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Abstract: We present an experimental and computational study of the response of twisted-cross 

metamaterials that provide near dispersionless optical rotation across a broad band of 

frequencies from 19 GHz to 37 GHz.  We compare two distinct geometries: firstly, a bilayer 

structure comprised of arrays of metallic crosses where the crosses in the second layer are 

twisted about the layer normal; and secondly where the second layer is replaced by the 

complementary to the original, i.e. an array of cross-shaped holes. Through numerical 

modelling we determine the origin of rotatory effects in these two structures. In both, pure 

optical rotation occurs in a frequency band between two transmission minima, where 

alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, 

the transmission minima occur at the symmetric and antisymmetric resonances of the coupled 

crosses. By contrast, in the cross/complementary-cross structure the transmission minima are 

associated with the dipole and quadrupole modes of the cross, the frequencies of which 

appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to 

be relatively independent of layer separation. 

 

Optical rotation,, is the rotation of linearly polarized radiation associated with intrinsic 

chirality of objects [1], and is a phenomenon with important applications in analytical chemistry, 

biology, and crystallography [2]. Electromagnetic interactions in chiral media can be described 

by an infinite series of multipolar terms, but in the simple dipole approximation optical rotation 

arises when electric and magnetic dipole moments of a resonator are parallel and out of phase 

[3], described by 

 ∝ Re(𝜇e ∙ 𝜇m).     

(1) 
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For optically active molecules, this coupling between the electric (𝜇e) and magnetic (𝜇m) dipoles 

is usually very weak, due to a mismatch between the length scales of the molecules and the 

wavelength of light [3].  

 

Recently, new possibilities have emerged using so-called “chiral metamaterials” (CMs). The 

most common embodiment of CMs is a regular array of subwavelength elements (“meta-

atoms”), but pairs or groups of achiral elements arranged in a handed configuration to make a 

“metamolecule” which is chiral have also been considered [8]. Due to their interdependent 

electric and magnetic responses, these materials can exhibit different refractive indices for right 

and left circularly polarised radiation, leading to a splitting of transverse modes (which are 

otherwise degenerate for appropriate geometries) and a region of negative refraction for one 

handedness of radiation. Since this discovery, CMs have attracted a lot of attention as an 

alternative to the traditional combination of split-ring and dipole resonators for negative 

refractive index materials [4] and can be used for the design of perfect lenses [5]. Whereas a 

single layer of 3D chiral elements will intrinsically demonstrate circular dichroism, 2D elements 

need to be stacked to produce a bulk metamaterial with a similar response.  Circular dichroism 

and optical rotation can be optimised by modifying the geometry of the meta-atoms forming 

each layer of the CM, and are typically orders of magnitude stronger than for molecular chiral 

materials [2].  Several layered structures exhibiting large optical rotation have been proposed 

that have differing designs: e.g. rosettes [2], gammadions [7] or U-shaped split resonators [8]. 

One of the simplest cases is a bilayer system with twisted crosses, which shows strong optical 

rotation and negative refractive index [9]-[12]. However, the optical activity of all of these 

designs relies on evanescent coupling between the meta-atoms to yield metamolecules, which 

typically leads to a highly dispersive optical behaviour [13, 15].  
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Despite this, dispersionless optical rotation over a broad frequency range between resonances 

has recently been demonstrated in studies of bilayer structures formed from arrays with twisted 

crosses coupled to their complementary cross (c-cross), as well as chiral geometries based on 3D 

metallic helices [16]. This structure has the added advantage that optical rotation occurs over a 

frequency range which also exhibits high transmission. Hannam et al. demonstrated the optical 

rotation of a cross and its c-cross embedded in a circular waveguide [13], while Zhu et al. 

computationally modelled arrays of twisted crosses and c-crosses [15]. While all of these studies 

found large optical rotations (note that Zhu et al reported an optical rotation ~164°, which is 

equivalent to a rotation of polarisation ~16°), the most striking feature is the broadband nature 

of the effect. However, a thorough explanation of this phenomenon is currently missing from the 

literature.   

 

In this letter, we report a combined experimental and computational study of optical rotation in 

different types of twisted cross metamaterials in free space in order to better understand the 

phenomenon.  We compare two distinct geometries: firstly, a bilayer structure comprising of 

square arrays of metallic crosses separated by a thin dielectric sheet, where the crosses in the 

second layer are twisted with respect to the layer normal, and a second system where the lower 

layer is instead an array of twisted c-crosses. We show that the optical rotation in the cross/cross 

metamaterials can be understood by considering coupled electric dipole resonances between the 

two layers that gives rise to an operational bandwidth which is very strongly dependent on layer 

separation. In the cross/c-cross structure, meanwhile, we show that optical rotation occurs in a 

region between the dipolar mode and a higher order resonance of the cross element. Since modes 

defining the periphery of the region of optical rotation in the cross/complementary-cross 

structure appear intrinsic to the cross layer alone, the bandwidth of optical rotation is found to 

be relatively independent of layer separation. This gives rise to a broad region of pure, near 
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dispersionless optical rotation, spanning a range from 19.0 GHz to 37.7 GHz, and coinciding 

with a peak in transmission.  

 

1. EXPERIMENTAL MEASUREMENT OF OPTICAL ROTATION 

The schematic of a metamolecule of the cross/c-cross chiral bilayer under investigation is shown 

in Fig. 1(A), and is similar to that reported in ref. [14]. The metamaterial consists of a double-

sided, copper-clad dielectric sheet etched to produce a square array of copper crosses on one 

side, and an array of cross-shaped holes on the other. The elements in the latter have almost 

identical dimensions, are aligned with and arranged on the same lattice as the first, but the 

individual elements are each rotated in the plane about their centre. Etching inconsistencies 

during fabrication resulted in a discrepancy between the dimensions of the cross and c-cross 

elements of around 0.05 mm, which has been taken into account in the FEM model. This results 

in a small shift of resonant frequencies compared to the ideal case described in section 2.B. The 

dimensions of the cross/cross bilayer sample discussed later are identical, and the effects of over-

etching are neglected.  The thickness of the dielectric is 0.406 mm with permittivity, 𝜀𝑑 = 3.02(1 

+ 0.02𝑖).  The lattice spacing is 𝑑 = 7.5 mm, the length and the width of the crosses are 𝑙cross = 

6.60±0.05 mm and 𝑤cross = 0.375±0.05 mm, and the rotation angle is 𝜃 = 22.5°. The sample is 

formed by 50 unit cells in the x-direction and 50 in the y-direction, although in the finite element 

method (FEM) model the array is assumed to be infinite in both directions.  

We obtain the circularly polarised transmission coefficients by measuring the four linear, 

complex transmission coefficients (txx, txy, tyy, and tyx). In the experimental setup, linearly 

polarized microwave radiation impinges at normal incidence upon the sample from a rectangular 

waveguide horn antenna, and the transmitted beam is collected by a second rectangular horn a. 

Both antennas are connected to a vector network analyser and can be azimuthally rotated by 90° 

to permit the polarisation-dependent measurements required. The simulations are performed 
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using a FEM model (HFSS [24]) with one unit cell and periodic conditions in the x- and y- 

directions. Floquet ports are employed in the model, and the complex transmission coefficients 

are obtained from these ports. The circular transmission amplitude coefficients,, for each 

polarization can be calculated from the complex linear transmission coefficients [12] using 

  

𝜏RCP/LCP =
𝑡xx + 𝑡yy ± 𝑖(𝑡xy − 𝑡yx)

2
, 

(2) 

where the subscript on  denotes left (LCP) or right (RCP) circular polarizations, which 

correspond to the + or – sign in the expression respectively. The optical rotation, 𝜑, and the 

ellipticity, 𝜂, are defined respectively as 

𝜑 =
arg(𝜏RCP) − arg (𝜏LCP)

2
 

(3) 

and, assuming there is no polarisation conversion, 

𝜂 =
|𝜏RCP|2 − |𝜏LCP|2

|𝜏RCP|2 + |𝜏LCP|2
. 

(4) 

In Fig. 1(B) the experimental amplitudes of the left and right circular polarization transmission 

coefficients (circles and crosses) are compared with numerical simulation (lines). Good 

agreement between theory and experiment is observed, with a maximum transmission intensity 

of 0.86 at 9.8 GHz. A second maximum occurs at 24.0 GHz, bounded by two clear transmission 

minima at 17.2 GHz and 34.2 GHz.. Fig. 1(C) shows the predictions of the ellipticity of 

transmitted radiation from the FEM model. We see the maxima in ellipticity arise from the small 

difference between the left and right circularly polarised transmission intensities near the 

transmission minima (arrows in Fig. 1(B)). Note that we do not plot experimental results for 
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ellipticity, as the signal to noise ratio is poor when measuring near zero transmission close to 

resonance. An important point to note is that when losses are removed from the permittivity of 

the dielectric layer the peaks in ellipticity disappear, as ellipticity arises from a difference in 

absorption for RH and LH radiation which vanishes when losses are removed. 

 

The optical rotation, obtained via the phase measurements using Eq. 3 is shown in Fig. 1(D).  In 

the frequency region in-between the transmission minima we observe a broad, near 

dispersionless optical rotation, marked as a shaded region in Fig. 1(B), 1(C) and 1(D). This is a 

key result which will be discussed in the remainder of the paper. As discussed in refs [12, 14], 

broadband optical rotation accompanied by near-zero ellipticity is rather unusual. Moreover, the 

region of dispersionless optical rotation (~19º) is bounded by the transmission minima associated 

with two resonances of the system (marked by arrows in Fig. 1(B)). It is the nature of these 

resonances, and how they define the behaviour of the structure, that we wish to elucidate in the 

discussion below. 

 

2. NUMERICAL MODELLING AND DISCUSSION 

2. A Cross/Cross Bilayer 

In order to determine the underlying mechanism behind the broadband optical rotation, we 

consider first optical rotation arising from a more conventional twisted cross/cross array. Fig. 

2(A) shows the transmitted intensities of left- and right-handed circularly polarised waves (LCP 

and RCP) through a metamaterial comprised of left-handed metamolecules (defined as having 

an anticlockwise rotation from top to bottom crosses), calculated using FEM.  We observe two 

resonant modes at 22.5 GHz and 24.6 GHz. These resonant frequencies are defined by 

transmission minima, as expected for an array of unconnected metallic antennas [22]. We can 
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characterize the nature of these modes by considering the currents flowing in the arms of the 

crosses at these frequencies. We observe strong currents in the cross arms aligned parallel to the 

incident electric field, as shown in Fig. 2(C) and 2(D).  For the two different resonance 

frequencies we observe currents with a single maximum at the mid-length of the arms. This is 

characteristic of an electric dipole resonance of a cross.  For the lower frequency mode, the 

current direction at any point in the phase cycle is the same in the upper and lower cross (i.e. the 

currents are in phase.), while for the upper frequency mode, the currents in the two layers point 

in opposite directions (i.e. they are out of phase). We therefore label these as the symmetric (22.5 

GHz) and antisymmetric (24.6 GHz) resonances of the coupled cross system.  

 

Chiral interactions such as circular dichroism and optical rotation arise due to multipolar 

interactions normally dominated by alignment of magnetic and electric dipole moments (Eq. 1) 

[8]. From the classical viewpoint this means that the electric field of the incident radiation can 

induce a magnetic dipole moment in the structure parallel to the incident electric field and that 

the magnetic field of the incident radiation can induce a corresponding electric moment parallel 

to the incident magnetic field. While the materials that form our cross meta-atoms are themselves 

nonmagnetic, an effective magnetic dipole can be generated by the electric dipole coupling 

giving rise to a current loop (completed by displacement currents in the dielectric) and in-plane 

magnetic dipole moments. We represent these current loops in the insets of Fig. 2(C) and 2(D), 

where the inset shows a projection of electric and magnetic dipoles onto the mid-rotation plane 

(dashed red line)  

 

For the higher frequency, antisymmetric dipole resonance, the origin of the magnetic dipole 

moment is relatively easy to understand. Following the interpretation of Kenanakis et al [23], 

the displacement fields link the ends of the upper cross arm with the ends of the lower cross arm, 
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forming current loops. This gives rise to a single magnetic dipole moment with a direction lying 

in the plane of the sample. In un-rotated cross/cross structures (which have mirror symmetry) 

this magnetic dipole lies perpendicular to the electric dipoles of the crosses themselves, and, 

according to Eq. 1, we will not observe optical rotation due to this mode, as expected from the 

symmetry. However, when one cross is twisted with respect to the other, partial alignment of the 

electric and magnetic dipoles occurs, leading to the onset of optical rotation. For the symmetric 

(lower frequency) mode, one might expect no optical rotation, since the currents are parallel in 

the arms of the two crosses.  However, in Fig. 2(A) we clearly also observe an optical rotation 

resonance associated with this mode. Here, displacement currents between upper and lower 

crosses create a figure-of-8 current loop (see inset of Fig. 2(C)), which can be thought of as two 

counter-rotating loops, each with an associated magnetic moment. Without a twist between upper 

and lower crosses these magnetic moments are antiparallel and hence cancel. However, a rotation 

of one cross with respects to the other results in a net magnetic moment which is parallel to the 

net electric dipole, again satisfying Eq. 1, and resulting in optical rotation. 

 

In each case, the sign of optical rotation is determined by the sign of the phase difference between 

electric and magnetic moments, i.e., if the electric moment leads the magnetic moment the 

optical rotation will be positive or right-handed in nature, while if the magnetic moment leads 

the optical rotation will be negative and described as left-handed. On approaching the symmetric, 

lower frequency resonance, the optical rotation we observe is positive. At the resonance, the 

transmission drops to almost zero and the currents in the top and bottom arms of the cross 

undergo a sharp 180° phase change; the handedness of the optical rotation reverses, as now the 

magnetic moment is leading the electric moment by 90°. However, it is interesting to note that, 

as seen in Fig. 2A, the sense of optical rotation is reversed at the upper and lower frequency 

modes, meaning that the direction of polarization rotation is reversed. This gives rise to a 

frequency band in-between the two resonances where the optical rotation does not change sign. 
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This observation provides a key insight into the conditions necessary in such a system for pure 

optical rotation (i.e., without ellipticity) to be observed. In the following section we discuss how 

some of the reasoning outlined above can be applied to the complementary case of a cross/c-

cross structure. 

 

2. B Cross/Complementary-Cross Bilayer 

Replacing the lower cross layer with its complement (cross shaped holes in a continuous metal 

sheet) has been shown to result in similar dispersionless optical activity [13]. While one might 

expect the underlying mechanism behind this optical rotation to be the same as that for the 

cross/cross structure, we find that the pair of resonances involved are of a fundamentally 

different nature.  

 

In Fig. 3(A) we plot the transmission spectra for the cross/c-cross structure. In addition to 

transmission minima associated with resonances of the crosses, marked by red dotted lines, we 

now also have transmission maxima at the frequencies marked by the blue dashed lines. For ease 

of interpretation, we have neglected the discrepancy in upper and lower element size described 

in section 1 in this model. Transmission maxima are a characteristic feature of arrays of apertures 

in a conducting sheet [19], and are therefore primarily associated with resonances of the 

complementary cross layer. Fig. 3(B) shows the transmitted phase of the double layer system.  

Similarly to the cross/cross system, the band of dispersionless optical rotation in Fig. 3(B) is 

bounded by two resonance minima, each rotating the polarisation plane in opposite directions. 

It should be noted that discontinuities in phase near transmission minima is a phenomenon 

widely observed in optics and plasmonics [20]. However, phase discontinuities at transmission 

minima play a particularly important role in chiral media: Gorkunov et al. recently showed that 

transmission minima in chiral metamaterials can give rise to very strong circular dichroic and 
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optical rotatory effects, which must be accounted for in Kramers-Kronig relations by including 

so-called Blaschke terms [21].  Fig. 3(C) shows that the lower frequency resonance minimum is 

associated with the dipolar excitation of the cross. However, because we have removed the 

second cross from the unit cell, replacing it with the complementary layer, one does not expect 

a higher frequency antisymmetric dipole resonance, as was the case for the cross/cross above. 

Instead, we see the second minimum in transmission is associated with a higher order excitation 

of the cross, as seen by the multiple poles in the current plot in Fig. 3(D). 

 

One of the major differences with the cross/complementary-cross structure, when compared to 

the cross/cross, is the presence of the lower conducting layer. The image currents in this layer, 

which are out of phase with the current in the upper cross, result in an “antisymmetric” nature to 

currents of both the dipole and quadrupole modes of the cross (see insets of Figs. 3(C) and (D)). 

In analogy to the cross/cross system, these distinct current distributions lead to the formation of 

current loops between upper and lower elements and their associated magnetic moments. In 

rotated cross/c-cross structures, we see that the presence of the c-cross in the lower sheet perturbs 

the image currents, yielding rotated fields, and resulting in parallel components of electric and 

magnetic dipoles, thus satisfying Eq.1, the condition for optical rotation. Similar to the 

cross/cross system, we have competition between resonances that act to rotate the plane of 

polarisation in opposite directions, giving rise to our region of pure optical rotation between the 

resonance minima. In contrast to the cross/cross case, this region of pure optical rotation 

coincides with a resonant maximum in transmission. This highlights a distinct advantage of this 

cross/c-cross geometry over those studied in refs [8]-[11], the latter intrinsically characterised 

by enhanced optical reflection (and reduced transmission) associated with the closely spaced 

resonances of the disconnected bilayer arrays.   
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2. C Changing the Element Separation 

We have seen that the optical rotation in cross/cross and cross/c-cross metamaterials has 

fundamentally different origins. To summarize: in the cross/cross system, electric dipoles in the 

upper and lower crosses couple together, forming a symmetric and an antisymmetric pair that 

define our transmission minima. In the case of the cross/c-cross, the transmission minima are 

characterised by the dipolar and quadrupolar modes of the cross. Since the transmission minima 

in the cross/complementary-cross structure appear intrinsic to the cross layer alone, we predict 

that the bandwidth of optical rotation should be relatively independent of layer separation.  

 

In order to examine this effect further, we have carried out numerical modelling of both systems 

as a function of layer separation (Fig. 4(A) and (B)). Fig. 4(C) illustrates the frequencies of the 

asymptotes in optical rotation for cross/cross (filled) and cross/c-cross (unfilled) structures with 

various thicknesses of dielectric. It is clear that the bandwidth of the pure optical rotation for the 

cross/cross is significantly smaller than that of the cross/c-cross for most separations. Only for 

very small separations do they become comparable. The magnitude of optical rotation for the 

cross/c-cross is also considerably larger, except for the largest layer separations (note that the 

large optical rotation for the cross/cross system with large layer separation is somewhat artificial, 

as the bandwidth is so narrow leading to a frequency overlap of the resonance modes and strong 

dispersion in the optical rotation). For the cross/c-cross, the magnitude of optical rotation is less 

dependent, in relative terms, on layer separation. Moreover, the bandwidth of the cross/c-cross 

is only weakly dependent on separation (interaction between the upper cross and the lower 

conducting sheet clearly plays a minor role in determining the resonant frequencies of the 

modes). Overall, this gives rise to chiroptical behaviour of the cross/c-cross which is much less 

sensitive to changes in the separation between upper and lower layers. These differences in the 

behaviour of the two systems highlight again the diverse origins of the pure optical rotation 

exhibited by both. In addition, this insight provides useful information for the selection of 
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parameters for a variety of applications. If moderate optical rotation is required over a wide range 

of frequencies, the cross/c-cross is the most appropriate structure; however to achieve very large 

values of optical rotation a cross/cross structure is more suitable, although compromises in the 

bandwidth and transmitted intensity must be made. 

 

3. CONCLUSIONS  

In summary, we have experimentally and computationally studied optical rotation in twisted 

cross metamaterials, comparing two distinct cases: a bilayer structure comprising of arrays of 

metallic crosses where the crosses in the second layer are twisted (cross/cross), and the case 

where the second layer is instead and array of complementary crosses (cross/c-cross). In both 

structures, pure optical rotation occurs in a frequency band between two transmission minima, 

where alignment of electric and magnetic dipole moments occurs. In the cross/cross 

metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of 

the coupled crosses. By contrast, in the frequency range of interest, we show that optical rotation 

region in the cross/complementary-cross structure is bounded by transmission minima associated 

with the dipole and quadrupole modes of the cross. Since the transmission minima in the 

cross/complementary-cross structure appear intrinsic to the cross layer alone, the bandwidth of 

optical rotation is found to be relatively independent of layer separation. This gives rise to a 

broad region of pure, near dispersionless optical rotation, in contrast to the cross/cross 

metamaterial, spanning a range from 19.0 GHz to 37.7 GHz. Our results suggest that chiral 

metamaterials which also include the complement to the conducting element in the unit cell (such 

as our cross/c-cross structures) are better candidates for optical rotatory materials in the 

transmission geometry. 
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4. METHODS 

Simulation: The finite element modelling in this report is performed using ANSYS HFSS 

software [24]. A box of a height greater than one wavelength is constructed using master/slave 

boundary conditions in the x- and y- directions to create an effectively infinite sample. On 

parallel faces Floquet ports are employed to launch and detect linearly polarised plane waves 

above and below the sample respectively, and allow us to determine the polarisation dependent 

complex transmission coefficients. The metallic elements are modelled as thin perfect electric 

conductors. Adaptive meshing is used to ensure each model converges appropriately. 

Sample Fabrication: The experimental cross/c-cross sample was designed using R scripts in 

RStudio and fabricated via traditional photolithography etching techniques by Graphic PLC. The 

sample consists of an Isola Tachyon printed circuit board of thickness 0.406 mm clad on both 

sides with 18 µm copper. 

Measurement: In the experimental setup, linearly polarized microwave radiation impinges at 

normal incidence upon the sample from a rectangular waveguide horn antenna that is positioned 

at the focus of a spherical mirror to generate a near-collimated beam with approximately planar 

wavefronts. The transmitted beam is collected by a second rectangular horn placed at the focus 

of a second mirror. Both antennas are connected to a vector network analyser (Anritsu 

MS4644A), allowing us to collect complex S-parameters, and can be azimuthally rotated by 90° 

to permit the polarisation-dependent measurements required.  
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Fig. 1: Comparison of experimental and simulated results from cross/complementary-cross 

array (A) Diagrams of a unit cell of the cross/cross (left) and cross/complementary-cross (right) 

bilayer under investigation; in both cases the dimensions are d = 7.5 mm, t = 406 μm, 𝑙cross = 

6.60±0.05 mm, 𝑤cross = 0.375±0.05 mm, 𝜃 = 22.5°; (B) Experimental and simulated transmission 

amplitude of right- and left-handed circularly polarised waves through a cross/complementary-

cross bilayer with etching inconsistencies included in the model; only the simulated RCP is plotted 

as the transmission for LCP overlays it except at the resonant transmission minima, indicated by 

black arrows, at which optical rotation occurs; shaded region shows frequency range of pure 

optical rotation; (C) Prediction of ellipticity from FEM model with losses included; (D) 

Experimental and simulated optical rotation. 
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Fig. 2: Simulated demonstration of pure optical rotation on a cross/cross array (A) Modelled 
transmission amplitude of left- and right-handed circularly polarised waves with etching 

inconsistencies neglected; (B) Optical rotation of transmitted radiation; dotted red lines indicate 
resonant modes; Direction of current (arrows) and surface current density (colour) in the upper 
and lower elements of one unit cell at (C) f = 22.5 GHz and (D) f = 24.6 GHz, corresponding to 

resonant dips in transmission; inset in each, purple arrows represent electric dipoles and blue 
arrows, magnetic dipoles in a cross-section through the dielectric in the mid-rotation plane, marked 

by the dashed red line. 
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Fig. 3: Simulated demonstration of wideband pure optical rotation on a 
cross/complementary-cross array (A) Modelled transmission of left- and right-handed circularly 

polarised waves with etching inconsistencies neglected; (B) Phase on transmission of left- and 
right-handed circularly polarised radiation (marked with triangles and circles respectively) and the 
resulting optical rotation (solid red line); dashed blue lines indicate resonances and dotted red lines, 
antiresonances; Direction of current (arrows) and surface current density (colour) in the upper (left) 

and lower (right) elements of one unit cell at (C) f = 19.0 GHz and (D) f = 37.7 GHz, 
corresponding to peaks in transmission; black arrow shows the polarisation of incident electric 

field; inset in each, purple arrows represent electric dipoles and blue arrows, magnetic dipoles in a 
cross-section through the dielectric in the mid-rotation plane, marked by the dashed red line. 
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Fig. 4: Simulated demonstration of the change in optical rotation on increasing the separation 
between top and bottom layers (A) Modelled optical rotation for a cross/cross array (inset) with 

dielectric thicknesses of 100 μm to 500 μm; (B) Modelled optical rotation for a 
cross/complementary-cross array (inset) with dielectric thicknesses of 100 μm to 500 μm; (C) 

Upper and lower frequencies of asymptotes in optical rotation for cross/cross (filled) and 
cross/complementary-cross (unfilled) arrays; (D) Minimum pure optical rotation for a range of 

separations given by a cross/cross and cross/complementary-cross array. 

 


