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Abstract 

As mass production has migrated to developing countries, European and US companies are forced to rapidly 

switch towards low volume production of more innovative, customised and sustainable products with high 

added value. To compete in this turbulent environment, manufacturers have sought new fabrication techniques 

to provide the necessary tools to support the need for increased flexibility and enable economic low volume 

production. One such emerging technique is Additive Manufacturing (AM). AM is a method of manufacture 

which involves the joining of materials, usually layer-upon-layer, to create objects from 3D model data. The 

benefits of this methodology include new design freedom, removal of tooling requirements, and economic low 

volumes. AM consists various technologies to process versatile materials, and for many years its dominant 

application has been the manufacture of prototypes, or Rapid Prototyping. However, the recent growth in 

applications for direct part manufacture, or Rapid Manufacturing, has resulted in much research effort focusing 

on development of new processes and materials. This study focuses on the implementation process of AM and is 

motivated by the lack of socio-technical studies in this area. It addresses the need for existing and potential 

future AM project managers to have an implementation framework to guide their efforts in adopting this new 

and potentially disruptive technology class to produce high value products and generate new business 

opportunities. Based on a review of prior works and through qualitative case study analysis, we construct and 

test a normative structural model of implementation factors related to AM technology, supply chain, 

organisation, operations and strategy.  
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1.0 Introduction 

Additive Manufacturing (AM) is defined as ―the process of joining materials to make objects 

from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing 

methodologies, such as traditional machining‖ [1]. Synonyms found in the literature include 

additive processes, additive techniques, additive layer manufacturing, layered manufacturing, 

and freeform fabrication. There is now a large number of technologies which employ this 

method of manufacture, some of the more widely used include, stereolithography (SL), fused 

deposition modelling (FDM), selective laser sintering (SLS) and 3D printing (3DP). Since the 

development of many of these technologies has occurred simultaneously, there are various 

similarities as well as distinct differences between each one [2]. Reviews of the numerous AM 

technologies have been performed in previous works [3–5]. 

      With over 20 years of history, in its early years AM was mostly applied for the fabrication 

of conceptual and functional prototypes, also known as Rapid Prototyping (RP). These 

prototypes were most commonly used as communication and inspection tools, producing 

several physical models in short time directly from computer solid models helped to shorten 

the production development steps [6]. RP remains the dominant application of polymer AM 

processes and is well established in the market. Many of the aforementioned technologies are 

limited to Rapid Prototyping as they do not allow common engineering materials to be 

processed with sufficient mechanical properties (polymers, metals, ceramics, and composites 

thereof) [7]. The concept of Rapid Manufacturing (RM) – ―the production of end-use parts 

from additive manufacturing systems‖ [8] – is emerging today; though its economic impact 

remains modest [9]. There are few-large scale applications of RM, many of which are for 

producing personalised products in the medical field [10]. Ruffo et al [11] provided a 

summary of the pitfalls which exist for companies looking at the use of RM as a solution for 

current manufacturing problems or wishing to take advantage of this emergent technology, 

suggesting they are concentrated in three specific areas: 

• Manufacturing processes and materials; and 

• Design 

• Management, organisation and implementation 

These issues are inter-related and this study centres on the third of these areas, specifically 

focusing implementation of AM technologies for production applications. It is inevitable that 

some of the factors critical to the implementation of AM technologies are also important to 

the adoption of other manufacturing technologies. However, it is not the aim of this study to 

rediscover these issues, rather this paper seeks to build on this, adding insights into factors 

that are specific, or of particular importance to AM technologies due to their unique 

characteristics, resource requirements, benefits and tradeoffs and so on. The remainder of the 

paper is organized as follows. In the next section, a short overview of AM technology and 

applications is presented along with an introduction technology implementation theory. Then 

the research framework is presented with a detailed description of the constructs and 

supporting literature. The data collection process is then described and the results of the 

framework test are described. Finally, the paper closes with conclusions, limitations of the 

study and suggestions for future research. 

 

2.0 Background 

2.1 AM technologies and applications 

As previously stated the numerous AM systems share some similarities but have a number of 

distinctions. The first AM system to be commercialised was SL, whereby a concentrated 

beam of ultraviolet lamp is used to solidify a liquid photopolymer by tracing a two 

dimensional (2D) layer in the form of a contour and then an infill. Once the beam has 

completed a single layer the build platform will then move downward in the z axis, a new 

layer of photopolymer is distributed and the process is repeated until the final layer is 
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completed. Laser sintering and laser melting processes work in a similar manner, whereby 

polymer or metallic powders are selectively melted in 2D layers, through high power lasers 

until a solid part is complete. Another popular process, particularly with hobbyists, is the 

FDM process. In this method, materials, usually polymer filaments are extruded through a 

heated nozzle to "print" 2D layers successively, one on-top of another, until the part is 

complete.  Whether through melting of metallic powders or through extrusion of polymer 

filaments, all AM process share the additive principle of building components. It is possible to 

identify a number of key steps in the AM process sequence. Gibson et al. [3] define eight key 

steps in the generic process of CAD to part: 

• Conceptualization and CAD 

• Conversion to STL 

• Transfer and manipulation of STL file on AM machine 

• Machine setup 

• Build 

• Part removal and cleanup 

• Post-processing of part 

• Application 

Holmstrom et al. [12] suggest the unique characteristics of AM production lead to the 

following benefits: 

• ―No tooling is needed significantly reducing production ramp-up time and expense. 

• Small production batches are feasible and economical. 

• Possibility to quickly change design. 

• Allows product to be optimized for function (for example optimized cooling 

• channels). 

• Allows economical custom products (batch of one). 

• Possibility to reduce waste. 

• Potential for simpler supply chains; shorter lead times, lower inventories. 

• Design customization.‖ 

These benefits have been captured in a variety of applications spanning a number of industries, 

and different stages of the product development life cycle. Examples include titanium 

aerospace parts where only 10% of the raw material is required when compared to the original 

machined part [13]. Atzeni and Salmi [14] showed the economics of additive manufacturing 

for end-use parts through comparing the production of landing gear aircraft assemblies, 

through high pressure die casting (HPDC) and laser sintering. The authors showed the cost 

benefit at low to medium production volumes, illustrated in the breakeven analysis shown in 

Figure 5 below. The benefits of AM have been captured in the production of race car 

gearboxes [13]. AM facilitates the manufacture of smooth internal path ways, providing faster 

gear changes and reducing component weight by 30%. Similarly, Cooper et al [15] illustrate 

the potential for improved functionality in their study on formula one technology, applying 

AM to hydraulic component manufacture gaining efficiency of fluid flow of 250%. 

           As previously stated the current dominant application for AM processes remains RP. 

Rapid Tooling (RT) also makes up some of the current AM activity which involves the 

fabrication of moulds and dies. Regarding manufacturing applications of AM processes (RM), 

notable areas of success include the production of medical devices such as dental crowns and 

hearing aids, driven by customer requirements for individualised products and AM processes 

having the benefit of design customization. RM has also been applied to the production of 

consumer products, including high value lighting goods and electronics. The aerospace sector 

has also found a number of applications, often driven by the possibility of improving buy-to-

fly ratios (as some AM processes have high material utilisation, most notable metal-based 
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process) and reducing the weight of components through design optimisation [16]. Other 

areas include, automotive, jewellery, architecture and defence applications 

 

 

 
Figure 1. Breakeven analysis performed by Atzeni and Salmi comparing HPDC and SLS 

processes [14] 

 

 

2.2 New technology implementation: theoretical background 

Skinner [17] was one of the first to propose that innovation in production technology can be 

used strategically as a powerful competitive weapon, suggesting that it can bring to bear many 

other strategic factors besides achieving low costs including, superior quality, shorter delivery 

cycles, lower inventories, lower investments in equipment, shorter new product development 

cycles and new production economics. In Porters [18] influential work on competitive 

strategy he suggested technology is perhaps the most important single source of major market 

share changes among competitors and is the prominent cause of the demise of an entrenched 

dominant firm.  

         Voss [19] provided seminal work on proposing implementation as a distinctive area of 

study of process innovations. The focus on AMT implementation in the 90s was a direct result 

of many systems failing to meet their initial promise, with project managers unhappy with the 

system performance. In more recent years, the advent of ERP systems and RFID technology 

have generated a plethora of research articles on implementation as academics have sort to 

create process models and frameworks to assist managers in implementing new innovations 

successfully. Though AM as a manufacturing technology remains in comparatively low levels 

of exploitation, with AM production representing only a very small percentage of global 

manufacturing, some authors suggests the breakthrough is eminent. In order to take a pro-

active approach to research we focus on developing an implementation framework based on 

current innovators in this area in order to facilitate this breakthrough. 

 

3.0 The research framework 

The conceptual framework for AM implementations put forward by the authors is illustrated 

in Figure 1. The framework proposes that both external forces and internal strategy drive the 

consideration of AM as a method of manufacture and the approach to AM implementation 

will be influenced by factors which may be grouped in to five constructs.  These constructs 

are laid out described in the following sections: 
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Figure 1. The proposed framework of AM implementation  

 

3.1 Strategic factors 

The decision to invest in Additive Manufacturing technologies must be linked to the market 

and product characteristics. High utilization underpins any technology investment [20], if the 

process will not be highly utilized on one product it must meet the manufacturing and 

business needs of other products. Authors in the field of AM management have proposed a 

number of product characteristics which affect the types of products suitable to AM 

production. Generally, the product characteristics are: 

• Products with a degree of customisation 

• Products with increased functionality through design optimisation 

• Products of low volume 

The implementation of AM must be preceded by strategic alignment of the business, 

manufacturing and R&D strategy. The technology benefits must be linked to the capabilities 

required of the manufacturing unit, capabilities derived from the business strategy, viewed as 

the market-pull strategy to AM implementation. However, it is also proposed in line with the 

current resource-based view of the firm that investment in AM may be seen as a structural 

investment which will build new manufacturing capabilities, creating new business 

opportunities for the enterprise, the technology-push strategy.  

 

3.2 Technological factors 

In order for the adopting organisation to gain competitive advantage from the implementation 

of AM its ability to link the technology benefits to the business strategy has been emphasised. 

The technology benefits associated with AM technologies possess a number of benefits, as 

previously stated in section 2 of this paper. However, as shown in previous work by Sonntag 

[21] it is equally important that the adopting firm also understands the trade-offs in using new 

manufacturing technology, for AM process (in general) material range remains low, machine 

and material costs remain high and process speeds are relatively slow. The lack of technical 

standards also presents a major barrier to adoption. Some of these characteristics of AM are 

likely due to their relative immaturity and managers should be aware of this when deciding 

whether to adopt.  

       There is also an inherent RP legacy with AM system which may result in a psychological 

barrier to adoption, as management only see the technology-class as being suitable for RP 
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applications. The adopting organisations ability to present benefits of AM as a manufacturing 

process in a clear and balanced way will determine the success of implementation.  

 

3.3 Organizational factors 

The size of an organization has been identified to be critical to the understanding of the 

process of implementation of new manufacturing technology. A number of scholars have 

suggested small business cannot be considered scaled-down larger ones, and the theories 

proved in large enterprises might not be suitable for small business [22–25]. Therefore, the 

approach to implementation for an SME is likely to be different to that in a large 

multinational company. Linked to size, previous study into new manufacturing technology 

implementation suggests that the structure of an organization is the key factor to successfully 

implementing manufacturing technology [26–31], and that companies that adopt without first 

re-designing organizational structures and processes encounter high difficulties [31], [32]. 

Therefore, it is proposed for successful implementation of AM technologies the decision to 

adopt will be accompanied by a change in jobs and tasks, and thus a change in work practices 

and structure.  

        Many authors have advocated that new technologies challenge established norms and 

strategic options. Linked to structure, organizational culture defines the complex set of 

knowledge structures which organization members use to perform tasks and generate social 

behaviour [31]. Hopkinson et al. [5] suggest possibly the largest but unknown impact could be 

on company culture and how it changes to accommodate rapid manufacturing (RM). Using 

AM processes as a manufacturing technology requires designers and engineers to re-think 

design for manufacturing (DFM). DFM is any aspect of the design process in which the issues 

involved in manufacturing the designed object are considered explicitly with a view to 

influencing the design. AM requires users to match product with process and to understand 

new technology process capabilities. Therefore the workforce experience and skill is also 

proposed to be a key factor in AM implementation. 

 

3.4 Operational factors 

As proposed by Bailey [33] a change in an organisations technology will influence both its 

operational and administrative structures to change. One area of operations which has been 

proposed by many authors to be significantly changed with the adoption of AM is product 

design. A number of authors have commented on the impact of Additive Manufacturing on 

the design of products and designers themselves [8], [34], [35]. The additive nature of AM 

processes means that this type of manufacture is unconstrained by many of the limitations of 

conventional (subtractive or formative) processes [36]. The unique characteristics of AM 

systems require new design tools and practices to be developed, contrary to early promise 

made by some researchers there is not total geometric freedom and many consideration have 

be taken into account when designing products for AM processes. It is proposed that the 

designers understanding of the new design for ―additive‖ manufacturing constraints will be an 

influential factor in AM implementation approach.   

        Another area of operations which is likely to change significantly with the adoption of 

AM is production planning and quality control. Research on AM process planning is still 

lacking, though Ciurana and Riba [37] investigated processing planning strategies employed 

at 36 Additive Manufacturing centres in Northern Spain. The authors used survey analysis, 

supported by personal interviews with technicians, to identify strategies used AM process 

planning including; part orientation strategies, build volume strategies, layering strategies, 

Support generation and minimization. However, as the authors conceded a limitation of this 

work is that the majority of the activity in this study was RP and RT.  
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        Hayes and Jaikumar [38] suggested the use of unsuitable cost accounting methods, where 

implementation of new technologies results in costs incurred shifting from direct labour costs 

to essentially fixed costs, often renders traditional methods focusing on less important factors 

unsuitable. A number of authors [37], [39], [40] have identified the substantial information 

gap regarding the true cost of AM system, implementation and operation. In previous studies 

on AM costing four key cost factors have been identified for additive processes: operation 

times, machine costs, labour costs and material costs. Ruffo et al [41] provided seminal work 

on the cost estimation of AM processes and extended this research for simultaneous 

production of mixed components using laser sintering [42]. However, for other systems such 

as metal based processes there remains a significant gap in this knowledge. 

         In the context of AM no technology is currently capable of creating net shape parts, thus 

post-processing (such as support removal, heat treatment etc.) are required, therefore the 

integration of AM within a supportive production system is proposed to be key to 

implementation success.  

 

3.5 Supply chain factors 

Additive Manufacturing implementation lies at the intersection of two supply chains; firstly it 

involves a supply chain from the machine vendors to the purchaser of the technology. 

Secondly, the purchaser will then embed the technology in their respective supply chain and 

hence influence their customers and suppliers. On the subject of new process technologies 

implementation, Bessant [43] has argued that for the technology to deliver its full potential 

significant organizational changes are required such as the restructuring of relationships with 

suppliers towards more collaborative forms. It is proposed that the implementation of AM 

technologies manufacture will require increased collaboration with suppliers and customers. 

Vendor support during the implementation process has long been recognised as a critical 

factor of implementation success. It has been shown that the level of complexity of the 

technology innovation is directly related to the level of intensity of the user-supplier 

interaction processes [44]. Therefore vendor support is proposed to be a key factor in AM 

implementation.  

      A characteristic of current AM industry worthy of note is the tendency for machine 

suppliers to be material suppliers (such as the powders used) following implementation. This 

characteristic is partly due to the immaturity of the technology (with a shortage of material 

suppliers) and also likely a strategy on the machine supplier‘s part to protect future business. 

There will also be decisions on where to locate manufacturing as the removal of tooling 

requirement may results in the possibility of distributing manufacturing according to demand 

locations as in theory the only inputs required for production are CAD data and raw material.  

 

4.0 Research methodology 

 

Due to the exploratory nature of this research area, case studies are used to investigate the AM 

implementation process and test the research framework. Implementation research provides 

guidance for identify the most suitable interviewee for this research area, indentifying the four 

most critical constituencies as: technology vendors, upper management, project engineers and 

plant operating and maintenance personnel [45–49]. A single case was chosen for this study in 

order to get an in-depth view of AM implementation. The case company was selected as it 

represents a rare case of a successful RM implementation (in terms of business success), as it 

is a national leader in supplying both plastic and metal RM parts. 

 

4.1 Company background 
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Company A is a leading supplier of SLS and Direct Metal Laser Sintering (DMLS) products 

in Europe specialising in the production of complex and functional metal rapid prototypes, 

aesthetic models and low volume production components to industries including Aerospace, 

Automotive, Dental, Medical, FMCG, Marine, Defence and Pharmaceutical. The company 

began the first steps in developing a DMLS capability four years ago. The informant at 

Company A was the company Chief Executive Officer (CEO) the enquiry was also supported 

through interviews with the machine vendor. The company was started as a specialist in 

polymer AM processes and focusing on producing prototypes for external customers. 

Following implementation of metal-based processes the focus has been on production 

applications due to the process costs and the reduction in overhead costs for higher volumes. 

The focus on the implementation of the DMLS systems was made for following reasons: 

• the interviewee was directly involved in the implementation of DMLS technology and 

may be viewed as the project champion, 

• the interviewee regarded the metals based processes as key to future success, and 

finally, 

• when discussing production applications DMLS was the processes generally referred 

to as providing the major benefits. 

 

 

5.0 Results and discussion 

 

5.1 AM Strategy 

The company has a clear mission of becoming Europe‘s leading supplier of SLS and DMLS 

parts. A number of factors have led to the implementation of DMLS at Company A. One of 

the main contributing factors to implementation may be viewed as the CEOs perception of 

technology benefits, at a stage where the technology was very much in its infancy, the CEO 

recognised the potential for competitive advantage through innovation and technology 

investment: 

 

 “It was a belief as much as anything; there was no precedent to base it on....I could 

see that metals was going to be massive in the future....I wanted to make sure that I set 

us up ready for when it happened so that we were in a position of strength rather 

trying to catch up.” 

 

Originally a specialist in purely SLS, another factor contributing to the decision to invest in 

DMLS at Company A may be viewed as the changes in the RP sector. As the systems have 

matured, many companies have taken this capability in-house which has reduced the amount 

companies request from specialist suppliers, such as Company A. Though this change has had 

drastic effects in certain markets for the company, in many it has been less severe and 

although demand may have decreased it has not disappeared.  

       Though the company has achieved significant success the challenge for case company is 

that in order to maintain the business benefits of the technology it needs to prove its 

production capability:  

 

“....the only way we are going to make any money on this ultimately is by doing 

production because the overheads for production work are radically lower than they 

are for prototyping......so then you have the problem, you don’t want to do prototyping, 

but that’s the only business around, you want to do production, but to do production 

and be good at it you’ve got to show you’re good at doing production. So you’ve got a 

real dichotomy there.‖ 
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The strategy at Company A is therefore significantly influenced by its organisational 

antecedents, coming from a RP background rather than a production background. The 

informant suggests that:  

 

“it would have been better to be a machining company that adds it in rather than a 

rapid prototyping company that is trying to become a serious aerospace or whatever 

supplier” 

 

There are a number of explanations for this reasoning which influence the approach to AM 

implementation at Company A, including, the culture within RP (discussed in section 5.3), the 

company not having an established customer base (as discussed in section 5.5) and lacking 

production capability (particularly regarding the post-processing requirements in DMLS,  

discussed in section 5.4). Their response to this apparent inefficiency has been to become 

experts in “design and application development in a particular way”. Though the company 

has built up a workshop facility to support the DMLS system, through deliberately finding 

and designing parts to suit the process they have been able to get round this inadequacy and as 

the informant suggests: 

 

―it is much more profitable to design the part where you don’t do anything to the part 

after you have finished, so you design it so that it doesn’t need anything doing to it and if 

you can do that then its far more profitable....and far quicker”.  

 

Therefore, this represents the company‘s main in-house capability. However, an important 

implication of this is that this does require a lot more design thought, therefore regarding 

productivity, downstream process may be reduced, but upstream process is increased. 

Regarding the current market for DMLS products, the informant suggests that it is difficult to 

know where the next job will come from and how the market for DMLS products will change 

over time. Therefore it remains a particularly turbulent environment, where both the 

technologies and the markets are relatively new. The informant also states that with a few 

exceptions, industry knowledge of the process has significantly lagged behind that of the 

users. Among these exceptions is the aerospace industry, with requirements for lighter aircraft 

and more efficient processes often influenced by environmental legislation. Company A are 

targeting these manufacturers as they require less education on process benefits and the 

components are more suited to AM production. 

 

5.2 AM Technology 

The CEOs perception of AM benefit is that they must be considered over the lifecycle of the 

product, which itself presents a challenge when attempting to educate customers on these 

potential opportunities. This is reflected in the company‘s focus on Aerospace applications. In 

aircraft component manufacturer, the potential to reduce part weight through the design 

freedom unlocked when using AM processes can create mass savings over the product life 

cycle. This is also reflected in the company main in-house capability, design and application 

development for AM process. The CEO suggests: 

 

“....in terms of material usage....particularly with the metals it’s very good but you 

have to go through a high energy process of turning it into powder in the first place, 

do you really gain a benefit there? It’s marginal to be fair. The actual machines are 

they really efficient at building stuff now? No...In terms of efficiency of use of energy 

they are not very good at all.....but the real benefit is when you look at the fact that 
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you can produce lighter parts ....That is really where it comes into its own and the fact 

you can then turn things round faster, you can design things that are closer to doing 

the job that you wanted to do in the first place but you had to compromise.” 

 

The most significant trade-off for the case company was identified as the machine cost, 

hindering the potential for increasing in-house DMLS capacity. Other tradeoffs identified by 

the CEO include high process costs, largely due to the slow speed at which parts are produced, 

resulting in high product costs reducing the potential market size of DMLS. However, as the 

informant states these are likely to change as the technology matures: 

 

 “The tradeoffs are constraints in terms of design for the metal parts because of the 

need for supports....currently limited range of materials but that will change....it’s 

expensive, that will change a fair bit. In fact it will probably become an irrelevance at 

some point in twenty, forty years time or whatever...” 

 

Though the company focuses much of its activity on aerospace applications development, the 

certification periods for this sector has meant the company has been forced to look to other 

sectors over this period of certification. This is in part due to the fact there are few technical 

standards for AM processes, resulting in long certification periods for safety critical parts in 

commercial aircraft applications. 

 

5.3 Organisational Change 

The company is an SME and is purely self funded which results in a lack of capital for 

technological investment and R&D activities, creating a barrier to increasing capacity and 

developing production applications. One approach to solving these issues is using RP to fund 

RM R&D activities. For Company A the experience and skill shortage is in conventional 

metal working and aerospace process flow. The role of the production manager for the DMLS 

implementation was identified as an area where this is most visible, with the CEO describing 

the role as being much more specialized than that of the SLS side of the company. Therefore 

this may be viewed as an organisational characteristic of RP companies moving to RM, with 

experience and skill gap in production applications.  

        The company‘s experience in RP has also affected the organisational culture, as the 

knowledge structures which organisation members use to perform tasks and generate social 

behaviour will have been invented, discovered or developed in an RP environment. The CEO 

suggests that in an RP environment the focus is ―to get parts out quickly and at a decent 

quality‖, speed is likely to be an important organisational strength when dealing with change 

and the demand for quick turnaround is key to success. Whereas in the manufacture it is likely 

that cost and quality control become critical for success. The company has a centralized 

organic structure with the CEO being the key decision maker which has benefits in this 

turbulent environment for speed of response however they are vulnerable to individual 

misjudgement. The workforce structure is composed of design engineers and engineers, with 

a production manager. The structure has changed significantly, starting as a replication of the 

original plastic RP side structure. The CEO suggests the organisational structure is something 

they ―will likely work out as they go along‖, as there are no precedents to work from.   

 

5.4 Systems of Operations 

The company spends a huge percentage of customer facing time educating customers. This 

education is likely to be around process capabilities and constraints, where design for process 

considerations must be taken into account in order to capture the technology benefits. From 

this case study the quoting process is identified to be a time and resource consuming operation. 
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Whereas in RP, quotation is less complex as the process chain itself is significantly less 

complex (discussed below). Furthermore in RP there is no need for part re-design and cost is 

not necessarily an order winner at one-offs and small batch volumes, where delivery speed 

may be more important. For RM, process chain complexity, design for process and cost 

reduction must all be considered at the quotation stage. 

        The process chain in RM applications was also highlighted as an area of significant 

change during the case study. The length and complexity of the process chain in RM 

applications is drastically increased (when compared to RP) as heat treatment, finishing and 

measuring processes are required for quality production parts. In this environment the CEO 

suggests it becomes ―a whole workshop coordination”. This increase in complexity is partly 

due to the characteristics of the DMLS process, requiring support removal and other post 

processing activities. Secondly, this is due to the quality control requirements for production 

parts when compared to prototypes. As previously stated, these downstream processes may be 

reduced through quality design for process and optimised process planning strategies. 

 

5.5 The AM Supply Chain 

The case company‘s background in Rapid Prototyping means that they do not have an 

established customer base for production metallic components. Compared to a machining 

company who is trusted as a parts supplier, the company must therefore spend significant 

amount of resources on attracting new customers. On the subject of machine suppliers vendor 

restrictive practices including machine suppliers controlling the powders which can be 

processed and locking down machine parameters were discussed. These practices reduce the 

material range available to the organisation, likely reducing the potential products therefore 

markets the company can serve. Powder control by the supplier also means that material cost 

remains high, as there is a lack of competition. Secondly, restrictive practices by suppliers 

include locking down process parameters creating ―annoyance‖ for high end users. This is 

likely to hinder the R&D practices of the company as the company is unable to experiment 

with process parameters optimisation tasks. This issue also creates a reliance on the machine 

suppliers R&D activity, as the systems become closed to operator adjustment. The CEO 

suggests it is surprising how little the machine vendors look to learn from the experience of 

Company A regarding machine development. In particular, he points out how some vendors 

are more responsive to making them production capable than others.  

       In this case location of manufacture remains one of centralised production, as the option 

of locating production according to demand is reliant on an established customer base, or at 

least an understanding of the demand for products according to location. Also, the 

requirements for post-processing and supporting equipment (CNC etc.) restrict the flexibility 

of the manufacturing system in terms of location. This is likely to be the case for some time 

until further machine improvements are in place which reduce the requirements for post-

processing of components and AM moves closer to net-shape manufacture.  

 

6.0 Conclusions and Future Work 

The case company has shown to provide support for the research framework, its constructs 

and provided insights into the relationships between the variables. During the analysis stage 

care was taken to identify the reasons for the factors identified; to identify those that may be 

common characteristic to AM implementation in a certain environment and therefore a source 

of a potentially more generic solution (improving external validity). Some of the management 

and implementation challenges for the RP convertor have been discussed along with potential 

solutions and opportunities. It is important to acknowledge the nature of the case study 

presented in this paper and the specific scenario under study. The scenario investigated in this 

paper is that of a company coming from a background in prototyping and implementing AM 
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as a new manufacturing process for production of new products. It is expected that the 

influence and importance of the framework factors will be determined by the scenario under 

study. For example case, the challenge of changing an RP culture and building a reputation as 

a production company are likely to be less influential in a company coming from a 

background in traditional machining and established in an aerospace supply chain. In such a 

case, the challenges with understanding new design for additive manufacture constraints and 

changing a traditional production culture would likely have greater influence on 

implementation success. Therefore, future work may look to compare the approaches in these 

different scenarios, and potentially map these approaches using the factors presented in this 

framework. 

        Limitations of the study include the fact the framework was tested using a single case 

study. Yin [50] suggests single-case designs may be viewed as vulnerable and Voss et al. [51] 

also advise that single case research limits the generalisability of the conclusions, models and 

theory developed. Although these risks exist in multi case research they are somewhat 

mitigated and therefore to improve the generalisability of the framework future work may be 

focused on further case studies of AM implementation in different organisational contexts and 

supply chain scenarios. As the number of implementers increases the variety of cases will be 

open to researchers. Though there is unlikely to be one correct approach to implementing AM 

processes, this study has provided an insight into the challenges with AM implementation and 

has proposed a framework to assist managers in implementing this potentially disruptive 

technology class. 

 

References 

 

[1]  ASTM Standard, ‗Standard Terminology for Additive Manufacturing Technologies‘, 

vol. 10.04. 

[2]  P. Kulkarni, A. Marsan, and D. Dutta, ‗A review of process planning techniques in 

layered manufacturing‘, Rapid Prototyping Journal, vol. 6, no. 1, pp. 18–35, 2000. 

[3]  I. Gibson, Additive manufacturing technologies rapid prototyping to direct digital 

manufacturing. New York: Springer, 2010. 

[4] Fundamentals of modern manufacturing., 3. ed. Hoboken  NJ: Wiley, 2007. 

[5]  N. Hopkinson, R Hague, and P. Dickens, Rapid manufacturing : an industrial 

revolution for the digital age. Chichester  England: John Wiley, 2006. 

[6]  E. C. Santos, M. Shiomi, K. Osakada, and T. Laoui, ‗Rapid manufacturing of metal 

components by laser forming‘, International Journal of Machine Tools and Manufacture, 

vol. 46, no. 12–13, pp. 1459–1468, Oct. 2006. 

[7]  J.-P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, ‗Consolidation phenomena in laser 

and powder-bed based layered manufacturing‘, CIRP Annals - Manufacturing 

Technology, vol. 56, no. 2, pp. 730–759, 2007. 

[8]  R. Hague, S. Mansour, and N. Saleh, ‗Material and design considerations for rapid 

manufacturing‘, International Journal of Production Research, vol. 42, no. 22, pp. 

4691–4708, 2004. 

[9]  G. N. Levy, R. Schindel, and J. P. Kruth, ‗Rapid manufacturing and rapid tooling with 

layer manufacturing (LM) technologies, state-of-the-art and future perspectives‘, CIRP 

Annals - Manufacturing Technology, vol. 52, no. 2, pp. 589–609, 2003. 

[10] ‗The next frontier: New technologies will enable cost-effective customization‘, Strategic 

Directions, vol. 24, no. 8, 2008. 

[11]  M. Ruffo, C. Tuck, and R. Hague,, ‗Make or buy analysis for rapid manufacturing‘, 

Rapid Prototyping Journal, vol. 13, no. 1, pp. 23–29, 2007. 



 12 

[12]  J. Holmström, J. Partanen, J. Tuomi, and M. Walter, ‗Rapid manufacturing in the spare 

parts supply chain: Alternative approaches to capacity deployment‘, Journal of 

Manufacturing Technology Management, vol. 21, no. 6, pp. 687–697, 2010. 

[13] ‗Solid print: Making things with a 3D printer changes the rules of manufacturing‘, 

Economist, London, Apr-2012. 

[14]  E. Atzeni and A. Salmi, ‗Economics of additive manufacturing for end-usable metal 

parts‘, The International Journal of Advanced Manufacturing Technology, Feb. 2012. 

[15]  E. Atzeni and A. Salmi, ‗Economics of additive manufacturing for end-usable metal 

parts‘, he International Journal of Advanced Manufacturing Technology, vol. 62, no. 9, 

pp. 1147–1155, Oct. 2012. 

[16]  V. Petrovic, J. Vicente Haro Gonzalez, O. Jordá Ferrando, J. Delgado Gordillo, J. 

Ramón Blasco Puchades, and L. Portolés Griñan, ‗Additive layered manufacturing: 

sectors of industrial application shown through case studies‘, International Journal of 

Production Research, vol. 49, no. 4, pp. 1061–1079, 2011. 

[17]  W. Skinner, ‗Operations Technology: Blind Spot in Strategic Management‘, Interfaces, 

vol. 14, no. 1, pp. 116–125, Feb. 1984. 

[18]  M. E. Porter, ‗The Technical Dimension of Competitive Strategy‘, in Research on 

technological innovation, management and policy., Greenwich  Conn.  ;London: JAI, 

1983. 

[19]  C. A. Voss, ‗Implementation: A key issue in manufacturing technology: The need for a 

field of study‘, Research Policy, vol. 17, no. 2, pp. 55–63, Apr. 1988. 

[20]  T. Hill, Manufacturing strategy : text and cases, 2nd ed. Basingstoke: Palgrave, 2000. 

[21]  V. Sonntag, ‗The role of manufacturing strategy in adapting to technological change‘, 

Integrated Manufacturing Systems, vol. 14, no. 4, pp. 312–323, 2003. 

[22]  T. Federici, ‗Factors influencing ERP outcomes in SMEs: a post-introduction 

assessment‘, Journal of Enterprise Information Management, vol. 22, no. 1/2, pp. 81–98, 

2009. 

[23]  P. Schubert, J. Fisher, and L. Uwe, ‗ICT and Innovation in SMall Companies‘, in 

Proceeding of the 15th Europoean Conference on Information Systems, St. Gallen, 2007, 

vol. June 07–09, pp. 1226–1239. 

[24]  J. Y. L. Thong, C.-S. Yap, and K. S. Raman, ‗Top Management Support, External 

Expertise and Information Systems Implementation in Small Businesses‘, Information 

Systems Research, vol. 7, no. 2, pp. 248–267, 1996. 

[25]  J. A. Welsh and J. F. White, ‗A Small Business is Not a Little Big Business‘, Harvard 

Business Review, vol. 59, no. 4, pp. 18–32, 1981. 

[26]  D. R. Dalton, W. D. Todor, M. J. Spendolini, Gordon J. Fielding, and L. W. Porter, 

‗Organization Structure and Performance: A Critical Review‘, The Academy of 

Management Review, vol. 5, no. 1, pp. 49–64, Jan. 1980. 

[27]  J. W. Dean, S. J. Yoon, and G. I. Susman, ‗Advanced Manufacturing Technology and 

Organization Structure: Empowerment or Subordination?‘, Organization Science, vol. 3, 

no. 2, pp. 203–229, 1992. 

[28]  W. Belassi and A. Fadlalla, ‗An integrative framework for FMS diffusion‘, Omega, vol. 

26, no. 6, pp. 699–713, Dec. 1998. 

[29]  Abdul Ghani K.[1], Jayabalan V., and Sugumar M., ‗Impact of advanced manufacturing 

technology on organizational structure‘, Journal of High Technology Management 

Research, vol. 13, pp. 157–175, Sep. 2002. 

[30]  Sun Xiao-lin, Tian Ye-zhuang, and Cui Guo-gang, ‗The Empirical Study on the Impact 

of Advanced Manufacturing Technology on Organizational Structure and Human 

Resources Management‘, in Management Science and Engineering, 2007. ICMSE 2007. 

International Conference on, 2007, pp. 1548–1553. 



 13 

[31]  S. Saberi, R. M. Yusuff, N. Zulkifli, and M. M. H. M. Ahmad, ‗Effective Factors on 

Advanced Manufacturing Technology Implementation Performance: A Review‘, 

Journal of Applied Sciences, vol. 10, no. 13, pp. 1229–1242, 2010. 

[32]  R. Millen and A. S. Sohal, ‗Planning processes for advanced manufacturing technology 

by large American manufacturers‘, Technovation, vol. 18, no. 12, pp. 741–750, Oct. 

1998. 

[33]  J. Bailey, Managing people and technological change. London: Pitman, 1993. 

[34]  R. Hague, I. Campbell, and P. Dickens, ‗Implications on design of rapid manufacturing‘, 

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical 

Engineering Science, vol. 217, no. 1, 2003. 

[35]  S. Mansour and R. Hague, ‗Impact of rapid manufacturing on design for manufacture 

for injection moulding‘, Proceedings of the Institution of Mechanical Engineers, Part B: 

Journal of Engineering Manufacture, vol. 217, no. 4, pp. 453 –461, Apr. 2003. 

[36]  L. Hao, S. Mellor, O. Seaman, J. Henderson, N. Sewell, and M. Sloan, ‗Material 

characterisation and process development for chocolate additive layer manufacturing‘, 

Virtual and Physical Prototyping, vol. 5, no. 2, pp. 57–64, 2010. 

[37]  J. Munguia, J. de Ciurana, and C. Riba, ‗Pursuing successful rapid manufacturing: a 

users‘ best-practices approach‘, Rapid Prototyping Journal, vol. 14, no. 3, pp. 173–179, 

2008. 

[38]  R. H. Hayes and R. Jaikumar, ‗Requirements for successful implementation of new 

manufacturing technologies‘, Journal of Engineering and Technology Management, vol. 

7, no. 3–4, pp. 169–175, Mar. 1991. 

[39]  T. Grimm, User’s guide to rapid prototyping. Dearborn  Mich.: Society of 

Manufacturing Engineeers, 2004. 

[40]  N. Hopkinson and P. Dickens, ‗Analysis of rapid manufacturing - using layer 

manufacturing processes for production.‘, Journal of Mechanical Engineering Science, 

vol. 217, no. C1, pp. 31–39, 2003. 

[41]  M. Ruffo, C. Tuck, and R. Hague, ‗Cost estimation for rapid manufacturing - laser 

sintering production for low to medium volumes‘, Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 220, no. 9, pp. 

1417–1427, 2006. 

[42]  M. Ruffo and R. J. M. Hague, ‗Cost estimation for rapid manufacturing — simultaneous 

production of mixed components using laser sintering‘, Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 221, no. 11, 

pp. 1585–1591, 2007. 

[43]  J. Bessant, ‗Towards total integrated manufacturing‘, International Journal of 

Production Economics, vol. 34, no. 3, pp. 237–251, Jun. 1994. 

[44]  M. Zairi, ‗Supplier partnerships for effective advanced manufacturing technology 

implementation: a proposed model‘, Integrated Manufacturing Systems, vol. 9, no. 2, pp. 

109–119, 1998. 

[45]  R. W. Zmud, ‗An Examination of ―Push-Pull‖ Theory Applied to Process Innovation in 

Knowledge Work‘, Management Science, vol. 30, no. 6, pp. 727–738, Jun. 1984. 

[46]  R. B. Cooper and R. W. Zmud, ‗Information Technology Implementation Research: A 

Technological Diffusion Approach‘, Management Science, vol. 36, no. 2, pp. 123–139, 

Feb. 1990. 

[47]  A. Majchrzak, The human side of factory automation : managerial and human 

resource strategies for making automation succeed, 1st ed. San Francisco: Jossey-Bass 

Publishers, 1988. 



 14 

[48]  K. Hattrup and S. W. J. Kozlowski, ‗An across-organization analysis of the 

implementation of advanced manufacturing technologies‘, The Journal of High 

Technology Management Research, vol. 4, no. 2, pp. 175–196, Autumn 1993. 

[49]  H. Noori, Managing the dynamics of new technology : issues in manufacturing 

management. Englewood Cliffs  N.J.: Prentice Hall, 1990. 

[50]  R. Yin, Case study research : design and methods, 3rd ed. Thousand Oaks  Calif.: 

Sage Publications, 2003. 

[51]  C. Voss, N. Tsikriktsis, and M. Frohlich, ‗Case research in operations management‘, 

International Journal of Operations & Production Management, vol. 22, no. 2, pp. 195–

219, 2002. 

 




