automated detection of animals within aerial count images. We have imple-
mented a recent object classification method [29] which uses rotation-invariant features and is
therefore suitable for use with these types of images.

By testing the method against multiple manual counts we find that its performance is com-
parable to a first-pass human count. The algorithm has a greater per image error rate, but is
overall more accurate than two individual human counters. This is due to a lack of any

Fig 2. Comparing the performance of automated andmanual counters. (A) Root mean square error of counts. The correct count for each image is
assumed to be the third and final count. Average per image error is shown for the algorithm (blue line) as a function of the number of training samples from
the 2012 survey that were used. For comparison, per image error is shown for each of the first pass human counts (red, green lines). (B) Total wildebeest
counted within the image set. The final count is shown by the dashed line. The algorithm (blue line) outperforms both human counters in attaining a closer
estimate to the true value. This is because the algorithm exhibits no systematic tendency to over or under count. It should be noted that 3000 was the
maximum number of training samples available, and it is plausible that the automated total count will drop below the true count before it asymptotes. (C)
Individual image errors. The black line is the y = x line for reference. While average per image errors are comparable between automated and human
counters, the algorithmmakes large errors in a small subset of images. Images that contain many false negatives tend to be darker than the training
samples, while false positives occur when there is a lot of structure in the landscape. (D) A comparison of image light levels and under counting. A linear
regression shows a significant negative relationship between image light level (average of value component of HSV image) and the amount of under
counting (β1 = −1.37, R2 = 0.12). The under count fraction is calculated as 1� algorithm count

true count and images for which algorithmcount > truecount are excluded.
Point sizes are proportional to the absolute value of the under count of wildebeest in the image.

doi:10.1371/journal.pone.0156342.g002
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systematic bias in errors, with landscape features leading to high rates of false positives, and
low light conditions leading to false negatives (see Fig 3 for example images). Currently the
algorithm is unlikely to outperform multiple human counts, either by trained professionals or
through a citizen science approach that averages many counts by non-specialist individuals
(such as the snap-shot Serengeti project operated through the zooniverse platform). However a

Table 2. Confusion matrix. As the accuracy based on the total count does not indicate precision or recall,
performance metrics were recorded for a random subset of 100 images. Negative totals are based on the
number of non-overlapping regions within each image that are approximately equal in area to a single wilde-
beest. From these results: precision¼ TP

TPþFP ¼ 74:15%, recall¼ TP
TPþFN ¼ 85:83%.

Algorithm

Positive Negative

Actual Positive 1423 235

Negative 496 1.2m

doi:10.1371/journal.pone.0156342.t002

Fig 3. Example images. From top: Correctly detected wildebeest; Pattern and structure in the landscape
frequently lead to false positives; The method is able to distinguish between different species; Species such
as zebra, that have distinct body shapes are frequently not identified as wildebeest; The ability to distinguish
between species is dependent on sufficient training examples, here the algorithm has misidentified a flock of
juvenile ostrich as wildebeest.

doi:10.1371/journal.pone.0156342.g003
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combination of automated and manual counting would represent an ideal application of the
method in its current form, either as a first-pass count or as a method to assess the perfor-
mance of citizen scientists.

A significant promising aspect of the method is that it appears able to identify and differen-
tiate between animal species. Although we were unable to quantify the performance of the algo-
rithm in this regard with the current data set, these preliminary results show that common
species such as zebra may be distinguished from wildebeest by the algorithm. In future we
intend to further test this performance with training and testing data sets of multiple species.

A further avenue for future research will involve acquiring 3-dimensional information
about the scene. As the features used by the classification method are based on the shape of the
object, the error rate will be greatly reduced by obtaining the 3-dimensional structure of the
object. This could be achieved through range imaging techniques, such as structure from
motion [35] or LIDAR [36]. An alternative approach to increase accuracy would be to include
a near-infrared thermal band that could differentiate between endothermic animals and the
background. Both thermal and 3-d information could be used in combination with image gra-
dients to enhance the accuracy of the method.

Supporting Information
S1 File. Count data.Human and automated counts for each image for 500, 1000, 1500, 2000,
2500, and 3000 training samples.
(ZIP)
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