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We have investigated the ground state and electronic properties of LaRu2P2 in the ThCr2Si2 structure using a generalized gradient
approximation of the density functional theory and the ab initio pseudopotential method. We find that the calculated electronic properties
of LaRu2P2 exhibit three-dimensional rather than two-dimensional characteristics in spite of the apparent two dimensionality in its atomic
structure. An interesting feature of the phonon dispersion curves is the phonon anomaly in the lowest transverse acoustic branch as well as
the longitudinal acoustic branch. We have shown that these phonon anomalies give rise to large electron-phonon interaction, as is evident
from the calculated Eliashberg spectral function α2F(ω). By integrating this spectral function, the value of average electron-phonon
coupling parameter is calculated to be 0.85, from which the superconducting critical temperature is estimated to be 3.74 K, in gratifying
accord with its experimental value of 4.0 K.

1 Introduction

ThCr2Si2-type AM2X2 compounds (A: an alkaline earth or a lanthanide element; M: a transition metal; X:
Si, P, Ge, or As) have attracted considerable interest in recent years. These compounds exhibit a great vari-
ety of intriguing physical properties, such as low temperature superconductivity [1–10], high temperature
superconductivity either under pressure [11–13] or after doping [14–18], and different magnetic struc-
tures [19]. Furthermore, some of the ThCr2Si2-type compounds show complex anisotropic character [20]
which may cause to first or second order phase transition under pressure [13,21]. In particular, lanthanum
ruthenium phosphide LaRu2P2 was found to exhibit superconductivity with the transition temperature
of 4.0 K more that 25 years ago [2]. This material is of special interest with respect to superconductiv-
ity because, in contrast to its arsenic counterparts, no magnetic order is available to possibly weaken or
interfere with superconducting state. Some experimental works [22–25] have been done on the electronic
and superconducting properties of LaRu2P2. Ying and co-workers [23] have investigated the anisotropy of
upper and lower critic fields. Both upper and lower critical fields indicate the isotropic superconductivity
in this material which is similar to the iron-based superconductors. The isotropic superconductivity [23]
reveals the three-dimensional of its Fermi surface topology. Following this experimental work [23], Moll
and co-workers [24] have studied the angular de Hass-van Alphen oscillations using magnetic torque in
pulsed magnetic fields up to 60 T. In this experimental work [24], the observed oscillation frequencies are
in good accordance with the geometry of the calculated Fermi surface. After this experimental work, the
experimental study of Razzoli et. al. [25] shows that the origin of the superconducting phase in LaRu2P2

differs from the one in the 122 Fe pnictides and more conventional in the sense that it arises from a Fermi-
liquid-like normal state. On the theoretical side, the density functional theory [24, 25] has been used to
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investigate the electronic properties of LaRu2P2. These theoretical works state that the electronic structure
of LaRu2P2 around the Fermi level is quite three dimensional, and by no means quasi two dimensional.
Although considerable progress has been made to investigate the electronic properties of LaRu2P2,

no experimental or theoretical works have been performed to investigate the vibrational properties of
this material. Such a study is very desirable, as a number of interesting properties of solids are gov-
erned by electron-phonon interaction. We have performed a first-principles theoretical investigation of
the ground state atomic structural, electronic structural, and phonon structural properties of LaRu2P2

in the body-centered tetragonal ThCr2Si2 structure. Using the results of these investigations, the linear
response method [26] and the Migdal-Eliashberg approach [27–30] have been utilized to calculate the
Eliashberg spectral function and the average electron-phonon coupling parameter. In particular, the role
of phonon anomalies in determining the electron-phonon coupling parameter has been highlighted. The
calculated superconducting parameters are compared with the experimental values reported by Moll and
co-workers [24].

2 Theory

The computer package QUANTUM ESPRESSO [26] has been used to investigate the structural, elec-
tronic, vibrational and electron-phonon interaction properties of LaRu2P2. This package performs density
functional calculations of material properties using pseudopotentials and the plane wave basis set. The
electronic exchange-correlation energy is included using the Perdew-Burke-Ernzerhof expression [31] within
the generalized gradient density functional approximation (GGA). The interaction of the valence electrons
with the ionic cores are represented with ultrasoft pseudopotentials [32, 33]. The maximum plane wave
cutoff energy is chosen to be 60 Ry while self-consistent solutions of the Kohn-Sham equations [34] are de-
termined by employing a set of Monkhorst-Pack special [35] k points within the Brillouin zone. Integration
over the Brillouin zone (BZ) for total-energy calculations has been made using the 8×8×8 zone-centred
grid, producing 59 k points in the irreducible part of the BZ (IBZ). The self-consistent electronic structure
calculations are performed out by using the 24×24×24 zone-centred grid, producing 1063 k points in the
IBZ.
Phonon dispersion relations have been studied using the ab initio linear response method [26], which

permits the calculation of the dynamical matrix at arbitrary q vectors without the use of supercells. Using
the eigenfrequencies and eigenvectors of lattice vibrations a static linear response of the valence electrons
is considered in terms of the variation of the external potential corresponding to periodic displacements
of the atoms in the unit-cell. The screening of the electronic system in response to the displacement of
the atoms has been determined in a self consistent manner. Integration up to the Fermi surface has been
made by employing the smearing technique with the broadening parameter σ = 0.02 Ry. The numerical
integration of the Brillouin zone for phonon calculations has been performed using the 8×8×8 Monkhorst-
Pack k-point sampling. The dynamical matrices have been calculated on a 4×4×4 q-point mesh, and a
Fourier interpolation has been done to determine the full phonon spectrum and the vibrational density
of states. The calculation of the electron-phonon coupling follows the steps described in our previous
works [36–38]. Fermi-surface sampling for the evaluation of the electron-phonon matrix elements has been
made using 24×24×24 k-mesh with a Gaussian width 0.02 Ry. The phonon density of states and the
Eliashberg spectral function are also determined using this k-mesh.

3 Results

3.1 Structural and Electronic Properties

The ThCr2Si2 crystal structure of LaRu2P2 is shown in Fig. 1. This is a body-centered tetragonal structure
with space group I4/mmm. The primitive unit cell contains one La atom at the 2a (0, 0, 0) position, two
Ru atoms at 4d (0, 1/2, 1/4) and two P atoms at 4e (0, 0, z). Here z shows the internal parameter which
governs the relative position of P within the unit cell. This crystal structure of LaRu2P2 is primarily
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formed by layers of edge-sharing RuP4 tetrahedra in the x-y plane separated by La atoms. The α, β and γ

angles are good indicators of distortion in RuP4 tetrahedra. The La sheets behave as the so-called charge
reservoir layers, which procures electron transfer from La layers to [Ru2P2] layers. Thus, neighboring La-
[Ru2P2] layers are coupled due to their ionic interactions. In addition to this ionic bonding, covalent Ru-P
bonds exist between the atoms inside the conducting [Ru2P2] layers. Furthermore, the bonding in this
compound includes a metallic character, mainly due to the d electrons of Ru atoms. Consequently, the
overall bonding situation in LaRu2P2 can be described as an interplay between covalent, metallic and ionic
interactions.
As the first step of our ab initio work, total energy calculations are made to obtain the equilibrium

structural parameters for LaRu2P2. Then, around the region of the total energy minimum, the bulk
modulus, the pressure coefficient B

′

and the equilibrium volume are determined by fitting numerical data
to Murnaghan’s equation of state [39]. The calculated equilibrium lattice constants (a and c), the internal
parameter (z), the bulk modulus B, the pressure coefficient B

′

, the closest Ru-P distance (dRu−P ), and the
bond angles (α, β and γ) are given and compared with available experimental [2, 22, 24] and theoretical
results [25] in Tab. 1. In general, the calculated lattice parameters (a and c) and the bond angles (α, β
and γ) are in excellent accordance with their experimental values [2,22,24] . The deviation of a and c from

their recent experimental values [24] of 4.025 Å and 10.662 Å is 1.0% and 0.4%, respectively, while the
calculated value of internal parameter is essentially equal to its experimental value of 0.359 [2].
Fig. 2(a) displays the calculated energy band structure of LaRu2P2 along selected high-symmetry direc-

tions within the body-centered tetragonal first Brillouin zone, while the total and partial electronic density
of states (DOS) are illustrated in Fig. 2 (b). We find the overall band profiles to be very similar to previous
theoretical results [24,25]. The energy bands close to the Fermi level display considerable dispersion along
the Γ-Z direction, indicating a three dimensional nature of the electronic structure. While occupied and
unoccupied bands are well separated from each other only along the X-P symmetry direction, the metallic
character of this material is confirmed as at least one band crosses the Fermi level along Γ-G1, Γ-Z, Γ-P,
and Γ-N directions. The lowest two bands arise from the s electrons of P atoms. These ’s’ bands are well
separated by a gap of 4 eV from the main valence band region from -6.7 eV to the Fermi level. These bands
form a peak at about -11.4 eV in the electronic DOS. Ru 4d, Ru 5p and La 6p make lesser contributions
to this strong peak. For energy window from -6 to -3 eV, there is a high degree of hybridization of Ru d
states with P p states, which is the evidence for a strong covalent interaction between Ru and P atoms.
The covalent bond between these atoms can be related to the similarity of their electronegativities. The
DOS curve reveals two peaks with energies -1.9 and -1.2 eV in energy window from -3.0 to -1.0 eV. Ru 4d
orbital states contribute to these two peaks strongly while lesser contributions to these peaks arise from
P 3p, La 5d and Ru 5p states.
Since electrons near the Fermi level form the superconducting properties of solids, it is mandatory to

explore their nature. From -1.0 eV to the Fermi level, the DOS are strongly dominated by Ru 4d states.
Moreover, the La 5d, P 3p and Ru 5p states also exist in this energy region. The DOS features above the
Fermi level are mainly composed of La 5d, Ru 4d, P 3p and Ru 5p orbitals. The value of DOS at the
Fermi level (N(EF )) amounts to be 2.38 states/eV, which compares well the previous GGA value of 2.46
states/eV in the work of Razzoli et al [24]. The contributions from La, Ru and P atoms to N(EF ) are
approximately 29%, 48%, and 23%, respectively. Ru 4d, La 5d and P 3p states alone contribute 41%, 26%
and 19% to N(EF ), respectively. Thus, we conclude that the metallic properties of LaRu2P2 are mainly
formed by the d states coming from the transition metal Ru atoms. The huge contribution from Ru 4d
states to N(EF ) affects the superconducting properties of this material strongly, since according to the
McMillan-Hopfield expression, the electron-phonon coupling constant (λ) can be given in the following
form [29,30]

λ =
N(EF ) < I2 >

M < ω2 >
, (1)

where M is the average atomic mass, < ω2 > shows the average of squared phonon frequencies, and < I2 >

represents the Fermi surface average of squared electron-phonon coupling interaction. According to the
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above equation, the value of the electron-phonon coupling constant (λ) increases linearly with N(EF ).

3.2 Phonons and Superconductivity

All of the 12 zone-center phonon modes in LaRu2P2 can be categorized by the irreducible representation
of the point group D4h (4/mmm). As prescribed by group theory, the symmetries of the optical phonon
modes can be stated as:

Γ = 2Eu + 2Au +B1g + 2Eg +A1g

where u and g modes are infrared (IR) and Raman active respectively. The frequencies of zone center
phonon modes are presented together with their electron-phonon coupling parameters and their eigen
characters in Tab. 2. The one-dimensional A and B modes correspond to the vibrations of related atoms
along the z-direction, while the doubly degenerate E modes arise from the motion of relevant atoms in
the x–y plane. The analysis of Tab. 2 indicates that all zone-center optical phonon modes have negligible
electron-phonon coupling parameter. Thus, we can conclude that the zone-center phonon modes do not
play a significant role in determining the superconducting properties of LaRu2P2.
The calculated phonon dispersion curves, and the total and partial phonon density of states (DOS), of

LaRu2P2 are shown in Fig. 3. A few remarkable features of the phonon spectrum can be noted. It splits
into a low-frequency band (LFB) (0-7.1 THz) and a high-frequency band (HFB) (9.3-11.70 THz) which are
separated from each other by a phonon band gap of 2.2 THz. The LFB is formed by the three acoustic and
six optical branches, while the HFB contains the remaining six optical phonon branches. The acoustic and
optical branches in the LFB are dispersive along the high symmetry lines, except X-P. There is significant
overlap between acoustic and optical phonon branches. The computed transverse acoustic branches (lower-
lying TA1 and upper-lying TA2) and the longitudinal branch behave normally in the long-wave limit with
steep slopes. However, as can be seen from Fig. 3(a), for most part along the Γ-G1-Z direction, the LA
branch lies below the TA branches. This represents a pronounced anomaly in the dispersion of the LA
branch (see the red solid line in Fig. 3(a)). Furthermore, the lower-lying transverse acoustic (TA1) branch
(see the blue solid line in Fig. 3(a)) starts to show a negative dispersion (phonon anomaly) close the
zone boundary N along the Γ-N symmetry direction. The correlation between phonon anomalies and
superconductivity has been known since the late 1960s. Countless studies [36, 40–51] have indicated that
the largest contribution to electron-phonon mass enhancement parameter (i.e. average electron-phonon
coupling parameter) comes from phonon branches which show anomaly. Finally, the high frequency optical
branches in the HFB are neither pure P states or mixed Ru-P modes. Such high frequencies of Ru vibrations
indicate rather strong covalent bonding forces between Ru and P atoms.
The nature of the phonon dispersion relations can be understood more overtly by closely examining the

total and partial phonon DOS in Fig. 3(b). Eigendisplacements involving all the three atomic species are
found for frequencies below 4.0 THz. In particular, the frequency region below 2.0 THz is mainly due to
the coupled motion of Ru and P atoms with a lesser contribution from La atoms. However, La vibrations
are dominant between 2.0 and 4.0 THz and disappear above 4.0 THz due to the heavy mass of La. In the
4.0-6.0 THz range, the DOS features arise from the vibrations of Ru atoms with a considerable admixture
of P vibrations. In the 6.0-7.0 THz range strong Ru-P hybridization exists due to strong covalent bond
between these atoms. While P vibrations exist both in LFB as well as HFB, they are certainly dominant
above the phonon band gap region which can be linked to the light mass of P.
The first noticeable feature of the phonon dispersion curves for LaRu2P2 is the softening of the LA

branch along the Γ-G1-Z direction. With increased wave numbers along Γ-G1, the LA branch first crosses
the upper-lying TA2 branch and then the lower-lying TA1 branch. Thus, along this direction, the LA
branch acquires a pronounced dip, with frequency lower than the transverse acoustic branches. The dip in
the LA branch is found at q = 2π

a
(0.75, 0.0, 0.0) with frequency 0.94 THz. The second noticeable feature

of the phonon dispersion curves is the anomaly of the lower-lying TA1 branch along the Γ-N symmetry
direction. These striking phonon anomalies of the LA and TA1 branches are crucial for superconductivity
in LaRu2P2, because a positive connection between phonon anomalies and electron-phonon interaction is
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well known [36,40–51]. In order show a positive relationship between the anomalous phonon dispersion and
electron-phonon interaction, we have identified the mode-dependent electron-phonon coupling parameter
λq,j for acoustic phonon branches. Gripping characteristics are found along two main symmetry directions
Γ-G1-Z and Γ-N in Fig. 4. The most outstanding characteristic is that the electron-phonon coupling
parameter of LA branch takes it largest value of 0.81 at q =2π

a
(0.75, 0.0, 0.0), where the frequency

of this branch has its lowest value of 0.94 THz. This observation is the first evidence for a positive
relationship between phonon anomaly and electron-phonon coupling parameter. Secondly, the phonon
anomaly of TA1 is found to occur between q = 2π

a
(0.0, 0.35, 0.35a

c
) and the zone boundary of N point. Due

to this phonon anomaly, the electron-phonon coupling parameter of this branch increases rapidly beyond
q = 2π

a
(0.0, 0.35, 0.35a

c
), reaching its largest value of 1.08 at the N zone-boundary. We can conclude that

this is the second evidence for a positive relationship between phonon anomaly and the electron-phonon
coupling parameter.
In order to further establish the role of phonons in developing superconductivity in LaRu2P2, we have

presented the frequency-dependent Eliashberg function α2F (ω) and the frequency-accumulative electron-
phonon coupling parameter λ in Fig. 5. A comparison of the Eliashberg spectral function with the phonon
density of states in Fig. 3(b) explains that phonon modes in the entire frequency range contribute to the
electron-phonon interaction, albeit with different amounts. In particular, Ru-related vibrations below 2
THz contribute approximately 48% (0.408) to λ. This result is expected since the states near the Fermi
level are primarily contributed by the d electrons of Ru atoms. This large additive contribution from low
frequency phonons arise from the factor 1

ω
in the expression for λ as given below

λ = 2

∫

α2F (ω)

ω
dω. (2)

The accumulative value electron-phonon coupling parameter is calculated to be 0.85, which reveals that
the electron-phonon interaction in LaRu2P2 is of medium strength. This value can be used to calculate the
electronic specific-heat coefficient using γ = γbs(1+λ), which is renormalized by the phonon enhancement

factor (1 + λ) compared to its band structure value (γbs = π2k2

B
N(EF )
3 ). With the calculated value of λ,

the superconducting transition temperature (Tc) for LaRu2P2 can be determined from the Allen-Dynes
formula [29, 30]

Tc =
ωln

1.2
exp

(

−

1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

. (3)

The above formula links the value of Tc with the electron-phonon coupling parameter λ, the logarithmically
averaged frequency ωln and Coulomb repulsion µ∗. The value of ωln can be calculated from

ωln = exp

(

2λ−1

∫

∞

0

dω

ω
α2F (ω) lnω

)

. (4)

It is also possible to obtain the value of µ∗ from the following modification of the Bennemann-Garland
empirical formula [52]

µ∗ =
0.26N(EF )

(1 +N(EF ))
. (5)

The calculated parameters related to the superconductivity in LaRu2P2 are compared with previous the-
oretical and experimental results [2, 24] in Tab. 3. In general, our calculated results compare very well
with the experimental values [2, 24]. We note that the calculated value of λ is slightly lower than the
experimentally deduced value of 0.98. The calculated value of T = 3.74 K is in excellent accordance with
the experimental value of 4.0 K [2] and the calculated value of γ = 10.35 mJ mol−1 K−2 is also in good
agreement with the corresponding experimental value of 11.50 mJ mol−1 K−2 [24].
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4 Summary and Conclusion

We have studied the structural, electronic, vibrational and electron-phonon interaction properties of
LaRu2P2 adopting in the body-centered tetragonal ThCr2Si2 type of crystal structure. The calculated
structural parameters are in close agreement with their experimental values. The electronic bands near the
Fermi level exhibit a considerable dispersion along the c-axis, indicating that this compound is a three-
dimensional metal in spite of the apparent two dimensionality in its atomic structure. From the analysis
of the total and partial electronic density of states, we have observed that the states around the Fermi
level are contributed by the states originating from Ru atoms, confirming their active role in determining
the electronic and superconducting properties of this compound.
Using our calculated lattice constant and electronic structure, phonons in LaRu2P2 has been studied

by employing a linear response approach based on density functional perturbation theory. This compound
is dynamically stable, as no instabilities in the phonon dispersion relations have been found. The most
impressive features in the phonon spectrum of this material are the phonon anomalies of the LA branch
and the lower-lying TA1 branch along the Γ-G1-Z and Γ-N symmetry directions. We have shown that these
phonon anomalies make large contributions to the accumulated electron-phonon coupling parameter.
The Eliashberg spectral function has been calculated using the phonon spectrum and the electron-

phonon matrix elements. A critical evaluation of this function suggests that the low-frequency acoustic
phonons are more involved in the process of scattering of electrons than the optical phonon modes. From
the integration of the calculated Eliashberg function, the value of accumulated electron-phonon coupling
constant λ is found to be 0.85, suggesting that LaRu2P2 is a phonon-mediated superconductor with medium
electron-phonon coupling strength. Ru-related vibrations make a large contribution to the electron-coupling
parameter due to considerable presence of the Ru d states near the Fermi level. Finally, the value of the
electronic specific heat coefficient is calculated to be 10.5 mJ mol−1 K−2, which is in good accordance with
the experimentally deduced value of 11.50 mJ mol−1 K−2.
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Figure 1. The ThCr2Si2 structure of LaRu2P2 showing P-Ru2-P-type layers and La ion sheets alternatively stacked along the c-axis.
The α, β and γ angles are good markers of distortion in the RuP4 tetrahedron.
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Figure 2. (a) The full electronic band structure for LaRu2P2 along selected symmetry lines in the Brillouin zone. (b) Total and partial
electronic density of states (DOS). The Fermi level corresponds to 0 eV.
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Figure 3. (a) The full phonon dispersion curves for LaRu2P2 along selected symmetry lines in the body-centered tetragonal zone. The
anomaly of the longitudinal acoustic branch (LA) is shown by the red solid line and the anomaly of the lower-lying transverse acoustic

branch (TA1) is shown by the blue solid line . (b) Total and partial phonon density of states (DOS).
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Table 1. Structural parameters for the body-centered tetragonal LaRu2P2, and their comparison with previous experimental and theoretical

results. The α, β and γ angles are good indicators of distortion in the RuP4 tetrahedron (see Fig. 1).

Source a(Å) c(Å) z B(GPa) B
′

dRu−P (Å) α β γ
This work 4.067 10.703 0.359 78.20 1.00 2.344 120.37o 104.31o 75.69o

Experimental [2] 4.031 10.675 0.359 2.329 119.87o 104.31o 75.47o

Experimental [22] 4.032 10.632
Experimental [24] 4.025 10.662
Theoretical [25] 0.362

Table 2. Calculated zone-center phonon modes, their electron-phonon coupling parameters and their eigen characters for the body-centered

tetragonal LaRu2P2.

Mode Eu A2u B1g Eg A2u Eu Eg A1g

ν (in THz) 2.662 4.052 4.866 6.646 9.394 10.217 10.876 11.443
λ 0.0143 0.047 0.066 0.048 0.007 0.006 0.015 0.075

Eigen characters La+Ru+P La+Ru+P Ru P+Ru P+Ru P+Ru P+Ru P

Table 3. The calculated superconducting state parameters for LaRu2P2. The calculated results are also compared with previous experimental

and theoretical values.

Source N(EF )(States/eV) µ∗ ωln(K) λ Tc(K) γ( mJ
molK2 )

This work 2.38 0.18 127.74 0.85 3.74 10.35
GGA [24] 2.46

Experimental [2] 0.98 4.0
Experimental [24] 0.98 11.50


