# Web Appendix for Prior Event Rate Ratio Adjustment for Hidden Confounding in Observational Studies of Treatment Effectiveness: A Pairwise Cox Likelihood Approach 

## Web Appendix A: Consistency and asymptotic normality

For matched pair experiments, Gross and Huber [1] considered the following counting process

$$
N_{i j}(t)= \begin{cases}1 & \text { if } T_{i j}<t \text { and } \delta_{i j}=1 \\ 0 & \text { otherwise }\end{cases}
$$

with the intensity

$$
\begin{equation*}
\lambda_{i j}(t)=I\left(t \leq T_{i j}\right) \lambda_{0}(t) \exp \left(\alpha_{i}+\beta Z_{i j}\right), \tag{A-1}
\end{equation*}
$$

where $T_{i j}$ is the observed time for individual $j(j=1,2)$ in pair $i(i=1, \ldots, n$, like $n$ pairs of twins or matched siblings [1]), $\delta_{i j}$ is the indicator of censoring, and $\alpha_{i}$ and $\beta$ are unknown parameters.

The Cox's partial log-likelihood is

$$
\begin{equation*}
L_{n}(\beta)=\sum_{i=1}^{n} \sum_{j=1}^{2} \int_{0}^{t} \log \left[\frac{\exp \left\{\beta Z_{i j}\right\}}{\sum_{j=1}^{2} I\left(u \leq T_{i j}\right) \exp \left(\beta Z_{i j}\right)}\right] d N_{i j}(u) . \tag{A-2}
\end{equation*}
$$

Using the method in Andersen and Gill [2], Gross and Huber [1] showed that as $n \rightarrow \infty$, the Cox estimate $\hat{\beta}$ is consistent for $\beta$ and $\sqrt{n}(\hat{\beta}-\beta)$ is asymptotically normal. The observed information

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{0}^{t} I\left(u \leq T_{i 1}\right) I\left(u \leq T_{i 2}\right) \frac{\left(Z_{i 1}-Z_{i 2}\right)^{\otimes 2} \exp \hat{\beta}\left(Z_{i 1}+Z_{i 2}\right)}{\left\{\sum_{j} I\left(u \leq T_{i j}\right) \exp \left(\hat{\beta} Z_{i j}\right)\right\}^{2}} \sum_{j} d N_{i j}(u) \tag{A-3}
\end{equation*}
$$

is consistent for the estimate of the covariance matrix of the Cox estimate $\hat{\beta}$.
If we replace $j=(1,2)$ by $j=(p, s)$ and rewrite $\lambda_{0}(t)=h_{0 p}(t), \alpha_{i}=\beta C_{i}, \beta=(\theta, \alpha)$ and

$$
Z_{i j}^{t r}=\left\{\begin{array}{l}
(0,0) \quad \text { when } j=p \\
\left(X_{i}, 1\right) \quad \text { when } j=s
\end{array},\right.
$$

the intensity (A-1), Cox's partial log-likelihood (A-2) and observed information (A-3), respectively, can be rewritten as the models

$$
\begin{align*}
& h_{p i}(t)=I\left(t \leq T_{i p}\right) h_{0 p}(t) \exp \left(\beta C_{i}\right)  \tag{A-4}\\
& h_{s i}(t)=I\left(t \leq T_{i s}\right) h_{0 p}(t) \exp \left(\theta X_{i}+\beta C_{i}+\alpha\right), \tag{A-5}
\end{align*}
$$

the log-likelihood

$$
l=\sum_{i}^{n} \Delta_{s i}\left\{\theta X_{i}+\alpha-\log \left(e^{\theta X_{i}+\alpha}+S_{i}\right)\right\}-\Delta_{p i} \log \left(1+P_{i} e^{\hat{\theta} X_{i}+\alpha}\right)
$$

and the observed information

$$
\sum_{i=1}^{n} e^{\hat{\theta} X_{i}+\hat{\alpha}}\left\{\frac{\Delta_{s i} S_{i}}{\left(e^{\hat{\theta} X_{i}+\hat{\alpha}}+S_{i}\right)^{2}}+\frac{\Delta_{p i} P_{i}}{\left(1+P_{i} e^{\hat{\theta} X_{i}+\hat{\alpha}}\right)^{2}}\right\}\left(\begin{array}{cc}
X_{i} X_{i}^{t r} & X_{i}  \tag{A-6}\\
X_{i}^{t r} & 1
\end{array}\right) .
$$

This means that the estimates $(\hat{\theta}, \hat{\alpha})$ are consistent for $(\theta, \alpha)$ and asymptotically normal and the observed information (A-6) is consistent for the estimate of the covariance matrix for $(\hat{\theta}, \hat{\alpha})$. Also this means that $\hat{H} R_{u E}=\exp (\hat{\alpha}), \hat{H} R_{E}=\exp (\widehat{\alpha+\theta})$ and the PERR-ALT estimate

$$
\hat{H} R_{P E R R-A L T}=\frac{\hat{H} R_{E}}{\hat{H R_{u E}}}=\frac{\exp (\widehat{\alpha+\theta})}{\exp (\hat{\alpha})}
$$

are consistent for $\exp (\alpha), \exp (\alpha+\theta)$ and $\exp (\theta)$ respectively.

## Web Appendix B: A simulation study of the bias in the PERR and pairwise methods under the problem of differential case fatality



Web figure 1: The performance of PERR and pairwise methods under the problem of differential case fatality.

In this simulation, we generated $C$ from $\operatorname{Bin}(1,0.5), X$ from $\operatorname{Bin}(1,0.3+0.4 c), T_{p}$ and $T_{s}$ from $h_{0 p}(t) \exp \left(\beta c_{i}\right)$ and $h_{0 p}(t) \exp \left(\theta x_{i}+\beta c_{i}+\alpha\right)$ respectively with $h_{p 0}(t)=\alpha=\theta=1$ and $\beta \in(-10,10)$. The sample size was 100,000 and there was no censoring. We considered the following scenarios:

- Scenario 1: No differential case fatality;
- Scenario 2: $10 \%$ of the subjects with $c=0$ and $50 \%$ of the subjects with $c=1$ died before study period, $x$ was generated only for the subjects who were alive at the beginning of study;
- Scenario 3: No differential case fatality but $c$ was generated from $\operatorname{Bin}\left(1, \frac{0.5 \times 0.5}{0.5 \times 0.9+0.5 \times 0.5}\right)$ in place of $\operatorname{Bin}(1,0.5)$;
- Scenario 4: All the subjects with $c=1$ were assumed to have died before the study period and all the subjects with $c=0$ were assumed to have survived beyond the study period.

Fig 1 shows the biases of the PERR method under these four scenarios and the bias of the pairwise method under Scenario 2. We note that:

- Comparing the bias curves for Scenarios 1 and 2, differential case fatality can not only increase but also decrease the bias of the PERR method;
- The biases of the PERR method in Scenarios 2 and 3 are almost the same. This confirms that the change in the bias of PERR in the case of differential case fatality is in fact the difference between the PERR biases under different distributions of $C$;
- The results for the pairwise method under Scenario 2 show that the pairwise method is unbiased in the case of differential case fatality;
- The results of Scenario 4 show that the PERR method is unbiased in the extreme case that all the subjects with $c=1$ died before exposure and all the subjects with $c=0$ survived beyond exposure.


## Web Appendix C: The data for the example in Section 8

## References

[1] Gross TS, Huber C. Matched pair experiments: Cox and maximum likelihood estimation. Scand J Stat 1987; 14: 27-41.
[2] Andersen PK, Gill RD. Cox's regression model for counting processes: a large sample study. The annals of statistics 1982: 1100-1120.

Web table 1: Data from a longitudinal cohort study of enzyme replacement therapy for patients with Fabry disease

| I.d. | Gender | Age at start of prior period (years) | Prior event | Age at start of study period (years) | Therapy | Study event |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $i$ | $x_{5}$ | $x_{3 p}$ | $t_{p}$ (years) | $x_{3 s}$ | $x_{1}, x_{2}$ | $t_{s}$ (years) |
| 1 | Male | 27.40 | 1.22 | 28.63 | B | 5.33+ |
| 2 | Male | 44.89 | 1.11 | 46.00 | B | $6.25+$ |
| 3 | Male | 65.56 | 1.71 | 67.27 | B | 1.78 |
| 4 | Male | 7.19 | 0.33 | 8.53 | B | 1.63 |
| 5 | Female | 4.01 | 1.11 | 8.82 | B | 0.30 |
| 6 | Female | 13.73 | 0.84+ | 14.69 | A | 0.04 |
| 7 | Male | 31.25 | 2.29+ | 34.43 | A | 1.94 |
| 8 | Female | 45.19 | 1.43 | 46.62 | A | 2.12 |
| 9 | Male | 30.55 | 0.51 | 32.74 | A | 4.08 |
| 10 | Male | 21.64 | 1.71 | 23.35 | A | 1.09 |
| 11 | Female | 45.47 | 0.33 | 45.80 | A | 1.01 |
| 12 | Female | 43.24 | 1.57 | 44.81 | A | 0.86 |
| 13 | Male | 52.29 | 0.38 | 52.67 | A | $3.23+$ |
| 14 | Female | 25.17 | 0.59 | 27.12 | A | 5.00+ |
| 15 | Male | 55.36 | 1.80 | 58.01 | A | 0.26 |
| 16 | Male | 65.91 | 1.11+ | 67.75 | B | 0.24 |
| 17 | Male | 56.37 | 1.08 | 57.45 | A | 1.05 |
| 18 | Female | 34.78 | 0.66 | 35.44 | A | 1.05 |
| 19 | Female | 54.55 | 0.52 | 55.07 | A | 1.07 |
| 20 | Male | 57.83 | 0.35 | 58.18 | A | 1.97+ |
| 21 | Male | 33.04 | 1.15 | 34.92 | A | 0.75 |
| 22 | Male | 35.00 | 0.51 | 36.07 | A | 0.52 |
| 23 | Male | 56.67 | 0.61 | 57.42 | A | 1.94 |
| 24 | Male | 58.82 | 0.50 | 59.49 | A | 5.84 |
| 25 | Male | 41.33 | 2.57 | 44.70 | A | 0.48 |
| 26 | Female | 15.85 | 2.87 | 19.50 | A | 0.73 |
| 27 | Female | 27.82 | 1.02 | 28.86 | A | 1.26 |
| 28 | Male | 23.59 | 3.95+ | 27.59 | A | 0.44 |
| 29 | Male | 41.39 | 4.73 | 46.22 | A | 1.53 |
| 30 | Male | 25.48 | 1.03 | 26.52 | A | 2.68 |
| 31 | Male | 35.76 | 2.97+ | 39.59 | A | 2.07 |
| 32 | Male | 55.60 | 2.36+ | 58.57 | A | 1.23 |
| 33 | Male | 54.74 | 0.68 | 55.41 | B | 2.86 |
| 34 | Male | 62.08 | 2.32+ | 65.76 | B | 0.53 |
| 35 | Male | 69.64 | 1.40 | 71.69 | B | 1.02 |
| 36 | Male | 16.41 | 1.19+ | 17.59 | B | 1.03 |
| 37 | Male | 42.72 | 3.92 | 46.71 | B | 3.45 |
| 38 | Male | 49.34 | 1.83 | 51.78 | B | 1.85 |
| 39 | Male | 55.23 | 1.71 | 56.94 | B | $2.05+$ |
| 40 | Male | 42.34 | 0.76+ | 43.73 | B | 0.39 |
| 41 | Male | 49.82 | 0.17 | 49.99 | B | 4.83+ |
| 42 | Male | 43.28 | 1.05 | 46.90 | B | 0.69 |
| 43 | Male | 67.26 | 3.38+ | 70.75 | B | 0.90 |
| 44 | Male | 57.66 | 0.75 | 58.41 | B | 6.89+ |
| 45 | Male | 51.72 | 0.04 | 51.79 | B | 0.97+ |

[^0]
[^0]:    NOTE: + indicates censored; no treatment: $x_{1}=x_{2}=0$; Therapy A: $x_{1}=1, x_{2}=0$; Therapy B: $x_{1}=0, x_{2}=1$.

