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Abstract: We describe a design methodology for modifying the refractive 
index profile of graded-index optical instruments that incorporate 
singularities or zeros in their refractive index. The process maintains the 
device performance whilst resulting in graded profiles that are all-dielectric, 
do not require materials with unrealistic values, and that are impedance 
matched to the bounding medium. This is achieved by transmuting the 
singularities (or zeros) using the formalism of transformation optics, but 
with an additional boundary condition requiring the gradient of the co-
ordinate transformation be continuous. This additional boundary condition 
ensures that the device is impedance matched to the bounding medium 
when the spatially varying permittivity and permeability profiles are scaled 
to realizable values. We demonstrate the method in some detail for an Eaton 
lens, before describing the profiles for an “invisible disc” and “multipole” 
lenses. 
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1. Introduction 

Since the seminal works by Leonhardt [1] and Pendry et al. [2] in 2006 a large body of 
theoretical work has been undertaken developing the tools and framework of Transformation 
Optics (TO), a full review of which is beyond the scope of this work but can be found 
elsewhere [3–5]. The basic principles, however, are rather straightforward. The ray 
trajectories (and fields) of an electromagnetic wave are tied to their co-ordinate system, and 
any deformation of that co-ordinate system will result in a corresponding deformation of the 
ray trajectories. Since Maxwell’s equations have the same form in any co-ordinate system 
with only the permittivity and permeability being different, any co-ordinate transformation is 
equivalent to a new medium with, in general, spatially varying permittivity and permeability 
profiles. Therefore, if a particular ray trajectory is desired TO will supply the spatially varying 
permittivity and permeability profile required to produce it. 

Though the advent of TO promised a wealth of novel refractive devices, in reality there 
have been relatively few designs, and even fewer of these have been practically realised. 
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Designs have included various types of cloaking schemes [6–10], energy harvesters [11], high 
directivity antennas [12,13], concentrators [14] and adaptations of graded index lens designs 
such as the Eaton, Luneburg and Maxwell fish-eye lenses [15–21]. The lack of practical 
progress can be attributed to a fundamental limitation in the TO recipe: the resulting 
permittivity and permeability profiles frequently require extreme values that are not available 
in naturally occurring media and are difficult to achieve even with metamaterials [22–24]. 
Moreover, TO-developed designs require the permittivity and permeability tensors to be equal 
(in other words the materials prescribed by TO are impedance-matched) which is an even 
greater challenge from a materials perspective. It is well known that naturally occurring 
magnetic materials may only exhibit low-loss broadband magnetic responses at low 
frequencies (<100MHz) [25,26], and that enabling a magnetic response at any other frequency 
(whether through the use of ferromagnets or metamaterials) requires a resonant response [27]. 
This requirement limits the bandwidth of a device and also results in losses, which may not be 
tolerable depending on the application. The permittivity and permeability profiles are also, in 
general, anisotropic and, whilst certain levels of anisotropy can be incorporated (especially in 
metamaterials), the experimental design becomes even more demanding. Schemes to 
overcome these limitations have led to adaptations of the TO recipe such as the recent work 
on quasi-conformal mapping which, for example, has been used to design carpet cloaks 
[8,9,28,29], and a relaxation of the impedance-matching requirement of TO for single 
polarisation operation [30]. 

It is therefore clear that, if one requires broadband operation, non-resonant materials must 
be used. This limits the palette of available materials to those without a magnetic response (or, 
more generally, a diamagnetic response) that cannot be impedance-matched, requiring an 
adaptation of the TO recipe. One such adaptation involves a simple rescaling of the 
permittivity and permeability tensors, and has been used in some experimental demonstrations 
of TO designed devices [31,32]. However, this method has two significant downsides: it 
limits device operation to a single polarisation, and reflections arise from the boundary of the 
device since it is no longer impedance-matched. In the next section we will show that, though 
the limitation of single polarisation operation cannot be overcome, the reflections arising from 
the boundary of the device can be removed through a simple modification of the co-ordinate 
transformation in the same manner as Cai et al. [6], who used a higher-order co-ordinate 
transformation in the design of a cloak resulting in impedance matching at the boundary of the 
device. However, whilst their cloak design resulted in an all-dielectric profile that was 
impedance matched at the boundary, certain permittivity tensor components were less than 
unity, requiring a resonant response with associated losses and narrow-band character. In the 
spirit of practicality we would like to design devices that can both be genuinely realizable and 
broadband. As such we will use a similar design process to that of Cai et al., but in devices 
where all resulting material properties are in principle achievable for low-loss, broadband 
operation. In particular we will demonstrate the efficacy of the design process in the 
transmutation of singularities and zeros in the refractive index profiles of graded index optical 
devices. We will use the transmuted cylindrical (2D) Eaton lens as the example in a detailed 
description of the method, before describing other transmuted devices including the “invisible 
disc” and “multipole” lenses. 

2. Design process 

The Eaton lens was first described in a paper published in 1952 [16] and is a spherically 
symmetric graded index lens that acts as an omnidirectional retro-reflector, with a refractive 
index profile given by 

 ( ) ( )2
1    1 ,  1   1      n r  if r and n r if r

r
= − ≤ = >  (1) 
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where r  is the radial co-ordinate and we assume a unit radius. The ray trajectories in a single 
plane for light incident upon an Eaton lens are shown in Fig. 1(a). Whilst the isotropic 
refractive index profile defined by Eq. (1) is rather simple, it is clear that as 0r →  the 
refractive index becomes singular, preventing an Eaton lens from being fabricated. Tyc et al. 
[33] demonstrated that a point singularity could be removed by expanding space around it, 
provided the divergence is not too steep, with the isotropic refractive index profile being 
transformed into an anisotropic impedance-matched permittivity (permeability) profile. 
Recently, Ma et al. [32] demonstrated a transmuted cylindrical Eaton lens with the 
permittivity and permeability profile achieved through the use of split ring resonator based 
metamaterials. However, due to the resonant nature of the metamaterial elements this was a 
narrow band device and thus of limited practical use. 

(a) (b) (c) 
 

Fig. 1. Ray trajectories in a plane through a) a spherical Eaton lens, b) an impedance-matched 
transmuted spherical Eaton lens using the co-ordinate transformation in Eq. (2), c) a 
transmuted cylindrical Eaton lens with non-magnetic materials using the co-ordinate 
transformation in Eq. (10). 

The transmutation process may be applied to either the entire radius of the lens, or to only 
the region around the singularity [34]. Here we will consider the case where the entire lens is 
transmuted since this results in less extreme values of the resulting permittivity and 
permeability profiles, but the mathematics will be written for the general case. The co-
ordinate transformation for the expansion of space around the singularity is given by: 

 ( ) ( )( )
,    

( )

f r
R r if r b and R r r if r b

N b
= ≤ = >    (2) 

where 

 ( )
( )
( )

0
1

0

' '
 

' '

r
n r dr

f r
n r dr

= 


 (3) 

R  is the transformed radial co-ordinate, r  is the original radial co-ordinate, and b is the 
radius of the transmuted region. ( ) ( ) |r bN b f r ==  and is a normalisation to ensure that the co-

ordinate transformation is continuous at the boundary of the transmuted and non-transmuted 
regions. 

It is a simple matter to calculate the material properties arising from this expansion of 
space [3,22,34]. Here we present only the final result using the notation used in [3]: 

 
2

2
,  ,    i i

k k

r dR dr dr
n diag

R dr dR dR
ε μ  

= =  
 

 (4) 

where i
kε  and i

kμ  are the permittivity and permeability tensors in spherical co-ordinates. The 

resulting material properties are shown in Fig. 2(a), demonstrating that the singularity has 
been removed at the cost of substantial anisotropy. The ray trajectories resulting from the 
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material properties shown in Fig. 2(a) are shown in Fig. 1(b), demonstrating that the retro-
reflecting nature of the device has been retained. 

   

(a) (b)$

 

Fig. 2. (a) The permittivity and permeability as a function of the radius for the transmuted 
spherical Eaton lens. (b) The permittivity and permeability as a function of the radius obtained 
using the same transmutation process, but in cylindrical co-ordinates (note the log scale). 

For a cylindrical Eaton lens the point singularity becomes a line singularity, and the 
equivalent to Eq. (4) is: 

 ,  ,  i i
k k

r dR R dr r dr
n diag

R dr r dR R dR
ε μ  = =  

 
 (5) 

where the three components are the permittivity & permeability in the r, θ  and z directions 
respectively. The resulting material properties are shown in Fig. 2(b) (note the log scale), and 
it is clear that the singularity is no longer transmuted in the individual ε  & μ  components. If 

we now determine the refractive index tensor by combining the relevant permittivity and 
permeability tensor components, we obtain 

 ( )' diag , ,   ,  ,1 z r z r

dr r
n n diag

dR Rθ θε ε ε ε ε ε  = =  
 

 (6) 

where 'n  is the refractive index profile corresponding to the transmuted geometry, and we 
have described the refractive index tensor components in terms of the permittivity 
components with the understanding that they are interchangeable with the permeabilities. The 
resulting refractive index profile is shown in Fig. 3, and it is clear that the singularity has been 
transmuted in both the r  & θ  directions but not in the z  direction (unlike in the spherical 
case where the singularity was removed in all components). By limiting ourselves to 
propagation in the plane orthogonal to the line singularity, and therefore negating any 
influence of the  z component of the refractive index on the ray trajectories, we would expect 
the cylindrical device to exhibit the same characteristics as the spherically symmetric device. 
Indeed it is an important point to note that line singularities and line zeros are only ever 
transmuted in the resulting refractive index profile (and can never be transmuted in the 
individual permittivity and permeability tensor components). We also note that, whilst point 
singularities can always be transmuted (as long as the refractive index profile does not 
increase more rapidly than p1 / r ), and line singularities can be transmuted for linearly 
polarised light when the electric vector is parallel of perpendicular to the singularity, higher 
order singularities and zeros, such as those found in the well-known cloaking schemes, can 
never be transmuted. 
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Fig. 3. The components of the refractive index tensor as a function of the radial distance for the 
transmuted cylindrical Eaton lens obtained using Eq. (6). 

Since we cannot transmute the singularities in the individual permittivity and permeability 
components we can no longer satisfy the impedance matching ( )ε μ=  condition, and this 

results in two choices for the calculation of the refractive index that correspond to the two 
linear polarizations. These are: 

 { }, Electric field n the plane  :  &r z r zr n nθ θϕ ε μ ε μ= =  i    (7) 

 { }Magnetic field in the plane :,  & r z r zr n nθ θϕ μ ε μ ε= =    (8) 

and we can choose any combination of the permittivity and permeability components that 
results in the refractive index profiles shown in Fig. 3. 

Having described the transmutation of singularities and zeros in the profiles of graded 
index devices, we must return to the question of practicality, and in particular we must 
consider the materials available for fabricating such a device. As mentioned previously, if one 
wishes to design a device that can operate over a broad frequency band and exhibits low 
losses, one is restricted to the use of materials that exhibit little or no resonant response. Also, 
since a large degree of anisotropy is required in the transmuted device material properties, we 
are likely limited to the use of metamaterials. Whilst non-resonant metallic metamaterials may 
exhibit very high dielectric responses they are unable to provide permeabilities of greater than 
unity, though they will often exhibit diamagnetic responses ( 0  μ 1 0  μ 1 ≤ ≤ ≤ ≤ ) [35–37]. 

Also, the refractive index of such metamaterials must also always be greater than unity. We 
can summarise these limitations as follows: 

 

ε 1

0 μ 1

n 1

>
≤ <

≥

 

  

 

 (9) 

By inspection of Eq. (8), it is clear that we cannot satisfy the conditions of Eq. (9) for light 
polarised with its magnetic field in the { },r ϕ  plane, and a broadband transmuted cylindrical 
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Eaton lens design is not possible for this polarisation. However, from Eq. (7), for light 
polarised with its electric field in the { },r ϕ  plane, it appears that the conditions of Eq. (9) can 

be completely satisfied. Here, for simplicity, we will limit ourselves to materials with a purely 
dielectric response ( 1μ = ) as opposed to the more likely diamagnetic response of the non-

resonant metallic metamaterials discussed above. We can then determine the permittivity 
profile of the device using Eq. (7), and the resulting material properties are shown in Fig. 4. 

 

Fig. 4. The relevant permittivity and permeability components as a function of the radial co-
ordinate of a transmuted cylindrical Eaton lens for light polarised with the electric field in the 

{ },r ϕ  plane. 

Unfortunately the process of scaling the permittivity and permeability profiles whilst 
maintaining the refractive index profile gives rise to a further drawback. Even though the ray 
trajectories for light incident upon a device described by the permittivity and permeability 
profiles shown in Fig. 4 are identical to those of the non-scaled version there is one important 
difference: the scaled, and therefore no longer impedance-matched, device will exhibit 
reflections at the boundary between the non-transmuted and transmuted regions. Indeed these 
reflections are found to have a significant degradation on the performance of the transmuted 
cylindrical Eaton lens as can be seen in Fig. 5(a) in which a commercially available finite 
element modeling package (COMSOL Multiphysics) has been used to model a narrow 
Gaussian beam incident upon the device. Strong reflections are evident from the boundary of 
the lens resulting in only approximately 60% of the incident beam being retro-reflected as 
opposed to the 100% from the equivalent impedance-matched device. The remaining light is 
scattered in all directions. 
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(a) (b) (c)
 

Fig. 5. Full wave numerical modeling (instantaneous total electric field) of transmuted 
cylindrical Eaton lenses. a) a scaled transmuted Eaton lens consisting of non-magnetic 
materials (in-plane polarisation) using the co-ordinate transformation given by Eq. (2) b) a 
transmuted Eaton lens consisting of non-magnetic materials using the modified co-ordinate 
transformation given by Eq. (8) (in-plane polarisation). c) The same as b), but for the out-of-
plane polarisation. 

The reflections arise due to the discontinuity in ε  and μ  at the boundary of the device 

(Fig. 4), and upon inspection of Eq. (6) it is clear that the only term that can lead to this 
discontinuity is the gradient /dR dr . Indeed, whilst the ( )N b  term in the original co-ordinate 

transformation (Eq. (2)) was introduced to ensure that the transformation was continuous at 
the boundary, there was no such constraint on the gradient. It becomes obvious, therefore, that 
if we add a new boundary condition requiring the gradient of the transformation be 
continuous at the boundary of the device, we should eliminate any reflections even when 
using non-impedance-matched materials. In essence we will be forcing the material properties 
of the transformed medium to be matched to the bounding medium. Of course, we must also 
note that, if we wish to achieve a device that exhibits close to zero scattering, the size of the 
device must be sufficiently large relative to the wavelength such that the spatially varying 
refractive index does not give rise to additional scattering. 

There are many ways in which this new boundary condition can be imposed. Here we 
simply add a polynomial to the original co-ordinate transformation to demonstrate the 
principle: 

 ( ) ( )( )

( )
mf r

R r r r b
N b

α= + −  (10) 

where m is any positive number greater than a certain limit that depends upon the original 
refractive index profile (or else the singularity is no longer transmuted), and α is a constant 
yet to be determined. This functional form ensures that when 0r =  and r b=  the co-ordinate 
transformation is unaltered from the original transformation and remains continuous. We now 
add the new boundary condition requiring that the gradient of the transformation be 
continuous across the boundary between the transmuted and non-transmuted regions: 

 
trans non transr b r b

dR dR

dr dr −= =

=  (11) 

For the simple case of a fully transmuted device bounded by free space / | 1r bdR dr = = . 

Using this condition, and a choice for the value of m, it is a simple matter to determine the 
value of alpha, and to subsequently determine the material properties corresponding to this 
new co-ordinate transformation in the same way as previously. The material properties for 
such an adapted fully transmuted cylindrical Eaton lens as a function of the radius for 1m =  

#199529 - $15.00 USD Received 15 Oct 2013; revised 23 Nov 2013; accepted 25 Nov 2013; published 19 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.032313 | OPTICS EXPRESS  32320



and for non-magnetic materials are shown in Fig. 6, with the original and modified co-
ordinate transformations shown inset. Whilst the choice of value for m  is arbitrary (the 
device will still result in the same behavior as the original un-transformed Eaton lens) it has a 
significant impact upon the resultant material properties. If m  is large the co-ordinate 
transformations more closely resemble each other with the gradient matching “squeezed” 
towards the outer radius of the device. This results in a lower required permittivity, but a more 
rapid rate of change of permittivity as a function of the radial co-ordinate close to the 
boundary of the device. If m  is smaller the gradient matching occurs over a larger radial 
distance and the changes to the spatially varying permittivity are “squeezed” towards the 
center of the device. A larger range of permittivity is required in this latter case. The choice of 
m  therefore depends upon the size of the device and the range of material properties 
available. More generally, the way in which the additional boundary condition is implemented 
will have a significant impact upon the resulting material properties. 

 

Fig. 6. The permittivity and permeability profiles of the modified transmuted Eaton lens (for 
light polarised with its electric field in the { , }r ϕ  plane. Inset: the co-ordinate transformations 

of the transmuted and modified transmuted Eaton lenses. 

To demonstrate the efficacy of the device the ray trajectories for the design are shown in 
Fig. 1(c), with full wave numerical modeling of the device for an incident Gaussian beam 
polarised with its electric field in the { , }r ϕ  plane shown in Fig. 5(b) (for comparison the case 

for light polarised with its magnetic field in the { , }r ϕ  plane is shown in Fig. 5(c)). The lack 

of refraction at the boundary of the device in Fig. 1(c) is clear evidence of the matching to 
free space that the adapted co-ordinate transformation has accomplished, whilst the full wave 
simulations demonstrate that the reflections that limited the performance of the un-modified 
transmuted Eaton lens have been removed. 

In summary, the methodology we have described in this section allows for the design of 
practical devices in which singularities or zeros in the profile of graded index devices have 
been removed. This is achieved through the transmutation process, but with the addition of a 
boundary condition requiring the gradient of the co-ordinate transformation be continuous at 
the boundary of the device. A subsequent scaling of the permittivity and permeability profiles 
allows for all-dielectric designs that could in principle be fabricated using current 
metamaterial designs. We also note that the method can be applied to spherical systems as 
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well as the cylindrical system considered here with the simple addition of a spatially varying 
φ  component of the permittivity tensor. 

3. Other transmuted devices 

The same process as described for the cylindrical Eaton lens can be performed on other 
graded index devices that incorporate singularities or zeros in their refractive index. The 
invisible disc is one such device, and is named as such because any rays impinging upon the 
device exit along the exact same trajectory as they would have were the device not present, 
but having undergone a single loop within the device (see Fig. 7). The refractive index profile 
of the invisible disc is given by 

 ( )
2

1

3
n r Q

Q

 = − 
 

 (12) 

where 

 3
2

1 1 1

27
Q

r r
= − + +  (13) 

and r  is the radial co-ordinate. 

 

Fig. 7. Ray trajectories for an “invisible disc”. Any ray impinging upon the device exits as if 
the device were not present. 

Though the details of the mathematics is somewhat more involved than in the case of the 
Eaton lens due to the more complex refractive index profile, the exact same process can be 
applied, resulting in the permittivity profile shown in Fig. 8 (left) for a value of 1m = . By 
simple comparison of Fig. 8 with the equivalent plot for the Eaton lens shown in Fig. 6 it is 
immediately obvious that the required material properties for the invisible disc are more 
extreme, both in magnitude and in anisotropy, than are those for the Eaton lens. This is a 
direct consequence of the increased gradient of the refractive index as a function of the radial 
co-ordinate of the original invisible disc profile, which is required to bend the rays sufficiently 
to complete a full loop within the device as opposed to the half loop of the Eaton lens. 
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Fig. 8. Left: The relevant components of the permittivity tensor for the transmuted invisible 

disc for light polarised with its electric field parallel to the { , }r ϕ  plane 
z

(μ 1)= . Right: Full 

wave numerical modeling (instantaneous total electric field) of the transmuted invisible disc. 

The final family of transmuted graded index devices that we will consider we will refer to 
as “multipole” lenses due to the fact that their ray trajectories mimic the field lines of 
multipolar line-charge distributions (dipolar, quadrupolar etc). The refractive index profile of 
such a lens is given by 

 
( )12 1

2

2
( )

1

l

l

r
n r

r

− −

=
+

 (14) 

with 1l =  corresponding to a dipolar distribution, 2l =  a quadrupolar distribution etc. 
Examples of the ray trajectories given by Eq. (14) for 0,1  & 2l =  are shown in Fig. 9. The 
profile (Eq. (14)) for arbitrary real l  is known as the generalized Maxwell fish-eye [38, 39], 
and for 1l =  this becomes the more well-known form of the Maxwell fish-eye lens in which 
each point on the radius of the device is refocused to the opposite point on the same surface 
[17]. It was noted in [40] that the ray trajectories of the fish-eye in one plane (see Fig. 9) are 
exactly the electric field lines of an electric dipole made up of two line charges. For integer 

1l >  the ray trajectories similarly give exactly the electric field lines of higher-order 
multipoles of line charges. 

Since, for all of the multipole lens profiles, the refractive index outside of the unit radius is 
lower than unity, it is impossible to truly mimic the ray trajectories of these multipolar modes 
over all space using realistic broadband materials. However, it is possible to mimic them 
within the unit radius by simply truncating the refractive index profile (resulting in a device of 
unit radius that is bounded by vacuum), and this is the approach taken here. 
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Fig. 9. Ray trajectories for refractive index profiles given by Eq. (14). Left:  0l = , a 
monopolar mode, Center:  1l = , a dipolar mode identical to the well-known Maxwell fish-eye 
lens, Right: 2l = , a quadrupolar mode. 

The dipolar ( 1) l = profile has a finite non-zero refractive index in the center of the device 

and as such is not of interest here. However, the 0l =  (monopolar) mode exhibits a 
singularity in the center, whilst all modes of order higher than dipolar exhibit zeros in the 
center. We might expect, therefore, that by using the same methods as described in section 2, 
we may transmute these zeros and singularities and generate practical refractive index profiles 
that perform the same purpose. 

We will begin by considering the monopole lens; a device in which any rays emitted into 
the device by a point source placed at the radius are refocused back to the source. The 
resulting permittivity profile of the relevant tensor components after the transmutation process 
for light polarised with its electric field in the { , }r ϕ  plane, and the corresponding full wave 

modeling of the device, are shown in Fig. 10. The “bending” of the waves within the device 
back towards the source is clear, resulting in all of the power radiated from the source being 
emitted into the left hand half space. 

  

Fig. 10. The resulting permittivity profile and full wave modeling (instantaneous total electric 
field) of the transmuted monopolar lens ( 0l = ) for light polarised with its electric field in the 

{ , }r ϕ  plane 
z

(μ 1)= . The wave components from a point source at the boundary that enter 

the device are re-focused back to the source. 
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Finally we will demonstrate the transmutation of a zero in the refractive index profile by 
considering the quadrupolar lens. Unfortunately, it is impossible to transmute the zero whilst 
maintaining all relevant permittivity components above unity when the bounding medium is 
vacuum. However, by simply scaling the original refractive index profile (Eq. (14) by a 
constant factor this can be overcome (the scaling of the refractive index does not alter the ray 
trajectories). In this case, this requires a scaling factor of greater than 2.4, and the resulting 
permittivity profile for the lens is shown in Fig. 11 ( zμ 1= ). 

 

Fig. 11. The permittivity profile of the transmuted quadrupolar lens for light polarised with its 

E-field parallel to the { , }r ϕ  plane 
z

(μ 1)= . The original refractive index profile (Eq. (14)) is 

scaled by a factor of 2.4 to enable all relevant permittivity components to be greater than unity. 

The full wave modeling of the quadrupolar device for a point source placed at the radius 
on the left hand side is shown in Fig. 12, with the two foci evident at the top and bottom of the 
device demonstrating its beam-splitting character. However, it is when we place a second 
point source diametrically opposite the first that the quadrupolar nature of the ray trajectories 
within the device becomes more evident, and this is shown in the right hand panel of Fig. 12. 
Note that if the full refractive index profile were implemented (i.e. including the profile 
outside the unit radius), this second source would not be required since the rays exiting the 
device would loop back, completing the quadrupolar geometry of the ray trajectories shown in 
Fig. 9. 
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Fig. 12. Full wave modeling (instantaneous total electric field) of the quadrupolar lens using 
the permittivity profile shown in Fig. 11 for light polarised with its electric field in the { , }r ϕ  

plane. Left: with a single point source placed at the radius of the device on the left. Right: with 
two point sources, one on the radius to the left of the device, and an additional one to the right. 

4. Conclusion 

We have demonstrated the transmutation of zeros and singularities in the refractive index 
profiles of various optical instruments, resulting in realistic practical device designs that could 
in principle be fabricated using available metamaterials, and which would allow broadband 
low-loss operation for a single polarisation. This has been achieved using the formalism of 
transformation optics with the addition of a boundary condition requiring the gradient of the 
co-ordinate transformation be continuous. This condition ensures that there are no reflections 
from the boundary of the device when the resulting permittivity and permeability tensors are 
scaled to generate an all-dielectric design. We have demonstrated the methodology in detail 
using a transmuted cylindrical Eaton lens as an example, and have also shown results for an 
“invisible disc” and for “multipolar” lenses. However, it is important to note that the 
modification of the co-ordinate transformation to prevent reflections from the boundary can 
be applied to any transformation optics designed system. This work paves the way for 
transformation optics designed broadband single polarisation devices using non-resonant 
materials. 

(All underlying research materials can be accessed by contacting I. R. Hooper). 
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