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Abstract

We tested the hypothesis that the time constants (t) of postexercise T2* MRI signal intensity (an index of O,
delivery) and muscle [PCr] (an index of metabolic perturbation, measured by 31P—MRS) in hypoxia would
be accelerated after dietary nitrate (NO3 ) supplementation. In a double-blind crossover design, eight
moderately trained subjects underwent 5 days of NO3  (beetroot juice, BR; 8.2 mmol/day NO3 ) and
placebo (PL; 0.003 mmol/day NO3 ) supplementation in four conditions: normoxic PL (N-PL), hypoxic PL
(H-PL; 13% O,), normoxic NO3 (N-BR), and hypoxic NO3 (H-BR). The single-leg knee-extension
protocol consisted of 10 min of steady-state exercise and 24 s of high-intensity exercise. The [PCr] recovery
T was greater in H-PL (30 + 4 s) than H-BR (22 £ 4 s), N-PL (24 £ 4 s) and N-BR (22 + 4 s) (P < 0.05) and
the maximal rate of mitochondrial ATP resynthesis (Q,,x) Was lower in the H-PL (1.12 + 0.16 mM/s)
compared with H-BR (1.35 + 0.26 mM/s), N-PL (1.47 = 0.28 mM/s), and N-BR (1.40 = 0.21 mM/s) (P <
0.05). The t of postexercise T2* signal intensity was greater in H-PL (47 + 14 s) than H-BR (32 + 10 s), N-
PL (38 9 s), and N-BR (27 £ 6 s) (P < 0.05). The postexercise [PCr] and T2* recovery T were correlated
in hypoxia (= 0.60; P < 0.05), but not in normoxia (» = 0.28; P > 0.05). These findings suggest that the
NO3 -NO, -NO pathway is a significant modulator of muscle energetics and O, delivery during hypoxic
exercise and subsequent recovery.
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SKELETAL MUSCLE HYPOXIA is a hallmark of disease conditions where O, delivery to the periphery is impaired
(44). Detrimental effects of hypoxia on muscle function include a reduction in the maximal rate of muscle
oxidative ATP resynthesis (Q,x) (26), which is reflected as a reduction in maximal pulmonary O, uptake
(VOrmaxs 54), and an accelerated rate at which the limited “anaerobic” energy substrates are utilized during
muscular contraction (23, 25, 65). We recently reported that dietary supplementation with inorganic nitrate
(NOj3") ameliorated the detrimental effects of acute normobaric hypoxia on muscle metabolic responses to

exercise and exercise tolerance in humans (65). These effects were attributed to an elevated potential for
nitric oxide (NO) production via stepwise reduction of NO3 ™ to bioactive nitrite (NO, ) (45).

Low NO bioavailability is associated with poor vascular function and limited exercise capacity (39, 53). NO
modulates mitochondrial O, consumption (59) and acts as the primary metabolic stimulus for vascular
endothelial relaxation during hypoxic exercise (8, 9). The reduction of NO, to NO in the stomach, tissues,
and the systemic circulation is increased under conditions of reduced O» availability (45, 49). NO may also
enhance the local matching of O, availability to metabolic rate (19, 60, 63). We showed previously that
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nitrate supplementation, which significantly elevated the circulating [NO, ], accelerated the rate of muscle
phosphocreatine (PCr) recovery in hypoxia, suggesting that the maximal rate of mitochondrial ATP
resynthesis following exercise was restored to a similar level in moderate hypoxia (Figy = 0.145) as was
possible in normoxia (65). Nitrate supplementation also attenuated the rate of PCr degradation and inorganic
phosphate (P;) accumulation during exhaustive, severe-intensity exercise in hypoxia (65). Elevated
circulating [NO, ] following nitrate supplementation appeared to increase the skeletal muscle resilience to

the bioenergetic challenge of hypoxic exercise (65), an effect that may be related, in part, to the vasodilatory
effects of NO and/or nitrite (46).

One possible mechanism underlying the faster PCr recovery in hypoxia after nitrate supplementation is
increased mitochondrial efficiency (37). However, PCr recovery kinetics is not accelerated by nitrate
supplementation in normoxia (17), suggesting that increased blood flow and/or better matching of local
perfusion to metabolic rate may be more important determinants of faster PCr recovery in hypoxia than
increased mitochondrial efficiency. Considering the powerful vasodilatory influence of NO, the elevated
potential for NO production following nitrate supplementation might improve O, delivery to muscle during
recovery from exercise in hypoxia. In our previous study (65), however, we did not compare nitrate and
placebo conditions in normoxia or measure indexes of O, delivery.

In the present study, therefore, we examined changes in the effective transverse relaxation time (T2*)
weighted magnetic resonance (MR) signal during exercise and subsequent recovery. The T2* MR signal
intensity is a function of the blood flow into the volume of muscle under investigation combined with the
magnetic properties of blood and tissue, in particular those deriving from the oxygenation status. Therefore,
T2* signal increase can be a consequence of an increase in blood volume and/or an increase in the
proportion of oxygenated blood due to the diamagnetic properties of oxyhemoglobin. Previous studies have
indicated that the increase in T2* MR signal intensity reflects the increase in inflow of freshly oxygenated
blood into the muscle during exercise, as well as during postexercise recovery and postischemic reactive
hyperemia (42, 58). Several studies also indicate a close relationship between changes in MR signal intensity
and quantitative perfusion measurements (40, 41, 61, 62). It is important to note, however, that the T2*
weighted MRI does not allow direct quantification of perfusion and is influenced by a range of additional
tissue parameters to those discussed above (43). However, the significant advantage of this noninvasive
technique is high temporal and spatial resolution of data acquisition, which is essential for the kinetic analysis
of the postexercise response.

The purpose of this study was to address the mechanistic bases for the effects of dietary nitrate on muscle
energetics during hypoxic exercise and recovery. It was hypothesized that nitrate supplementation will /)
augment the rate of change of the postexercise T2* MR signal compared with placebo; and 2) accelerate the
[PCr] recovery kinetics compared with placebo in hypoxia but not in normoxia.

METHODS

Ethical approval. The study was approved by the University of Exeter research ethics committee and was
conducted in accordance with the standards set by the Declaration of Helsinki. Subjects gave written
informed consent to participate after the experimental procedures, associated risks, and potential benefits of
participation had been explained.

Subjects. Eight healthy, moderately trained subjects volunteered to participate in this study (5 males, mean +
SD: age 27 + 10 years, body mass 82.4 = 7.5 kg, height 1.77 + 0.04 m; 3 females: age 27 + 7 years, body
mass 61.5 + 8.7 kg, height 1.70 £ 0.08 m). Subjects were asked to arrive at the laboratory in a rested and
fully hydrated state, at least 3 h postprandial, and to avoid strenuous exercise in the 24 h preceding each test.
Participants were asked to refrain from consuming caffeine for 6 h and alcohol for 24 h before each test.
Subjects also abstained from using antibacterial mouthwash throughout the study to preserve commensal oral
bacteria, which reduce NO3~ to NO, ™ (30). Subjects were instructed to avoid foods rich in nitrate (such as

leafy green vegetables and beetroot) during the study period.

Experimental procedures. Exercise tests were performed in a prone position within the bore ofa 1.5 T
superconducting magnet (Gyroscan Clinical Intera, Philips) using a custom-built non-ferrous ergometer. The
right foot was fastened securely to a padded foot brace and connected to the ergometer load baskets by a
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rope and pulley system. One-legged knee extensions of the right leg (range of motion of ~0.22 m) were
performed such that two knee extensions were carried out within 3 s followed by 1 s of rest (work:rest ratio
of 3:1).

Subjects were initially familiarized with the test protocol on a separate day prior to data collection. During
this visit, an intermediate work rate, which resulted in steady-state muscle PCr response and could be
sustained for 10 min without duress, was determined for each subject. Subsequently, a work rate for a 24-s
high-intensity exercise bout (which was used for the assessment of PCr recovery kinetics) was determined as
the highest work rate that the subject could maintain for 24 s without compromising the timing and range of
motion of the knee-extension task. The high work rate and short duration for this 24-s protocol have been
optimized for the modeling of [PCr] recovery kinetics (26), with the objective of providing a marked
reduction in [PCr] in a short period of time while the pH does not fall below the resting baseline.

The work rates determined for the 10-min and 24-s bouts for each subject during the familiarization visit
were used during all subsequent experimental visits. The exercise protocol during T2* scanning visits
consisted of a 10-min bout of steady-state exercise and, following 10 min of passive rest, one 24-s bout of
high-intensity exercise. The exercise protocol during the 31p_MRS visits included a 10-min bout of steady-
state exercise, 10 min of passive rest, and two 24-s bouts of high-intensity exercise which were separated by
3 min 36 s of passive rest. Knee extensor displacement was measured using a calibrated optical shaft encoder
(Type BDK.06.05A 100-5-4; Baumer Electric, Swindon, UK) connected to the weight basket pulley, and
load was measured using an aluminum load cell (Type F250EBROHN, Novatech Measurements, St.
Leonards-on-Sea, East Sussex, UK). Work done was calculated as the product of force and displacement.

Subjects wore a facemask and breathed the normoxic or hypoxic inspirate for a minimum of 30 min prior to
the start of the exercise protocol while resting within the bore of the scanner. The subjects then continued to
breathe the given inspirate throughout the exercise protocol and subsequent recovery. The inspirate was
generated using a CAT filtration system (Sporting Edge UK, Basingstoke, UK). The generator fed via an
extension tube to a 150-liter Douglas Bag (Cranlea, Birmingham, UK) placed within the scanner room. This
acted as a reservoir and mixing chamber and had a separate output pipe feeding into a two-way breathing
valve system (Hans Rudolf, Cranlea), which was connected to the facemask. The O, and CO, concentration
of the inspirate was monitored during each test using a Servomex 5200 High Accuracy Paramagnetic O, and
CO; Analyzer (Servomex, Crowborough, UK). The gas analyzer was calibrated prior to each test with a
16.0% O3, 8.0% CO,, and 76.0% N gas mix (BOC Special Gases, Guildford, UK). The Fiy, measured
during the hypoxic tests was 0.132 + 0.001.

Blood pressure of the brachial artery was measured with the subject remaining in the prone position,
immediately prior to the start of the exercise protocol (Schiller Maglife Light, Siemens, Germany). Four
measurements were taken and the mean value of the last three was recorded. Heart rate and arterial O,
saturation (Sag,) were monitored continuously throughout each testing session with a finger probe oximeter
(Nonin 7500FO, Nonin Medical, Plymouth, MN).

Supplementation and nitrite analyses. Subjects underwent dietary supplementation with NO3 ™ -rich beetroot
juice (BR) and NO3 -depleted beetroot juice (PL) in a double-blind, counterbalanced, randomized order

separated by a minimum of 5-day washout period. The experimental conditions were /) normoxic placebo
(N-PL), 2) hypoxic placebo (H-PL), 3) normoxic beetroot (N-BR), and 4) hypoxic beetroot (H-BR).

For each experimental condition, supplementation began 3 days prior to the first exercise test with subjects
consuming 0.5 l/day of BR containing 8.2 mmol of nitrate or 0.5 l/day of PL containing 0.003 mmol nitrate
(Beet It, James White Drinks, Ipswich, UK). The supplement was taken in two equal doses of 0.25 liter in
the morning and evening on days 1-3, whereas on testing days, 0.5 liter was ingested 2.5 h prior to the start
of the exercise test. On day 4, the subject performed the exercise protocol for the assessment of T2* data,
and on day 5 the same exercise protocol was repeated for the acquisition of 31p_MRS data.

Upon arrival at the laboratory during each visit, a venous blood sample (5 ml) was drawn from the
antecubital vein into a lithium-heparin tube (Vacutainer, Becton Dickinson). Samples were centrifuged at
2,700 g and 4°C for 10 min within 3 min of collection. Plasma was extracted and immediately frozen at
—80°C, for later analysis of [NO, ] using a modification of the chemiluminescence technique as previously

http://www.ncbi.nim.nih.gov/pmc/articles/PM C4269683/?report=printable 3/20



21/06/2016

Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia

described (65).

MRI and MRS protocols. On days when T2 measurements were undertaken, subjects had a four-element
body coil wrapped around their upper legs, with the two anterior elements secured within the scanner bed
and the two posterior elements placed on the back of the legs and fixed with Velcro straps, which also served
to restrict subject motion. The scanning procedure consisted initially of low-resolution survey images. A
series of 20 high-resolution (resolution 1 x 1 mm in plane, 5 mm slice thickness) slices using a T'1
(longitudinal relaxation time) weighted turbo spin echo (TSE) sequence were then obtained in the coronal
plane to allow identification of the lateral and medial condyles. On the first visit, a single transverse slice
location, approximately midthigh, was selected, and its position relative to the condyles was measured. This
slice position was replicated for measurements in all future visits.

Prior to the exercise protocol, both resting muscle T2 (transverse relaxation time) and T2* (effective
transverse relaxation time) were determined. T2 was calculated by running a spin echo sequence with 8
echoes. An in-plane resolution of 0.9 x 0.9 mm, with a 5-mm slice thickness was used, with a minimum TE
(echo time) of 13 ms and each subsequent echo being obtained at a time equal to 13 x n ms. T2* was
calculated using a gradient echo sequence, with all timing and resolution parameters equal to those for the T2
measurement.

During the exercise protocol and subsequent recovery T2* acquisition was continuously undertaken using a
single shot echo planar (EPI) sequence with a TE of 35 ms, a slice thickness of 5 mm, an in-plane resolution
of 1.3 x 1.4 mm and sampling repeated (repetition time TR) every 4 s. The sequence was timed such that
image acquisition was obtained during the rest period of the work-rest cycle. A spectrally and slice selective
binomial excitation fat suppression pulse was used to decrease the signal from subcutaneous fat. After 10
dummy scans had been run to ensure that tissue signal had reached equilibrium, 396 dynamic scans were
acquired.

On days when 31p_MRS measures were made, absolute concentrations of muscle metabolites were
established prior to the exercise protocol using a calibrated 31p_MRS technique and resting unsaturated
spectra as described previously (65). For the exercise protocol, subjects were positioned in the same location
as for the T2* data acquisition and 31p spectra were acquired continuously during exercise and subsequent
recovery using a 6 cm 31p surface coil. The general scanning parameters were selected as described
previously (60) with data acquired every 1.0 s with four phase cycles leading to a spectrum being acquired
every 4 s.

MRI data analysis. To determine T2 and T2* and assess the temporal changes in T2* signal in specific
muscle locations, separate regions of interest (ROI) were manually drawn on the acquired images within the
rectus femoris muscle and vastus medialis muscle of the right leg (active) and the rectus femoris muscle of
the left leg (inactive). The rectus femoris muscle is the prime mover for this exercise mode which occurs over
a limited range of motion (22 cm).

T2 at rest was calculated based upon the relationship:
S =S5y exp(—t/T2),

where S is the measured signal, Sy is the equilibrium signal and ¢ is the echo time. Signal intensity was
recorded for each ROI for all eight echoes and a plot of In(S) against ¢ resulted in a least square fit gradient
equal to —1/T2. Likewise, T2* was calculated based upon the relationship:

S = Sy exp (—t/T2%)

In a similar manner to the T2 calculation, T2* at rest was calculated via the determination of —1/T2*
obtained from the gradient of the plot of In(S) against ¢.
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The baseline T2* signal intensity was calculated as the mean T2* signal over the 2 min immediately
preceding the commencement of exercise for both the active and inactive leg. The amplitude of the T2*
signal on-kinetics was calculated as the difference between the baseline and the mean T2* signal over the
last 24 s of the 10-min exercise bout. The end-exercise T2* signal of the inactive leg was calculated in the
same manner and the amplitude was calculated as the difference between the end-exercise and baseline
values. The transient T2* increase during subsequent recovery from exercise in the active leg (i.e., off-
kinetics) was also characterized by fitting a single-exponential function to T2* signal data recorded over 90 s
following the 10-min exercise bout and the 24 s exercise bout (see Fig. 5). Each recovery was fitted
separately and the mean of the two t's for T2* signal off-kinetics from the 10-min and 24-s bouts was
calculated for each subject.

31P-MRS data analysis. The spectra were quantified via peak fitting using the j]MRUI (version 3) software
package employing the AMARES fitting algorithm (64). Intracellular pH was calculated using the chemical
shift of the P; spectral peak relative to the PCr peak. [ADP] was calculated via knowledge of [P;], [PCr], and
pH values, taking into account the dependency of rate constants on pH (33).

Resting values of PCr, ATP, P; and pH at resting baseline were determined from the unsaturated spectra
acquired prior to the start of the exercise protocol and the end-exercise values were taken as the mean values
measured over the final 24 s of exercise. Phosphorylation potential was calculated as [ATP]/[ADP]-[P;]. The
Gibbs free energy of ATP hydrolysis (AG) was calculated as previously described taking into account the
dependency of AG on pH (33). The maximal oxidative ATP turnover rate (Q,,,,) Was calculated as (1/PCr
recovery 1)-(|PCr] baseline).

The [PCr] 1 for the on-transient during the 10-min exercise bout was established by exponential modelling.
With the exception of five tests (2 in H-PL and 3 in H-BR), the data conformed to a monoexponential
function and were fitted through the entire 600 s. In the five data sets which showed a PCr “slow
component,” the fitting window was constrained to an initial start point of 60 s and extended incrementally
thereafter until there was a clear departure of the measured data from the model fit, as judged from visual
inspection of a plot of the residuals. The magnitude of a slow component was calculated as the difference
between the asymptotic amplitude of the fundamental response and the mean value measured over the last 24
s of exercise for that condition. This approach enabled the best-fit exponential for the fundamental
component of the response to be established irrespective of the presence of the slow component. The PCr
recovery (off-kinetics) T was determined by fitting a single-exponential function to the [PCr] recorded over
150 s following the two 24-s exercise bouts (Graphpad Prism, Graphpad Software, San Diego, CA). Each
transition was fitted separately and the mean of the two 1's was calculated for each subject.

Statistical analyses. Two-way repeated-measures analyses of variance (supplement by Fi(y,) were used to
assess differences across the treatments (N-PL, H-PL, N-BR, and H-BR trials), and significant main or
interaction effects were followed-up by LSD pairwise comparisons (v15.0, SPSS, Chicago, IL).
Relationships between variables were assessed using Pearson's product-moment correlation coefficients.
Statistical significance was accepted at the level of P < 0.05, and statistical trend was defined as P <0.10.
Data are presented as means + SD unless stated otherwise.

RESULTS

The work rates for the exercise tests were 21 = 1 W for the 10-min steady-state exercise bout and 30 =2 W
for the 24-s high-intensity bouts. During the exercise bouts the mean Sag, was lower in H-PL (85 + 2%) and
H-BR (86 = 3%) compared with N-PL (97 = 1%) and N-BR (97 = 1%; P < 0.05).

Plasma [NO;]. Plasma [NO, | was greater in N-BR than N-PL prior to the T2* test (P < 0.05) and tended
to be greater prior to the 31p_MRS test (P=0.08) (Fig. 1). Plasma [NO, ] was greater in H-BR than H-PL
prior to the T2* and 3Ip_MRS tests (P <0.05) (Fig. 1).

The [PCr] and T2* signal off-kinetics. The end-exercise muscle [PCr] during the 24-s high-intensity exercise
bout was not different between conditions (N-PL 24.0 + 4.4 mM; H-PL 24.4 £ 4.3 mM; N-BR 24.5+ 3.6
mM; H-BR 22.1 + 3.3 mM; P > 0.05). The end-exercise pH in the 24-s exercise bouts (N-PL 7.11 £ 0.04;
H-PL 7.11 + 0.04; N-BR 7.09 + 0.02; H-BR 7.13 £ 0.04) was not different between conditions or from
resting baseline within each condition (P > 0.05 for all). The [PCr] recovery T was greater in H-PL (30 £ 4 s)
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compared with H-BR (22 + 4 5), N-PL (24 + 4 5), and N-BR (22 + 4 s; P < 0.05 for all; Fig. 24). The Qax
was lower in the H-PL (1.12 = 0.16 mM/s) compared with H-BR (1.35 + 0.26 mM/s), N-PL (1.47 + 0.28
mMy/s), and N-BR (1.40 + 0.21 mM/s) conditions (P < 0.05; Fig. 2B). The PCr t could not be determined in
one subject in the H-BR condition due to low signal:noise resulting from excessive movement during the
3Ip_MRS data acquisition. Therefore, the PCr recovery t and Q,,,,4 data for H-BR are forn=7.

The T of T2* signal off-kinetics in H-PL (47 + 14 s) was significantly greater compared with H-BR (32 + 10
s), N-PL (38 £ 9 s), and N-BR (27 &+ 6 s; P > 0.05 for all; Fig. 2C). The t of T2* signal off-kinetics was also
greater in N-PL compared with N-BR (P < 0.05). The [PCr] recovery t was correlated with the t of T2*
signal off-kinetics in hypoxia (» = 0.60; P < 0.05; n = 15), but not in normoxia (= 0.28; P > 0.05; n = 16).

Muscle metabolism at rest and during steady-state exercise. The resting [PCr], [Pi], [ADP], and AG were
significantly lower and the phosphorylation potential was higher at rest following nitrate supplementation
compared with placebo in both normoxia and hypoxia (P < 0.05 for all; Fig. 3). Muscle pH at rest was not
different between conditions (P > 0.05). The resting [PCr] was negatively correlated with the plasma [NO, ]
across all four conditions (» = —0.35, P < 0.05; n = 32). No relationships were detected between [PCr]
recovery T and the baseline [PCr] (= 0.30, P = 0.11) or the baseline phosphorylation potential (» = —0.26; P
=0.15) (n =31 for all).

Muscle metabolic responses to 10 min of steady-state exercise are illustrated in Fig. 4. The end-exercise
[ADP] was lower in N-BR compared with N-PL and H-PL (P < 0.05), and the end-exercise AG was lower
and the phosphorylation potential was higher in N-BR compared with N-PL (P < 0.05; Fig. 4; Table 1). The
amplitude (i.e., difference from baseline to end-exercise) of the [PCr] response was smaller in N-BR and H-
BR compared with N-PL (P < 0.05; Table 1).

T2* signal intensity during 10 min of steady-state exercise. The tissue water transverse relaxation time, T2,
measured at resting baseline was smaller in H-PL (40.9 + 2.2 ms) than in N-PL (42.6 £ 2.4 ms) and N-BR
(42.7 £ 2.6 ms), and the T2 in H-BR (41.5 £+ 2.0 ms) was also lower than in N-PL (P < 0.05 for all). There
were no significant differences in the resting T2* (i.e., effective transverse relaxation time) between
conditions (N-PL 25.8 + 1.4 ms; N-BR 25.1 + 1.4 ms; H-PL 25.2 + 1.3 ms; H-BR 25.1 + 0.8 ms).

The T2* signal intensity during the entire exercise protocol is shown in Fig. 5. The amplitude of the T2*
signal during 10 min of steady-state exercise was greater in H-PL (32.5 £+ 7.1%) compared with N-PL (28.3
+ 7.7%) and N-BR (25.1 £ 8.7%; P < 0.05; Fig. 5). The T2* signal amplitude also tended to be greater in H-
PL than H-BR (28.5 + 11.2%; P = 0.09) and the amplitude in H-BR was not different from the normoxic
conditions (P > 0.05). The differences in T2* signal amplitude between H-PL and N-PL, and H-PL and H-
BR were inversely correlated with the differences in Q,,,4x between the same conditions (r = —0.60, P <
0.05, n = 15).

The T2* signal measured during the exercise protocol in the vastus medialis muscle of the active right leg
decreased during the exercise protocol by 4.3% in N-PL, 3.8% in N-BR, 1.5% in H-PL, and 3.4% in H-BR
(P <0.05 compared with baseline in all conditions). Likewise, the T2* signal intensity from the rectus
femoris muscle of the inactive left leg decreased from baseline to the end of exercise protocol by 2.1% in N-
PL, 2.8% in N-BR, 1.3% in N-BR, and 1.6% in H-BR (P < 0.05 compared with baseline in all conditions).

There were no significant differences between conditions in resting systolic or diastolic blood pressure (
Table 2). Heart rate at rest and at the end of exercise was higher in hypoxia compared with normoxia (P <
0.05; Table 2).

DISCUSSION

The primary novel findings of this study were that /) nitrate supplementation resulted in accelerated
postexercise T2* signal intensity kinetics in both normoxia and hypoxia, and 2) the faster [PCr] recovery
kinetics in hypoxia following nitrate supplementation was related to the greater rate of change in postexercise
T2* signal. In addition, the resting muscle PCr concentration and AG were reduced and the phosphorylation
potential was increased after nitrate supplementation. Our data suggest that the faster [PCr] recovery kinetics
after nitrate supplementation in hypoxia may be linked to enhanced O, delivery in the immediate

postexercise period, while the increase in muscle phosphorylation potential implies that mitochondrial
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efficiency may have been improved following nitrate supplementation. The significant beneficial influence
on muscle O, delivery and energy metabolism by dietary nitrate during hypoxic exercise and subsequent
recovery has clear translational implications for improving exercise tolerance (65) and functional capacity in
conditions where muscle O, delivery is impaired.

PCr recovery kinetics. Nitrate supplementation did not alter PCr recovery kinetics in normoxia. However, in
hypoxia (Fipz ~0.13; Sagp, ~86%), nitrate supplementation accelerated PCr recovery, such that the T was
not different from that measured under normoxic conditions (SaO, ~97%). The PCr recovery is slowed in
hypoxia due to the lower O, pressure gradient between the microcirculation and the myocyte (21, 23, 50). In
normoxia, possible mechanisms by which the [PCr] recovery rate might be accelerated include increased
mitochondrial mass and improved mitochondrial efficiency (12). However, although improved mitochondrial
efficiency has been reported following nitrate supplementation in humans (37), we have not observed faster
[PCr] recovery kinetics in normoxia following nitrate supplementation (17, 36, present study). As expected,
the T2 (transverse relaxation time) measured at resting baseline was suppressed by hypoxia, indicative of
reduced hemoglobin saturation. The T2* (effective transverse relaxation time), which was measured during
exercise and subsequent recovery, was elevated throughout the protocol and represented slower postexercise
recovery kinetics in the H-PL condition compared with normoxia. It should be noted that while the precise
determinants of skeletal muscle T2* signal change during exercise and recovery are known to be
multifactorial and to some extent paradigm dependent, current knowledge suggests that the T2* may be
considered to reflect perfusion related changes in oxygenation of the vascular compartment (27). The faster
postexercise T2* signal kinetics in H-BR compared with H-PL (Fig. 2C) may be indicative of enhanced O,
driving pressure into the cell during the immediate recovery (i.e., restoring O, gradient to a similar level as in
the normoxic conditions), thus enabling a faster rate of mitochondrial ATP resynthesis and, therefore, faster
PCr resynthesis rate in H-BR compared with H-PL. This interpretation is supported by the positive
correlation between the [PCr] T and T2* T which was observed in hypoxia (» = 0.60) but not in normoxia (»
= (0.28). It is important to note that changes in muscle metabolic control (discussed below) consequent to
nitrate supplementation may also contribute to faster PCr recovery in hypoxia. Indeed, increased
phosphorylation potential after nitrate intake may be an indication of increased mitochondrial efficiency
irrespective of the inspired Figy. However, the PCr recovery was accelerated in the H-BR relative to H-PL
but not the N-BR relative to N-PL, and the PCr recovery t was not related to the baseline muscle [PCr] or
the phosphorylation potential in normoxia or hypoxia. Collectively, these findings suggest that the faster PCr
recovery kinetics in H-BR may be attributed predominantly to changes in O, delivery. The potential
contribution to this effect by altered metabolic control, as indicated by favorable changes in resting
phosphorylation potential and AG, warrants future investigation.

Resting metabolism. Nitrate supplementation resulted in an ~9% reduction in resting muscle [PCr]
irrespective of the Fi, of the inspired gas. This is in contrast with previous studies that have shown no
significant changes in baseline [PCr] in normoxia following nitrate supplementation (2, 17, 31, 36).
Although the baseline [PCr] was reduced by 8% after nitrate supplementation in hypoxia in our previous
study this did not attain statistical significance (65). In the present study the reduction in baseline [PCr] was
observed in seven of eight subjects in both normoxia and hypoxia, and the baseline [PCr] was inversely
correlated with the plasma [NO, ]. This inverse correlation was also present when the current data were
combined with those of Vanhatalo et al. (65) (»=-0.33, P <0.05, n =59). It is conceivable that the elevated
potential for NO production following nitrate supplementation might reduce resting muscle [PCr] synthesis
via reversible S-nitrosation of creatine kinase (CK) (1, 18). A lower muscle [PCr] would be expected to
increase the sensitivity of mitochondria to stimulation by ADP (35, 67). The lower [ADP] at rest in normoxia
and hypoxia in the present study may imply that mitochondrial ATP resynthesis proceeded at the same rate
with less ADP stimulation after nitrate supplementation.

The AG decreased (became more negative) and the phosphorylation potential (ATP/ADP-P;) was elevated
by nitrate supplementation at rest. The elevated phosphorylation potential stemmed from reductions in both
[ADP] and [P;] while the [ATP] remained unchanged. Increased phosphorylation potential is indicative of
increased proton motive force (pmf) across the mitochondrial inner membrane (5). This could occur as a
result of NO-mediated reduction in proton back-leakage across the inner mitochondrial membrane (10) and
thereby improved mitochondrial efficiency (P/O) as a consequence of decreased expression of mitochondrial
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ADP/ATP translocase (ANT) and uncoupling protein (UCP-3) (37). The estimation of [ADP] from >'P-
MRS data is influenced by the measured baseline [PCr], and therefore the reduced [PCr] indirectly
contributed to the increased phosphorylation potential. The CK reaction is a powerful regulator of cellular
energetics (48, 56, 66) and it is plausible that NO could influence either or both ends of the bioenergetic
cascade observed following dietary nitrate intake (| PCr <> 1phosphorylation potential <» Tpmf <> 1P/O
ratio). It should be noted, however, that the reduction in baseline [PCr] that occurred alongside the decreased
AG and increased phosphorylation potential does not imply causality. Indeed, increased muscle [PCr]
subsequent to Cr supplementation has not been associated with alterations in muscle bioenergetics (AG) (6,
47) and CK inhibition has no effect on the mitochondrial P/O ratio at least in cardiomyocytes (20). The
changes in phosphorylation potential and AG at rest in this study are consistent with the increased
mitochondrial efficiency reported by Larsen et al. (38), and it is possible that these changes also underlie a
reduction in resting metabolic rate recently reported following nitrate supplementation (38). The present data
suggest that the oxidative phosphorylation system operated at a new, energetically advantageous equilibrium
at a higher P/O ratio in the nitrate supplemented condition compared with placebo.

Muscle energetics during steady-state exercise. The end-exercise [PCr] (~70-77% of resting baseline) was
similar to the PCr depletion of ~68% previously reported for heavy-intensity exercise (i.e., exercise
performed above lactate threshold but below the critical power; 29) although a slow-component phase was
only observed in five tests, all of these in hypoxia. Muscle PCr degradation and ADP accumulation were
attenuated after nitrate supplementation consistent with previous findings on severe-intensity exercise in
normoxia (2) and hypoxia (65). The phosphorylation potential started at a higher baseline and fell by a
greater amplitude across the exercise bout in the nitrate supplemented conditions, with the phosphorylation
potential remaining 58% (normoxia) and 24% (hypoxia) above the respective placebo condition at the end of
10 min of steady-state exercise. A high phosphorylation potential indicates that the ATP hydrolysis reaction
equilibrium [ATP <« ADP + P; (+ H+)] is driven to the right such that it is energetically favorable to break
down ATP. Likewise, the lower (more negative) AG in the nitrate supplemented condition compared with
placebo throughout the baseline and the exercise protocol indicates greater exergonic potential of ATP
hydrolysis in the nitrate-supplemented conditions.

The 1 of [PCr] on-kinetics was not affected by Fi, or by nitrate supplementation. The PCr on-kinetics are
unchanged in the face of reduced F1(, because the CK-catalyzed PCr hydrolysis at exercise onset is mainly
stimulated by signals deriving from the ATPase activity at the contractile site rather than the rate of
mitochondrial respiration, which is attenuated by limited O, availability (23). The PCr off-kinetics also
appear to be impervious to NO availability in normoxia (17), but not in hypoxia (65, present study). The
asymmetry between PCr on- and off-kinetics when both the F1n, and NO availability are manipulated is
likely a consequence of the vasodilatory effect of NO, which serves to accelerate the off-kinetics in an O,
delivery-limited condition (F1n; ~ 0.13) but has no influence under normoxic exercise and recovery in
healthy subjects.

T2* signal intensity kinetics during steady-state exercise. Nitrate supplernentation did not increase the
amplitude of the T2* signal intensity during steady-state exercise in normoxia. This is consistent with a
report of no change in the NIRS-derived amplitude of total hemoglobin (which represents a nonquantitative
index of total blood volume in the muscle) in the vastus lateralis muscle during cycle ergometry after nitrate
supplementation (3). A recent study by Ferguson et al. (16) showed increased blood flow in the rat hindlimb
following dietary nitrate supplementation during normoxic treadmill running with blood flow being directed
predominantly to muscles and muscle parts containing a high proportion of type II muscle fibers (16). The
fiber-type distribution, which in human rectus femoris muscle is rather even between type I and II fiber (28),
and size of the active muscle mass may contribute to the discrepancy between the present data for normoxic
exercise and those of Ferguson et al. (16).

It is well-documented that hypoxic exercise engenders a considerable vasodilatory response in the active
skeletal muscle which is in excess of the sum of the expected effects of hypoxia and exercise alone (8).
However, nitrate supplementation did not accentuate, but rather attenuated, the T2* signal amplitude during
hypoxic exercise in the rectus femoris muscle. Indeed, the T2* signal response in H-BR was not different
from the normoxic conditions (Fig. 5), despite a greater circulating pool of NO, , which is a potential
vasodilator itself (46), and which can be reduced to NO in the vasculature (13, 14). In contrast, the T2*
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signal amplitude in the H-PL condition was significantly greater relative to normoxic conditions. The
tendency for attenuation of the T2* signal amplitude in H-BR may be related to either a blunted blood flow
increase relative to H-PL or an increased muscle O, extraction, such that any increases in T2* signal
intensity resulting from increased blood volume might have been offset by decreased T2* signal resulting
from an increased proportion of deoxygenated blood in the muscle volume under investigation. It may be
speculated that nitrate supplementation allowed the limited O, supply in hypoxia to be more effectively
distributed to muscle fibers with a high metabolic rate, thereby increasing O, extraction. NO may selectively
quench mitochondrial respiration in O rich areas, thereby creating favorable diffusion gradients within the
tissue to direct O, to active fibers further away from capillaries (60). In addition, increased mitochondrial
efficiency (37a) and/or reduced ATP cost of force production (2, 24) following nitrate supplementation
would reduce the O, cost at the same fixed work rate, thereby reducing blood flow requirement. However,
as nitrate supplementation did not influence the T2* amplitude in normoxia, the mechanism for reduced T2*
amplitude was evidently specific to the hypoxic condition only. The finding that the T2* signal amplitude did
not increase after nitrate supplementation in hypoxia relative to normoxia might relate to the magnitude of
exercise-induced blood flow response being related in part to relative exercise intensity (11). This
interpretation is supported by the significant inverse correlation between the relative changes in T2* signal
amplitude and the Q, (¥ =—0.60). The Q. (i.€., the maximal rate of mitochondrial ATP resynthesis)
was reduced by ~24% in the H-PL condition compared with normoxia, whereas the Q. in the H-BR
condition was not different from that measured in normoxia. Therefore, as the external work rate was fixed
in all conditions, the subjects were exercising at a higher fraction of their Qy,,,, during the steady-state
exercise bout in the H-PL condition, and the relatively greater exercise intensity would have necessitated a
greater blood flow response. Nitrate, on the other hand, enabled the same Q,,,,x to be attained in hypoxia as
in the normoxic trials, and this was reflected in similar T2* signal profiles in H-BR, N-BR, and N-PL
conditions.

An important consideration for the hemodynamic response during exercise is the blood flow that is directed
to inactive tissue. Some vasoconstriction is necessary in inactive tissue to enable regional blood flow
distribution and the maintenance of sufficient blood pressure to facilitate O, delivery to active tissue during
exercise (4). Indeed, vasoconstriction activity was detected (as indicated by a T2* signal decrease) in the
inactive left rectus femoris muscle and the right vastus medialis muscle in all experimental conditions,
indicative of a metaboreflex-mediated increase in sympathetic activity. Importantly, the elevated potential for
NO production following nitrate supplementation did not impede vasoconstriction in inactive muscle during
exercise in normoxia or hypoxia. The similar vasoconstriction in inactive muscle and the faster T2* signal
kinetics in active muscle following nitrate supplementation suggest that the reduction of circulating NO»  to
NO was temporally and locally limited to areas of low microvascular Poy_ This is consistent with the key role
of NO in facilitating the matching of O delivery to energy demand (63).

Blood pressure. An unexpected finding of the present study was that blood pressure was not influenced by
nitrate supplementation either at rest or postexercise. This is in contrast to several studies that have reported
reductions in systolic (3, 32, 36) or both systolic and diastolic blood pressure in normotensive humans (2, 31,
65, 68). The blood pressure lowering effect of dietary nitrate may be dependent on the dose and timing of
supplement, as well as the baseline blood pressure (30, 68).

Technical considerations. [t is important to note that the T2* weighted MR signal intensity is not a
quantitative measure of muscle blood flow, and that the observed T2* signal intensity may be influenced by
factors other than the inflow of oxygenated blood in the capillary network. First, the signal intensity is
sensitive to alterations in the fluid distribution in the muscle and the interaction between intracellular water
and muscle macromolecule concentrations. Such effects can potentially be accounted for by monitoring T2
changes in addition to T2* (15). However, simultaneous collection of T2 and T2* data would require the
application of more complex scanning sequences (e.g., 57) that were not available in the present study.
Second, the T2* signal intensity may also be influenced by “fresh signal sources” resulting from increased
blood inflow replacing blood that has only recently been exposed to an MRI-related radiofrequency pulse
and which thus manifests reduced signal intensity when exposed to a subsequent pulse as part of a dynamic
scanning protocol. Given the relatively long time between pulses applied in the present study (4 s), however,
any such signal saturation is considered negligible.
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It is the alterations in the O content of hemoglobin that give rise to the BOLD effect (69), which originates
from the different magnetic properties of oxygenated and deoxygenated hemoglobin and the associated
changes in the rate of MRI signal decay. An increase in BOLD signal may be the result of a decrease in
deoxygenated hemoglobin (i.e., less O; extraction for a similar perfusion), an increase in oxygenated
hemoglobin (i.e., greater blood volume or blood flow for a similar Oy consumption), or a combination of
these two scenarios within the region of interest. The magnetic fields associated with hemoglobin can
potentially be long ranging, such that the BOLD-derived signal intensity alterations may occur
intravascularly, resulting from the blood itself, and extravascularly due to water molecules in the surrounding
tissues. However, modeling of typical capillary dimensions, hemoglobin volumes, and the effect of
hemoglobin on the local magnetic field leads to the conclusion that the extravascular BOLD effect will have
a minimal impact (<1%) on the total T2* MRI signal intensity (69), particularly at a low field strength such
as 1.5 T used in the present study (55). There is significant debate regarding the predominant source of T2*
signal changes and how this varies with the precise experimental conditions (43, 69). During an ischemic
protocol (e.g., 41, 61) the BOLD effect is mainly driven by the changes in tissue perfusion upon cuff release
rather than change in O, consumption. However, during exercise (in the absence of vascular occlusion) both
blood flow and O, consumption change and during the postexercise recovery the kinetics of these two
variables may differ to an extent that the T2* signal intensity becomes dissociated from blood flow.
Therefore, the T2* may be considered to reflect perfusion-related changes in oxygenated and deoxygenated
hemoglobin in the vascular compartment rather than blood flow per se during exercise and subsequent
recovery (27).

Implications. [t has been proposed that dietary nitrate supplementation may be particularly effective in
enhancing O delivery and alleviating exercise intolerance in conditions where NO production via the O3-
dependent NOS pathway is diminished as a result of ageing and/or disease (7, 31, 52). We have previously
shown that in healthy subjects, dietary nitrate restores exercise tolerance in hypoxia to a similar level as
measured in normoxia (65) which may have important implications for improving functional capacity and
quality of life in individuals who suffer from an O, delivery limitation (51). The current results extend the
mechanistic bases for this improved exercise tolerance by showing that nitrate supplementation increases the
maximal oxidative metabolic rate and enables faster reoxygenation of tissue following exercise in moderate
hypoxia. It is important to note that the experimental model in the present study does not account for
complex metabolic perturbations that typically accompany disease conditions associated with impaired O,
delivery. Our findings, however, provide a mechanism by which the nitrate-nitrite-NO pathway may
facilitate improved muscle oxidative function in hypoxia. Indeed, dietary nitrate improved exercise tolerance
and muscle oxygenation (estimated via NIRS) in peripheral arterial disease patients suffering from
intermittent claudication (34). Further clinical trials are necessary to evaluate the translational value of dietary
nitrate supplementation in disease populations.

Conclusions. This study provides new insight into the effects of dietary nitrate supplementation on skeletal
muscle energetics and O, delivery during normoxic and hypoxic exercise and subsequent recovery. Nitrate
enabled faster T2* signal intensity off-kinetics during recovery from exercise, which may be indicative of
increased oxygenation and/or changes in O, extraction. The faster [PCr] recovery in hypoxia following
nitrate supplementation was positively correlated with the T of T2* off-kinetics, suggesting that the faster PCr
resynthesis (and the higher Q;,,x) in hypoxia may result from improved O, availability. Another original
finding of the present study was that dietary nitrate reduced resting muscle PCr content, which has
implications for future investigation into the effects of dietary nitrate on respiratory control. The greater
muscle phosphorylation potential and lower AG after nitrate supplementation are consistent with improved
mitochondrial efficiency. Collectively, the present data provide compelling evidence that dietary inorganic
nitrate modulates muscle energetics and O, delivery during hypoxic exercise in a manner that might be
conducive to improved muscle function in situations where muscle O, delivery is impaired.
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(BR; white bars). *Different from PL, P < 0.05.
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Muscle [PCr] (4), [ADP] (B), [P;] (C), pH (D), phosphorylation potential (E), free energy of ATP hydrolysis (AG; F)
during a 2-min resting baseline and 10 min of steady-state exercise. The amplitude of PCr degradation was attenuated and

the amplitude of phosphorylation potential change during exercise was greater in both normoxia and hypoxia after BR

supplementation compared with PL. There were no significant differences in pH between conditions. Black circles, N-PL;

white circles, H-PL; gray triangles, N-BR; white triangles, H-BR.

Table 1.

Muscle metabolic responses during 10 min of steady-state exercise in normoxia and hypoxia following
placebo and nitrate (BR) supplementation. Amplitude indicates the change from resting baseline to end-of-

exercise
N-PL N-BR H-PL H-BR
[PCr], mM
End-exercise 24.1+2.8 23.6+3.6 23.0+49 21.6+ 3.3b
Amplitude -99+14 7.1 ﬂ:2.0b -100+47 -83 :|:2.3b
7(s) on-kinetics 56 £27 66 +26 62+20 53+20
[Pi], mM
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End-exercise 127+2.8 11.1+3.0 13.5+3.3 11.7+42
Amplitude 8.9+2.6 8.1+2.7 9.8+3.1 8.7+3.7
[ADP], uM
ab
End-exercise 29.0£3.5 21.1£59 30.1 £8.6 26.7+17.7
b

Amplitude 229+37 158+5.7 23.8+8.8 21.7+7.8

pH
End-exercise 6.99+0.04 7.01+0.04 7.01+0.05 7.01+0.05
Amplitude —0.05+0.05 —0.02+ 0.04b —0.04 +0.04 —0.03+0.05
AG, kJ/mol
End-exercise -56.1+0.7 572+ l.lb —560+13 —-56.6+13
Amplitude 72+0.8 7.0+1.0 75+1.5 7.6i0.8b
ATP/ADP-Pj, 1/mM
End-exercise 24+6 38+ 17b 25+12 31+14
Amplitude -340+91 496+ 10421lb -350+56  —499+ IISab

Values are means = SD. Amplitude indicates the change from resting baseline to end-of-exercise.
PL, placebo; BR, beetroot juice; H, hypoxia; N, normoxia.

3Djifferent from H-PL, P < 0.05;
bdifferent from N-PL, P <0.05.

Fig. 5.
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The T2* signal intensity in the right rectus femoris muscle throughout the exercise protocol including 1 min of rest, 10 min
of steady-state exercise, 10 min of rest, 24 s of high-intensity exercise, and 3 min 36 s of rest. The solid lines indicate the
start of exercise and the dashed lines indicate the end of exercise. The amplitude of the T2* signal from baseline to end of 10
min of steady-state exercise was not different in the H-BR condition compared with N-PL and N-BR, while the amplitude in
H-PL was significantly greater than in the normoxic conditions. The T2* signal recovery kinetics were modelled over the
first 90 s of recovery following the 10-min and the 24-s exercise bouts.

Table 2.

Blood pressure and heart rate at resting baseline and immediately after 10 min of steady-state exercise in
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normoxia and hypoxia following placebo and nitrate (BR) supplementation

N-PL N-BR H-PL H-BR
Baseline
BP systolic, mmHg 116+13 118+7 120+10 119+12
BP diastolic, mmHg 70+13 717  72+£10 74+10
MAP, mmHg 85+13 87+7 8810 89=+11
ab ab
HR, beats/min 62 +8 64+6 71+£7 71+10
Postexercise
BP systolic, mmHg 129+15 131+£12 130+14 131+15
BP diastolic, mmHg 80 +10 80+7 79+9 78 £13
MAP, mmHg 9612 97 +8 96+10 9613
ab ab
HR, beats/min 71+10 74 +7 82+10 8113

Values are means + SD.
HR, heart rate; MAP, mean arterial pressure.

3Different from H-PL, P < 0.05;
bdifferent from H-BR, P < 0.05.
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