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Abstract 

Typically, the total number of required workstations are minimised for a given cycle time (this problem 

is referred to as type-1), or cycle time is minimised for a given number of workstations (this problem is 

referred to as type-2) in traditional balancing of assembly lines. However, variation in workload 

distributions of workstations is an important indicator of the quality of the obtained line balance. This 

needs to be taken into account to improve the reliability of an assembly line against unforeseeable 

circumstances, such as breakdowns or other failures. For this aim, a new problem, called lexicographic 

bottleneck mixed-model assembly line balancing problem (LB-MALBP), is presented and formalised. 

The lexicographic bottleneck objective, which was recently proposed for the simple single-model 

assembly line system in the literature, is considered for a mixed-model assembly line system. The 

mathematical model of the LB-MALBP is developed for the first time in the literature and coded in 

GAMS solver, and optimal solutions are presented for some small scale test problems available in the 

literature. As it is not possible to get optimal solutions for the large-scale instances, an artificial bee 

colony algorithm is also implemented for the solution of the LB-MALBP. Solution procedures of the 

algorithm are explored illustratively. The performance of the algorithm is also assessed using derived 

well-known test problems in this domain and promising results are observed in reasonable CPU times. 

Keywords: lexicographic bottleneck; assembly line balancing; mixed-model lines; mathematical 

model; artificial bee colony algorithm. 
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A mathematical model and artificial bee colony algorithm for the  

lexicographic bottleneck mixed-model assembly line balancing problem 

Abstract 

Typically, the total number of required workstations are minimised for a given cycle time (this problem 

is referred to as type-1), or cycle time is minimised for a given number of workstations (this problem is 

referred to as type-2) in traditional balancing of assembly lines. However, variation in workload 

distributions of workstations is an important indicator of the quality of the obtained line balance. This 

needs to be taken into account to improve the reliability of an assembly line against unforeseeable 

circumstances, such as breakdowns or other failures. For this aim, a new problem, called lexicographic 

bottleneck mixed-model assembly line balancing problem (LB-MALBP), is presented and formalised. 

The lexicographic bottleneck objective, which was recently proposed for the simple single-model 

assembly line system in the literature, is considered for a mixed-model assembly line system. The 

mathematical model of the LB-MALBP is developed for the first time in the literature and coded in 

GAMS solver, and optimal solutions are presented for some small scale test problems available in the 

literature. As it is not possible to get optimal solutions for the large-scale instances, an artificial bee 

colony algorithm is also implemented for the solution of the LB-MALBP. Solution procedures of the 

algorithm are explored illustratively. The performance of the algorithm is also assessed using derived 

well-known test problems in this domain and promising results are observed in reasonable CPU times. 

Keywords: lexicographic bottleneck; assembly line balancing; mixed-model lines; mathematical 

model; artificial bee colony algorithm. 

1. Introduction  

An assembly line is a manufacturing process composed of the sequence of workstations in which parts 

are added to a semi-finished product as it moves from workstation to workstation with the help of a 

transportation system such as a conveyor or moving belt. Semi-finished products pass workstations in 

which operations (or tasks) required to create an end product are handled by operators or machines in a 

sequential manner (Kucukkoc and Zhang 2015a; Satoglu and Sahin 2012). The assembly line 

http://dx.doi.org/10.1007/s10845-015-1150-5
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balancing problem is the effort of determining which task will be performed in which workstation, 

where each task requires a certain amount of time to be completed, called task time or task processing 

time. The sum of processing times of tasks assigned to a workstation cannot exceed the capacity of that 

workstation, designated by the cycle time (which also determines the production rate or throughput 

rate). Due to some technological or organisational restrictions, some tasks need to be completed before 

initialising some other tasks. This restriction is called precedence relationship constraint and must be 

satisfied for all tasks to obtain feasible balancing solutions. Another essential constraint is that tasks 

cannot be split between workstations, which means every task must be assigned to exactly one 

workstation. 

Assembly lines can be classified as single-model lines, mixed-model lines and multi-model lines. Only 

one model of a product is assembled on a single-model line while more than one similar model of a 

base product is assembled on a mixed-model line in an intermixed order. As the models being 

assembled on a mixed-model line are similar to each other, there is no setting-up process needed 

between model changes. Nevertheless, the set-up is needed on multi-model lines, on which 

considerably different product models are assembled. 

In traditional approach, the main objective of balancing an assembly line is to maximise the efficiency 

of the line either by minimising the number of workstations (this problem is referred to as type-I) or 

minimising the cycle time (this problem is referred to as type-II). In type-I problems, it is aimed to 

minimise the number of workstations, which is thought to be the master piece of the cost of 

establishing and running an assembly line, while the cycle time is determined and known beforehand. 

These type of problems are usually dealt with when building a new line. On the other hand, the type-II 

problems tackle minimising the cycle time when the number of workstations is given. These type of 

problems occur usually when rebalancing of a line due to changes in product demand or the capacity of 

the line. Type-II problems adopt min-max objectives since it is aimed to minimise maximum workload 

of the most heavily loaded workstation (called bottleneck), while workloads of other workstations are 

often ignored. However, as it is emphasised by Boysen et al. (2007), considering the second biggest, 

third biggest, etc. workloads is also important to prevent the quality defects caused by 

http://dx.doi.org/10.1007/s10845-015-1150-5
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disproportionately distributed workloads. Thus, the reliability of the system is improved and the 

workload is likely to be distributed among workers as equally as possible. 

From that base point, Pastor (2011) proposed a new assembly line balancing problem, namely the 

lexicographic bottleneck assembly line balancing problem (LB-ALBP), which aimed at hierarchically 

minimising the workload of the most heavily loaded workstation, and the workload of the second most 

heavily loaded workstation, and so on for simple assembly lines. Two mixed-integer linear 

programming models were designed to solve the LB-ALBP optimally, together with three heuristic 

procedures based on these models. Pastor et al. (2012) proposed and tested new algorithms which were 

different combinations of a heuristic procedure and several local search procedures derived from 

different line balancing procedures. Recently, Pastor et al. (2015) employed GRASP, scatter search and 

tabu search for solving the LB-ALBP and compared their performance to each other, on the basis of 

well-known test problems. The authors reported that the GRASP and scatter search integrated with an 

improvement method reached better solutions than the best heuristic that was proposed by Pastor et al. 

(2012). 

The basic type-I and type-II problems have been studied extensively in the literature and various exact, 

heuristic and meta-heuristic solution approaches have been developed in the literature so far. See for 

example, Baykasoglu and Dereli (2009), Simaria and Vilarinho (2009), Kara and Tekin (2009), 

Yagmahan (2011), Xu and Xiao (2011), Chutima and Chimklai (2012), Hamzadayi and Yildiz (2012), 

Rabbani et al. (2012), Liao et al. (2012), Akpinar et al. (2013), Kucukkoc et al. (2013), Manavizadeh 

et al. (2013) and Kucukkoc and Zhang (2015a, 2015b, 2014a) for recently published studies on type-I 

problems; and Hackman et al. (1989), Simaria and Vilarinho (2004), Liu et al. (2004), Battini et al. 

(2007), Ozcan et al. (2011) and Yoosefelahi et al. (2012) for studies published on type-II problems. 

While these two objectives conflict each other, both cycle time and the number of workstations are 

minimised in some studies (e.g. Wei and Chao (2011), García-Villoria and Pastor (2013), Manavizadeh 

et al. (2012) and Kucukkoc and Zhang (2015c)). Also, various types of assembly line balancing 

problems (including consideration of U-shaped lines, parallel lines, two-sided lines, stochastic task 

times, buffers in between workstations, etc.) have been dealt with by extensive numbers of researchers. 

http://dx.doi.org/10.1007/s10845-015-1150-5
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Two recent studies by Battaïa and Dolgui (2013) and Sivasankaran and Shahabudeen (2014) provided a 

comprehensive review of the literature and presented a taxonomy of line balancing problems and their 

solution approaches. The reader may also refer to Baybars (1986), Ghosh and Gagnon (1989), Rekiek 

et al. (2002), Becker and Scholl (2006), and Boysen et al. (2007). 

Ever since the mixed-model line balancing problem was first introduced by Thomopoulos (1967), 

several exact, heuristic and meta-heuristic methods were proposed for the solution of the problem with 

different objectives, see for example Askin and Zhou (1997), Gokcen and Erel (1997), Vilarinho and 

Simaria (2002), McMullen and Tarasewich (2003), Haq et al. (2006), Kara et al. (2007a, 2007b), 

Ozcan and Toklu (2009), Hwang and Katayama (2009, 2010), Emde et al. (2010), Akgunduz and 

Tunali (2010), Zhang and Gen (2011), Chutima and Chimklai (2012), Rabbani et al. (2012), Mosadegh 

et al. (2012), Liao et al. (2012), Zhang and Kucukkoc (2013), Hamta et al. (2013), Manavizadeh et al. 

(2013) and Kucukkoc and Zhang (2014b; 2015d). 

Although variation of task processing times between different models in mixed-model lines is likely to 

cause several problems (as explained above), the lexicographic bottleneck objective has not been 

studied for any type of mixed-model assembly line balancing problem so far. In other words, the LB-

ALBP, which is different from type-2 line balancing problem as it was exposed by Pastor (2011) and 

Pastor et al. (2012), has never been studied for a mixed-model line in the literature. Based on this 

motivation, this paper is original in terms of both the addressed problem along with its mathematical 

formulation and the proposed solution method. We define the lexicographic bottleneck mixed-model 

assembly line balancing problem (LB-MALBP) mathematically, the primitive version of which was 

introduced by Pastor (2011) for the simple assembly line balancing problem. Also, in this paper, an 

artificial bee colony algorithm is applied for any type of LB-ALBP for the first time in the literature. 

The remainder of the paper is organised as follows. Section 2 defines the LB-MALBP mathematically 

while Section 3 presents the proposed solution method and gives optimal and heuristic solutions of a 

numerical example. An experimental study is conducted in Section 4 and detailed solutions are 

presented for twenty test problems derived from the literature. Conclusions are drawn along with 

practical implications and future research directions in Section 5. 

http://dx.doi.org/10.1007/s10845-015-1150-5
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2. The lexicographic bottleneck mixed-model assembly line balancing problem 

 Definition and main characteristics 

The mixed-model assembly line is composed of sequential workstations, represented with  (𝑘 =

1, … , 𝐾), in which various models of a base product are assembled in an intermixed order. Each model, 

symbolised with  (𝑚 = 1, … , 𝑃), has its own set of tasks, where a task is  represented by 𝑖  (𝑖 =

1, … , 𝑁). The processing time of a task, represented with 𝑡𝑖𝑚, can be different for different product 

models while the sum of processing times of tasks assigned to a workstation cannot exceed the upper 

limit designated for cycle time, 𝐶𝑇 , for any product model. A common (or joint) precedence 

relationships diagram is built and thus common tasks between different models are assigned to the 

same workstation. The precedence relationships between task pairs must be ensured to obtain feasible 

balancing solutions where 𝑂 holds the set of ordered pairs of tasks (𝑖, 𝑗) such that there is an immediate 

precedence relation between them, i.e. task 𝑖 is an immediate predecessor of task 𝑗. 

Due to the differences in task processing times between different product models, fluctuations in 

workload distributions of workstations are more likely to occur in mixed-model lines rather than in 

single-model lines. Also, it is possible to have different balancing solutions which have the same 

traditional performance measures, such as the total number of workstations or cycle time. To give an 

example, let us consider an example problem for which the precedence relationships diagram and task 

processing times are presented in Figure 1 and Table 1, respectively. As seen from the data, three 

different models (A, B and C) are considered. Model demands are assumed 16, 24 and 8 units for 

models A, B, and C respectively (𝐷𝐴 = 16, 𝐷𝐵 = 24, 𝐷𝐶 = 8) for a planning period of 480 time units. 

 

Figure 1. Combined precedence relationships diagram of the example problem 
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Table 1 . Task processing times of the models 

Task No Model A Model B Model C  Task No Model A Model B Model C 

1 5.90 5.90 5.90  12 0.00 1.00 1.00 

2 6.05 6.05 6.05  13 0.00 5.00 5.00 

3 7.00 7.00 7.00  14 2.70 2.70 2.40 

4 5.40 5.00 5.50  15 7.50 7.50 7.50 

5 6.50 7.20 6.50  16 2.40 0.00 2.40 

6 3.20 0.00 3.20  17 2.10 2.10 1.80 

7 5.00 5.80 5.20  18 2.80 2.80 2.80 

8 6.30 6.70 7.20  19 7.30 7.30 7.30 

9 5.00 5.00 5.00  20 5.60 4.80 5.60 

10 0.00 0.00 10.00  21 0.00 1.00 1.00 

11 4.50 5.15 0.00  - - - - 

 

The cycle time is computed as 𝐶𝑇 = 𝐻/ ∑ 𝐷𝑚
𝑃
𝑚=1 = 480/48 = 10 for this example problem and two 

possible balancing solutions are provided in Table 2 and Table 3. Weighted workloads of the 

workstations (𝑆𝑘), which are calculated using Equation (1) based on the model demands, are also given 

as well as individual workload times in model basis. 

𝑆𝑘 = ∑ 𝑑𝑚 ( ∑ 𝑡𝑖𝑚

𝑖∈𝐴𝑇𝑘

)

𝑃

𝑚=1

,                                                             (1) 

where 𝐴𝑇𝑘 and 𝑡𝑖𝑚 denote the set of tasks assigned to workstation 𝑘 and the processing time of task 𝑖 

for model 𝑚, respectively. Please note that 𝑑𝑚 corresponds to proportional demand for model 𝑚 and is 

calculated as follows, 𝑑𝑚 = 𝐷𝑚 ∑ 𝐷𝑚
𝑃
𝑚=1⁄ , where 𝐷𝑚 is the demand of model 𝑚. 

The detailed balancing solution results provided in Table 2 and Table 3 are also plotted in Figure 2 to 

observe fluctuations in workload distributions of workstations in accordance with different model types 

(see A, B, and C bars in the figure). Also, the weighted workload of each workstation is given as a 

stacked line to make comparison easier between alternative balancing solutions. 

It is apparent that the provided two alternative solutions are quite different from each other and should 

have different effects on the reliability and criticalness of the line, where the closer station workload to 

cycle time the more critical obtained line configuration. The lexicographic bottleneck objective 

proposed in this research aims to minimise the most heavily loaded workstation, followed by the 

http://dx.doi.org/10.1007/s10845-015-1150-5
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second most heavily loaded workstation, and so on, on the mixed-model assembly lines. Thus, a 

sophisticated study is to be maintained to obtain smoother workload distributions in the established line 

balancing solutions. The next subsection provides the mathematical formulation of the LB-MALBP for 

the first time in the literature. 

Table 2. Balancing solution - 1 

Station No Assigned Tasks Weighted Workload Model A Model B Model C 

1 1  5.900 5.90 5.90 5.90 

2 2  6.050 6.05 6.05 6.05 

3 3 7.000 7.00 7.00 7.00 

4 4, 21 5.887 5.40 6.00 6.50 

5 5 6.850 6.50 7.20 6.50 

6 7, 6 7.034 8.20 5.80 8.40 

7 8 6.653 6.30 6.70 7.20 

8 9, 14 7.649 7.70 7.70 7.40 

9 10, 11 5.760 4.50 5.15 10.00 

10 12, 15 8.170 7.50 8.50 8.50 

11 13, 16, 17 6.599 4.50 7.10 9.20 

12 20, 18 8.000 8.40 7.60 8.40 

13 19 7.300 7.30 7.30 7.30 

 

Table 3. Balancing solution - 2 

Station No Assigned Tasks Weighted Workload Model A Model B Model C 

1 1 5.900 5.90 5.90 5.90 

2 3 7.000 7.00 7.00 7.00 

3 4 5.217 5.40 5.00 5.50 

4 5 6.850 6.50 7.20 6.50 

5 7, 6 7.034 8.20 5.80 8.40 

6 8 6.653 6.30 6.70 7.20 

7 9, 12 5.670 5.00 6.00 6.00 

8 10, 11 5.760 4.50 5.15 10.00 

9 15 7.500 7.50 7.50 7.50 

10 2, 16, 21 7.920 8.45 7.05 9.45 

11 13, 17, 14 8.048 4.80 9.80 9.20 

12 20, 18 8.000 8.40 7.60 8.40 

13 19 7.300 7.30 7.30 7.30 
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Figure 2. Workload distribution among workstations: (a) solution-1, (b) solution-2 

 Mathematical model 

This subsection presents the developed mathematical model of LB-MALBP, which is an improved 

version of the formulation provided by Pastor (2011) for single-model assembly lines. 

2.2.1. Notation 

𝑚 index of models 

𝑖, 𝑗  index of tasks 

𝑘, 𝑙, 𝑛 index of workstations 

𝑁  the total number of tasks (𝑖 = 1, … , 𝑁) 

𝐾  the total number of workstations (𝑘 = 1, … , 𝐾) 

𝑃 the total number of models (𝑚 = 1, … , 𝑃) 

𝑡𝑖𝑚  the processing time of task 𝑖 for model 𝑚 
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𝐻 the planning horizon 

𝐷𝑚 the demand of model 𝑚 in the planning horizon 

𝑑𝑚 the proportional demand of model 𝑚, where 𝑑𝑚 = 𝐷𝑚/ ∑ 𝐷𝑚
𝑃
𝑚=1  

𝐶𝑇  the upper bound on the cycle time, where 𝐶𝑇 = 𝐻/ ∑ 𝐷𝑚
𝑃
𝑚=1  

𝑂  the set of ordered pairs of tasks (𝑖, 𝑗) such that there is an immediate precedence relation 

between them, task 𝑖 is an immediate predecessor of task 𝑗 

𝛼𝑘  parameters to weigh the components of the objective function (𝑘 = 1, … , 𝐾). So that 𝛼𝑘 ≫

𝛼𝑘+1 guarantees that the hierarchy of the proposed objectives is preserved. 

2.2.2. Variables 

𝑣𝑖𝑘 = {
1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑡𝑎𝑠𝑘 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆𝑘  weighted workload assigned to workstation 𝑘 (i.e., the sum of the weighted processing times of 

the tasks assigned to the workstation 𝑘) 

𝑇𝑘  the weighted workload of the 𝑘 -th most heavily loaded workstation. 𝑇1  is the weighted 

workload of the most heavily loaded workstation; 𝑇2 is the weighted workload of the second most 

heavily loaded station, etc. 

𝑦𝑘𝑛 = {
1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑛 − 𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑, 𝑇𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

2.2.3. Objective function 

𝑚𝑖𝑛 𝑧 = ∑ 𝛼𝑘

𝑚

𝑘=1

∙ 𝑇𝑘                                                                                                                       (2) 

2.2.4. Constraints 

∑ 𝑣𝑖𝑘

𝐾

𝑘=1

= 1,    ∀𝑖                                                                                                                             (3) 

∑ ∑(𝑑𝑚 ∙ 𝑡𝑖𝑚 ∙ 𝑣𝑖𝑘)

𝑁

𝑖=1

= 𝑆𝑘

𝑃

𝑚=1

,    ∀𝑘                                                                                            (4) 
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∑(𝑡𝑖𝑚 ∙ 𝑣𝑖𝑘)

𝑁

𝑖=1

 ≤ 𝐶𝑇,    ∀𝑘, ∀𝑚                                                                                                   (5) 

∑ 𝑦𝑘𝑛

𝐾

𝑘=1

= 1,    ∀𝑛                                                                                                                           (6) 

∑ 𝑦𝑘𝑛

𝐾

𝑛=1

= 1,    ∀𝑘                                                                                                                           (7) 

∑ 𝑘 ∙ (𝑣𝑖𝑘 − 𝑣𝑗𝑘)

𝐾

𝑘=1

≤ 0,    ∀(𝑖, 𝑗) ∈ 𝑂                                                                                        (8) 

𝑆𝑘 ≤ 𝑇𝑛 + ∑(𝐶𝑇 ∙ 𝑦𝑘𝑙)

𝑛−1

𝑙=1

,    ∀𝑘, ∀𝑛                                                                                            (9) 

∑ 𝑇𝑘

𝐾

𝑘=1

≤ ∑ 𝑆𝑛

𝐾

𝑛=1

                                                                                                                           (10) 

𝑆𝑘, 𝑇𝑘  ≥ 0                                                                                                                                     (11) 

The objective function (2) minimises the weighted sum of the weighted workloads of the workstations 

with taking into account the hierarchy of proposed objectives. Constraint (3) implies that every task is 

assigned to one and only one workstation. Constraint (4) calculates the weighted processing time 

(weighted workload) assigned to each workstation. Constraint (5) assures that the workload of the 

workstation for any model cannot be greater than the upper bound of cycle time. Constraint (6) 

imposes that each workstation is assigned to only one position in the list of workstations (ordered by 

workload). Constraint (7) imposes that each position of the workstation list, ordered by workload, is 

assigned to only one workstation. Constraint (8) ensures that the technological precedence conditions 

are not violated. Constraint (9) imposes that if workstation 𝑘  is the 𝑛 -th most heavily loaded 

workstation, its weighted workload will not be greater than the weighted workload of the first 𝑛 most 

heavily loaded workstations. Constraint (10) assures that 𝑇𝑘variable gets the smallest value among the 

possible values in the range. Constraint (11) defines signs for variables. 
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3. Solution methods 

Two different solution approaches, of which the details are explained in the following subsections, are 

proposed in this research to acquire high-quality solutions for the studied lexicographic bottleneck 

mixed-model assembly line balancing problem.  

 GAMS 

The mathematical model proposed in Section 2 is coded in GAMS v22.5 optimisation software and 

solved with CPLEX Solver. The reason for choosing GAMS is that GAMS is a high-level modelling 

system designed for modelling and solving complex large-scale linear, nonlinear, and mixed-integer 

optimization problems. The system is available for use on various computer platforms and allows the 

user to build large maintainable models that can be adapted to new situations. The integrated 

development environment provided by GAMS is connected to a group of third-party optimisation 

solvers, one of which is CPLEX. GAMS is run on a 3.46 GHz Intel Core i7 processor with 4 GB RAM 

to solve the example problem given in Section 2. The lower bound on the total number of workstations, 

which is 12, is given as input data to the model. The cycle time is set to 10 time units (𝐶𝑇 = 10) and 

the proportional demands of models A, B and C are calculated as 𝑑𝐴 = 0.33, 𝑑𝐵 = 0.50, and 𝑑𝐶 =

0.17). The optimum result with 12 workstations is taken after 66 CPU seconds and reported in Table 4. 

Table 4. Detailed assignment results of GAMS 

Station No 1 2 3 4 5 6 7 8 9 10 11 12 

Assigned Tasks 1 3 4 5, 6 7, 14 8 9, 13 10, 11 12, 15 2, 18 16, 19 17, 20, 21 

𝑆𝑘 5.900 7.000 5.217 8.450 8.083 6.653 8.350 5.760 8.170 8.850 8.500 7.919 

Workload for 

Model A 

5.90 7.00 5.40 9.70 7.70 6.30 5.00 4.50 7.50 8.85 9.70 7.70 

Workload for 

Model B 

5.90 7.00 5.00 7.20 8.50 6.70 10.00 5.15 8.50 8.85 7.30 7.90 

Workload for 

Model C 

5.90 7.00 5.50 9.70 7.60 7.20 10.00 10.00 8.50 8.85 9.70 8.40 

 

 Artificial bee colony algorithm 

The artificial bee colony algorithm (Karaboga 2005) is a nature-inspired swarm optimisation technique 

which mimics the foraging behaviour of bees in nature. At the beginning, scout bees randomly search 
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food sources and perform a special dance in front of the hive to attract more bees. Follower bees look 

for the food source based on the information that is given by this dance. When a food source is 

exhausted, it is abandoned and new sources are searched by the scout bees. The food requirement of 

the hive is met by this cycle. 

Karaboga and Basturk (2008) compared the performance of artificial bee colony algorithm with that of 

differential evolution, particle swarm optimization and evolutionary algorithms. According to the 

simulation experiments performed by Karaboga and Basturk (2008), it was concluded that the artificial 

bee colony algorithm outperformed these algorithms. As artificial bee colony algorithm was a 

promising algorithm especially for high-dimensional sophisticated problems, it was selected for 

solving the LB-MALBP. 

Although artificial bee colony algorithm has been applied to a wide range of engineering optimisation 

and design problems successfully, the number of applications in the entire assembly line balancing 

field is very limited. Özbakir and Tapkan (2011) and Tapkan et al. (2012a, 2012b) used bee colony 

intelligence and bees algorithms, respectively, to solve zone constrained two-sided assembly line 

balancing problem, which is a different problem than the one studied in this research. Also, Akpinar 

and Baykasoğlu (2014) applied bee colony algorithm for solving the mixed-model assembly line 

balancing problem with traditional objective functions. The proposed artificial bee colony algorithm is 

explained below using the example given in Section 2.  

The algorithm starts with initialisation of the parameters; namely the number of scout bees (𝑆), the 

number of follower bees (𝐹 ), the maximum number of iterations (𝑀𝑎𝑥𝑖𝑡𝑒𝑟), life time (LF), and 

hierarchy parameter (𝛽). The parameters are considered as 𝑆 = 35, 𝐹 = 5, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 50, 𝐿𝐹 = 10 

and 𝛽 = 100 . Feasible initial solutions, each of which is represented by a scout bee, are built 

randomly. For example, three initial solutions for the considered numerical example are given in Table 

5 where 𝑆𝑘 rows denote the weighted workloads of workstations. 

The followers of a scout bee are generated through a neighbourhood search mechanism performed by 

randomly changing the location of a randomly selected task on the scout. For example, the five 

followers of the Scout Bee-1 given in Table 5 can be generated as in Table 6. In this example, task 21 
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is moved from 5-th position to 9-th for the first neighbourhood solution, namely Follower Bee-1. 

Similarly, task 14 is moved from 9-th position to 12-th in the second follower bee. Please see the 

underlined tasks in the table. 

Table 5. The initial solutions (scout bees) obtained for the numerical example 

Station No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Scout 

Bee-1 

Assigned 

Tasks 

1 2 3 4,21 5,6 7,14 8 9 11 12,13 10 15 18 16,19 17,20 

𝑆𝑘 5.900 6.050 7.000 5.887 8.450 8.083 6.653 5.000 4.060 4.020 1.700 7.500 2.800 8.500 7.249 

Scout 

Bee-2 

Assigned 

Tasks 

1 2 3 4,21 5,6 7,14 8 9,12 10 13 11 15,16 17,18 20 19 

𝑆𝑘 5.900 6.050 7.000 5.887 8.450 8.083 6.653 5.670 1.700 3.350 4.060 8.700 4.849 5.200 7.300 

Scout 

Bee-3 

Assigned 

Tasks 

1 2 3 4 5,21 7,14 6 8 9,12 10,11 13 15 16,17,18 20 19 

𝑆𝑘 5.9 6.05 7 5.217 7.520 8.083 1.6 6.653 5.670 5.760 3.35 7.5 6.049 5.2 7.3 

 

Table 6. The followers of Scout Bee-1 

Station Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Scout 

Bee-1 

Assigned 

Tasks 

1 2 3 4,21 5,6 7,14 8 9 11 12,13 10 15 18 16,19 17,20 

𝑆𝑘 5.900 6.050 7.000 5.887 8.450 8.083 6.653 5.000 4.060 4.020 1.700 7.500 2.800 8.500 7.249 

Follower 

Bee-1 

Assigned 

Tasks 

1 2 3 4 5,6 7,14,21 8 9 11 12,13 10 15 18 16,19 17,20 

𝑆𝑘 5.900 6.050 7.000 5.217 8.450 8.753 6.653 5.000 4.060 4.020 1.700 7.500 2.800 8.500 7.249 

Follower 

Bee-2 

Assigned 

Tasks 

1 2 3 4,21 5,6 7 8 9 11,14 12,13 10 15 18 16,19 17,20 

𝑆𝑘 5.900 6.050 7.000 5.887 8.450 5.434 6.653 5.000 6.709 4.020 1.700 7.500 2.800 8.500 7.249 

Follower 

Bee-3 

Assigned 

Tasks 

1 2 3 4,21 5,6 7 8,14 9 11 12,13 10 15 18 16,19 17,20 

𝑆𝑘 5.900 6.050 7.000 5.887 8.450 5.434 9.302 5.000 4.060 4.020 1.700 7.500 2.800 8.500 7.249 

Follower 

Bee-4 

Assigned 

Tasks 

1 2 3 4 5,6 7,14 8,21 9 11 12,13 10 15 18 16,19 17,20 

𝑆𝑘 5.900 6.050 7.000 5.217 8.450 8.083 7.323 5.000 4.060 4.020 1.700 7.500 2.800 8.500 7.249 

Follower 

Bee-5 

Assigned 

Tasks 

1 2 3 4,21 5,6 7,14 8 9 11 12,13 10 15 18,16,17 20 19 

𝑆𝑘 5.900 6.050 7.000 5.887 8.450 8.083 6.653 5.000 4.060 4.020 1.700 7.500 6.049 5.200 7.300 

* Please note that underlined tasks represent movements. 

 

The performance measure of each scout bee is compared to all of its followers one-by-one using 

Equation (12), and the scout bees are replaced by their followers if the follower has a better 

performance measure. The main aim is to minimise 𝛿𝑑𝑖𝑓𝑓  and this is equivalent to the objective 

function used in the mathematical model given in Section 2. By this way, it is endeavoured to 

hierarchically minimise the weighted workload of the most heavily loaded workstation, followed by the 

second most heavily loaded workstation, and so on. 
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𝛿𝑑𝑖𝑓𝑓 =
∑ (𝛽𝐾−𝑘+1 ∙ ∑ 𝑑𝑚 ∙ ∆𝑘𝑚

𝑃
𝑚=1 )𝐾

𝑘=1

𝐶𝑇𝑏𝑒𝑠𝑡 ∙ 𝛽𝐾−1
,                                                      (12) 

where ∆𝑘𝑚 is the positive, null, or negative workload difference in terms of model 𝑚 in the 𝑘-th most 

heavily loaded workstation between the two solutions which are compared to each other; 𝐶𝑇𝑏𝑒𝑠𝑡 is the 

best cycle time of the two solutions; 𝛽 is a parameter whose value must guarantee the hierarchy of the 

objectives (𝛽 > max (∆𝑘𝑚 − ∆(𝑘+1)𝑚) ; and 𝑑𝑚  is the proportional demand of model 𝑚 , (𝑑𝑚 =

𝐷𝑚 ∑ 𝐷𝑚
𝑀
𝑚=1⁄ ). Please refer to Pastor (2011) for more details on comparing two balancing solutions 

and the 𝛽 parameter used in here. 

In our example, the Scout Bee-1 will be replaced with Follower Bee-5 in the next iteration. The 

performance of all scouts and their followers are evaluated, and the best one among all obtained 

solutions are kept as the best solution. This is repeated until the maximum number of iterations is 

reached and the best solution is taken. The best solution obtained for this example problem after 50 

iterations is presented in Table 7. As can be seen from the table, proposed algorithm finds the same 

solution found by GAMS, which is referred to as optimal. 

Table 7. The best solution obtained for the numerical example 

Station No 1 2 3 4 5 6 7 8 9 10 11 12 

Assigned Tasks 1 3 4 5,6 7,14 8 9,13 11,10 12,15 18,2 16,19 17,20,21 

𝑆𝑘 5.9 7 5.217 8.45 8.083 6.653 8.35 5.76 8.17 8.85 8.5 7.919 

 

4. Experimental study 

In this section, 20 test problems derived from the literature are solved using CPLEX Solver provided in 

GAMS v22.5 optimisation software and the artificial bee colony algorithm coded in C# environment. 

The input data used for the experimental tests are given in Section 4.1. The experiments are conducted 

on the same computer that was used for numerical examples in Section 3 and the results are reported in 

Section 4.2.  
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 Test data 

The test problems are taken from Simaria and Vilarinho (2002) and presented in Table 8 with their 

main characteristics.  

Table 8. Data for computational tests 

# Test Problem 𝑁 𝑚 𝐷𝑚 𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥 𝑡𝑎𝑣𝑔 

1 Bowman 8 A 20 1.8 7.8 3.73 
B 28 1.8 7.9 3.57 

2 Bowman 8 A 16 0 10 3.54 
B 24 0 7 4.40 
C 8 0 10 5.87 

3 Gökçen and Erel (1998) 11 A 20 1.9 8.8 4.97 
B 28 0 8.7 3.37 

4 Gökçen and Erel (1998) 11 A 16 0 9.6 3.56 
B 24 1 9.6 4.59 
C 8 1 9.6 4.59 

5 Mitchel 21 A 20 0 9.6 5.29 
B 28 0 9.6 4.46 

6 Mitchel 21 A 16 0 7.5 4.06 
B 24 0 7.5 4.19 
C 8 0 10 4.68 

7 Simaria and Vilarinho 25 A 20 0 9.6 4.74 
B 28 0 9.4 4.35 

8 Simaria and Vilarinho 25 A 16 0 9.9 4.37 
B 24 1 10 4.85 
C 8 1 10 4.87 

9 Heskiaoff 28 A 20 0 10 5.46 
B 28 0 10 5.75 

10 Heskiaoff 28 A 16 0 10 5.39 
B 24 0 10 5.53 
C 8 0 10 5.78 

11 Sawyer 30 A 20 0 9.9 4.49 
B 28 0 9.9 4.46 

12 Sawyer 30 A 16 0 9.9 4.65 
B 24 0 9.9 4.40 
C 8 0 9.9 4.79 

13 Lutz1 32 A 20 0 9.5 3.85 
B 28 0 10 4.21 

14 Lutz1 32 A 16 0 9.7 4.60 
B 24 0 9.5 4.40 
C 8 0 9.7 4.61 

15 Gunther 35 A 20 0 8.2 4.97 
B 28 0 9 4.88 

16 Gunther 35 A 16 0 8.7 4.66 
B 24 0 8.7 4.84 
C 8 0 8.8 4.90 

17 Kilbridge and Wester 45 A 20 0 10 4.63 
B 28 0 10 4.53 

18 Kilbridge and Wester 45 A 16 0 9.3 4.64 
B 24 0 9.3 4.61 
C 8 0 9.3 4.24 

19 Tonge 70 A 20 0 9.9 4.85 
B 28 0 10 4.99 

20 Tonge 70 A 16 0 9.7 5.02 
B 24 0 9.7 5.02 
C 8 0 9.6 5.03 

 

The second and third columns correspond to the name of the test problem and the number of tasks that 

it has in its combined precedence relationships diagram, respectively. 𝐷𝑚 column gives the demand of 
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model given in column 𝑚. The columns 𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥  and 𝑡𝑎𝑣𝑔  present the minimum, maximum and 

average processing times of the tasks for the models of the considered test problems, respectively. 𝐶𝑇 

is assumed 10 for all test problems (𝐶𝑇 = 10). If a task’s processing time belonging to any of the 

models exceeds the cycle time, processing times of that task are divided into two (𝑡𝑖𝑚 ← 𝑡𝑖𝑚/2) for all 

models. This is because the parallel workstations are not considered as different from the study of 

Simaria and Vilarinho (2002). 

 Test results 

The test problems, for which the details are given in Section 4.1, are solved through two ways: (i) the 

proposed mathematical model coded in GAMS v22.5, and (ii) the proposed artificial bee colony 

algorithm coded in C#. Table 9 reports the results of the experimental tests obtained from GAMS. As 

could be seen from the table, the results are reported only for the first six test problems as the software 

did not produce any solution for the rest of the problems in 48 hours due to increasing complexity 

when the number of tasks increases. These solutions are referred to as optimal as they are investigated 

by the mathematical model proposed in this work.  

Table 9. Optimal results obtained by the mathematical model coded in GAMS 

# K CPU (min.) 𝛿 Weighted Workloads of the Workstations (in descending order) 

1 4 0.001 79.34 7.858, 7.500, 7.117, 6.600 

2 8 0.015 78.87 7.825, 6.150, 4.690, 4.020, 3.900, 3.652, 3.000, 1.700 

3 7 0.028 87.85 8.700, 8.400, 6.584, 6.260, 5.600, 5.223, 3.696 

4 5 0.008 81.86 10.134, 9.790, 9.600, 8.917, 8.330 

5 13 1469 97.98 9.700, 9.700, 9.600, 8.936, 8.500, 8.038, 7.738, 7.700, 7.482, 6.474, 6.400, 5.800, 

4.998 

6 12 1.060 89.36 8.850, 8.500, 8.450, 8.350, 8.170, 8.083, 7.919, 7.000, 6.653, 5.900, 5.760, 5.217 

 

The K and CPU columns give the number of workstations obtained and the CPU time needed to solve 

the relevant test problem using the proposed method, respectively. As there is no published work which 

addresses the lexicographic bottleneck mixed-model assembly line balancing problem in the literature, 

there is no available result to compare our results. For that reason, we also calculate the performance 

measure of each single solution using the Equation (13) and present in 𝛿 column. Thus, we provide 

results which can be comparable in future studies. Weighted workloads of the workstations are also 
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given in descending order for the optimal results. 

𝛿 =
∑ (𝛽𝐾−𝑘+1 ∙ 𝑆𝑘)𝐾

𝑘=1

𝐶𝑇 ∙ 𝛽𝐾−1
.                                                                  (13) 

The parameters of the artificial bee colony algorithm are determined through a set of comprehensive 

experimental tests to achieve high-quality solutions as the complexity of the problem increases in 

conjunction with the increasing number of tasks. Each test problem is solved using various levels of 

parameters, presented in Table 10, and the best solution among the obtained results is reported in Table 

11 (where 𝛽 = 100 for all test problems). Therefore, the parameter set which gives the best solution is 

also reported for each problem, as different from the GAMS results. If the same balancing solution is 

obtained from two or more different sets of parameters, the solution which requires the minimum CPU 

time is reported.  

Table 10. The various levels of parameters used for the artificial bee colony algorithm 

S F Maxiter LF 

5 5 50 10 

20 15 175 25 

35 25 300 40 

 

While the Maxiter column denotes the maximum number of iterations that the artificial bee colony 

algorithm is run, the IT column represents the iteration number in which the best solution is observed. 

Weighted workloads of the workstations are also reported in descending order for each test problem.  

When the solutions obtained by GAMS (in Table 9) and artificial bee colony algorithm (in Table 11) 

are compared to each other, it is clear that the proposed artificial bee colony algorithm performs quite 

well. The proposed approach investigates optimal results for five test problems (i.e. 1, 2, 3, 5, 6) out of 

six, solved by GAMS. For test problem 4, the proposed approach finds a solution with performance 

measures of 𝛿 = 96.85  and 𝐾 = 6  while 𝛿 = 81.86  and 𝐾 = 5  for the optimal result. For the 

remaining test problems (7-20), the proposed approach finds solutions with reasonably well 𝛿 values, 

mostly lower than 100. Higher 𝛿 values are observed for only four test problems, i.e. 9, 10, 11, 15.  
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Table 11. Test results obtained from the proposed artificial bee colony algorithm 

# 
Parameters 

K IT 
CPU 

(sec.) 
𝛿 Weighted Workloads of the Workstations (in descending order) 

S F Maxiter LF 

1 5 5 50 40 4 1 0.04 79.34 7.858, 7.5, 7.259, 6.458 

2 5 5 50 10 8 1 0.05 78.87 7.825, 6.15, 4.69, 4.02, 3.9, 3.652, 3, 1.7 

3 5 5 50 40 7 1 0.03 87.85 8.7, 8.4, 6.584, 6.26, 5.6, 5.223, 3.696 

4 5 5 50 10 6 1 0.02 96.85 9.6, 8.45, 7.84, 7.8, 7.051, 6.03 

5 5 5 50 10 13 36 0.06 97.98 9.7, 9.7, 9.6, 8.936, 8.5, 8.038, 7.7, 7.482, 7.438, 6.474, 6.4, 6.1, 4.998 

6 35 5 50 10 12 33 0.42 89.36 8.85, 8.5, 8.45, 8.35, 8.17, 8.083, 7.919, 7, 6.653, 5.9, 5.76, 5.217 

7 5 25 50 10 15 34 0.31 94.89 9.4, 8.8, 8.788, 8.568, 8.46, 8.4, 7.858, 7.7, 7.5, 7.5, 7.146, 7.012, 6.774, 6.264, 2.646 

8 35 5 50 10 14 38 0.45 99.94 9.9, 9.349, 9.2, 9.15, 9.14, 8.8, 8.7, 8.687, 8.617, 7.8, 7.8, 7.2, 6.7, 6.299 

9 35 5 50 10 19 13 0.37 100.99 10, 9.8, 9.732, 9.7, 9.6, 9.6, 9.5, 9.2, 9.162, 9.058, 8.9, 8.7, 8.2, 8.1, 7.6, 6.348, 5.22, 5.22, 4.158 

10 5 5 50 10 19 22 0.07 101.00 10, 9.9, 9.585, 9.3, 9.25, 9.2, 9.048, 8.972, 8.6, 8.6, 8.6, 8.4, 8, 7.968, 7.7, 6.717, 6.03, 4.933, 4.1 

11 20 15 175 25 15 175 2.20 101.00 10, 9.9, 9.742, 9.7, 9.5, 9.4, 9.2, 9.07, 8.96, 8.7, 8.616, 8.6, 8.5, 8.284, 6.048 

12 20 15 175 25 17 14 1.19 99.98 9.9, 9.7, 9.4, 9.251, 9.15, 9.1, 7.825, 7.8, 7.75, 7.734, 7.7, 7.64, 7.518, 7.2, 6.9, 6.806, 5.24 

13 5 5 50 10 17 32 0.04 95.94 9.5, 9.3, 9.142, 9.068, 8.574, 8.248, 8.242, 8.016, 8.006, 8, 6.9, 6.626, 6.6, 6.55, 6.1, 5.8, 5.298 

14 5 25 50 10 18 12 0.24 97.46 9.65, 9.5, 9.3, 9.2, 9.15, 8.95, 8.6, 8.4, 8.25, 8.15, 8.083, 7.76, 7.742, 7.7, 7.5, 6.832, 5.65, 3.75 

15 20 15 175 25 21 109 1.43 101.01 10, 10, 9.8, 9.4, 9.316, 9.3, 8.8, 8.7, 8.3, 8.24, 8.2, 8.2, 8.152, 7.544, 7.4, 7.362, 7.2, 7.064, 6.9, 6.8, 

5.624 

16 35 25 300 10 20 258 8.30 99.95 9.9, 9.4, 9.251, 9, 8.867, 8.7, 8.7, 8.619, 8.58, 8.532, 8.385, 8.316, 8.3, 8.2, 8.05, 8, 7.902, 7.4, 7.1, 

6.46 

17 35 25 300 10 24 169 18.08 98.97 9.8, 9.6, 9.506, 9.4, 9.4, 9.362, 9.306, 9.206, 9.178, 9.048, 9.042, 9, 8.824, 8.8, 8.6, 8.54, 8.384, 8.3, 

8.2, 8.134, 8, 7.46, 7.308, 3.36 

18 20 15 50 25 26 24 0.54 93.93 9.3, 9.2, 9, 8.8, 8.7, 8.6, 8.25, 8.2, 8.122, 8.1, 7.978, 7.9, 7.878, 7.8, 7.75, 7.719, 7.667, 7.6, 7.583, 

7.5, 7.47, 7.398, 7, 6.56, 6.491, 6.374 

19 20 15 175 25 43 105 3.42 99.97 9.9, 9.6, 9.6, 9.4, 9.3, 9.2, 9, 8.9, 8.9, 8.81, 8.8, 8.8, 8.782, 8.736, 8.7, 8.5, 8.5, 8.4, 8.4, 8.3, 8.2, 8.2, 

8.166, 8.1, 8, 7.958, 7.916, 7.9, 7.7, 7.58, 7.5, 7.5, 7.396, 7.3, 7.064, 6.8, 6.732, 6.606, 6.526, 6.202, 

5.926, 5.8, 5.7 

20 35 15 175 25 43 152 10.42 96.96 9.6, 9.5, 9.5, 9.231, 9.2, 8.997, 8.901, 8.9, 8.9, 8.9, 8.885, 8.85, 8.8, 8.733, 8.7, 8.7, 8.516, 8.4, 8.4, 

8.4, 8.4, 8.383, 8.2, 8.15, 8.1, 8.1, 8.1, 8.058, 8.051, 8, 7.92, 7.9, 7.9, 7.65, 7.65, 7.6, 7.554, 7.4, 

7.257, 7.15, 6.7, 5.3, 3.85 
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It can be seen that the iteration number that the best solution is found (IT) increases based on the 

increasing complexity of the test problems when the number of tasks (N) increases. However, the CPU 

times consumed by the algorithm are quite reasonable even for the large-sized problems. The largest 

and the second largest CPU times are observed 18.08 and 10.42 seconds for test problems 17 and 20, 

respectively. Therefore, it can be argued that the proposed artificial bee colony algorithm produces 

good quality solutions in quite reasonable CPU times. 

5. Conclusions and future research 

The main contribution of this study is that the lexicographic bottleneck mixed-model assembly line 

balancing problem is defined and mathematically formulated for the first time in the literature. 

Numerical examples are provided with alternative balancing solutions for the detailed description of 

the problem. The other contributions of the current work are the proposed solution methods. The 

proposed mathematical model is coded in GAMS v22.5 to get optimal solutions. Also, a new powerful 

artificial bee colony algorithm is developed and coded in C# to efficiently solve the problems, which 

cannot be solved by GAMS in today’s computer technology, by dealing with the variations in 

processing times of tasks among different product models. The solution building mechanism of the 

proposed algorithm is described step-by-step through a numerical example. An experimental study is 

carried out solving twenty test problems derived from the literature. When the results obtained by 

GAMS and the artificial bee colony algorithm are compared to each other, it is observed that the 

proposed approach finds optimal solutions for majority of the test problems solved by GAMS. In 

accordance with the performance measures of the obtained solutions, it can be argued that the proposed 

artificial bee colony algorithm provides quite promising results by consuming quite reasonable CPU 

times, especially for the large-sized test problems. 

As a possible extension and practical implication of this study, the proposed model in this work can be 

applied in real world applications and the physical outcomes (advantages and disadvantages) of the 

system can be observed. The line managers of actual production line systems can take advantage of the 

proposed line balancing methodology. Also, the proposed artificial bee colony algorithm can be 
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enhanced with several local search procedures and its performance can be compared to some other 

well-known meta-heuristics such as tabu search algorithm, ant colony optimisation algorithm and 

genetic algorithm; and recently developed algorithms such as gravitational search algorithm (Rashedi, 

Nezamabadi-pour, and Saryazdi 2009), Jaya (Venkata Rao 2016) and great deluge algorithm (Dueck 

1993). 
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