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Abstract 31 

The velvet belly lanternshark, Etmopterus spinax, is a deep-sea bioluminescent squaloid 32 

shark, found predominantly in the northeast Atlantic and Mediterranean Sea. It has been 33 

exposed to relatively high levels of mortality associated with by-catch in some regions. Its 34 

late maturity and low fecundity potentially renders it vulnerable to over-exploitation, 35 

although little remains known about processes of connectivity between key 36 

habitats/regions. This study utilised DNA sequencing of partial regions of the mitochondrial 37 

control region and nuclear ribosomal internal transcribed spacer 2 to investigate population 38 

structure and phylogeography of this species across the northeast Atlantic and 39 

Mediterranean Basin. Despite the inclusion of samples from the range edges or remote 40 

locations, no evidence of significant population structure was detected. An important 41 

exception was identified using the control region sequence, with much greater (and 42 

statistically significant) levels of genetic differentiation between the Mediterranean and 43 

Atlantic. This suggests that the Strait of Gibraltar may represent an important bathymetric 44 

barrier, separating regions with very low levels of female dispersal. Bayesian estimation of 45 

divergence time also places the separation between the Mediterranean and Atlantic 46 

lineages within the last 100,000 years, presumably connected with perturbations during the 47 

last Glacial Period. These results demonstrate population subdivision at a much smaller 48 

geographic distance than has generally been identified in previous work on deep-sea sharks. 49 

This highlights a very significant role for shallow bathymetry in promoting genetic 50 

differentiation in deepwater taxa. It acts as an important exception to a general paradigm of 51 

marine species being connected by high levels of gene-flow, representing single stocks over 52 

large scales. It may also have significant implications for the fisheries management of this 53 

species. 54 



 55 

Keywords: population genetics, mitochondrial DNA, ITS2, fisheries management, seascape 56 

genetics 57 

 58 

1. Introduction 59 

The over-exploitation of shelf fish stocks has triggered many fisheries to exploit marine 60 

resources at ever greater depths of the ocean (Koslow et al., 2000; Morato et al., 2006). Yet, 61 

the inaccessibility of the deep ocean means our understanding of the ecology of deep-sea 62 

organisms can often lag behind that of their pelagic and continental shelf counterparts. This 63 

is especially true for chondrichthyans, as their lower commercial value has sometimes 64 

resulted in prioritisation of research for higher-value teleosts. Where investigations into the 65 

ecology of members of the group have been conducted, they have often focused on large 66 

pelagic sharks that are considered particularly vulnerable to exploitation in high seas 67 

fisheries (Dulvy et al., 2008; Dulvy et al., 2014). However, deep-water chondrichthyans (i.e. 68 

those occurring below 200 m) are a very diverse group and represent nearly half of the 69 

known species of skate, ray, chimera and shark (Kyne and Simpfendorfer, 2010). 70 

Furthermore, work on chondrichthyans more widely has highlighted that their life-history 71 

strategies, typically consisting of low lifetime fecundities, slow growth rates, late age at 72 

maturity and high longevities, render them especially vulnerable to over-exploitation 73 

(Stevens et al., 2000; Simpfendorfer and Kyne, 2009). The very limited information on deep-74 

water species suggests they are no exception, with some exploited groups already showing 75 

declines and recommendations of zero catch for some species in the northeast Atlantic 76 

already in place (Graham et al., 2001; ICES, 2009, 2010; Neat et al., 2015). In the 77 

Mediterranean Sea relevant policies are currently in place for managing and protecting 78 

vulnerable chondrichthyans, e.g. the GFCM Recommendation GFCM/36/2012/3 (GFCM, 79 



2012) on conservation of sharks and rays. Therefore, there is an urgent need to understand 80 

more about the biology, ecology and population structure of deep-water chondrichthyans 81 

to make valuable predictions on the long-term effects of fishing and ensure they can be 82 

sustainably managed into the future (Cunha et al., 2012). 83 

 84 

The velvet belly lanternshark, Etmopterus spinax, is a deep-sea bioluminescent squaloid 85 

shark that exhibits a distribution across the Mediterranean Sea and Northeast Atlantic 86 

Ocean (Compagno et al., 2005; Ebert and Stehmann, 2013). Its typical bathymetric range 87 

within these locations is between 70 and 2000 m, mostly captured between 200 and 500 m, 88 

living on the outer continental shelves and upper slopes (Compagno et al., 2005; Neat et al., 89 

2015), and on oceanic islands slopes and seamounts (Menezes et al., 2006). This species is 90 

considered vulnerable to over-fishing due to its late maturity with estimated maturation 91 

times of four to eight years, females also mature much later and to a greater size than males 92 

(Coelho and Erzini, 2008). Furthermore, the reproductive cycle in E. spinax has been 93 

suggested to last two to three years, before viviparous parturition, giving this species a low 94 

fecundity (Coelho and Erzini, 2008; Porcu et al., 2014). Despite this, the species remains 95 

common, frequently occurring as by-catch in deep-water fisheries landing crustaceans and 96 

teleosts, where it has been exposed to relatively high levels of mortality. Lacking any 97 

commercial value and commonly discarded in trawl and longline fisheries, it has been poorly 98 

studied (Coelho and Erzini, 2008). However, recent work investigating density-dependent 99 

mechanisms found that the effects of over-exploitation are already evident in E. spinax, with 100 

individuals showing a reduction in body size at maturity within the northeast Atlantic due to 101 

elevated fishing pressures (Coelho et al., 2010). In this region it has been assessed as Near 102 



Threatened by the IUCN Red List of Threatened Species, as its numbers have declined by 103 

almost 20% from 1970 to 1998–2004 (Coelho et al., 2009). Although fishing effort has 104 

declined in recent years, numbers from the Rockall Trough area have remained low and 105 

stable without any indication of recovery (Neat et al. 2015). 106 

 107 

In fisheries management, sustainable exploitation and conservation depend on solid 108 

understanding of connectivity and population differentiation, thereby allowing the 109 

identification of discrete populations which represent demographically independent stocks 110 

(Booke, 1999). This study investigates the phylogeography and population structure of E. 111 

spinax across the northeast Atlantic and Mediterranean Basin using nuclear and 112 

mitochondrial DNA sequencing and joins a relatively small body of work specifically 113 

examining connectivity in deep-water sharks, (Veríssimo et al., 2011, 2012; Cunha et al., 114 

2012; Catarino et al., 2015). Previous work has suggested little evidence of population 115 

structure in members of this group, with gene-flow occurring at all but the largest oceanic 116 

distances assessed, which supports the generally held paradigm of high connectivity and low 117 

population structure in marine species (Palumbi, 1992; Ward et al., 1994). This contrasts 118 

with increasing indications of significant population structure in some demersal, shelf 119 

species (Chevolot et al., 2006; Ovenden et al., 2009, Griffiths et al., 2011; Gubili et al., 2014) 120 

and shares more similarity with studies of large, wide-ranging pelagic sharks that have often 121 

only revealed genetic differentiation over broad inter- or intra-oceanic scales (e.g. Pardini et 122 

al., 2001; Schmidt et al., 2009). The velvet belly lanternshark provides an interesting 123 

counter-point to previous work on bathypelagic sharks as it represents a more abundant 124 

species with a shallower mesopelagic distribution. Sample collection has also included 125 



relatively geographically proximate regions of the Atlantic Ocean and Mediterranean Basin, 126 

which have been shown to harbour distinct populations or phylogeographic lineages in 127 

other chondrichthyan fish (Chevolot et al. 2006; Griffiths et al 2011; Gubili et al., 2011; 128 

Catarino et al., 2015), with the Strait of Gibraltar (12.9 km wide and 284 m deep) proposed 129 

as an important barrier to gene-flow in the region (reviewed in Patarnello, et al., 2007). 130 

Therefore, it is hoped that this work will provide further insight into processes of 131 

connectivity in the deep-sea and the role of oceanographic barriers to gene-flow i.e. the 132 

field of seascape genetics. 133 

 134 

2. Materials & Methods 135 

Lanternshark tissue was obtained from individuals caught during research cruises across the 136 

Mediterranean Basin and Northeast Atlantic Ocean. Within the Mediterranean, tissue 137 

samples were obtained from Cyprus, Greece and Italy. In the North Atlantic Ocean samples 138 

were collected from the Azores, Rockall Trough (west of Scotland), West of Ireland, Norway 139 

and the North Sea (Fig. 1, Table 1). Fin clips were collected and immediately stored in 140 

absolute ethanol or RNAlater. DNA was extracted using Chelex resin (Walsh et al., 1991) or 141 

phenol-chloroform extraction protocol (Sambrook et al., 1989). The mitochondrial DNA 142 

(mtDNA) control region (CR) was polymerase chain reaction (PCR) amplified using primers 143 

ElasmoCR15642: 5’- TTGGCTCCCAAAGCCAARATTCTG-3’  and ElasmoCR16638: 5’ 144 

CCCTCGTTTTWGGGGTTTTTCGAG-3’ following published conditions (Stonero et al., 2003). 145 

The nuclear ribosomal internal transcribed spacer 2 (ITS2) locus was also amplified using 146 

primers FISH5.8SF: 5’-TTAGCGGTGGATCACTCGGCTCGT-3’ and FISH28SR: 5’-147 

TCCTCCGCTTAGTAATATG CTTAAATTCAGC-3’ (Shivji et al., 2001). This reaction proved 148 



difficult to optimise and whilst published PCR conditions were sometimes successful an 149 

adapted profile was required: one minute at 94°C, 35 cycles of 94°C for one minute, 64-68°C 150 

for one minute, 72°C for one minute and 30 seconds and a final extension at 72°C for ten 151 

minutes. PCR products were cleaned and sequenced by Macrogen, Seoul, Korea using 152 

primers ElasmoCR15642 and FISH28SR. The resulting sequences were checked in BioEdit 153 

7.0.9 (Hall, 1999), and aligned using ClustalW (Thompson et al., 1994). 154 

 155 

Summary statistics including the number of haplotypes (Hn), haplotype diversity (h), 156 

nucleotide diversity (π) and polymorphic sites (p) were calculated in Arlequin 3.5.2.2 157 

(Excoffier et al., 2005). Genetic differences among localities were also calculated in Arlequin 158 

using the frequency-based FST estimates, using 10,000 permutations. Sequential Bonferroni 159 

corrections to the significance level were also applied (Rice, 1989). Additionally, Jost’s D 160 

(Jost, 2008) was calculated using the R (R Development Core Team) package “mmod” 161 

(Winter, 2012). Differences between male and female dispersal were examined by 162 

comparing pairwise genetic distances between sampling locations; male-biased dispersal 163 

would show lower genetic distances in nuclear markers than in mitochondrial markers (as 164 

they are maternally inherited). Paired t-tests were used to compare mt FST and Jost’s D 165 

against nuclear FST and Jost’s D in R 3.2.1. Within GenAlEx 6.5 (Peakall and Smouse, 2012), 166 

Tamura-Nei’s pairwise genetic distances were calculated using the default settings and 167 

visualized by principal coordinate analysis (PCoA). Median-joining networks for each locus 168 

were generated with Network 5.0 (http://www.fluxus-engineering.com). Signatures of 169 

population expansion were investigated by calculating Tajima’s D (Tajima, 1989) and Fu’s Fs 170 

(Fu, 1997) statistics in Arlequin. These test statistics are expected to be significantly negative 171 



in cases of recent population expansion. Historical population dynamics were also evaluated 172 

by mismatch distribution analysis. Typically, a population of constant size is characterized by 173 

a multimodal distribution, whereas one under expansion shows a unimodal distribution 174 

(Rogers and Harpending, 1992). 175 

 176 

Levels of migration and divergence time were estimated using a Markov chain Monte Carlo 177 

approach in MDIV (Nielsen and Wakeley, 2001), with all samples combined within the 178 

Atlantic, against those collected across the Mediterranean (this pooling of samples for each 179 

region is supported by the results of the pairwise FST analysis, PCoA and an addition 180 

hierarchical AMOVA that found significant variation amongst these groups; p = 0.019, but 181 

remained non-significant within these groups; p = 0.286). Initial runs were performed to 182 

obtain an upper limit of the scaled migration rate and divergence time (Mmax and Tmax 183 

respectively). The Hasegawa, Kishino and Yano (HKY) finite-sites model of mutation was 184 

applied. A total of 5,000,000 cycles in the Markov chain were utilised, incorporating 500,000 185 

cycles as a burn-in. Twelve repeat runs were completed and set with maximum values for T 186 

and M of five, using different random seeds to check the consistency of estimation. The 187 

migration rate (m) and divergence time (t) were then estimated using the following 188 

parameters θ=4Nev, M=2Nem and T=t/2Ne (where Ne=effective population size, υ=mutation 189 

rate in the region sequenced). A range of divergence rates for the CR (0.5%, 1.0% and 1.5% 190 

per MY, reflecting low rates from other elasmobranchs; Duncan et al., 2006; Keeney and 191 

Heist 2006; Schultz et al., 2008; Griffiths et al., 2011) and a generation time of eight years 192 

(Gennari and Scacco, 2007; Coelho and Erzini, 2008) were applied in the calculations. 193 

 194 



3. Results & Discussion 195 

Overall, 130 partial CR sequences were aligned, comprising 913 base pairs (bp), 28 196 

haplotypes and 18 variable sites (Accession numbers: KX494599-494728). Comparing across 197 

sample collections, the haplotype diversity ranged from 0.500 (Norway) to 0.959 (Ireland), 198 

whereas nucleotide diversity values ranged from 0.002 (Cyprus, Norway) to 0.004 (Azores; 199 

Table 1). Despite the similar number of sequenced individuals for the ITS2 region, all 200 

summary statistic values were lower. The number of haplotypes was 13 and 10 variable sites 201 

for 133 aligned sequences of 572 bp length (Accession numbers: KX494729-494861). 202 

Haplotype diversities varied from 0.482 (Ireland) to 0.829 (Azores), whereas nucleotide 203 

diversity varied from 0.0000 (Norway) to 0.002 (Azores; Table 1).  204 

 205 

Pairwise FST values ranged from −0.031 to 0.283, and -0.175 to 0.106 for the CR and ITS, 206 

respectively (Table 2). The majority of pairwise comparisons among Mediterranean and 207 

Atlantic populations showed significant differentiation at the corrected 5% level for the CR 208 

(the only exception being between Norway and the Mediterranean populations, presumably 209 

due to the very small sample size). No significant genetic structure was found among 210 

sampling collections for the ITS2 marker. Jost’s D values were similar to the FST, with the 211 

highest value of genetic divergence found between Italy and Rockall (0.151) for the CR and 212 

between Greece and Norway (0.028) for the ITS2 (Table 2). Some suggestions of sex-biased 213 

dispersal (male dispersal and female philopatry) were detected as mtDNA values of 214 

population differentiation were significantly greater than those reported from the nuclear 215 

marker when comparing across the sampling area (FST paired t-test; t=4.452, p=<0.001 and 216 

Jost’s D paired t-test; t=6.356, p=<0.001). 217 



 218 

The CR haplotype network further highlights evidence of population structure between the 219 

Atlantic and Mediterranean (Fig. 2a), with the regions clearly demonstrating different 220 

frequencies of haplotypes, including unique haplotypes. This contrasts with the ITS2 221 

network, as haplotypes did not assort by location, suggesting a lack of population structure 222 

(Fig. 2b). The PCoA also supports this pattern with clear separation of the Mediterranean 223 

and Atlantic samples with the CR, but little evidence of regional structure with the ITS2. 224 

Demographic analyses showed that most sample collections had negative Tajima’s D and 225 

Fu’s F values for both markers (Table 1). Only Ireland showed a significantly negative F value 226 

and a unimodal distribution, suggesting population expansion for the CR. Conversely, only D 227 

values for North Sea, Rockall, Ireland and Cyprus for the ITS2 were significant, suggesting 228 

subtle population expansion. The remaining sample collections produced non-significant 229 

results. Given evidence of weak population structure within each geographic region, we 230 

combined samples within the Atlantic and Mediterranean basins. In the Atlantic, signs of 231 

expansion were present from analysis of the F value in the CR and both the F and D value 232 

and from the ITS2, this contrast with a bi-modal mismatch distribution for both markers. In 233 

the Mediterranean, significantly negative values were detected in the Tajima’s D from the 234 

ITS2 and Fu’s F from the CR, which also generated a unimodal mismatch analysis. 235 

 236 

However, signs of expansion were detected solely in the Mediterranean group, where a 237 

significantly negative F value and unimodal mismatch distribution was found.   238 

 239 



The Bayesian estimation of divergence and migration rates with MDIV revealed a relatively 240 

recent split and very low levels of migration between the Atlantic and Mediterranean 241 

groups (Table 3). Varying the estimates of mutation rate altered divergence time from 242 

34,335 and 103,005 years and the produced migration rates between 1.189E-05 and 3.566E-243 

05. 244 

 245 

The results clearly demonstrate high levels of connectivity and gene-flow in E. spinax across 246 

the northeast Atlantic, even at the most extreme oceanic distances considered in this study, 247 

which specifically includes limits to the species range. In particular, the Azores represent the 248 

most remote archipelago of the North Atlantic, some 1,300 km from Portugal, suggesting 249 

that if simple oceanic distance was to provide a barrier to dispersal, population sub-division 250 

may well be observed at this scale (Aboim et al., 2005; Chevolot et al., 2006; Knutsen et al., 251 

2009; Ball et al., 2016). Some hints at the distinctiveness of this group are suggested by the 252 

PCoA for both ITS2 and CR, but this is not supported by pairwise FST analysis. The results 253 

from Straube et al. (2011) are highly relevant, whilst predominantly studying cryptic 254 

diversity of lantern sharks from the southern hemisphere, weak but significant genetic 255 

differentiation was described between Chilean and New Zealand samples of the southern 256 

lantern shark (Etmopterus granulosus). This remains the most closely related deep-water 257 

shark to E. spinax that has been analysed to date, and suggests that gene-flow may be 258 

limited at extreme intra-oceanic distances, separated by non-continuous continental self. 259 

Furthermore, detailed investigations of population structure in the leafscale gulper shark 260 

(Centrophorus squamosus; Veríssimo et al., 2011), Portuguese dogfish (Centroscymnus 261 

coelolepis; Veríssimo et al., 2012; Catarino et al., 2015) and long-nosed velvet dogfish 262 



(Centroscymnus crepidater; Cunha et al., 2012) have not identified evidence of significant 263 

differentiation at the intra-oceanic scale, even in more cosmopolitan species than E. spinax, 264 

where samples can be collected across greater oceanic distances. The consensus appears to 265 

be that genetic homogeneity across ocean basins suggest single stocks occur at this scale, 266 

and even between ocean basins, levels of differentiation remain relatively low (Cunha et al., 267 

2012; Catarino et al., 2015). Therefore, our results support this general finding of high levels 268 

of connectivity in deep-water sharks, but importantly extend these to a species with a much 269 

shallower habitat. 270 

 271 

There is one important exception to the finding of non-significant population structure 272 

between the samples; analysis of the CR demonstrates Jost’s D and FST values that were 273 

much greater in comparisons between samples from the Atlantic and Mediterranean. The p-274 

values associated with these groups, were all below the 5% significance level, with the 275 

majority remaining significant even after sequential Bonferroni correction (the Norwegian 276 

sample collection is an exception, presumably associated with its small sample size). The 277 

PCoA also demonstrates this pattern of regional differentiation, with clear separation of the 278 

Atlantic and Mediteranean sample collections. Private haplotypes are associated with the 279 

Atlantic and Mediterranean regions, suggesting discrete phylogeographic histories, with 280 

Bayesian estimation also supporting little evidence of connectivity. Moreover, divergence of 281 

the Atlantic/Mediterranean stocks occurred within the last 100,000 years i.e. during 282 

perturbations association with the Last Glacial period, 110,000-12,000y BP (Kukla, 2005). 283 

This significant population structure occurs at a smaller scale than has typically been 284 

demonstrated in deep-water species, especially deep-sea sharks, and has important 285 



management implications for identifying demographically independent stocks. Whilst 286 

Atlantic samples are lacking from Portugal/Morocco region and the far western area of the 287 

Mediterranean, it seems likely that reductions in gene-flow are associated with the Strait of 288 

Gibraltar (especially given the genetic homogeneity observed across the rest of the 289 

Mediterranean). The narrow, and especially shallow, nature of the Strait could conceivably 290 

act as a barrier to deep-water species, with the concept of bathymetry as a barrier to gene-291 

flow also supported by work on other deep-sea taxa (e.g. Knutsen et al., 2009, 2012), 292 

although the results remain somewhat surprising as the Strait is less likely to remain such a 293 

barrier to the shallower dwelling, mesopelagic lanternshark. Our findings share much in 294 

common with very recent work on C. coelolepis (Catarino et al., 2015), which also identified 295 

significant population sub-division between Mediterranean and Atlantic deep-sea shark 296 

populations, where even the estimated time-scales of separation between these groups 297 

were highly congruent (i.e. within the last 100,000 yrs). More detailed analysis in the 298 

western Mediterranean, Strait of Gibraltar and Portugal is needed to determine the exact 299 

position of the genetic discontinuity in this case. The Almeria-Oran oceanographic density 300 

front, which has been identified as the barrier to gene-flow in many fish species, due to 301 

reductions in the passive movement of pelagic eggs and larvae (reviewed in Patarnello et al., 302 

2007), is less likely to affect lanternsharks with viviparous reproduction and active dispersal. 303 

Very limited penetration of the western Mediterranean by Atlantic populations cannot be 304 

ruled out, as has been observed in other species (Bremer et al., 2005; Gubili et al., 2014), 305 

where perhaps west-to-east gradients in temperature and salinity across the Mediterranean 306 

Basin, limit the penetration of Atlantic adapted genotypes.  307 

 308 



An intriguing dichotomy is observed between the nuclear ITS2 and mtCR sequence data, 309 

with significant differentiation observed only in the mtDNA dataset. Perhaps the most likely 310 

explanation for this striking difference relates to different evolutionary pressures on these 311 

two genetic markers. The reduced effective population size of mtDNA leads to expectations 312 

of greater FST values (Daly-Engel et al., 2012), whereas analysis of ITS2 sequences within 313 

elasmobranchs has generally shown them to be conserved within species, rendering this 314 

locus an appropriate tool for global identification of shark species (Abercombie et al., 2006; 315 

Pinhal et al., 2012). However these differences between markers, especially significant 316 

comparisons between estimates of Jost’s D, which is believed to give a less biased estimate 317 

of genetic differentiation (Jost, 2008), suggest this could be due to sex-biased dispersal. 318 

There is growing evidence for female philopatry and male-biased dispersal in sharks (e.g. 319 

Hueter et al., 2005, Mucientes et al., 2009, Gubili et al., 2014), including deep-sea species 320 

(Veríssimo et al., 2012). Whilst being wary of over-interpreting these data, they are 321 

consistent with growing recognition of significant differences in behaviour between male 322 

and female sharks and could have important implications for conservation and management 323 

(e.g. via fisheries targeting nursery grounds or over-harvesting females). 324 

 325 

It is important to acknowledge a limitation that may have some bearing on the results; the 326 

ITS2 region is known to have multiple copies, which could potentially complicate the 327 

interpretation if paralogues are compared. However, the ITS2 is still widely utilised in 328 

phylogeography and has even been shown to produce consistent sequences in 329 

elasmobranchs (Lieber et al., 2013, Garcia et al., 2014). The fact that few haplotypes were 330 

identified at this locus and no significant population structure was detect also means this 331 



issue is unlikely to have affected the conclusions. Additionally, the use of DNA sequencing in 332 

the current study may give a more historical focus regarding connectivity and new 333 

techniques utilising high through-put sequencing, especially a comprehensive suite of 334 

nuclear single nucleotide polymorphisms (SNPs), may provide more power to detect 335 

population structure in elasmobranchs.  336 

 337 

In summary, this study demonstrates high levels of gene-flow in E. spinax across the 338 

northeast Atlantic, adding to a relatively limited literature examining the population 339 

genetics and phylogeography of potentially vulnerable deep-sea sharks. Furthermore, the 340 

significant population sub-division observed between the Atlantic and Mediterranean 341 

lanternsharks highlight a potentially significant role for bathymetry to present barriers to 342 

connectivity, with important implications for fisheries management. The results contribute 343 

to growing recognition that there are important exceptions to a general paradigm of marine 344 

species being connected by high levels of gene-flow and representing single stocks over 345 

large geographic scales, with oceanographic factors considered to be vital in understanding 346 

connectivity in the deep. 347 

 348 
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Table 1: Details of sample collections with mitochondrial and nuclear DNA summary 
statistics. Approximate capture locations, Lon; longitude, Lat; latitude, TL; range in total 
length (mm), n; number of individuals; Hn, number of haplotypes; h, haplotype diversity; π, 
nucleotide diversity; sd, standard deviation is in brackets; p, polymorphic sites; D, Tajima’s D 
value; F, Fu’s Fs value. Values in bold were significant at a 5% level. 
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Table 2. Pairwise measures of population structure. Values, in upper diagonal are relate to 

the CR and lower diagonal values from ITS. FST values are described in the upper line of each 

cell, those that in bold remain significant after sequential Bonferroni correction (initial p-

value = 0.05/28), p-values included in brackets. The lower line describes values of Jost’s D. 
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Table 3. Divergence times (t) and migration rates (m) estimated between Mediterranean 

and Atlantic groups based on the control region sequences. Maximum likelihood values of 

parameters θ, M and T estimated with the non-equilibrium model using the program MDIV. 

A vector of divergence times was utilised (divergence per million years) and a generation 

time of eight years. 

 

Divergence rates 
(per MY) 

Mutation Rate 
(v) 

Divergence Time 
(t) in years 

Migration Rate 
(m) 

0.5% 0.00001826 103004.6 1.18879E-05 
1% 0.00003652 51502.3 2.37759E-05 
1.5% 0.00005478 34334.87 3.56638E-05 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of sample collections (produced in GeoMapApp v. 3.6.0; 

http://www.geomapapp.org/).   



 

 



Figure 2. Haplotype networks. Figure a shows network of CR sequences, and b of ITS2 

sequences. Relative size of the circles indicates the frequency of the haplotype. 

 

  



Figure 3. Principle components analysis of Tamura-Nei genetic distances. A is based on CR, 

where coordinate 1 explains 28.31% and coordinate 2 explains 15.67% of the variation in 

the data. B is based on the ITS2 sequence, where coordinate 1 explains 30.11% and 

coordinate 2 explains 20.20% of the variation. 

A         B 
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