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ABSTRACT1

There are many inputs during development that in�uence an organism's �t to cur-2

rent or upcoming environments. These include genetic e�ects, transgenerational3

epigenetic in�uences, environmental cues and developmental noise, which are rarely4

investigated in the same formal framework. We study an analytically-tractable evo-5

lutionary model, in which cues are integrated to determine mature phenotypes in6

�uctuating environments. Environmental cues received during development and by7

the mother as an adult act as detection-based (individually observed) cues. The8

mother's phenotype and a quantitative genetic e�ect act as selection-based cues9

(they correlate with environmental states after selection). We specify when such10

cues are complementary and tend to be used together, and when using the most11

informative cue will predominate. Thus, we extend recent analyses of the evolution-12

ary implications of subsets of these e�ects by providing a general diagnosis of the13

conditions under which detection and selection-based in�uences on development are14

likely to evolve and coexist.15
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INTRODUCTION1

Organisms are sensitive to a variety of inputs during development, often producing2

phenotypes that are suited to current or upcoming environments (West-Eberhard,3

2003). Adaptive phenotypic plasticity and transgenerational e�ects are among the4

well-studied examples. In spatially varying environments, genetic variation con-5

tributes to local adaptation (e.g., Levene, 1953; Seger & Brockmann, 1987; Kawecki6

& Ebert, 2004) and allele frequencies will vary spatially. An individual's genotype7

will therefore statistically contain information about local environmental conditions8

and thus can be regarded as a genetic cue that can be combined and integrated with9

environmental and transgenerational cues adaptively during development (Lively,10

1986; Sultan & Spencer, 2002; Leimar et al., 2006; Leimar & McNamara, 2015; Dall11

et al., 2015). In temporally �uctuating environments on the other hand, it is tradi-12

tional to consider only environmental cues and, sometimes, transgenerational cues13

as being the developmental in�uences that �t phenotypes to current conditions.14

Random phenotype determination (diversi�ed bet hedging) is another important15

adaptation to unpredictable environments (Seger & Brockmann, 1987). Both evolu-16

tionary modeling (Lachmann & Jablonka, 1996) and empirical observation (Bergland17

et al., 2014; Cogni et al., 2015) indicate that genetic variation plays a role in �tting18

phenotypes to temporal environmental variation, provided that the time scale of19

variation is longer than the generation time of the organism. However, such ge-20

netic e�ects are rarely investigated alongside trangenerational e�ects, bet hedging21

and adaptive plasticity in the same formal framework. Here we study the relative22

importance and interaction of all of these in�uences on phenotype determination23

in temporally varying environments, using an evolutionary model that, to a great24

extent, can be worked out analytically.25

Amongst trans-generational epigenetic e�ects, Shea et al. (2011) make the dis-26

tinction between detection-based and selection-based e�ects. The former are con-27
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cerned with the in�uence of cues about environmental conditions that are directly1

observed and are passed down the generations. Indeed, current environmental in-2

�uences on adaptive development can also be thought of as detection-based e�ects3

(equivalent to information by �instruction�: Jablonka & Lamb (2005)). In contrast,4

selection based e�ects do not require direct observations by individuals. They occur5

when there is transmission (with reasonable �delity) of an epigenetic marker down6

successive generations, where the marker a�ects the phenotype, and so is under se-7

lection, and as a result of past selection current individuals tend to adaptively match8

their environment. Such selection-based e�ects (via heritable genetic variation) also9

form the basis of the �genes-as-cues� analysis of Leimar et al. (2006) and Leimar &10

McNamara (2015) in spatially heterogeneous environments. Here, for the �rst time,11

we explore the relative value of using the full range of potential detection-based and12

selection-based cues during development in temporally varying environments in the13

same model. In environments without spatial structure it is only favorable for the14

parental generation to pass information to o�spring when environments are auto-15

correlated (so that knowledge of the environment in one year is predictive of the16

environment in the folllowing year) (Shea et al., 2011; Kuijper et al., 2014; English17

et al., 2015; Uller et al., 2015; Kuijper & Hoyle, 2015). In this case the maternal18

phenotype or cue genes can act as selection-based sources of information, and this19

is the situation we study.20

In our model there are two environmental sources of information (Figure 1) that21

act as direct detection-based cues; during development each individual receives a22

cue of the current environment (�juvenile cue�) that can a�ect the adult phenotype;23

in addition each individual receives a further environmental cue as an adult that24

can be passed to o�spring. Both cues are subject to noise and so are not perfectly25

informative. There are also two selection-based cues; the phenotype of the mother26

and a quantitative genetic e�ect, present in the o�spring, that, in our model acts27

as a cue to the o�spring, but can also be seen as a breeding value for the trait28
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in question. The phenotype of an individual can depend on its juvenile cue, its1

mother's phenotype, the mother's adult cue and its inherited quantitative genetic2

cue genes, as well as developmental noise, the level of which is under selection (Figure3

1). As in Rivoire & Leibler (2014), our analysis involves two di�erent timescales;4

the environment, the distribution of maternal phenotypes and that of the genetic5

cue genes all vary from generation to generation, whereas the developmental system6

that integrates these cues is passed on to o�spring without error. We seek the7

developmental system that maximises the long-term growth rate in the number of8

individuals that employ this means of phenotype determination.9

It has been previously suggested that the use of a genetic cue determines its10

correlation with the environment and hence value as a cue (Leimar, 2009); a use11

it or lose it principle. For the �rst time we give an explicit demonstration of this12

principle. However, our main focus is on the interaction of the various cues, and how13

this interaction depends on the rate of environmental change and the accuracy of14

cues and information transmission. Some previous models (Rivoire & Leibler, 2014;15

English et al., 2015; Leimar & McNamara, 2015) have considered combinations of16

cues, but our model, which considers a speci�c purely temporarily varying environ-17

ment, allows an analytic expression for �tness and is, we believe, particularly suited18

to exposing the logic of cue integration. Unlike Rivoire & Leibler (2014) we allow19

separate inheritance channels so as to have a clear separation and analysis of the20

e�ects of selection based versus detection based cues, which are otherwise entangled.21

Although the synergy between detection and selection based cues has been previ-22

ously proposed (e.g., Kuijper & Hoyle, 2015), we give the �rst clear demonstration23

of the positive synergy between environmental cues and the maternal phenotype;24

the combination of these cues results in much higher �tness than when only one of25

these cues is used. In contrast, environmental cues and cue genes do not synergise26

in the same way and incorporating both does not always result in higher �tness.27

Thus, unlike recent models that analyse the evolutionary implications of subsets of28
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cues (e.g., Leimar et al., 2006; Shea et al., 2011; Kuijper et al., 2014; Leimar &1

McNamara, 2015; Kuijper & Hoyle, 2015; Kuijper & Johnstone, 2016) our analysis2

provides a general diagnosis of the conditions under which detection and selection-3

based in�uences on development are likely to evolve and/or coexist.4

METHODS5

We assume an asexual population with discrete, non-overlapping generations. There6

are two genetically determined elements. One is a quantitative e�ect that acts as a7

genetic cue to the developmental system. The other is the cue integration system8

itself. This system determines how the genetic cue, maternal phenotype, two types9

of environmental cues and noise jointly in�uence development and hence determine10

the adult phenotype. We allow the quantitative genetic trait to evolve for a given11

cue integration system, �nding the �tness of the cue integration system. We then12

�nd the cue integration system with the greatest �tness. Model details are similar13

to that of Rivoire & Leibler (2014). Both models allow the in�uence of detection14

based cues to be inherited (a form of Lamarkism) but in Rivoire & Leibler (2014)15

the mother passes a single quantity on to her o�spring. This quantity is a linear16

combination of the maternal phenotype, the cue received by the mother as an adult17

and the quantity passed on to the mother by her mother. In contrast, we allow for18

the maternal phenotype, the adult maternal cue and the genetic cue genes to be19

passed on to o�spring separately before the o�spring combines them to determine20

its phenotype (Figure 1).21

The environment. The environmental state in generation t is θ(t). The dy-22

namics are given by23

θ(t+ 1) = λθ(t) + εθ(t). (1)
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Here 0 < λ < 1 and εθ(t) ∼ N(0, σ2) is independent of current and previous envi-1

ronmental states. The stochastic process {θ(t); t = 0, 1, 2, · · · } is then a stationary2

Markov process with an equilibrium distribution that is normally distributed with3

mean 0 and variance4

Var(θ) =
σ2

1− λ2
. (2)

The parameter λ is the correlation coe�cient between environmental states at suc-5

cessive times; i.e.6

ρ(θ(t+ 1), θ(t)) = λ. (3)

The genetic cue. The quantitative genetic e�ect can take any real value.7

Surviving o�spring of a parent with genetic e�ect value z′ have e�ect value z =8

z′ + εZ , where εZ ∼ N(0, σ2
mut).9

Environmental cues. A juvenile in generation t receives two environmental10

cues that can a�ect its mature phenotype; it observes the juvenile cue CJ (where11

CJ ∼ N(θ, σ2
J)) and is passed the cue CA (where CA ∼ N(θ(t − 1), σ2

A)) that its12

mother observed as an adult (Figure 1). These cues are conditionally independent13

given these environmental states. Within a generation the cues received by di�erent14

population members are also conditionally independent resulting in a distribution15

of cues that is centred on the current environmental state. This distribution varies16

across generations as the environment varies.17

Phenotype determination. The adult phenotype of an individual is given by18

x = αz + βJcJ + βAcA + γ(m+ εm) + δεδ, (4)

where z is the value of its genetic e�ect, cJ is its juvenile environmental cue, cA19

is the adult environmental cue observed by her mother, m is the phenotype of the20

mother, εm ∼ N(0, σ2
m) is the error in transmission of the maternal phenotype to21

the o�spring and εδ ∼ N(0, 1) is a developmental noise term. Here α, βJ , βA, γ and22
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δ are non-negative genetically determined parameters that specify the action of the1

developmental system.2

Reproductive success. Reproductive success is a function of the �t of the3

phenotype to the environment; speci�cally an individual of phenotype x leaves4

Ke−
1
2

(x−θ)2

(5)

surviving o�spring when the environmental state is θ. Here K is a positive constant.5

Fitness. We evaluate the geometric mean �tness G(α, βJ , βA, γ, δ) of the devel-6

opmental system. Consider a large (essentially in�nite) cohort of individuals with7

this developmental system. Let X(t) be the phenotype of a randomly selected co-8

hort member and X̄(t) the mean phenotype in generation t. We show (Supporting9

Information, Section SI.1) that if within a generation the joint distribution of X(t)10

and the quantitative genetic e�ect are bivariate normal then they remain so in fu-11

ture generations. We thus assume that the distribution of X(t) given X̄(t) = x̄ is12

normal with mean x̄ and variance σ2
X . We also argue (SI.2) that this variance tends13

to a limiting stationary value, and we assume the cohort has achieved this value.14

Let θ(t) = θ and X̄(t) = x̄. Then, since the cohort is large (so that we can average15

over demographic stochasticity), between generation t and t + 1 the cohort grows16

by the factor17

R(θ, x̄) = KE(e−
1
2

(X(t)−θ(t))2|θ, x̄). (6)

Thus, using the fact that the conditional distribution of X(t) is normal we have18

R(θ, x̄) =
K√

1 + σ2
X

e
− 1

2
(x̄−θ)2

1+σ2
X . (7)

The geometric mean �tness of the developmental system is19

G(α, βJ , βA, γ, δ) = eE(lnR(θ,X̄), (8)
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where the expectation is taken with the respect to the stationary distribution of the1

vector process {(θ(t), X̄(t)) : t = 0, 1, 2, . . .}. Since X̄ − θ is symmetric about zero,2

and hence has mean 0 (SI.4) we have E((X̄ − θ)2) = Var(X̄ − θ). Thus3

G(α, βJ , βA, γ, δ) =
K√

1 + σ2
X

exp

[
−1

2

Var(X̄ − θ)
1 + σ2

X

]
. (9)

Note that �tness depends on the weights α, βJ , βA, γ, δ through their in�uence on4

both σX and Var(X̄ − θ). We denote the values of these weights that maximise5

�tness by α∗, β∗J , β
∗
A, γ

∗, δ∗.6

RESULTS7

Diversi�ed bet hedging8

Suppose that individuals receive no information on the current environmental9

state (α = βJ = βA = γ = 0) so that phenotype determination is given by x = δεδ.10

Then the best �xed trait value is x = 0 since the environment is symmetric about11

θ = 0. However, always maturing with this phenotype is not a robust strategy when12

the environmental variance is large, and a strategy that incorporates diversi�ed bet13

hedging will achieve greater geometric mean �tness (cf. Seger & Brockmann (1987)).14

Speci�cally, in SI.5 it is shown that the optimal phenotype determination is given15

by x = δ∗εδ, where δ
∗ = 0 for Var(θ) < 1 and δ∗ =

√
Var(θ)− 1 for Var(θ) ≥ 1.16

Environmental cue during development17

Suppose that juveniles receive a cue during development but no other cue so that18

x = βJcJ + δεδ. Since di�erent individuals receive di�erent cues (whose distribution19

centres on the underlying environmental state), producing a range of phenotypes20

within a generation, the need to have additional diversi�ed bet hedging is removed21

and δ∗ = 0 (SI.6). Thus we can restrict attention to phenotype determination of the22
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form x = βJcJ .1

Two values of βJ have an obvious statistical interpretation. βJ = 1 corresponds2

to using the minimum variance unbiased estimator for θ. This estimator has mean3

θ for all θ but has high variance within a generation. The arithmetic mean (over4

θ) annual growth in genotype numbers is maximised by setting βJ = βbayes, where5

βbayes = Var(θ)/(Var(θ) + σ2
J) is the Bayes posterior mean for θ given cue cJ . This6

method of phenotype determination results in a large discrepancy between the mean7

phenotype within a generation and θ when |θ| is large, and consequently has a high8

variance in annual growth. As Figure 2a illustrates, the optimal value of βJ is a9

compromise between these two values; i.e. βbayes < β∗J < 1. [See SI.6 for a proof.]10

Environmental cue received by the mother as an adult11

If an individual's only cue is that experienced by its mother as an adult (i.e.12

x = βAcA), the value of this cue depends on the likely change in the environment13

between the maternal and the current generation. As a result, the optimal weight14

put on this cue increases with increasing environmental autocorrelation λ (Figure15

2b).16

When an individual receives both adult maternal and juvenile cues during de-17

veloment (x = βJcJ + βAcA), it can be shown that β∗J + λβ∗A < 1 (SI.8). Since the18

juvenile cue is more up-to-date more weight should be placed on it when both cues19

have the same cue error variance; although as the environmental autocorrelation20

increases to its maximum value of 1 the weights become equal (Figure 2b). Similar21

e�ects of the degree of environmental stability were obtained by English et al. (2015)22

and Leimar & McNamara (2015). As can be seen from Figure 2c, in this example23

the juvenile cue is more important in terms of �tness than the maternal adult cue24

when λ is low. Both cues contribute signi�cantly to �tness for high environmental25

autocorrelation.26

Genetic cue27
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Suppose that the quantitative genetic e�ect is the only available cue and there1

is no randomisation, so that phenotype determination is given by x = αz. If this2

cue is ignored (α = 0), there is no selection on the genetic e�ect and its value is3

uninformative. As α increases the selection pressure on the genetic e�ect increases4

resulting in an increased correlation between the e�ect and the environmental state5

(Figure 3a), so that the e�ect acts as a selection-based source of information. In6

other words, the more notice is taken of the genetic e�ect the more informative is7

its value, leading to a feedback in which it should be used more. This feedback is8

limited; �tness declines for high α (Figure 3b) since too high a value leads to too9

much variation in the phenotype within a generation (high σ2
X , cf. equation (9)).10

As the environmental autocorrelation increases for given Var(θ), so that the11

environment varies more slowly but has the same variability, selection leads to a12

higher correlation between the genetic e�ect and the environmental state (Figure13

3a), leading to an increase in �tness (Figure 3b). This is in contrast to the e�ect of14

λ for a purely juvenile cue.15

Regardless of what combination of cues is available, the �tness of the optimal16

developmental system does not depend on the mutation rate of the e�ect genes17

since an increase in the mutation rate is equivalent to a proportionate decrease in18

the parameter α; �tness depends on α and σmut only through the product ασmut.19

(This can be deduced from SI.2 - SI.4.) When there is just the genetic cue it may20

be optimal to have some randomisation (δ∗ > 0). The range of environmental21

parameters for which randomisation is optimal is explored in Rivoire & Leibler22

(2014).23

Figures 3c,d illustrate optimal phenotype determination when there is both a24

genetic and a juvenile cue. In this case no additional randomisation is required25

(δ∗ = 0). Figure 3c illustrates the optimal norm of reaction to the juvenile cue for two26

values of the genetic e�ect. As can be seen, the slope of the norm of reaction is less27

and in�uence of the genetic e�ect is stronger when the environmental autocorrelation28
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is higher. Figure 3d shows the amount of phenotypic variation that is attributed to1

the in�uence of each cue. (Since �tness depends on the parameter α only through2

ασmut, in presenting results we have shown the breakdown of total variance rather3

than showing α∗.) For low values of the environmental autocorrelation λ the genetic4

cue is not used even though this cue would have been used had the juvenile cue5

not been available, illustrating a certain lack of synergy between these cues. As λ6

increases the amount of phenotypic variation due to the in�uence of the genetic cue7

increases rapidly and that due to juvenile cue falls sharply. Further computation (not8

shown) reveal that the value of λ below which the genetic cue is ignored increases9

as the variance in the juvenile cue decreases.10

Maternal phenotype as a cue11

Since the reproductive success of the mother depends on the �t between her12

phenotype and the environment, the fact that an individual has been born suggests13

that her mother's phenotype was close to the environmental state. Thus maternal14

phenotype can act as a selection-based source of information during development.15

When the maternal phenotype is the only developmental cue, there is error-free16

transmission of information on the maternal phenotype to o�spring (σ2
m = 0) and17

no developmental noise (δ = 0), all phenotypes quickly reduce to m = 0 and the18

maternal phenotype becomes uninformative. Thus in order that the maternal phe-19

notype contains useful statistical information, it is necessary to include transmission20

error or developmental noise so as to maintain variation within a generation which21

selection can act on. This can be seen as a timescale issue; if there is no variation the22

developmental system is committed to existing in a single phenotype, which is then23

an evolutionary dead end when the environment changes. By incorporting variation24

the developmental system always ensures that at all future times it is present in25

some individuals that do well.26

As Figure 4a shows, when variation is maintained the correlation between mater-27
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nal phenotype and the environmental state increases with increasing λ, increasing1

the value, and hence the weight, put on the maternal phenotype as a cue, and less2

developmental noise is required (Figure 4b). Transmission error perfectly substitutes3

for developmental noise, provided the variation generated by our chosen transmis-4

sion error does not exceed that which is optimal (Figure 4b). In all cases, �tness is a5

strictly increasing function of λ (Figure 5b). Note that, unlike the model of Kuijper6

& Johnstone (2016), successive environments are always positively autocorrelated7

in our model so that we always have γ∗ ≥ 0.8

As Figure 4b illustrates, we always have δ∗ > 0 when σ2
m = 0. In particular,9

even though δ∗ = 0 when the phenotype is determined by x = δεδ when Var(θ) ≤ 110

(see above), we have δ∗ > 0 when phenotype determination is via x = γm + δεδ;11

illustrating the synergy between noise and the in�uence of the maternal phenotype.12

Maternal phenotype and juvenile cue: cross-generational environmen-13

tal cue integration14

We now consider the case where an individual can respond to the environmental15

cue during development (the juvenile cue) and to the phenotype of her mother. It has16

previously been suggested that the maternal phenotype may encapsulate previous17

environmental cues (Townley & Ezard, 2013; Kuijper & Hoyle, 2015). To investigate18

this e�ect in this context and to motivate the form of trait determination, let c0, c−1,19

c−2, ... be the juvenile cues received by the individual, her mother, her grandmother,20

and so on. During development it would be clearly advantageous, but not realistic,21

for an individual to have available all the juvenile cues received by its ancestors. It22

might nevertheless be reasonable to assume some suitable summary of these past23

cues is passed on. To explore this idea we note that, in the absence of censoring24

(due to di�erential mortality), it is straightforward to show that the Bayes posterior25
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mean of the current environmental state given c0, c−1, c−2, c−3, · · · can be written as1

ĉ0 = (1− κ)[c0 + κλc−1 + (κλ)2c−2 + (κλ)3c−3 + · · · ], (10)

where the constant κ is a function of λ, σ and σJ (cf. Townley & Ezard (2013)). This2

posterior mean is a su�cient statistic for the current environmental state, and can be3

written as ĉ0 = (1−κ)c0 +κλĉ−1, where ĉ−1 is the corresponding posterior mean for4

the mother. Assuming the phenotype determination satis�es x = β̂J ĉ0, we can thus5

write this trait as x = (1−κ)β̂JcJ +κλm, where, in keeping with previous notation,6

we now denote the current juvenile cue c0 by cJ and the phenotype of the mother by7

m. This analysis shows that if phenotype determination is of the form x = βJcJ+γm8

then the maternal phenotype provides information in two di�erent ways. As before9

it provides selection-based information, but now that there is a juvenile cue, it also10

encapsulates information from previous juvenile cues. This increases the correlation11

between maternal phenotype and the current environmental state (Figure 4a), and12

hence increases the value of the maternal phenotype as a cue. Consequently the13

maternal phenotype should always be used as a cue (γ∗ > 0) when both are available14

(SI.9). This is in contrast to the combination of maternal adult cue and maternal15

phenotype, when it can be the case that γ∗ = 0 (Uller et al., 2015).16

As the environmental autocorrelation increases the maternal phenotype becomes17

a more valuable cue both because the past selective environment has been more sta-18

ble and because past juvenile cues are more relevant to current conditions. Thus19

under optimal phenotype determination more weight is given to the maternal phe-20

notype as a cue and less to the current juvenile cue (Ezard et al., 2014; Uller et al.,21

2015), although relative weights depend on cue error variances and the �delity in22

transmission of the maternal phenotype (Figure 4c).23

Comparison of genetic and maternal cues24
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Figure 5a illustrate how cues perform in combination. When the maternal phe-1

notype is the only cue �tness is very similar to that when the genetics e�ect is2

the only cue (the maternal cue is slightly superior as it is transmitted to o�spring3

without error here, whereas the genetic e�ect mutates), so that the two cues are4

essentially interchangeable. Furthermore, very little is gained by allowing both cues5

at the same time. However, the situation is completely di�erent when there is a6

juvenile environmental cue; the synergy between this cue and the maternal pheno-7

type results in signi�cantly higher �tness than the combination of juvenile cue and8

genetic cue, which have no synergy. Furthermore, the genetic e�ect is not used when9

this third cue is available in this setting. Adding the genetic e�ect to the other two10

cues is rarely advantageous, although its inclusion increases �tness slightly when11

there is developmental noise and λ is very close to 1 (not illustrated).12

Adding noise to the transmission of the maternal phenotype reduces the ad-13

vantage of the maternal cue and juvenile cue combination (Figure 5b), but this14

combination remains superior to that of the genetic and environmental cue even15

when there is considerable noise unless the environmental autocorrelation is close to16

λ = 1.17

The combination of juvenile and adult maternal environmental cues is inferior18

to the combination of juvenile and maternal phenotype (Figure 5a) unless there is19

signi�cant error in transmission of her phenotype (Figure 5b), since the maternal20

phenotype encapsulate information on earlier environments. Furthermore adding21

the adult maternal cue to the juvenile and maternal phenotype only produced a22

small increase in �tness (Figure 5a).23

24
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Ecological conditions Detection based Selection based
Env. auto-
correlation

Env. cues Phenotype
inheritance

Juvenile
cue

Adult
cue

Maternal
pheno-
type

Genes

low any any 3 7 7 7

high accurate very inac-
curate

33 33 7 3

high inaccurate very inac-
curate

3 3 7 33

high inaccurate accurate 3 3
77 33

33 77

high accurate accurate 33 33 33 7

Table 1: The combination of cues that is predicted under various combinations of
factors (the degree of environmental autocorrelation, the accuracy of environmental
cues and the accuracy with which the mother's phenotype can be passed to o�-
spring). A single tick denotes signi�cant selection pressure to use a cue, a cross
denotes very weak selection pressure, double ticks or crosses denote very strong or
extremely weak pressure, respectively. Under the fourth condition there are two
alternative best methods of phenotype determination; rely heavily on the maternal
phenotype or rely on genes (but not both). Note that although the maternal phe-
notype is categorised as a selection-based cue, it can incorportate detection-based
information (see text).

DISCUSSION1

We allow the development of an individual to be a�ected by four cues. Two are2

directly observed environmental cues; a juvenile cue that the individual experienced3

during development and a cue experienced by her mother as an adult and passed4

to the individual. Two are selection based cues; a quantitative genetic e�ect and5

the phenotype of the mother. The three cues passed on from the mother use sepa-6

rate inheritance channels (Figure 1) so as to give a clear separation of the e�ects of7

selection-based versus detection-based cues. Our main focus is on the interaction of8

the various cues, and how this depends on environmental variance and autocorre-9

lation, the accuracy of environmental cues and the accuracy of transmission of the10

maternal phenotype. We give the �rst clear demonstration of the positive synergy11

between environmental cues and the maternal phenotype and lack of synergy be-12

tween environmental and cue genes. In addition we show that the juvenile cue can13
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act as a randomisation device, analyse the feedback between use of a genetic cue1

and its value as a cue, and highlight issues of timescale. Table 1 summarises the2

relative in�uences of the cues that are predicted by our model.3

When the environmental autocorrelation is low the mature phenotype mainly4

depends on the juvenile cue since the maternal adult cue is out of date (Figure 2a)5

and the selection-based cues are poorly correlated with the current environmental6

state (see e.g. Figure 3a). There is a strong dependence on the juvenile cue if it is7

accurate, but even an inaccurate cue acts as a source of phenotype diversi�cation8

and removes the need to bet hedge via developmental noise when the environmental9

variance is high. In our model cues received by di�erent population members are10

uncorrelated given the environment. For example, if the environmental state rep-11

resented mean food availability, the actual amount found by di�erent individuals12

might be centred on this mean but vary in an uncorrelated way due to good and13

bad luck when foraging. However, any cue, even if inaccurate, which gave a spread14

of estimates of the environmental state, could potentially obviate the need to have15

truly randomised phenotype determination; although noise in gene expression will16

inevitably introduce some randomisation in development (Eldar & Elowitz, 2010).17

When the environmental autocorrelation is high and there is high error in the18

transmission of the information on the maternal phenotype to o�spring, the quan-19

titative genetic e�ect is always used as a cue, although the relative weight put on20

this cue depends on both the strength of the autocorrelation and the accuracy of21

the two environmental cues.22

The strength of selection on cue genes increases with their in�uence in develop-23

ment; a �use it or lose it� principle that we demonstrate for the �rst time (Figure24

3a). This result relates to the �nding of Kawecki (2000) that the e�ect of a mod-25

i�er changes the selection on structural genes. Analogous feedback also occurs in26

models of phenotype determination in spatially heterogeneous environments. For27

example, if population members are natally philopatric then they tend to be born28

17



in local habitats to which they are already adapted, so that it can be optimal to be1

natally philopatric, ignoring developmental cues that have signi�cant probability of2

error (McNamara & Dall, 2011). If, however, population members took notice of3

such cues they would disperse more and might not be particularly adapted to their4

birth habitat. It would then be better to take notice of developmental cues; i.e. not5

be natally philopatric. The presence of feedbacks raises the possibility that there6

may be more than one local �tness optima (Dall et al., 2015), although the �tness7

landscapes appears unimodal in the cases illustrated in Figure 3.8

When the environment is highly autocorrelated and there is high �delity in the9

inheritance of information on the maternal phenotype, both genetic and maternal-10

phenotype selection-based cues act in a similar manner, and are alternative means11

of phenotype determination, when detection-based cues are inaccurate (Figure 5a).12

However, these interact in very di�erent ways with the detection-based environ-13

mental cues when the latter are accurate, since the maternal phenotype acts as a14

summary of previous detection-based cues (a sort of phenotypic memory sensu Kui-15

jper & Johnstone (2016)). Consequently, the combination of environmental cue and16

maternal phenotype achieves greater �tness than the combination of environmen-17

tal cue and genetic cue, provided that the maternal phenotype can be accurately18

passed on to o�spring (Figure 5a). In both our model and that of Rivoire & Leibler19

(2014) a juvenile cue in�uences the adult phenotype, which in turn is passed on20

to o�spring. This is essentially a form of Lamarckism (by which we mean the in-21

heritance of detection-based cues). From our analysis, this model of transmission22

seems to be a very e�cient way of integrating information, but real organisms might23

not have mechanisms that can achieve it with high accuracy (except for cultural in-24

heritance), so Lamarckian e�ects could be limited by a noisy transmission of the25

maternal phenotype.26

In contrast to the model of Rivoire & Leibler (2014) our model has several27

channels of transmission from parent to o�spring (Figure 1), for instance separate28

18



channels for quantitative genetic e�ects and adult cues. This often corresponds1

to biological reality, perhaps as a consequence of evolution latching on to di�erent2

feasible implementations of transgenerational e�ects. For instance, a transfer of3

a substance from mother to o�spring might be a mechanism that more readily4

evolves than an integration of adult cues into the hereditary material. Well studied5

cases of such mechanisms include the "egg foam factor" that plays a part in the6

determination of the gregarious morph of desert locusts (Miller et al., 2008), and7

alpha-Tocopherol (a vitamin E) inducing rotifer morphs by being transmitted to8

o�spring (Gilbert, 2016).9

We have not explicitly investigated the role that the strength of selection might10

play, but previous work has shown that selection-based cues become more informa-11

tive as selection increases in strength (Leimar et al., 2006; Kuijper & Hoyle, 2015),12

although in contrast, Uller et al. (2015) (equation 2.21 and below) �nd that in-13

heritance of the maternal phenotype (through incomplete resetting of an epigenetic14

mark) is favoured when selection is weak. In our model we take cue or transmission15

accuracy as a given parameter. Future work might consider the evolution of channel16

accuracy. This issue would be expecially important when extending our analysis to17

social transmission of information and in the more complex case of the transmission18

of multivariate maternal e�ects (Townley & Ezard, 2013; Kuijper et al., 2014; Chevin19

& Lande, 2015). Our model also does not take into account environmental changes20

during the lifetime of an organism (see, e.g. Nettle et al. (2013)). An obvious exten-21

sion would be to incorporate both changes between and within generations within22

the same model. In such a setting information passed across generations would23

act as a Bayesian prior that would then be updated during the lifetime (Stamps &24

Frankenhuis, 2016).25
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FIGURE CAPTIONS10

Figure 1. Phenotype determination of an individual in generation t. In genera-11

tion t− 1 the mother receives a juvenile environmental cue during development and12

then matures, at which time her phenotype is set. Her reproductive success is a13

function of this phenotype and the current environmental state. She also receives14

a further environmental cue as an adult. This cue doe not a�ect her phenotype,15

which is already set, but is passed on to any o�spring in generation t, along with16

the information about her phenotype and her mutated cue genes. These three cues,17

together with an environmental cue received as a juvenile, determine the phenotype18

of the o�spring. There are thus two detection-based cues; the adult maternal en-19

vironmental cue and the juvenile environmental cue, and two selection-based cues;20

the maternal phenotype and cue genes. Note that if phenotypes are in�uenced by21

environmental cues, the mother's phenotype as a cue will combine elements of de-22

tection and selection (see text).23

24

23



Figure 2. Individuals may receive one or both of two environmental cues; a1

juvenile cue during development and a cue passed on from the mother that the2

mother received as an adult. (a) E�ect of the environmental variance when indi-3

viduals receive only a juvenile cue. Solid curve: the optimal juvenile cue weight4

β∗J for three value of the juvenile cue error variance (top curve σ2
J = 0.5, middle5

curve σ2
J = 2.5, bottom curve σ2

J = 10). Dashed curve below the corresponding6

solid curve: the value βbayes such that βbayescJ is the Bayes posterior mean for θ7

given the cue cJ . [Note that β∗J is the same for all combinations of the values of8

σ2 and λ that result in the same value of Var(θ); this result can be derived from9

the formulae in SI.4]. (b) E�ect of the environmental autocorrelation on optimal10

cue weights. Top two curves: individuals receive just one of the cues. Bottom two11

curves: individuals receive both cues. (β∗J solid curve, β∗A dashed curve.) (c) E�ect12

of the environmental autocorrelation on �tness of the optimal developmental system13

when only the adult cue to the mother is available (bottom curve), only the juvenile14

cue is available (middle curve) and both cues are available (top curve). In (b) and15

(c), cue error variances σ2
J = σ2

A = 2.5, and as λ increases σ is decreased so that the16

environmental variance if held �xed at the value Var(θ) = 2.5.17

18

Figure 3. Quantitative genetic e�ect as a cue. (a) Correlation between the ge-19

netic e�ect and the environmental state (taken across individuals and generations)20

when there are no other cues. Solid curve λ = 0.95, dashed curve λ = 0.85. Mu-21

tation variance σ2
mut = 1.0. (Correlations derived from the formulae in SI.4). (b)22

Fitness of the developmental system for the cases considered in (a). (c) Optimal23

norms of reaction to the juvenile cue (x = α∗z + β∗JcJ) for two values of the ge-24

netic e�ect (blue, genetic e�ect z = 0; red, genetic e�ect z = 1), shown for two25

values of the environmental autocorrelation (solid curves, λ = 0.95; dashed curves,26

λ = 0.85). (d) Breakdown of the total phenotypic variance (both within and across27

generations) under optimal phenotype determination. Solid curve: variation ex-28
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plained by response to the juvenile cue ((β∗J)2σ2
J), dashed curve: variation explained1

by response to the genetic e�ect (α∗)2Var(Z)), dotted curve: variation explained2

by the interaction between these cues (2α∗β∗JCov(Z,CJ)). [Here Z and CJ are the3

genetic e�ect value and juvenile cue value, respectively, of a randomly selected popu-4

lation member in a random generation.] In all cases σ is chosen so that Var(θ) = 2.5.5

6

Figure 4. The maternal phenotype as a cue. (a) Correlation between the7

maternal phenotype and the current environmental state under optimal phenotype8

determination. Solid curve: when there is no other cue but developmental noise is9

allowed (so that the phenotype is determined as x = γ∗m + δ∗εδ). Dashed curves:10

when in addition there is also a juvenile cue during development (top dashed curve11

σ2
J = 1.0, lower dashed curve σ2

J = 2.5. Transmission of maternal phenotype infor-12

mation is error free (σ2
m = 0). (b) Optimal phenotype determination when maternal13

phenotype is the only cue and there is developmental noise. Solid curve: the weight14

given to the maternal phenotype γ∗. Dashed curve: the amount of randomisation15

δ∗. In each case the upper (blue) curve corresponds to transmission of the mater-16

nal phenotype without error (σ2
m = 0) and the lower (red) curve to σ2

m = 0.5. (c)17

Optimal phenotype determination when the maternal phenotype is a cue and there18

is a juvenile cue. Dashed curves show weights (β∗J) given to the juvenile cue and19

solid curves show weights given to the maternal phenotype. Cases illustrated are:20

(i) σ2
J = 1.0, σ2

m = 1.5, (ii) σ2
J = 1.0, σ2

m = 0, (iii) σ2
J = 2.5, σ2

m = 0. In all �gures,21

as λ increases σ is decreased so that the environmental variance if held �xed at the22

value Var(θ) = 2.5.23

24

Figure 5. The �tness under optimal phenotype determination for various com-25

binations of cues. (a) Dotted lines are top: juvenile cue + adult maternal cue,26

bottom: juvenile cue alone. Other curves are (from top to bottom): maternal phe-27

notype + juvenile cue + adult maternal cue, maternal phenotype + juvenile cue,28

25



genetic cue + juvenile cue, maternal phenotype + genetic cue, maternal phenotype1

alone, genetic cue alone. σ2
m = 0 throughout. Random phenotype determination2

is allowed although δ∗ = 0 except for the maternal phenotype alone case. (b)3

Dashed curve is for the combination of the genetic cue and juvenile cue. Other4

curves are all for the combination of maternal cue and juvenile cue, with the er-5

ror of transmission of the maternal cue (σ2
m) increasing from top to bottom (cases6

shown, σ2
m = 0, 0.1, 0.25, 1.0, 2.5). In both �gures, as λ increases σ is adjusted so7

that Var(θ) = 2.5. Juvenile cue error variance σ2
J = 2.5. Adult maternal cue error8

variance σA = 2.5.9
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Figure 2c1
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Figure 3c1
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Figure 4c1
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Supporting Information.1

As in the main text we suppose that the adult phenotype of an individual is2

given by3

x = αz + βJcJ + βAcA + γ(m+ εm) + δεδ, (11)

where z is the value of its genetic e�ect, cJ is its juvenile environmental cue, cA4

is the adult environmental cue observed by her mother, m is the phenotype of the5

mother, εm ∼ N(0, σ2
m) is the error in transmission of the maternal phenotype to6

the o�spring and εδ ∼ N(0, 1) is a developmental noise term. Here α, βJ , βA, γ7

and δ are non-negative genetically determined parameters that specify the action of8

the developmental system. We analyse the dynamics over time of a large (in�nite)9

cohort of individuals all of which have a developmental system speci�ed by the same10

parameters α, βJ , βA, γ, δ .11

12

Consider the characteristics of a randomly chosen member of generation t. The13

following three random variables are central to our analysis:14

X(t) = phenotype of the individual.15

Z(t) = genetic cue trait of the individual.16

M(t) = phenotype of individual's mother.17

We make the assumption that the joint distribution of X(0) and Z(0) is bivariate18

normal.19

SI.1. Change in the joint distribution of X and Z over one generation20

21

In this section we show that this joint distribution remains bivariate normal in22

subsequent generations. We also derive equations showing how within-generations23

means and variances change.24

25
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We begin by conditioning on a realisation of the stochastic process {θ(t) : t =1

0, 1, 2, . . .}.2

3

Lemma 14

Suppose that the joint distribution of X(t) and Z(t) is bivariate normal with:5

E(X(t)) = x̄,6

E(Z(t)) = z̄,7

Var(X(t)) = σ2
X ,8

Var(Z(t)) = σ2
Z ,9

Cov(X(t), Z(t)) = σXZ .10

Then the joint distribution of M(t+ 1) and Z(t+ 1) is bivariate normal with:11

E(M(t+ 1)) =
x̄+θ(t)σ2

X

1+σ2
X

,12

E(Z(t+ 1)) = z̄ + ( σXZ
1+σ2

X
)(θ(t)− x̄),13

Var(M(t+ 1)) =
σ2
X

1+σ2
X
,14

Var(Z(t+ 1)) = σ2
mut + σ2

Z −
σ2
XZ

1+σ2
X
,15

Cov(M(t+ 1), Z(t+ 1)) = σXZ
1+σ2

X
.16

17

Proof of lemma 1. It is convenient to set ∆ = σ2
Xσ

2
Z − σ2

XZ . Let fXZ(x, z)18

denote the joint probability density function (pdf) of the two random variables X(t)19

and Z(t). Then since the joint distribution is bivariate normal we have20

−2 ln fXZ(x, z) = KXXx
2 − 2KXZxz +KZZz

2 + 2KXx+ 2KZz + constant, (12)

where21

KXX =
σ2
Z

∆
,22

KXZ = σXZ
∆
,23

KZZ =
σ2
X

∆
,24

KX =
(σXZ z̄−σ2

Z x̄)

∆
,25
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KZ =
(σXZ x̄−σ2

X z̄)

∆
.1

2

Consider the distribution of those o�spring produced in this generation. Let3

M be the phenotype of the parent of a randomly selected o�spring (this random4

variable isM(t+1)). Also let Z ′ be the genetic cue value of a randomly selected o�-5

spring before mutation of the genetic cue genes, which is the genetic cue value of its6

mother. Let fMZ′(m, z
′) denote the joint pdf ofM and Z ′. Then because of di�eren-7

tial number of recruits this density function is proportional to fXZ(m, z′)e−(m−θ)2/2.8

Thus9

−2 ln fMZ′(m, z
′) = (KXX+1)m2−2KXZmz

′+KZZz
′2+2(KX−θ(t))m+2KZz

′+constant.

(13)

This is the pdf of a bivariate normal distribution where10

KXX + 1 =
σ2
Z′

∆̂
,11

KXZ =
σMZ′

∆̂
,12

KZZ =
σ2
M

∆̂
,13

KX − θ(t) =
(σMZ′ z̄

′−σ2
Z′m̄)

∆̂
,14

KZ =
(σMZ′m̄−σ2

M z̄
′)

∆̂
,15

and where ∆̂ = σ2
Mσ

2
Z′ − σ2

MZ′ , E(M) = m̄ and E(Z ′) = z̄′. From the �rst three of16

these equations we deduce that17

∆̂ =
∆

1 + σ2
X

. (14)

Thus, from these three equations we have18

σ2
M =

σ2
X

1 + σ2
X

, (15)

19

σMZ′ =
σXZ

1 + σ2
X

, (16)
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σ2
Z′ = σ2

Z −
σ2
XZ

1 + σ2
X

. (17)

From the remaining two equations we then have1

m̄ =
x̄+ θ(t)σ2

X

1 + σ2
X

, (18)

2

z̄′ = z̄ + (
σXZ

1 + σ2
X

)(θ(t)− x̄). (19)

Adding mutation to the genetic cue value then gives the results stated in the lemma.3

4

Lemma 25

Suppose that the joint distribution of X(t) and Z(t) is bivariate normal with:6

E(X(t)) = x̄,7

E(Z(t)) = z̄,8

Var(X(t)) = σ2
X ,9

Var(Z(t)) = σ2
Z ,10

Cov(X(t), Z(t)) = σXZ .11

Then the joint distribution of X(t+ 1) and Z(t+ 1) is bivariate normal with:12

13

E(X(t+1)) = αz̄+βJθ(t+1)+βAθ(t)+
1

1 + σ2
X

[
(ασXZ + γσ2

X)θ(t) + (γ − ασXZ)x̄
]
,

(20)14

E(Z(t+ 1)) = z̄ + (
σXZ

1 + σ2
X

)(θ(t)− x̄), (21)

15

Var(X(t+ 1)) = α2(σ2
mut + σ2

Z) + (
1

1 + σ2
X

)(γ2σ2
X − α2σ2

XZ + 2αγσXZ) + η2, (22)

16

Var(Z(t+ 1) = σ2
mut + σ2

Z −
σ2
XZ

1 + σ2
X

, (23)

17

Cov(X(t+ 1), Z(t+ 1)) = α(σ2
mut + σ2

Z) + (
σXZ

1 + σ2
X

)(γ − ασXZ), (24)

where η2 = β2
Jσ

2
J + β2

Aσ
2
A + γ2σ2

m + δ2.18
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1

Proof of lemma 2. Since phenotypes are determined via x = αz + βJcJ +2

βAcA + γ(m+ εm) + δεδ, we see that X(t+ 1) can be expressed as3

X(t+ 1) = αZ(t+ 1) + γM(t+ 1) + V, (25)

where V = βJCJ + βACA + γεm + δεδ. Since CJ ∼ N(θ(t + 1), σ2
J) and CA ∼4

N(θ(t), σ2
A) we have V ∼ N(βJθ(t + 1) + βAθ(t), η

2). Note that V is conditionally5

independent of Z(t+ 1) and M(t+ 1) given the process {θ(t) : t = 0, 1, 2, . . .}. Thus6

the joint distribution of X(t+ 1) and Z(t+ 1) is bivariate normal.7

8

From this decomposition we have9

E(X(t+ 1) = αE(Z(t+ 1)) + γE(M(t+ 1)) + βJθ(t+ 1) + βAθ(t). (26)

Thus by Lemma 110

E(X(t+1)) = αz̄+βJθ(t+1)+βAθ(t)+
1

1 + σ2
X

[
(ασXZ + γσ2

X)θ(t) + (γ − ασXZ)x̄
]
.

(27)

This establishes equation (20). Equations (21) and (23) were already proved in11

Lemma 1. To prove equation (22) we note that from equation (25) that we have12

Var(X(t+1)) = α2Var(Z(t+1))+γ2Var(M(t+1))+2αγCov(Z(t+1),M(t+1))+η2.

(28)

The result then follows by substituting the values of Var(Z(t + 1)), Var(M(t + 1))13

and Cov((Z(t+ 1),M(t+ 1)) from Lemma 1. From equation (25) we also have14

Cov(X(t+ 1), Z(t+ 1)) = αVar(Z(t+ 1)) + γCov(M(t+ 1), Z(t+ 1)). (29)
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Equation (24) then follow by substituting from Lemma 1.1

By our assumptions that the joint distribution of X(0) and Z(0) is bivariate2

normal and Lemma 2, we deduce that the joint distribution of is X(t) and Z(t) also3

bivariate normal in every generation.4

SI.2. Equilibrium variance and covariance values within a generation5

6

The change in variance and covariance values in the above is independent of the7

environmental process. By Lemma 2 the value at t + 1 (primed quantities) can be8

expressed in terms of the value at t as9

10

σ′2X = α2(σ2
mut + σ2

Z) + (v−2)(γ2σ2
X − α2σ2

XZ + 2αγσXZ) + η2, (30)
11

σ′2Z = σ2
mut + σ2

Z − v−2σ2
XZ , (31)

12

σ′XZ = α(σ2
mut + σ2

Z) + v−2σXZ(γ − ασXZ). (32)

where v2 = 1 + σ2
X . To investigate whether these quantities tend to limiting values13

over time we performed the following calculation. First note that by multipling both14

sides of equation (31) by α2 and both sides of equation (32) by α then σmut only15

appears in terms where it is a product with α. Thus, without loss of generality16

we can scale quantities so that σmut = 1. We then chose 10000 combinations of17

the parameters α, γ and η2, where for each combination the values of these three18

parameters was chosen independently from a uniform distribution on the interval19

(0, 2). For each parameter combination we chose 10000 combinations of the initial20

values of σ2
X , σ

2
Z and σXZ , where for each combination σ2

X and σ2
Z were both chosen21

independently from a uniform distribution on the interval (0, 10) and we set σXZ =22

rσXσZ , where the correlation coe�cient r was chosen independently from a uniform23

distribution on the interval (−1, 1). For each of these 108 combinations of parameters24

and initial values we iterated the above updating scheme N times, recording the25
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absolute di�erence between the �nal and penultimate values of the three variables1

σ2
X , σ

2
Z and σXZ . We then set dXX to be the maximum over all 108 runs of these2

absolute di�erences for σ2
X , with dXZ and dZZ similarly de�ned. When N = 10003

the values of dXX , dXZ and dZZ were all less than 10−10. However, when we set4

N = 100 we noted that for those combinations of parameter values with small α5

the covariance term was slow to converge, presumably because there is then weak6

selection on the quantitative genetic e�ect. We therefore repeated our similation7

with the values of α chosen independently from a uniform distribution on the interval8

(0.1, 2). For this simulation we recorded dXX = 0.00000068, dXZ = 0.00001133 and9

dZZ = 0.00000175.10

Given the above simulations it seems reasonable to assume that the iterative11

scheme for σ2
X , σ

2
Z and σXZ converges, albeit rather slowly for small values of α.12

We therefore make this assumption and seek the limiting values of these quantities13

analytically. To do so we set σ′2X = σ2
X , σ

′2
Z = σ2

Z and σ′XZ = σXZ to obtain three14

simultaneous equations. From equation (31) we obtain15

σXZ = vσmut. (33)

Feeding this into equations (30) and (32) we obtain16

v4 − ασmutv3 − (γ2 + 1 + η2)v2 − αγσmutv + γ2 = 0. (34)

Since v2 = 1 + σ2
X , we seek a solution of this equation in the range v > 1.17

18

Lemma 3. (Existence and uniqueness)19

Equation (34) has a unique solution in the range v > 1.20

21

Proof of lemma 3. To investigate whether there exist a solution to equation22

41



(34) we set1

f(v) = v4 − ασmutv3 − (γ2 + 1 + η2)v2 − αγσmutv + γ2. (35)

Then it is easily veri�ed that f(1) < 0 and that f(v) → ∞ as v → ∞. Thus there2

must exist v > 1 such that f(v) = 0. We denote the minimum such value by v̂.3

Note that f(v) < 0 for 1 ≤ v < v̂ and f(v̂) = 0. It follows that f ′(v̂) ≥ 0.4

We next show that this v̂ cannot be a double root. To do so we note that5

vf ′′(v)− 3f ′(v) = 3ασmutv
2 + 4(γ2 + 1 + η2) + 3αγσmut. (36)

Since all the coe�cients on the right hand side of this equation are non-negative,6

and at least one is positive we have v̂f ′′(v̂) > 3f ′(v̂). Thus, if we had f ′(v̂) = 0,7

then this would imply that f ′′(v̂) > 0, so that f would have a strict local minimum8

at v = v̂, contradicting the fact that f(v) < 0 for 1 ≤ v < v̂. It follows that we must9

have f ′(v̂) > 0.10

Set h(v) = vf ′(v) − 4f(v). Note that since f(v̂) = 0 and f ′(v̂) > 0 we have11

h(v̂) > 0. Now suppose that there is at least one further root of equation (34) that12

is greater than v̂. Let v1 be the minimum such root. Then since f ′(v̂) > 0 we must13

have f(v) > 0 for v̂ < v < v1. Since f(v1) = 0 we thus have f ′(v1) ≤ 0. Its follows14

that h(v1) ≤ 0. But from the de�nition of the function f we have15

h(v) = ασmutv
3 + 2(γ2 + 1 + η2)v2 + 3αγσmutv − 4γ2. (37)

so that h(v) is a strictly increasing function of v. Thus contradict the fact that16

h(v̂) > 0 and h(v1) ≤ 0. We conclude that there is no such root v1 and that the17

equation f(v) = 0 has a unique solution for v ≥ 1.18

19
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SI.3. The vector process1

2

Set:3

X̄(t) = mean phenotype in generation t.4

Z̄(t) = mean genetic cue value in generation t.5

Here we derive the dynamics of the vector stochastic process {(θ(t), X̄(t), Z̄(t)) : t =6

0, 1, 2, . . .}.7

8

From equation (33) we can write9

E(X(t+1)) = αZ̄(t)+βJθ(t+1)+(βA+γ)θ(t)+(γv−2−αv−1σmut)(X̄(t)−θ(t)) (38)

and10

E(Z(t+ 1)) = Z̄(t) + v−1σmut(θ(t)− X̄(t)). (39)

From the above we see that the vector process {(θ(t), X̄(t), Z̄(t)) : t = 0, 1, 2, . . .}11

has dynamic equations given by12

θ(t+ 1) = λθ(t) + εθ(t), (40)

13

X̄(t+ 1) = αZ̄(t) + (λ+ A)θ(t) + (B − L)(X̄(t)− θ(t)) + βJεθ(t) (41)
14

αZ̄(t+ 1) = αZ̄(t) + L(θ(t)− X̄(t)). (42)

where15

A = λ(βJ − 1) + βA + γ,16

B = v−2γ,17

L = αv−1σmut.18

19
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SI.4. Equilibrium across-generational variances and covariances for1

mean values2

3

We now assume that vector stochastic process {(θ(t), X̄(t), Z̄(t)) : t = 0, 1, 2, . . .}4

has a stationary distribution, and �nd the various variances and covariances of the5

components at this equilibrium.6

7

Set8

D(t) = X̄(t)− θ(t),9

Ẑ(t) = αZ̄(t),10

and consider the vector process {(θ(t), D(t), Ẑ(t)) : t = 0, 1, 2, . . .}. By the equa-11

tions for the process {(θ(t), X̄(t), Z̄(t)) : t = 0, 1, 2, . . .} we have12

13

θ(t+ 1) = λθ(t) + εθ(t), (43)
14

D(t+ 1) = Ẑ(t) + Aθ(t) + (B − L)D(t) + (βJ − 1)εθ(t), (44)
15

Ẑ(t+ 1) = Ẑ(t)− LD(t). (45)

16

We now assume stationarity in these equations so that means and variances do not17

depend on t. From equation (45) we see that18

E(Ẑ(t+ 1)) = E(Ẑ(t))− LE(D(t)). (46)

Thus assuming stationarity, so that E(Ẑ(t+ 1)) = E(Ẑ(t)) we have E(D) = 0. Thus19

E(X̄) = E(θ) = 0. (47)
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From equation (43) we have1

Var(θ(t+ 1)) = λ2Var(θ(t)) + σ2. (48)

Thus assuming that Var(θ(t+ 1)) = Var(θ(t)) = Var(θ) we have2

Var(θ) =
σ2

1− λ2
; (49)

i.e. equation (2) of the main text. Taking variances in equation (45) we similarly3

have4

Var(Ẑ) = Var(Ẑ)− 2LCov(Ẑ,D) + L2Var(D), (50)

and hence5

Cov(Ẑ,D) =
L

2
Var(D). (51)

From the equations (43) and (45) we have6

Cov(θ, Ẑ) = λCov(θ, Ẑ)− λLCov(θ,D), (52)

and hence7

Cov(θ, Ẑ) = − λL

1− λ
Cov(θ,D). (53)

From the equations (43) and (44) we have8

Cov(θ,D) = λCov(θ, Ẑ) + λAVar(θ) + λ(B − L)Cov(θ,D) + (βJ − 1)σ2. (54)

After rearranging and substituting for Cov(θ, Z) in terms of Cov(θ,D) from equation9

(53), and for Var(θ) from equation (49) we get10

Cov(θ,D) =

(
σ2

1 + λ

)
λ(βA + γ) + βJ − 1

1− λ+ (λ2 − λ)B + λL
, (55)
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where we have made use of the de�nition of A. From equations (44) and (45) we1

have2

Cov(Ẑ,D) = Var(Ẑ) + ACov(θ, Ẑ) + (B − L)Cov(Ẑ,D)

− LCov(Ẑ,D)− ALCov(θ,D)− (B − L)LVar(D). (56)

After some rearrangement and substitutions from equations (51) and (53) we get3

Var(Ẑ) =
L

2
(1 +B)Var(D) +

AL

1− λ
Cov(θ,D). (57)

Finally, taking variances on both sides of equation (44), rearranging and substituting4

we have5

[
1− L

2
(1−B)−B2

]
Var(D) =

(
A2σ2

1− λ2

)
+ (1− βJ)2σ2

+

(
A

1− λ

)
[2B(1− λ)− L]Cov(θ,D). (58)

Thus, Var(D) can be found from this equation and equation (55). Since D(t) =6

X̄(t)− θ(t) it is then possible to �nd the �tness of the developmental system from7

equation (9) of the main text. For later convenience we de�ne g(α, βJ , βA, γ, δ) =8

lnG(α, βJ , βA, γ, δ) and express g as9

g(α, βJ , βA, γ, δ) = lnK − 1

2
ln(v2)− Var(D)

2v2
, (59)

where v2 = 1 + σ2
X .10

SI.5. Special case: optimal randomisation when there are no cues11

12

Suppose that there are no cues, i.e α = βJ = βA = γ = 0 so that phenotype13
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determination is given by x = δεδ. We analyse this special case, investigating the1

optimal amount of randomisation.2

3

In this case we have A = −λ, B = 0 and L = 0. Thus by equation (58) we4

have Var(D) = Var(θ). From equation (34) we also have v2 = 1 + η2, so that5

v2 = 1 + δ2. Let ĝ(δ) = g(0, 0, 0, 0, δ) be the logarithm of geometric mean �tness for6

randomisation δ. Then from equation (59) we have7

ĝ(δ) = lnK − 1

2
ln(v2)− Var(θ)

2v2
. (60)

Di�erentiating we have8

ĝ′(δ) =
δ

v4
[Var(θ)− (1 + δ2)]. (61)

Thus the optimal value of δ is δ∗ = 0 when Var(θ) < 1 and δ∗ =
√
Var(θ)− 1 when9

Var(θ) ≥ 1.10

11

SI.6. Special case: the juvenile cue only and the need for randomisa-12

tion13

14

Suppose that there is just the juvenile environmental cue; i.e. α = βA = γ = 0,15

but there may be randomisation, so that phenotype determination is given by16

x = βJcJ + δεδ. We analyse this special case, deriving inequalities for the value17

of β∗J and then use this inequality to show that δ∗ = 0.18

19

In this case we have A = λ(βJ − 1), B = 0 and L = 0. Thus by equation (58)20

we have Var(D) = (1−βJ)2Var(θ). From equation (34) we also have v2 = 1 + η2, so21

that v2 = 1+βJσ
2
J + δ2. Let ĝ(βJ , δ) = g(0, βJ , 0, 0, δ) be the logarithm of geometric22

47



mean �tness. By equation (59)1

ĝ(βJ , δ) = lnK − 1

2
ln(v2)− (1− βJ)2Var(θ)

2v2
. (62)

Di�erentiating we have2

v4 ∂ĝ

∂βJ
= Var(θ)[(βJ − 1)2βJσ

2
J − (βJ − 1)v2]− βJσ2

Jv
2. (63)

It follows that ∂ĝ
∂βJ

(0, δ) = v−2 > 0 for all δ. Thus β∗J > 0.3

Since the optimal value of β∗J is positive we have ∂ĝ
∂βJ

(β∗J , δ
∗) = 0. Thus from4

equation (63) we have5

Var(θ)[(β∗J − 1)2β∗Jσ
2
J − (β∗J − 1)v∗2] = β∗Jσ

2
Jv
∗2, (64)

where v∗2 = 1 + (β∗J)2 + (δ∗)2. We thus have (β∗J − 1)2β∗Jσ
2
J > (β∗J − 1)v∗2, so that6

(β∗J − 1)2(β∗J)2σ2
J > β∗J(β∗J − 1)v∗2. (65)

It follows that β∗J 6= 1. Furthermore, since v∗2 > β∗2J σ
2
J we have7

(β∗J − 1)2 > β∗J(β∗J − 1), (66)

from which it easily follows that since βJ 6= 1 then β∗J < 1. Overall we conclude that8

0 < β∗J < 1.9

10

We now focus on δ∗. From equation (62) we have11

v4∂ĝ

∂δ
(β∗J , δ

∗) = δ∗[(β∗J − 1)2Var(θ)− v∗2]. (67)
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However, from equation (64) we have1

β∗Jσ
2
J [Var(θ)(β∗J − 1)2 − v∗2] = (β∗J − 1)v∗2Var(θ) < 0, (68)

so that Var(θ)(β∗J − 1)2 − v∗2 < 0. It follows that ∂ĝ
∂δ

(β∗J , δ
∗) < 0, which implies that2

δ∗ = 0.3

SI.7. Special case: maternal adult cue only4

5

Suppose that there is just the maternal adult environmental cue; i.e. α = βJ =6

γ = 0, but there may be randomisation, so that phenotype determination is given by7

x = βAcA+δεδ. We analyse this special case, deriving inequalities for the value of β∗A.8

9

In this case we have A = βA − λ, B = 0 and L = 0. Thus by equation (58) we10

have Var(D) = (β2
A+1−2λβA)Var(θ). From equation (34) we also have v2 = 1+η2,11

so that v2 = 1 + βAσ
2
A + δ2. Let ĝ(βA, δ) = g(0, 0, βA, 0, δ) be the logarithm of12

geometric mean �tness. By equation (59)13

ĝ(βA, δ) = lnK − 1

2
ln(v2)− (β2

A + 1− 2λβA)Var(θ)

2v2
. (69)

Di�erentiating we have14

v4 ∂ĝ

∂βA
= Var(θ)[(β2

A + 1− 2λβA)βAσ
2
A − (βA − λ)v2]− βAσ2

Av
2. (70)

It follows that ∂ĝ
∂βA

(0, δ) = λv2Var(θ) > 0 for all δ. Thus β∗A > 0.15

Since the optimal value of β∗A is positive we have ∂ĝ
∂βA

(β∗A, δ
∗) = 0. Thus from16

equation (70) we have17

Var(θ)[(β∗2A + 1− 2λβ∗A)β∗Aσ
2
A − (β∗A − λ)v∗2] = β∗Aσ

2
Av
∗2. (71)
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where v∗2 = 1 + (β∗A)2σ2
A+ (δ∗)2. We thus have (β∗2A + 1−2λβ∗A)β∗Aσ

2
A > (β∗A−λ)v∗2,1

so that2

(β∗2A + 1− 2λβ∗A)β∗2A σ
2
A > β∗A(β∗A − λ)v∗2. (72)

Now suppose that λβ∗A ≥ 1. Then since this implies we have β∗A > λ we have3

(β∗A−λ)v∗2 > (β∗A−λ)β∗2A σ
2
A, so that (β∗2A + 1− 2λβ∗A) > β∗A(β∗A−λ). It follows that4

λβ∗A < 1. This proves that λβ∗A < 1. Overall we conclude that 0 < β∗A <
1
λ
.5

SI.8. Special case: some inequalities on the optimal juvenile and ma-6

ternal adult cue weights7

8

Suppose that there are just two cues; the juvenile cue and the adult maternal9

cue; i.e. α = γ = 0, but there may be randomisation, so that phenotype determi-10

nation is given by x = βJcJ + βAcA + δεδ. We analyse this special case, deriving11

inequalities for the value of β∗J and β
∗
A. We �rst show that these weights are positive.12

13

In this case we have A = λ(βJ − 1) + βA, B = 0 and L = 0. Thus by equation14

(58) we have Var(D) = HVar(θ) where15

H = (βJ − 1)2 + β2
A + 2λβA(βJ − 1). (73)

Let ĝ(βJ , βA, δ) = g(0, βJ , βA, 0, δ) be the logarithm of geometric mean �tness. By16

equation (59)17

ĝ(βJ , βA, δ) = lnK − 1

2
ln(v2)− HVar(θ)

2v2
. (74)

Di�erentiating we have18

v4 ∂ĝ

∂βJ
= Var(θ)[HβJσ

2
J − (βJ − 1 + λβA)v2]− βJσ2

Jv
2. (75)

50



Thus1

v4 ∂ĝ

∂βJ
(0, β∗A, δ

∗) = Var(θ)[(1− λβ∗A)v2]. (76)

Now suppose that β∗J = 0. Then the analysis of Section SI.7 shows that λβ∗A < 1.2

Thus ∂ĝ
∂βJ

(0, β∗A, δ
∗) > 0, contradicting the fact that β∗J = 0. We deduce that β∗J > 0.3

Similarly4

v4 ∂ĝ

∂βA
= Var(θ)[HβAσ

2
A − (βA + λ(βJ − 1))v2]− βAσ2

Av
2. (77)

Thus5

v4 ∂ĝ

∂βA
(β∗J , 0, δ

∗) = Var(θ)[(λ(1− β∗J)v2], (78)

and a similar argument using the results of SI.6 shows that β∗A > 0.6

7

From the above we may assume that ∂g
∂βJ

(β∗J , β
∗
A, δ

∗) = 0 and ∂ĝ
∂βA

(β∗J , β
∗
A, δ

∗) = 0.8

Thus9

Var(θ)[H∗β∗Jσ
2
J − (β∗J − 1 + λβ∗A)v∗2] = β∗Jσ

2
Jv
∗2 (79)

and10

Var(θ)[H∗β∗Aσ
2
A − (β∗A + λ(β∗J − 1))v∗2] = β∗Aσ

2
Av
∗2, (80)

where11

H∗ = (β∗J − 1)2 + β∗2A + 2λβ∗A(β∗J − 1) (81)

and v∗2 = 1 + β∗2J σ
2
J + β∗2A σ

2
A. Multiplying each side of equation (79) by β∗J , both12

sides of equation (80) by β∗A and adding the two resulting equations gives Var(θ)M =13

(β∗2J σ
2
J + β∗2A σ

2
A)v∗2, where14

M = H∗[β∗2J σ
2
J + β∗2A σ

2
A]− [β∗J(β∗J − 1 + λβ∗A) + β∗A(β∗A + λ(β∗J − 1))]v∗2. (82)

Note that M = [β∗2J σ
2
J + β∗2A σ

2
A]v∗2/Var(θ) > 0. Thus the term on the right hand15
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side of equation (82) is positive. Since we can write H∗ as H∗ = (β∗J + λβ∗A − 1)2 +1

(1− λ2)β∗2A , we have H∗ > 0. Since β∗2J σ
2
J + β∗2A σ

2
A < v∗2 we deduce that2

H∗ > β∗J(β∗J − 1 + λβ∗A) + β∗A(β∗A + λ(β∗J − 1)). (83)

After expanding terms this yields3

β∗J + λβ∗A < 1. (84)

We now return to equations (79) and (80). These equations can be written as4

β∗J − 1 + λβ∗A = β∗Jσ
2
J

[
H∗
v∗2
− 1

Var(θ)

]
(85)

and5

λ(β∗J − 1) + β∗A = β∗Aσ
2
A

[
H∗
v∗2
− 1

Var(θ)

]
. (86)

Thus β∗J − 1 + λβ∗A and λ(β∗J − 1) + β∗A have the same sign. From equation (84) we6

deduce that7

λβ∗J + β∗A < λ. (87)

SI.9. The maternal phenotype is always used as a cue when the other8

cues are the juvenile and maternal adult cue9

10

Suppose that there are three cues; the juvenile cue, the adult maternal cue and11

the maternal phenotype as a cue; i.e. α = 0, and may be randomisation and trans-12

mission error, so that phenotype determination is given by x = βJcJ +βAcA+γ(m+13

εm)+δεδ. Here we show that there is always positive weight assigned to the maternal14

phenotype as a cue under optimal phenotype detwermination; i.e. γ∗ > 0. To show15

this let β∗J , β
∗
A and δ∗ be the optimal weights when γ is constrained to be zero. Set16
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ĝ(γ) = g(0, β∗J , β
∗
A, γ, δ

∗). Then we will show that ĝ′(0) > 0.1

2

From equation (59) we can write3

ĝ(γ) = lnK − 1

2
ln(v2(γ))− Var(D)(γ)

2v2(γ)
, (88)

where we now regard v(γ) and Var(D)(γ) as functions of γ. From equation (34)4

we have v(0) = 1 + β∗2J σ
2
J + β∗2A σ

2
A + δ∗2. By implicit di�erentiation of equation5

(34) with respect to γ it can also be veri�ed that v′(0) = 0. By equation (58)6

we have Var(D)(0) = H∗Var(θ) where H∗ is given by equation (81). By implicit7

di�erentiation of equation (58) with respect to γ it can also be veri�ed that8

Var(D)′(0) = 2(λ(β∗J − 1) + β∗A)

[
Var(θ) +

1

v2(0)
Cov(θ,D)(0)

]
. (89)

By equation (55) we also have Cov(θ,D) = Var(θ)(β∗J + λβ∗A − 1). Thus9

Var(D)′(0) = 2(λ(β∗J − 1) + β∗A)Var(θ)

[
1 +

1

v2(0)
(β∗J + λβ∗A − 1)

]
. (90)

From equation (88) we then have10

v4(0)ĝ′(0) = −(λ(β∗J − 1) + β∗A)Var(θ)
[
v2(0) + (β∗J + λβ∗A − 1)

]
. (91)

Note that since v > 1 we have v2(0) + (β∗J + λβ∗A − 1) > 0. Also by inequality (87)11

we have λ(β∗J − 1) + β∗A < 0. Thus ĝ′(0) > 0. It follows that γ∗ > 0.12

13

We note that a similar calculation shows that when the juvenile environmental14

cue and maternal phenotype are the only cues, we also have γ∗ > 0.15
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