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Abstract 

 

In the 27 years that have passed since the McLaren, Kaye and Mackintosh (MKM) model of 

perceptual learning was first proposed, it has undergone considerable theoretical development and 

been subject to extensive empirical test. But we would argue that the basic principles of the theory 

remain as valid today as they were in 1989. One of these principles was that salience modulation of 

stimulus representations based on prediction error was a key component of latent inhibition and 

perceptual learning. It was this modification of what was otherwise a fairly basic adaptation of the 

model for categorisation proposed by McCleland and Rumelhart (M&R) that transformed a system 

that would exhibit enhanced generalisation as category learning progressed, into one that would 

instead offer an improved capacity for discrimination between exemplars as a consequence of 

experience with the category. This modification has only been tested indirectly up until now, by 

looking at the predictions that flow from it and then comparing them to animal and human 

discrimination following stimulus pre-exposure. In this chapter we test this principle more directly, by 

using tDCS to disrupt the modulation of salience by prediction error, and show that when this is done, 

people exhibit the enhanced generalisation predicted by the standard M&R model. We conclude that 

our results provide further support for the MKM approach to stimulus representation. 

 
 
  



How we learn to distinguish between things is one of the basic questions for cognitive 

psychology. This paper focuses on two aspects of the mechanisms that allow us to do this. 

Categorisation in this paper refers to our ability to classify stimuli as members of one category or 

another as a result of trial and error training with members (exemplars) of the categories in question. 

Perceptual learning here refers to our enhanced ability to discriminate between certain stimuli as a 

consequence of experience with them or stimuli like them. Taken together, these two phenomena play 

a crucial role in learning to correctly identify stimuli as members of a particular class, and not confuse 

one stimulus with another similar one.  

There are many theories and models of categorisation, and quite a few theories and models 

of perceptual learning. One of the few models that addresses both was originally proposed by 

McLaren, Kaye and Mackintosh (1989, henceforth MKM) in part as a response to and development of 

McClelland and Rumelhart's (1985, henceforth M&R) connectionist model of categorisation. It is this 

model that motivated the experiments discussed here, and, given the model-driven nature of our 

enquiry, we begin with a brief introduction to these models and the experimental paradigms we will 

use in this paper. We then go on to discuss how recent work using tDCS (trans-cranial Direct Current 

Stimulation) raises the possibility of influencing the error signal that drives learning and performance 

in the MKM model so as to change participant's ability to distinguish between stimuli as a 

consequence of their experience with them. Our paper is an exploration of this possibility, and our 

results suggest both that perceptual learning and categorisation can be strongly influenced by anodal 

tDCS to frontal regions of the brain, and that a theory of perceptual learning and categorisation that 

relies on use of error-based modulation of the salience of the representations of stimulus input 

provides a good fit to the data we obtain using this preparation. We end by discussing the implications 

of these results for phenomena such as face processing. 

 

Background 

Two Models 

McClelland and Rumelhart's seminal 1985 paper used the delta rule, an error correcting 

learning algorithm closely related to Rescorla-Wagner, (Rescorla and Wagner, 1972) in a 

connectionist network employing distributed stimulus representations to model categorisation. We 

cannot do the model full justice here, but it was also noteworthy for its use of non-linear activation 



functions and a weight decay mechanism to help it produce both prototype and exemplar effects in 

what was effectively a single-layer (in that it has a single layer of modifiable weights) connectionist 

model. It did have one feature, however, that seemed to some of us problematic. This was that the 

learning algorithm coupled with the activation function inevitably led to units that were most frequently 

co-activated becoming more active as a consequence. This gave these units greater salience in later 

learning, and so it would be the units representing the more prototypical elements of a stimulus that 

would tend to form the strongest links to other units representing category membership.  

This characteristic of the model may not be a problem for categorisation (though we will have 

more to say about this later) but it is certainly a problem for stimulus representation development as a 

consequence of experience with a category, i.e. for perceptual learning. McLaren, Leevers and 

Mackintosh (1994) were the first to show that humans trained to distinguish between two prototype-

defined categories of stimuli (in this case chequerboards) were then actually better able to distinguish 

between two new exemplars drawn from one of these now familiar categories than between two 

exemplars taken from another entirely novel category that otherwise had a similar prototype-defined 

structure. The McClelland and Rumelhart model predicts the opposite result because, as illustrated in 

the lower half of Figure 1, it will be the prototypical features contained within these new exemplars 

drawn from the familiar category that will be most salient. This will lead to the two exemplars being 

represented as more rather than less similar as a consequence, because these will tend to be the 

features shared by the two exemplars. 

Figure 1 about here please 

Our solution to this problem is shown in Figure 1 (top half), which illustrates how the MKM 

theory predicts salience will change as a function of experience with exemplars of one category. The 

crucial difference between this model and that of McClelland and Rumelhart (1985) is that the 

activation of the units representing stimulus features (or elements as we will often call them) is 

modulated by their error. Thus, if a unit is relatively unpredicted by other active units, but is externally 

activated because a feature corresponding to that unit has occurred and been perceived in the 

environment, then it's activation (i.e. salience for learning purposes) will be high because its error 

score will also be high. Conversely, if a unit receiving external input is well-predicted by other active 

units such that its error score is low, then its activation (and salience) will be low. This is exactly the 

opposite of the effect that occurs in the M&R model, and leads to new exemplars drawn from a 



familiar, prototype-defined category being more easily discriminated, because the elements or 

features they share in common will be relatively low in salience, thus reducing stimulus similarity. The 

elements on which they differ (which will tend to be those elements that have changed from the 

prototype) will be relatively salient and this helps in learning to discriminate between them as 

McLaren, Leevers and Mackintosh (1994) found. 

The illustrations in Figure 1 are similar to those of a figure in McLaren (1997) that is also used 

to explain how experience with exemplars drawn from a prototype-defined category will lead to better 

within-category discrimination. This 1997 paper, however, deals with one of the first reports of an 

analogue of the face inversion effect using artificial categories (again chequerboards) rather than 

faces. McLaren first trained participants to learn (by trial and error) to categorize chequerboard 

exemplars as belonging to one of two prototype-defined sets. The exemplars were made from the 

prototypes by randomly changing some of the black and white squares that made up the 

chequerboard that defined the category prototype, as in McLaren, Leevers and Mackintosh (1994). 

McLaren (1997) then demonstrated that an inversion effect could be obtained for new exemplars 

drawn from these now familiar categories, a result since replicated repeatedly by Civile, Zhao, Ku, 

Elchlepp, Lavric and McLaren (2014). The explanation for this result is that the exposure to the 

exemplars of the categories participants were trained on initially allows perceptual learning to take 

place as in McLaren et al (1994), and this then improves discrimination and recognition performance 

to exemplars drawn from those categories that are in the usual upright orientation; but does not help, 

and as Civile et al (2014) argue, actually hinders discrimination and recognition when these 

exemplars are inverted. This explanation depends on the MKM account of perceptual learning and 

categorisation, as the M&R model would once again predict the converse result.  

There is thus some good evidence for the MKM modification of the M&R model of 

categorisation. We will use the categorisation followed by discrimination/recognition procedure just 

discussed later in this paper to test our hypotheses regarding the effects of frontal anodal tDCS 

stimulation on perceptual learning. But before doing this, we first consider the prior issue of what 

tDCS might be able to offer in terms of influencing categorisation itself, and how tDCS might affect the 

type of error-based modulation that is the basis of the MKM model. 

tDCS and Categorisation 



Our first experiment investigates the effects of tDCS  on a standard categorisation task that 

produces a prototype effect under normal circumstances (Posner and Keele, 1968). This work was 

inspired by the finding of Ambrus, Zimmer, Kincses, Harza, Kovacs, Paulus and Antal (2011) who 

provided evidence that tDCS could eliminate the prototype effect. There is other evidence that 

stimulation of PFC using tDCS can influence categorisation. Lupyan, Mirman, Hamilton and 

Thompson-Shill (2012) have produced some evidence that stimulation in frontal regions can enhance 

categorisation, and Kincses, Antal, Nitsche, Bártfai and Paulus (2003) have shown that when tDCS 

anodal stimulation was delivered over the left PFC (Fp3), probabilistic classification learning (PCL) 

was improved. Ambrus et al (2011), however, found that anodal tDCS, applied to Fp3 during the 

training phase (and beginning 8 minutes before the training phase started) had a significant and quite 

different impact on categorisation performance in their version of the prototype distortion task. They 

obtained a significant decrease in performance accuracy in identifying prototype and low-distortion 

patterns as category members in the anodal group compared to the sham group. This is a striking 

aspect of their results as it is contrary to most studies that show increased performance when anodal 

tDCS is applied to task-relevant cortical areas during task execution (e.g., Fregni, Boggio, Nitsche, 

Bermpohl, Antal, Feredoes, 2005). 

On close inspection, one possible interpretation of Ambrus et al's result is that anodal tDCS 

has reduced learning to the prototype, and increased generalisation to random patterns. This would 

have the effect of eliminating any prototype effect, and is exactly the type of pattern we would expect 

if the MKM model were to be transformed into the M&R version. Salience modulation enhances 

learning of novel stimuli, and so improves early acquisition of category discrimination, and it also 

reduces generalisation. Losing this type of modulation would lead to slower learning (at least initially) 

and greater generalisation. We speculated that anodal tDCS to Fp3 might have disrupted salience 

modulation by means of prediction error leading to Ambrus et al's result. 

If we now consider how tDCS might influence the brain's computation and use of prediction 

error, Reinhart and Woodman (2014) in a recent paper have shown that anodal tDCS over frontal 

regions can change prediction error. They used anodal stimulation at FCz and were able to show that 

this produced enhanced learning and selectively enhanced neural correlates of prediction error. The 

most obvious conclusion to draw from this study is that 1.5 mA anodal stimulation applied with their 

electrode montage has the effect of amplifying prediction error, which will both speed learning and 



lead to the neural signature they found. This is not the effect we postulated in response to Ambrus et 

al's data, but it does suggest that prediction error can be influenced by anodal tDCS, and of course 

the locus of stimulation is rather different in Reinhart et al's work. 

Our approach in the studies reported in this paper is to take something from the approaches 

of Ambrus et al's (2011) - because they were able to influence categorisation quite directly - whilst 

holding that of Reinhart et al (2014) in mind - because they have good evidence for changing 

prediction error. Hence we employed a similar electrode montage to that use by Ambrus et al (2011) 

stimulating Fp3, and increased the current from the 1mA they used to 1.5 mA in the hope of 

maximising our chance of observing an effect on categorisation. If we were to observe such an effect, 

then we would consider the possibility that this effect would be due to our changing the contribution of 

prediction error in influencing learning and performance on the categorisation task. In this way we 

hoped to develop a procedure that would allow us to both influence categorisation and the perceptual 

learning that follows on from categorisation, which in turn would allow us to probe the mechanisms 

underlying both, using the MKM modification of M&R as our starting point for interpreting our results. 

Note that our procedure, which is akin to that used in earlier studies, employs electrodes (see later) 

that do not have a strongly focal effect, so that the stimulation we provide is perhaps best functionally 

described as Left DLPFC rather than trying to claim any greater specificity. 

 

Experiment 1 

Experiment 1 is a conceptual replication of Ambrus et al (20111), using a classic 

categorisation paradigm based on early work by Posner and Keele (1968) and Homa, Sterling and 

Treppel (1981) designed to reveal any prototype effect. We use three prototype-defined categories of 

chequerboards, with the exemplars in each category generated by adding noise (randomly changing a 

certain number of squares) of the prototype for that category. Participants are trained to classify 

exemplars into these three categories by trial and error, and then tested on exemplars and the 

prototypes (which are never shown in training) to allow us to determine if an exemplar effect has 

occurred. Three types of stimulation, Anodal, Cathodal and Sham are used, but all employ the same 

Fp3 electrode placement used by Ambrus et al. 

Method 



Participants:  50 University of Exeter students (17 male) with a mean age of 21.5 years (sd 2.93) 

participated in the study. Two were excluded before analysis due to procedural complications leaving 

48.  

Stimuli: These were 16x16 chequerboards containing approximately 50% black and 50% white 

squares. Four prototypes were created that were constrained to share 50% of their squares with one 

another, and also to consist of relatively clearly demarcated regions of black and white. This was 

achieved by making the colour of a given square depend on that of its near neighbours. Thus, if they 

were predominantly black then it was likely to be black, and vice-versa if the neighbours were 

predominantly white.  Exemplars were generated by adding noise. A randomly chosen 96 squares 

would be set at random in a given prototype to generate an exemplar of that category, so that on 

average 48 squares are changed from the category prototype (see Figure 2). In this way as many 

exemplars as were desired could be created. We used a total of 128 chequerboard exemplars from 

each of the four categories in these experiments, though not all of these stimuli would be used for a 

given participant. The stimuli used in the experimental phases (categorisation and test) were 

counterbalanced across subjects. 

Participants were required to separate these chequerboard stimuli into three categories (A, B 

and C) during the training and test phases (see Figure 2). In the training phase, 64 novel exemplars 

from each of the three categories were presented to participants in a randomized order. In the test 

phase, 10 of these previously seen exemplars from each category were presented to participants 

along with 10 novel chequerboard stimuli from each of the three categories and the three previously 

unseen category prototypes. The prototype stimuli were presented twice each during test. Participants 

made category responses to stimuli using the “C”, “V” and “B” keys on a keypad. 

Figure 2 about here please 

tDCS: This was delivered by a battery driven constant current stimulator (Neuroconn) using two 

electrodes covered by 5cm x 7cm pieces of pre-dampened synthetic sponge. One electrode montage 

was used: the first electrode (to which polarity refers) was placed over the left PFC (Fp3) and the 

reference electrode was placed on the forehead above the right eye. First electrode placement was 

determined by locating the Cz for each of the subjects (half the distance between the inion and nasion 

areas) and then moving 7 cm anterior relative to the Cz and 9cm to its left (see Figure 3). 

Figure 3 about here please 



Current was applied 1.5 min before the participants began the categorisation task (whilst listening to 

instructions) and from then on making 10 min stimulation in total. tDCS was delivered with an intensity 

of 1.5mA, and a fade-in and fade-out of 5 sec for the Anodal and Cathodal groups. Sham received the 

same 5 sec fade-in and fade-out, but only 30 sec stimulation between them, which terminated before 

categorisation commenced. A double blind procedure was used, by having two experimenters, one 

(primary) who actually ran the participant, and another (secondary) who set up the stimulation 

according to specifications provided by a third party. The connections to the stimulator were 

concealed by the secondary experimenter so that neither primary experimenter nor participant could 

determine the polarity of stimulation. In Experiment 1 we compared Anodal, Cathodal and Sham 

groups.  

Design and procedure: In a between-subjects design the 48 participants were randomly assigned to 

one of 3 conditions: anodal stimulation, cathodal stimulation, and sham. Thus, all conditions contained 

16 participants.  

Once participants had been set up for tDCS stimulation they were informed that they would 

see different black and white chequerboard stimuli that they had to categorise into category A, B or C, 

and were shown the three buttons on the keyboard that they were to use (‘C’, ‘V’ and ‘B’ respectively). 

After the tDCS stimulator was switched on, the participant then read through three screens of more 

detailed instructions about the task, which lasted approximately 1.5 minutes. The training phase then 

began which contained 192 novel category stimuli presented in three blocks of 64 randomized trials 

with self-paced breaks separating each block. After a fixation cross, one stimulus was presented for 3 

seconds during which the participant made their category response on the keyboard. The stimuli 

remained on the screen for the full 3 seconds. Feedback was presented after every trial. 

After the participant finished the training phase, the primary experimenter switched off the tDCS 

stimulator and informed participants that no current was now going through the electrodes. They were 

then informed that there was a final block to the task, using the same categories as before, but this 

time with no feedback. This test phase had 66 trials of randomised exemplar and prototype stimuli. 

Results 

The crucial dependent variable was mean accuracy proportion (out of 1) of category responding 

during the test phase of the experiment (Figure 4).  

Figure 4 about here please 



To examine the prototype effect, the difference between accuracy in responding to exemplar and 

prototype stimuli during test was investigated. The average accuracy in responding to exemplars 

during test was calculated for each participant, and the mean accuracy of responding to these 

exemplars was then subtracted from the accuracy in responding to the prototypes during test (Figure 

5). This difference was then added entered into a univariate analysis as a dependent variable with 

condition as the fixed factor. The main effect of condition on this measure of the prototype effect 

approached significance (p =. 081). There was no significant difference when comparing cathodal 

stimulation to Sham. However, when comparing the prototype effect in the anodal stimulation 

condition to the Sham control group there was a significant difference (p = .03) indicating that the 

prototype effect was smaller in the Anodal group. Comparing the prototype effect under anodal 

stimulation to the cathodal stimulation condition there was also a similar significant difference between 

conditions (p = .043), i.e. a greater prototype effect under cathodal stimulation compared with anodal 

stimulation. It is the lower accuracy on prototype trials in the anodal condition that seems to be driving 

these results. 

Figure 5 about here please 

Differences between exemplar and prototype response accuracy were also compared with the null 

hypothesis of a difference of zero between the two measures. There was no reliable difference found 

in the Anodal condition, however, Cathodal and Sham conditions both produced significant effects on 

this test (p < .05) indicating a significant prototype effect for these conditions (see Figure 5). 

Discussion 

Our results are broadly in line with those of Ambrus et al (2011), in that we have also shown 

that anodal stimulation at Fp3 leads to a significant reduction in, perhaps even elimination of, the 

prototype effect. Whilst accuracy scores are significantly higher for the prototype than for exemplars 

under Cathodal and Sham stimulation, this difference disappears under anodal stimulation and the 

difference between these differences (i.e. prototype effect for Anodal vs. prototype effect for Cathodal 

or for Shams) is also significant. Ambrus et al (2011) also found that anodal stimulation to left DPLFC 

eliminated a prototype effect that was otherwise significant in Sham controls, though in their case this 

was accompanied by significantly lower performance to prototypes in the Anodal condition relative to 

Shams as well, a result that is not significant in our data though the numerical trend is the same. Our 

results do allow us to extend Ambrus et al’s conclusions, however, as we have been able to show that 



cathodal stimulation is not different to sham stimulation with our procedures (Ambrus et al did not run 

a left DPLFC cathodal group). Thus, our effect is a selective one, in that only anodal stimulation of left 

DPLFC eliminated the prototype effect in our experiment. 

We will forgo further analysis of this result until we have reported the results of Experiment 2 

which also investigates the effects of tDCS to left DLPFC, but this time using a version of our 

categorisation task that is identical to that used in our earlier perceptual learning experiments (Civile 

et al, 2014).  

 

Experiment 2 

Here we carry out two replications of an experiment that exactly duplicates the categorisation 

training procedure adopted by McLaren (1997) and also used by Civile et al (2014). This was done in 

order that our results could be extrapolated to these perceptual learning experiments, allowing us to 

predict the consequences tDCS for perceptual learning in future experiments. In this procedure only 

two chequerboards are used as base patterns or prototypes (i.e. there are only two categories in 

play), and exemplars are generated from them as before by adding noise, which simply involves 

changing a random selection of the squares in the prototype. Participants are then trained to 

distinguish between exemplars drawn from these two categories using a trial and error procedure with 

feedback before being tested for classification accuracy to both category exemplars and their 

prototypes (which, as in Experiment 1, are never seen in training). Experiment 2a uses this paradigm 

and contrasts anodal tDCS to Fp3 in the Experimental group with a Sham control. Experiment 2b 

uses a cathodal stimulation group as the comparison with the Experimental group receiving anodal 

stimulation. The cathodal control has the advantage that stimulation occurs in exactly the same way 

as for anodal stimulation (but with reversed polarity). We took this opportunity to see if it would 

produce similar results to sham stimulation.  

Method 

 Stimuli: These were as before but only two prototype-defined categories were used (A and B 

in Figure 2). 

Participants: Experiments 2a and 2b each had 16 undergraduate participants per group and 

were run in Shanghai, China, at East China Normal University.  



tDCS: Stimulation was as in Experiment1. In Experiment 2a we compared Anodal and Sham 

groups. In Experiment 2b we compared Anodal and Cathodal groups. 

Categorisation task: Participants were asked to categorise chequerboards into two different 

categories (in this case A and C, see Figure 2). Chequerboards were presented one at a time for 

classification. They were presented for 4 seconds. Participants had to press either the "x" or the "." 

key to categorise the stimulus. The experiment moved to the next stimulus only after the 4 seconds 

had passed. Participants received feedback as to whether their response was correct or not.  128 

Exemplars were presented, 64 from category A and 64 from category C. In the test phase participants 

were asked to categorise chequerboards (self-paced) without feedback. They were given one 

presentation of eight old exemplars from each category (exemplars used in training), eight new 

exemplars from each category, and two presentations of both category prototypes. 

Results - Experiment 2a 

Figure 6 gives graphs of mean accuracy for Experiment 2a. A strong prototype effect was 

obtained under anodal tDCS, but was absent in the Sham group; p<.05 for comparisons between the 

prototype and mean performance on the exemplars in the anodal condition. The interaction for these 

effects with group (Anodal vs. Sham) did not, however, reach significance (p=.15). There is some 

evidence that the effect of anodal tDCS was to suppress performance to the exemplars, in that there 

was a significant difference between Anodal and Sham groups for the New exemplars, p=.042. 

Clearly, given our earlier results and those of Ambrus et al (2011), this set of data came as something 

of a surprise. Further interpretation of this result will be postponed, however, until we have considered 

the results of Experiment 2b. 

Figure 6 about here please 

Results - Experiment 2b 

Figure 7 gives the graphs for Experiment 2b. Once again a prototype effect was obtained 

under anodal tDCS, p=.005, but not under cathodal tDCS, which gave results very similar to those 

obtained in the Sham group of Experiment 2a. There was some evidence that the Anodal group 

prototype effect was significantly stronger than that in the Cathodal group, p=.078 for the interaction 

using the average of the two types of exemplar to compare to the prototype. There is also evidence 

that anodal tDCS suppresses test performance to exemplars, as there is a significant Group 

difference, this time for Old exemplars, p=.037. 



Figure 7 about here please 
 
Discussion 

Taken together, the results of Experiment 2 suggest that anodal tDCS reduces accuracy on 

test to exemplars in this type of categorisation task. It leaves performance to prototypes relatively 

unaffected, however, which leads to the emergence of a prototype effect when we compare 

performance on the prototype to that on other exemplars. Before accepting these conclusions, 

however, we acknowledge that there is an obvious issue with these results that makes their 

interpretation more difficult. Performance in the Sham or Cathodal groups is near ceiling, particularly 

for the prototypes. This makes it hard to tell whether the absence of any prototype effect in these 

groups is real - or is due to this ceiling effect. If it is the latter, then it may be that anodal tDCS simply 

reduces test accuracy below ceiling, allowing a prototype effect that was, in some sense, always there 

to emerge. Another possibility, however, is that anodal tDCS selectively enhances the prototype effect 

in these experiments, and that it's appearance is not a simple consequence of an overall reduction in 

performance allowing an effect that was present but masked to become visible. We will focus on this 

last possibility in what follows, as we have been unable to generate a plausible account of how anodal 

tDCS could reduce overall performance in the two category case, but selectively reduce performance 

to prototypes in the three category problem. 

On the face of it, the results of Experiment 1 and Experiment 2 appear to be incompatible. In 

Experiment 2, as we have just seen, we have evidence for anodal tDCS using our electrode montage 

producing a stronger prototype effect than that shown in our control groups (using either Sham or 

Cathodal stimulation). In Experiment 1 we obtained the converse pattern of results, the prototype 

effect in the Anodal group was this time significantly weaker (and actually absent) than in either Sham 

or Cathodal groups. It is true that because of the nature of the problems there are some parametric 

differences in stimulation between the two experiments. tDCS stimulation will have been active for 

about half of the training phase in Experiment 1, but the full training phase in Experiment 2. But this, 

on it's own, would seem an unlikely candidate to explain the opposite effects of the two experiments, 

and in any case the effects of tDCS stimulation are thought to last well beyond the active stimulation 

period.  So how are we to explain this pattern of results? 

We believe that the key to understanding this pattern lies first of all with the prototype effect 

(or lack of it) demonstrated in the control conditions where tDCS can be assumed to not have any 



significant influence. In the two category problem used for Experiment 2 there was no prototype effect 

in these control groups. In the three category problem used in Experiment 1 there was a significant 

prototype effect in both control groups. The stimuli and procedures in both experiments are the same, 

with the proviso that we used an extra category in Experiment 1, so this difference (no prototype effect 

vs. prototype effect) can most probably be ascribed to the use of three rather than two categories. 

This would have the effect of influencing performance levels not only because there are three possible 

choices instead of two, but also because the amount of generalisation between categories has 

increased (because now each test stimulus in the three category problem would be receiving 

generalisation from exemplars of two different categories in addition to members of its own category, 

rather than from just one).  

This extra generalisation between categories would also, somewhat paradoxically, produce a 

stronger perceptual learning effect for the three category problem than would be the case in the two 

category problem. The extra generalisation makes the perceptual discrimination between categories 

more difficult, but the perceptual learning effect addresses this issue, by enabling the representations 

of the exemplars and prototypes from the three categories to become more distinct, and consequently 

there is more scope for this effect to manifest in these circumstances We will go into considerable 

detail on exactly how this might be achieved shortly, but our argument is that this stronger perceptual 

learning effect in the three category problem is particularly marked between categories, making them 

more easily distinguishable from one another and this enhances the prototype effect.  

Our explanation of the results for the control conditions is thus based on a trade-off between 

generalisation between categories (which on its own reduces classification performance) and 

enhanced between-category perceptual learning, which we will argue assists classification of 

prototypes more than exemplars. In the two category problem the former effect dominates, and 

generalisation between categories is such that it counteracts any advantage that the prototype might 

have over other exemplars. In the three category problem the balance shifts, and now perceptual 

learning makes the categories more discriminable and the prototype effect emerges. We will show 

how this can happen shortly, but note that some explanation for this (reliable) difference between 

control conditions has to be given, and this is the most plausible account available to us. 

Our explanation of the results in the anodal tDCS conditions is that this stimulation abolishes 

perceptual learning leaving enhanced generalisation, both between and within categories. The effect 



of the enhanced generalisation within-category is to strengthen the prototype effect, but the effect of 

the between-category generalisation will be to reduce it. The first dominates in the two category 

problem, but the second is the more important factor in the three category problem because the 

amount of between category generalisation is doubled. Hence the prototype effect in the two category 

problem becomes detectable under anodal tDCS (and may be potentiated by a reduction in 

performance from ceiling - we cannot rule this out); but the prototype effect that was already 

detectable in the three category problem is reduced and becomes non-significant in the three 

category case. 

The analysis thus far may seem rather ad-hoc and designed to describe rather than explain 

our data. Note, however, that there has to be some explanation for the otherwise rather counter-

intuitive pattern of results obtained across Experiments 1 and 2, and that our explanation of the 

effects in the control groups follows from an application of the McLaren, Kaye and Mackintosh (1989) 

model of perceptual learning and categorisation and it's recent variants (McLaren and Mackintosh, 

2000; McLaren, Forrest and McLaren, 2012) discussed in our introduction. Our hypothesis is that the 

modulation of salience based on the error term that forms a vital part of MKM model is disrupted by 

anodal tDCS so that the model in essence reverts to McClelland and Rumelhart's (1985) model of 

categorisation inasmuch as perceptual learning or representation development is concerned. This 

hypothesis is explored in detail in the computational analysis that follows. 

 

Perceptual Learning and Categorisation under tDCS 

The top middle panel of Figure 8 shows how the salience (activation) of the elements 

(representations of sets of features) of each category prototype will be affected by experience of 

exemplars from categories A and C if we adopt the MKM approach to salience modulation via 

prediction error. Note that all the elements needed to represent all three categories (A, B and C) are 

shown for completeness, but that exposure is only given to two of them, A and C, for this example. 

Those elements that are more predictable and are more often encountered will be those with lower 

salience (darker shading). Thus, the elements shared by the A and C prototypes (abc and ac) are less 

salient than a or ab elements (only present in A). Given that exemplars from the B category are not 

pre-exposed in this example the b elements can only occur by virtue of the random noise added to 

construct exemplars from the prototypes. The right panel shows how the modulation of salience 



across elements changes when all three categories are experienced. In particular, the shared 

prototypical elements, abc, become even less salient. The effect is that discrimination between the 

three category prototypes is actually better than when only two categories were trained because 

perceptual learning is more effective. 

Figure 8 about here please 

The bottom panels of Figure 8 show what happens when the salience modulation mechanism 

in MKM is removed. The salience (activation) of elements representing the stimulus features now 

reverts to that in McClelland and Rumelhart's (1985) model of categorisation, with units receiving 

more internal input having higher (rather than lower as in MKM) activations. In effect, this gives the 

common elements an advantage that can be seen in both lower panels. They become increasingly 

salient, and this leads to very strong between and within-category generalisation. Table 1 gives the 

relative proportions of the different elements making up each stimulus for the average A exemplar and 

C exemplar as well as the A and C prototypes using a simple model that, as a first approximation, 

equates each square in a chequerboard with a feature. By combining this information with the 

expected salience of these elements shown in Figure 8, it is possible to get a sense of how much one 

stimulus will generalise to another as a result of categorisation training. 

Table 1 about here please 

We can see immediately that the MKM model predicts that exemplars will contain novel 

(noise) elements that are of relatively high salience, and that the prototypical elements will be more 

numerous, but less salient. The prototypes are exclusively composed of relatively low salience 

prototypical elements and do not overlap as much as exemplars drawn from the two categories. The 

consequence of this is that generalisation from say the trained A exemplars to C exemplars will be 

somewhat greater than to the C prototype. This effect is symmetrical (the C exemplars generalise to 

the A exemplars to the same extent), and so the chance of mistakenly calling an A exemplar a 

member of the C category will be somewhat greater than that of calling the A prototype a member of 

the C category. 

Table 2 gives the calculated expected generalisation (based on Figure 8 and Table 1) to/from 

trained A exemplars to each of the four stimulus types considered in our earlier table, and it confirms 

our analysis. If we begin by looking at the 2 Categories MKM column of the table, it shows (perhaps 

rather surprisingly) that the generalisation from one of the trained A exemplars to this typical A 



exemplar (.609) will be greater than that stimulus' generalisation from (or to) the A prototype (.596), 

but the difference between these values is not large. We can estimate the generalisation that occurs 

on average from the C category exemplars and the C prototype to/from this A exemplar by looking at 

the C prototype and C exemplar rows of the table. These give generalisation from an A exemplar to 

these stimuli, but by symmetry they give us the values we will require for our calculations. Thus, the 

generalisation from C exemplars to an A exemplar (.430) will be considerably greater than the 

generalisation from the C prototype to A exemplars (.340), which is also the value for generalisation 

from C exemplars to the A prototype. The result is a larger difference in generalisation for the A 

prototype to the A category exemplars compared to the C category exemplars (.596 - .340 = .256) 

than for the A exemplars to the same stimuli (.609 - .430 = .179). In other words, it predicts a 

prototype advantage, but does it predict a detectable prototype effect?  

Table 2 about here please 

To answer this question we need to convert generalisation into choice. The models 

themselves do not stipulate the requisite decision mechanisms to function as stand-alone classifiers. 

Hence we used a minimalistic approach to converting generalisation into choice behaviour that was 

simply designed to demonstrate that the MKM model could produce the correct pattern for the two 

and three category problems in the control groups, and that this would then change appropriately 

when error modulation of salience was disrupted. We employed a standard form of Luce's choice rule, 

using the exponential of the generalisation coefficient as our measure of category membership. 

1. 𝑃 𝐴 =  !!"

!!"! !!"
 

Where P(A) is the probability of classifying a stimulus as a member of category A, a is the summed 

generalisation to that stimulus from trained A exemplars, c is the summed generalisation from trained 

C exemplars, and  k is a constant that captures the weight given to generalisation in a given task. We 

then needed to find k for our model. For the 2 Categories MKM coefficients we simply chose k so that 

it gave a ballpark fit to the accuracy data for the exemplars in our experiments (and we used this 

procedure for the other data as well). We adopted a value of 11, which resulted in P(A) for the 

prototypes being 0.94, and P(A) for exemplars being 0.88. These are a reasonable fit to the actual 

values across the two experiments, which are 0.94 and 0.925 respectively, though clearly the model 

value for the exemplars is a little low. 



One point to make here about this very simple model is that we are simply assuming that each square 

in a chequerboard is a feature. This may be a useful approximation to reality for our purposes, but it 

completely fails to capture the fact that the prototypes (which were constrained to have regions of 

nearly all black or nearly all white) looked distinctly different to the exemplars, even those from their 

own category, which were necessarily less “blocky” in appearance because of the random noise used 

to generate them (see Figure 2). This would act to reduce the magnitude of any prototype effect in 

these experiments, and so our model is necessarily overestimating the size of the prototype effect 

actually obtained. Even given this, however, we can see that a prototype effect might be hard to 

detect for the two category case under our control conditions. 

We can now look at the expected generalisation for the three category problem. This is shown 

in the 3 Categories MKM column, and gives a difference of .222 (= .395 - .173) for the prototype and 

.104 (= .526 - .422) for the exemplar. Clearly this is a larger disparity between prototype and exemplar 

generalisation (.118) than we had for the two category case (.077 where the values for the prototype 

and exemplars were .256 and .179), and as such could lead to a stronger prototype effect. We took k 

for the three category task to not necessarily be the same as in the two category task, and arrived at a 

value of 10. Clearly training on three categories rather than two might, in itself, affect the weight 

placed on the measure provided by generalisation (not least because as the number of categories 

increases so does total generalisation between them), but note that using the same value for k as in 

the two category case (i.e.11) leads to essentially the same pattern of results with this simple model of 

choice. The choice equation now becomes: 

2. 𝑃 𝐴 =  !!"

!!"! !!" ! !!"
 

This resulted in P(A) for the prototypes being 0.82 (which is somewhat too high), and P(A) for 

exemplars being 0.59 (which is too low), but represents a reasonable fit to the data and clearly makes 

the point that the prototype effect for the three category problem is predicted to be much greater than 

for the two category problem (a difference of 0.82 - 0.59 = 0.23 compared to a difference of 0.06 in 

the two category problem). It is no surprise on this analysis, then, that the prototype effect might be 

detectable in our controls for the three category, but not the two category problem. 

If we now consider the effect of turning off error-based modulation of salience to give 

something like the representation development that would be seen using the M&R model, then a quite 

different pattern emerges. First of all, generalisation increases a great deal – as can be seen by 



looking in the two M&R columns of Table 3. This is exactly as would be expected given that 

perceptual learning (which has effectively been switched off) has the opposite effect to generalisation. 

The increased generalisation for the two category problem gives difference scores of 1 - .654 = .346 

for the prototype and .754 - .558 = .196 for exemplars. The difference score for the prototype has 

improved relative to the .256 difference obtained using MKM, whereas the score for the exemplars 

has stayed about the same (it was .179). The prediction, then, is that the prototype effect should be 

enhanced by anodal tDCS in the two category case, as the disparity between prototype and exemplar 

difference scores is now .150 instead of the original .077. Translating the generalisation scores into 

choice probabilities requires that we make a new estimate of k here, as clearly tDCS could quite 

possibly have affected the weight placed on our measure of category membership in ways not 

captured by our model. A value of k = 8 gives us P(A) for the prototype as 0.94 and P(A) for 

exemplars as 0.82 in the two category problem, which is a good fit to our data and suggests that the 

size of the predicted effect has doubled. If we instead consider what happens for the three category 

problem then a different effect emerges. The original disparity between the generalisation differences 

for MKM was .118 (.222 - .104), but once we turn off error-based modulation it becomes .085 (.328 - 

.243). Clearly both generalisation scores have increased, but the increase has been greater for the 

exemplars and so the difference is smaller, and smaller still relative to the scores contributing to that 

difference. Translating these scores into choice probabilities we used a value for k of 5 to try and fit 

our data as best we could, which results in choice probabilities of 0.72 (too high) for the prototype and 

0.63 (too low) for the exemplars. Clearly, this simple model of choice had considerable difficulty in 

fitting our data. But this exercise makes the important point that once again the changes in 

generalisation - which are all we are confident of in this modelling exercise (and even here we have 

caveats about the similarity of our prototypes to the exemplars) - do translate into changes in choice 

probability which fit the interaction in our data. In this case the predicted prototype effect, which was 

23%, has now decreased to 9% indicating that it should become considerably more difficult to detect. 

 One point that may strike the reader about our analysis is that this final prototype effect for 

the three category problem under tDCS (an effect of 9%) is not so different to the effect of 12% 

predicted for the two category problem under tDCS which we wish to claim is detectable. The 

important points to make here are that first, the two effects occur at different levels of choice 

probability. A 12% difference when choice is in the 80%-90% range will have a lower variability 



associated with it than a difference of 9% when choice probabilities are 60%-70%. Thus one may be 

detectable where the other is not. Second, we have tried to emphasize that it is the change in effect 

from control stimulation to experimental (anodal) stimulation that is the real prediction of interest here. 

We cannot (and do not wish to) lay claim to possessing a model that fits (in the statistical sense) our 

data, but we can claim that the changes in generalisation that occur in our model as a result of shifting 

from two category to three category problems, and as a result of switching off perceptual learning, 

accurately capture the pattern in our data. And this suggests a particular interpretation for the effects 

of anodal tDCS stimulation of DLPFC. 

The real test of our position, of course, would be to look directly at the effects of anodal tDCS 

stimulation on perceptual learning. We are now able to unequivocally predict that this stimulation 

should disrupt perceptual learning and possibly even reverse it. We will now briefly consider a set of 

experiments that addresses this issue, using the same set of chequerboard stimuli and the design 

employed by Civile et al (2014) to look at perceptual learning in the context of inversion effects. 

 

Perceptual Learning 

We have already noted that perceptual learning affects the way we see the world and the 

objects in it, and that pre-exposure to stimuli enhances our ability to discriminate among or between 

them or other similar stimuli. In the lab, one of the most striking consequences of perceptual learning 

is the face inversion effect: upright faces are better recognised than inverted faces. This inversion 

effect is at least partly due to our extensive experience with faces, as exposure to artificial stimulus 

sets that have a structure akin to that possessed by faces leads to phenomena similar to those 

observed in face recognition, including inversion effects (McLaren, 1997; Gauthier and Tarr, 1997). 

For example, exposure to a set of prototype-defined chequerboards results in an inversion effect for 

exemplars from a familiar category but not for exemplars from a novel (not pre-exposed) category 

(McLaren, 1997, Civile et al, 2014). As we have already argued, this advantage for upright exemplars 

can be explained by associative models of perceptual learning that rely on differential latent inhibition 

of common elements. Exposure to exemplars from the familiar category leads to latent inhibition of the 

prototypical elements for that category (Figure 1, top half). When an exemplar drawn from that 

category is encountered, the elements that it shares with the prototype will be latently inhibited 

(making them less salient), whereas the elements that are unique to that exemplar will not suffer 



greatly from latent inhibition (making them more salient). This will enhance discrimination between 

exemplars drawn from the familiar category (i.e. perceptual learning). Our associative model can 

explain a range of perceptual learning phenomena, including the inversion effect, as the latent 

inhibition mechanism only applies to what has been experienced, and participants have not 

experienced inverted exemplars during the earlier familiarization phase. Figure 1 (bottom half) also 

shows that losing the modulatory component producing differential latent inhibition should result in a 

loss and perhaps even a reversal of within-category perceptual learning. 

Our plan, then, was to run what was essentially a replication of Civile et al (2014), but to apply 

anodal tDCS using our current electrode montage during the first, categorisation phase. This should 

disrupt any perceptual learning and increase generalisation between exemplars. Because perceptual 

learning is responsible for the inversion effect for exemplars drawn from a familiar category (i.e. one 

that has been trained) that we reliably see with this procedure, anodal tDCS should reduce (perhaps 

even reverse) this effect. The detailed results of these experiments will be reported elsewhere (Civile, 

Verbruggen, McLaren, Zhao, Ku and McLaren, in preparation) so we will only summarise them here. 

We used the same 16x16 chequerboards used in the earlier experiments with the addition of one 

extra category, D. Our experimental groups used anodal stimulation. The control groups used sham 

or cathodal stimulation. Participants classified exemplars from two prototype-defined chequerboard 

categories during tDCS (categorisation stage). They then studied exemplars drawn both from one of 

the now familiar categories and from another novel category in either upright or inverted orientations 

(study stage). Finally, in the recognition task (test stage) they had to classify chequerboards as either 

“old” (seen in the study phase) or “new” (not seen). Their accuracy scores were then converted into d' 

measures for use in our analyses.  

In Figure 9 we give the combined Anodal stimulation vs. Control results for recognition in this 

final phase. As predicted by extrapolation from the Civile et al (2014) experiments and the results 

considered earlier, in the Control conditions we observed an inversion effect for familiar-category 

exemplars (Upright better than Inverted, p = .013) but not for novel-category exemplars. The 

perceptual learning effect was also reflected in the performance on upright exemplars taken from the 

familiar category being better (p=.050) than that on the matched exemplars (matched across 

participants) taken from the novel category. But under anodal stimulation the pattern was quite 

different. There was no inversion effect, and the effect that was there was significantly different to that 



in controls (p=.045). Now the performance on upright exemplars taken from the familiar category was 

significantly worse (p=.005) than that on the matched exemplars taken from the novel category. In 

fact, if we compare performance on the upright exemplars taken from the familiar category in both 

conditions, the difference is also highly significant (p=.005), and in favour of the controls. Clearly the 

effects of familiarisation with the category have radically altered under anodal stimulation. 

Figure 9 about here please 

The most reasonable interpretation of these results is that Anodal tDCS has a selective effect 

on performance to upright exemplars drawn from the familiar category. We would argue that our data 

are consistent with anodal tDCS stimulation eliminating a modulatory input based on prediction error, 

leading to a loss of perceptual learning. The resultant system is then adequately described by simple 

delta rule algorithms of the type found in the M&R model of categorisation, and as such has a 

particular problem in dealing with familiar prototype-defined categories as a consequence of the 

increased generalisation between their exemplars. This leads to the poor performance on the upright 

exemplars drawn from the familiar category under anodal tDCS, compared to the otherwise superior 

performance exhibited to these exemplars under control conditions as predicted by MKM.  

Conclusions 

In Experiment 1 we were able to demonstrate that anodal tDCS to left DLPFC does indeed 

reduce the prototype effect that might otherwise be obtained after learning to categorise. This 

confirms the result of Ambrus et al (2011), and suggests that their result was not simply a matter of 

anodal tDCS reducing learning per se. We carried out Experiment 2 in order to set the stage for our 

subsequent investigation of perceptual learning and to confirm the results of Experiment 1. Our results 

were, on the face of it, anything but confirmation of Experiment1, in that far from reducing the 

prototype effect, anodal tDCS enhanced it. In fact, it produced a significant effect where under control 

conditions none had been detectable.  

This initially surprising and contradictory result proved to be susceptible to a detailed analysis 

in terms of changes in generalisation brought about by 1) changing the number of categories from 

three to two and 2) using either anodal or control stimulation. The analysis relied on the assumption 

that the effect of anodal tDCS to left DLPFC was to disrupt modulation of the salience of stimulus 

representations based on error such as to transform a system for categorisation that under control 

conditions could be described by MKM, to one better thought of in terms of M&R. This effect 



interacted with the increased generalisation between categories that occurred in the three category 

problem relative to the two category version, and so explained the different effects of anodal tDCS on 

the prototype effect in the different experiments. Our analysis is model-driven, and admittedly post-

hoc, but it did make the prediction that perceptual learning due to pre-exposure during categorisation 

training should be eliminated, or even reversed, by anodal stimulation.  

This prediction was fully borne out by the results of the final set of experiments reported here. 

Our control conditions showed our usual inversion effect in this analogue of the face recognition 

paradigm using chequerboards, but the inversion effect was not present under anodal tDCS. More 

importantly, whilst familiarisation with a category improved performance on upright exemplars drawn 

from that category, in that they were better discriminated in the old/new test than those drawn from a 

novel category, this effect was reversed under anodal stimulation. Finally, performance on the upright 

exemplars from the familiar category was significantly and selectively worse under anodal tDCS than 

in the control conditions, an effect entirely consistent with our hypothesis that anodal stimulation 

"turns off" perceptual learning and leaves participants with greatly increased generalisation. 

Final Thoughts 

The McLaren, Kaye and Mackintosh theory of latent inhibition and perceptual learning could, 

up until now, be seen as an abstract connectionist model of representation development that provided 

a good account of a fairly limited domain of animal and human behaviour. But the intention on the 

original author's part was always to apply it more widely, and that is a challenge that we have taken 

up with our recent research into categorisation and perceptual learning. We now have some hints 

about the neural mechanisms underlying perceptual learning, and they fit very well within the 

framework provided by that theory. This serves to remind us that Nick Mackintosh's vision in 

extrapolating from sophisticated behavioural experiments to detailed theoretical mechanisms was 

quite extraordinary, and his theoretical insights into perceptual learning in humans are as relevant 

today as they were over twenty-five years ago. 
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Figure and Table Legends: 

Table 1: This shows the percentage of features of different types (elements) present in each of four 

different stimuli drawn from two different categories. Each element label refers to Figure 7 

(middle and rightmost panels) and denotes features that are present in one or more of the three 

possible categories. The table also makes clear the extent of feature overlap between any two 

stimuli once it is born in mind that exemplars are generated from the prototypes by randomly 

changing the elements of the prototype, and that 25% is the maximum allocation of elements of 

any one type. 

Table 2: This shows the expected generalisation (minimum=0, maximum=1) between each of the four 

stimuli in the table and a typical trained exemplar drawn from Category A. Generalisation is 

calculated using either the MKM or M&R salience for the elements comprising the stimulus. 

Note that the generalisation from A exemplars to the C prototype will be the same as that 

expected for the C exemplars to the A prototype, and so can be used in conjunction with the 

figures for the A prototype to calculate the probability of labelling prototype A as a member of 

the A category. 

Figure 1: Top half. This illustrates how modulation driven by prediction error (as in MKM) can be used 

to influence feature salience for a single category. The result, shown in the temperature 

diagram, is that stimulus features that are more predictable become less active (darker 

shading) leading to latent inhibition (slower learning as a consequence of pre-exposure). This 

improves discrimination between members of a prototype-defined category as it relies upon the 

less predictable features unique to each stimulus. The bottom half of the figure shows how 

disrupting this modulatory input (e.g. using tDCS) reverses this effect (as in M&R), making the 

common, prototypical features of the stimuli the most salient (lighter shading). 

Figure 2: Examples of the prototypes (top row) and exemplars (bottom row) from the categories used 

in the experiments reported in this paper. Please see the text and Civile, Zhao, Ku, Elchlepp, 

Lavric and McLaren (2014) for more details about the characteristics of our prototype-defined 

categories of chequerboards. 

Figure 3: The figure illustrates the electrode configuration and the tDCS apparatus used in these 

experiments. 



Figure 4: Average accuracy for each group (Anodal, Cathodal, Sham) broken down to show overall 

performance during training and then test performance to exemplars and prototypes. Error bars 

are SE of the mean. 

Figure 5.  The difference in response accuracy between prototypes and the average of responding to 

exemplars in the test phase of the experiment. Error bars are SE of the mean. 

Figure 6: The graph shows mean accuracy during test for old and new exemplars drawn from the 

trained categories as well as performance on the prototypes for those categories. The 

chequerboards shown are typical exemplars / the prototype for the A category, but the average 

is for both categories. Error bars show SE of the mean. 

Figure 7: The graph gives mean accuracy for old and new exemplars as well as the prototypes during 

test based on performance on both categories. This time the figure displays typical exemplars / 

the prototype for the C category. 

Figure 8: Top Panels: This illustrates how modulation driven by prediction error (as in MKM) can be 

used to influence feature salience. The result, shown in the temperature diagram, is that 

stimulus features that are more predictable become less active (darker shading) leading to 

latent inhibition (slower learning as a consequence of pre-exposure). This improves 

discrimination between members of a prototype-defined category as it relies upon the less 

predictable features unique to each stimulus. The bottom panels show how removing this 

modulatory input (as in M&R) reverses this effect, making the prototypical features of the stimuli 

the most salient (lighter shading). The two category case (centre) where exposure is only to A 

and C categories, and the three category case (right) are illustrated in terms of the prototypes 

for each category, and are labelled to show the differential effect on the elements that make up 

each category prototype. 

Figure 9: Combined results of perceptual learning experiments. Lighter bars are for Anodal stimulation 

and darker bars for control stimulation. The y-axis gives d' scores for the old/new recognition 

task (higher=better, 0=chance), and the four different stimulus conditions are shown on the x-

axis. 

 

  



Table 1 

 

 

  

Stimulus Elements a ab ac abc bc b c n 

A prototype % 25 25 25 25 0 0 0 0 

A exemplar % 20 20 20 20 5 5 5 5 

C prototype % 0 0 25 25 25 0 25 0 

C exemplar % 5 5 20 20 20 5 20 5 



 

Table 2 

 

  

Stimulus 2 Categories 
MKM 

2 Categories 
M&R 

3 Categories 
MKM 

3 Categories 
M&R 

A prototype .596 1.00 .395 1.00 

A exemplar .609 .754 .526 .761 

C prototype .340 .654 .173 .672 

C exemplar .430 .558 .422 .518 
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