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ABSTRACT

Identifying the infrared counterparts of X-ray sources in Galactic plane fields such as those of the MYStIX project
presents particular difficulties due to the high density of infrared sources. This high stellar density makes it inevitable
that a large fraction of X-ray positions will have a faint field star close to them, which standard matching techniques
may incorrectly take to be the counterpart. Instead we use the infrared data to create a model of both the field star and
counterpart magnitude distributions, which we then combine with a Bayesian technique to yield a probability that
any star is the counterpart of an X-ray source. In our more crowded fields, between 10% and 20% of counterparts
that would be identified on the grounds of being the closest star to an X-ray position within a 99% confidence error
circle are instead identified by the Bayesian technique as field stars. These stars are preferentially concentrated at
faint magnitudes. Equally importantly the technique also gives a probability that the true counterpart to the X-ray
source falls beneath the magnitude limit of the infrared catalog. In deriving our method, we place it in the context
of other procedures for matching astronomical catalogs.
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1. INTRODUCTION

A central goal of the Massive Young Star-Forming Complex
Study in Infrared and X-rays (MYStIX; Feigelson et al. 2013)
is to obtain a rich and high-quality census of stars belonging
to complex star formation regions within 4 kpc of the Sun. A
first step is to obtain catalogs of X-ray, near-infrared (NIR), and
mid-infrared (MIR) sources from single waveband surveys (see
Kuhn et al. 2013a; L. K. Townsley et al., in preparation; King
et al. 2013; Kuhn et al. 2013b). The X-ray selection is effective in
discriminating young stars from older Galactic field stars, while
the infrared photometry is needed to characterize the properties
of the young stars: luminosity, surface temperature, absorption,
and infrared-excess from a circumstellar dusty disk. A crucial
step in our analysis, therefore, is to reliably cross-identify X-
ray sources with infrared sources, which is an example of a
fundamental problem in astronomy, that of matching one catalog
of sources to another.

The very simplest cases of catalog matching are “obvious” in
the sense that if one overlays the two catalogs in sky coordinates,
correct pairings lie close to each other compared with the typical
separations between stars internally within either catalog. The
problem becomes more difficult when the area covered by
the uncertainty in the position in one catalog (which we shall
call the master) approaches or exceeds the reciprocal of the
density of sources in the other catalog (which we will term the
slave). One can then imagine drawing circles in the slave catalog
(with a radius derived from the uncertainty in position) that
encompass likely counterparts. The key question is then which
of the possible counterparts to choose. The simplest answer is
to take the star closest to the X-ray position, which we shall call
proximity-only matching.

Such proximity-based identification criteria will give in-
tuitively incorrect answers as survey improvements produce
deeper slave catalogs with higher source densities. For example,
matching the master catalog against a relatively shallow slave
catalog may produce the correct, relatively bright counter-

part. However, as one produces ever deeper slave catalogs,
it is inevitable that a faint star will be detected closer to
the X-ray position than the true counterpart. Proximity-only
matching would then, incorrectly, identify the faint star as the
counterpart.

This displacement problem is a significant issue for the
crowded fields in the MYStIX sample (see Figure 6 in Feigelson
et al. 2013). For example, in the Trifid Nebula field at Galactic
longitude 7◦ where the Galactic field star density is extremely
high, we have detected approximately 600 faint X-ray sources
from the Chandra X-ray Observatory, 26,000 Spitzer Space
Telescope mid-infrared (MIR) sources and 76,000 sources from
the UK InfraRed Telescope (UKIRT) near-infrared (NIR) data.
Obviously the great majority of these infrared stars are irrelevant
to the X-ray sources and the targeted star forming region, but
tied to this is a more subtle difference about the depth reached by
each survey. In uncrowded fields the UKIRT data reach down to
K = 17.5 at a signal-to-noise of 10, but there are very few reliable
counterparts to X-ray sources fainter than K = 15.3 Conversely
the Spitzer data are probably well matched in depth to the X-ray
data, as there are significant numbers of counterparts to X-ray
sources at the limiting magnitude of the MIR catalogs, but there
are normally not many more counterparts in the NIR catalog,
suggesting that the MIR sample is fairly complete.

The crucial point is that for the UKIRT data, not only are most
stars irrelevant to the X-ray sources, but also the counterparts lie
preferentially among the brighter IR (infrared) objects. Clearly
the key to solving the displacement problem must be to use
information about the magnitude distribution of the counterparts
compared with that of the field stars. Specifically, if a very faint
star is found close to the X-ray position in the UKIRT data, it
should not be taken as a likely counterpart, because such faint
counterparts are very rare, but faint field stars are common.

3 This arises from a well-known correlation between X-ray and photospheric
luminosity in pre-main-sequence stars (Telleschi et al. 2007).
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There are other challenges the matching process presents.
Although the positional accuracies of the UKIRT and Spitzer
images are approximately constant across their respective fields-
of-view, we must correctly treat the heteroscedasticity of the
X-ray positional measurement errors arising from the differing
counts in each source and the spatially varying Chandra point
spread function. For bright, on-axis sources we find a mean
offset between X-ray and NIR counterparts of around 0.′′1,
which is probably dominated by the astrometric accuracy of
the NIR data. Toward the periphery of the ACIS field this
can decline to several arcseconds, which can lead to two or
more possible infrared counterparts. Furthermore, the infrared
background source density can be spatially highly variable due
to molecular cloud obscuration and H ii region nebular emission.
So it is clear the criteria for counterpart identification must
adapt to the quality of the detection in the X-ray data, as well
as its environment in the UKIRT and Spitzer images. Finally,
an unknown fraction of the X-ray sources are extra-galactic
interlopers without any detectable infrared counterpart; such
sources should be marked as un-matched, rather than identified
with a faint star far from the X-ray position.

A potential problem is that we are not simply interested in
pairing IR sources with X-ray sources, but also in the spectral
energy distribution of a source over all three bands (Povich et al.
2013). This requires asking whether a single object position is
consistent with the positions (and their uncertainties) for the
sources observed in each waveband. Budavári & Szalay (2008)
and Storkey et al. (2005) consider this problem in some detail,
but practically it is only an issue when there are several catalogs
with large uncertainties in position. In our case, the X-ray catalog
normally has the largest uncertainties, with the MIR and NIR
data both having smaller (and similar) positional accuracies,
although the WFCAM camera on UKIRT can resolve a crowded
complex with much better resolution than Spitzer.

We therefore adopt the simplifying strategy of matching
the NIR and MIR catalogs as slaves to the X-ray catalog,
and only if the MIR and NIR catalog positions differ might
one wish to consider the case that there may be two sources
present. Practically, however, the resolution and sensitivity of
the UKIRT and Spitzer catalogs are well matched, and they differ
relatively little in wavelength, and so we believe such cases
will be extremely rare. This is supported by the low error rate
for proximity-only matching between the two catalogs (Povich
et al. 2013). We will return to the problem of multiple catalog
matching in Section 8.

Within the MYStIX data reduction pipeline (see Figure 3 in
Feigelson et al. 2013) matching lies between the creation of
the X-ray and IR catalogs (Kuhn et al. 2013a; L. K. Townsley
et al., in preparation; King et al. 2013; Kuhn et al. 2013b),
and classification with the naive Bayes classifier (Broos et al.
2013). It is worth emphasizing that there is a clear split between
the observational information used in the matching process
(the observed magnitude distributions of the IR counterparts
and field stars) and the astrophysical understanding (colors and
magnitudes for particular classes of object) used in the Bayes
classifier.

2. THE OUTLINE SOLUTION

Section 1 laid out the fundamental problem faced in identi-
fying the infrared counterparts to the X-ray sources when the
true counterparts have a magnitude distribution systematically
brighter than the Galactic field star magnitude distribution. With
just positional information, a faint field star close to the X-ray

position appears a better candidate than the true counterpart
which may be a slightly more distant but much brighter star. To
solve this problem requires using information about the magni-
tude distribution of both the IR catalog as a whole and the IR
magnitudes of the counterparts themselves.

There are two obvious sources for such information, either
an astrophysical understanding of the sources, or a study of
the properties of the X-ray counterparts as a whole. As stated in
Section 1, we will very deliberately avoid using astrophysical in-
formation, as this is the domain of the naive Bayes classification
which follows our matching process, and is described in Broos
et al. (2013). It would be incorrect, for example, use a train-
ing set such as the Chandra Orion Ultradeep Survey (Feigelson
et al. 2005) to predict the magnitude of our counterparts, since
this would be explicitly including astrophysical understanding.
That leaves us with the possibility of using the data themselves
to yield statistical information about the magnitude distributions
of both the field stars and the counterparts. Dealing with the field
stars is straightforward, an area around the X-ray position can
be chosen, and a histogram of the magnitude distribution of the
stars within this area can be created. For the counterparts we can
use the distribution of the magnitudes of stars within the error
circles, and subtract from it the expected field star distribution.

Such an approach fits within a broad theme in the literature of
using not only the counterpart’s celestial position, but some
property such as its color, morphology, or spectral energy
distribution (e.g., Roseboom et al. 2009), or even a combination
of several properties (Rohde et al. 2005, 2006) to assign the
likelihood of it being the counterpart. Although we do not know
of such techniques being used for Galactic astronomy before,
they are widely used in extra-galactic work, and most techniques
trace their origins back to an increasingly influential paper by
Sutherland & Saunders (1992). Given the crowded fields of the
MYStIX project, it is clear that such techniques have much
to offer for work in the Galactic plane, though as discussed
in Section 4 that same crowding requires special measures to
determine the counterpart magnitude distribution.

In what follows, the likelihood that any given star is the
counterpart of a given X-ray source is derived, given the
magnitude distributions of both the field and counterpart stars
(Section 3 or Appendix A). This leads to a similar result to
that of Sutherland & Saunders (1992), but extended to (1) yield
the probability that the X-ray source has no counterpart in the
IR catalog, and (2) show that a slightly different definition of
the magnitude distribution functions is more appropriate. We
then derive a method to determine the counterpart magnitude
distribution which is appropriate for Galactic fields that are not
only crowded, but also have a stellar density which can change
rapidly with position on the sky (Section 4). Finally, Section 5
deals with the practical issues of applying the theory, using the
Trifid Nebula field as an example. Table 1 gives definitions of
the mathematical symbols used throughout the paper.

3. THE FUNDAMENTAL EQUATION

We wish to derive the likelihood that a given star is a
counterpart, or that the counterpart is not in the catalog. In this
section we will derive equations for these quantities using a route
which drives an understanding of the problem by beginning with
the densities of stars and counterparts. An alternative derivation
is given in Appendix A, based around Bayes’ rule. This exposes
both some implicit assumptions and the Bayesian roots of the
method.

2



The Astrophysical Journal Supplement Series, 209:30 (11pp), 2013 December Naylor, Broos, & Feigelson

Table 1
A Summary of the Meanings of the Symbols Used

Symbol Description

A The area of an error circle.
b(m)dm The probability that the brightest star in a given error circle (be it counterpart or field) has a magnitude between m and m + dm.
B(m′) The integral of the above from m = −∞ to m′, i.e., the probability that the brightest star is brighter than magnitude m′.
bf (m)dm The probability that the brightest field star in a given error circle has a magnitude between m and m + dm.
Bf (m′) The integral of the above from m = −∞ to m′, i.e., the probability that the brightest field star is brighter than magnitude m′.
c(m)dm The fraction of IR counterparts that have magnitudes between m and m + dm.
C(m′) The integral of the above from m = −∞ to m′, i.e., the probability that an IR counterpart is brighter than magnitude m′.
D The observed data catalog.
f (m)dm The fraction of field stars with magnitudes between m and m + dm in the region of the IR catalog close to the X-ray position,

in the absence of any crowding effects due to counterparts.
F (m′) The integral of the above from m = −∞ to m′, i.e., the probability that a field star is brighter than magnitude m′.
g(Δx, Δy)dxdy The fraction of IR counterparts that lie in a box defined by Δx to Δx + dx and Δy to Δy + dy with respect to the X-ray position.
H0 The hypothesis that the IR counterpart is not in the catalog.
H̃0 The hypothesis that the IR counterpart is in the catalog.
K A normalization constant.
L(i, j) The likelihood that star i is the counterpart and star j a field star.
M The number of pixels occupied by stars.
N The total number of field stars per unit area in our IR catalog.
O The probability that an infinitesimal pixel on the sky is occupied by a star.
P (0) The probability that none of the stars in the catalog are the counterpart.
P (i) The probability that star i is the IR counterpart of the X-ray source.
T The total number of pixels in the area of sky observed.
X The fraction of X-ray sources that have counterparts in the IR catalog.
Z The fraction of error circles that have a star (be it counterpart or field) within them that is in the IR catalog.
Zc The fraction of X-ray sources that have counterparts within a given error circle in the IR catalog.
Zf The fraction of error circles that have a field star within them that is in the IR catalog.

Figure 1. Probability density functions for field stars and counterparts as
functions of magnitude and position. The gray scale represents values illustrative
of the general form of these functions, not real data.

Consider the density of stars as a function of distance from
the X-ray position and magnitude. This is a three-dimensional
volume, but in Figure 1 it is illustrated using radial distance
from the X-ray position so there is just one position coordinate.
The value of the probability density function is represented as
a gray scale, and this function is shown for both field stars
and counterparts. The density of field stars in this example is
independent of position, but increases with magnitude until it
reaches the limiting magnitude of the catalog at around m = 18.
Conversely, the true counterparts tend to be brighter than the
field stars, and their density declines with distance from the
X-ray position.

To express Figure 1 mathematically requires the probability
density function representing the distribution of field stars with

magnitude, evaluated at a magnitude m, which is f (m). Thus,
given that there is a field star, f (m)dm is the probability that its
magnitude lies between m and m+dm, and so f (m) has units of
mag−1, and integrates to one.4 The left-hand panel of Figure 1
represents the density of field stars per unit area on the sky, per
magnitude, and so if the total number of field stars per unit area
in our catalog is N, then the probability density at any point in our
volume is Nf (m), which has units of mag−1 arcsec−2. In contrast
the sky density of counterparts is distributed according to the
normalized two-dimensional Gaussian function that represents
the uncertainty ellipse of the X-ray position, which we label
g(Δx, Δy) where the coordinates are with respect to the X-ray
position. The probability distribution for the magnitudes of the
counterparts is given by Xc(m), where X is the fraction of
X-ray objects that have counterparts in the catalog, and c(m) is
the probability density function in magnitude. Thus the density
of X-ray counterparts in our volume is Xc(m) g(Δx, Δy), again
with units of mag−1 arcsec−2.

It is illuminating to draw the distinction between quantities
such as Xc(m) and c(m). f (m) and c(m) are true probability
density functions which are normalized to integrate to one, and
answer the question “given a star, what is the probability that its
magnitude lies between m and m + dm.” In contrast Xc(m)dm
answers the question “what is the probability that the counterpart
to a given star lies between magnitudes m and m + dm,” with the
extra term covering the possibility that there is no counterpart
in our IR catalog. Functions such as Xc(m) are not normalized
to integrate to one, and so we shall refer to them simply as
probability functions, not probability density functions.

4 Strictly f (m) is also a function of position in the IR catalog, and as
described in Section 5 our implementation requires that changes on the scale
of tens of error circle radii must be small. Hence f (m) should be taken to mean
its value close to the X-ray position, though not sufficiently close that
crowding by counterparts of X-ray sources affects it.
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It is now clear that the probability of finding a field star at
a magnitude mj is proportional to Nf (mj ). By extension the
likelihood of finding an IR source i which is the counterpart, at
position (Δx, Δy) with magnitude mi, and an IR source j which
is a field star with magnitude mj is given by

L(i, j ) ∝ Xc(mi) g(Δx, Δy) × Nf (mj ). (1)

With mi and mj frozen at measured values, Equation (1) is
a function of the indices i and j that define the two-source
hypothesis stated above. Equation (1) is formally known as a
“likelihood function”; the function arguments are the parameters
of the hypothesis, i and j. If we now consider all stars in our IR
catalog, the probability that star i is the counterpart and all the
other stars are field stars is given by

P (i) = K Xc(mi) g(Δx, Δy)
∏
i �=j

Nf (mj ) (2)

= K
Xc(mi) g(Δx, Δy)

∏
j Nf (mj )

Nf (mi)
, (3)

where K is a normalization constant.
The probability that no star is the counterpart, is simply

the likelihood that every star is a field star multiplied by the
likelihood that the counterpart is not in the X-ray catalog, and
thus

P (0) = K(1 − X)
∏
j

Nf (mj ). (4)

All possible models for the distribution of stars in our
position/magnitude volume have now been enumerated, and
so K can be determined since

P (0) +
∑

P (i) = 1. (5)

Substituting into Equations (3), (4), and (5) then yields,

P (0) = 1 − X

1 − X +
∑

j

Xc(mj ) g(Δxj ,Δyj )
Nf (mj )

(6)

and

P (i) =
Xc(mi ) g(Δxi ,Δyi )

Nf (mi )

1 − X +
∑

j

Xc(mj ) g(Δxj ,Δyj )
Nf (mj )

. (7)

Equation (7) is similar to Equation (5) of Sutherland &
Saunders (1992), though there is a significant difference, which
our derivation makes clear. Sutherland & Saunders (1992) use
the intrinsic magnitude distributions which extend down to
infinitely faint stars for the field and counterpart populations
(called n(m) and q(m) respectively in their paper). Our Nf (m)
and Xc(m) are the magnitude distributions in the catalogs, and
so differ from n(m) and q(m) by the (magnitude dependent)
completeness function for the catalog. The mathematics does
not make this distinction clear since c and f only ever appear as
a ratio, and so the completeness function cancels out. However,
this distinction will become important in Section 4 since it is
c and f that are determined from the catalog. To overcome this
problem Sutherland & Saunders (1992) introduced a magnitude
cutoff brighter than which the catalog was complete, below
which no stars were detected. Our interpretation allows us to
generalize their result to a completeness function that changes
slowly with magnitude.

It is useful to compare these equations with other related
techniques in common usage. There are two distinct threads
in the literature that claim descendence from Sutherland &
Saunders (1992). One decides how likely a star is to be a
counterpart using only Equation (1) of Sutherland & Saunders
(1992), the equivalent of c(m) g(Δx, Δy)/Nf (mj ), which is
often termed the likelihood ratio (e.g., Mann et al. 1997). They
then use the distribution of likelihood ratios to determine how
probable it is that a given star is the counterpart for a given X-ray
source (e.g., Oyabu et al. 2005). This clearly does not take into
account the other stars close to the error circle. Consider, for
example, two X-ray positions. X-ray position one has a star at
magnitude m and distance r from it, while X-ray position two
has two stars of magnitude m at distance r. Given that only one
star per X-ray position can be the counterpart, the star close to
X-ray position one should have a higher probability of being a
counterpart than either of the stars close to position two; a result
which the likelihood ratio fails to produce, but Equation (7)
achieves.

The second thread related to Sutherland & Saunders (1992)
does use the equivalent of Equation (7), which is sometimes
called the reliability of the source.5 This is exemplified by
Fleuren et al. (2012). However these techniques do not explicitly
calculate the probability that the counterpart of an individual
X-ray source is not in the catalog (P (0) as opposed to the global
variable X), although Rutledge et al. (2000) attempts to do so
using likelihood ratios. We believe the likelihood ratio alone is
not a useful statistic.

4. THE COUNTERPART MAGNITUDE DISTRIBUTION

To use Equations (6) and (7), one needs to measure the mag-
nitude distributions for both the field stars and the counterparts.
While the former is straightforward (it can be measured from
areas of sky clear of X-ray sources), the latter is problematical.
Previous work using the current approach to counterpart finding
has determined the magnitude distribution for the counterparts
by first measuring the magnitude distribution of all the stars
within, say, a 68% confidence error circle. A distribution of
field star magnitudes is then subtracted from this, which is cre-
ated from areas of sky where no X-ray sources are expected
(e.g., Luo et al. 2010).

The problem in our application in the crowded Galactic
plane is that our density of counterparts within the error circles
(∼1 arsec2) is so high that they will tend to crowd out the
field stars. For example, in some areas of our survey we expect
there will be roughly one field star of around K = 17 in every
two error circles. In a significant fraction of those error circles
a bright (perhaps K = 14) true counterpart star will produce
wings in the image that prevent detection of nearby faint field
stars. Hence within such error circles the observations tend to
be less sensitive and thus the catalog more incomplete, with a
brighter limiting magnitude than in the full field. As a result
the simple procedure such as that outlined by Luo et al. (2010)
would yield a field-subtracted magnitude distribution for the
counterparts which is negative at K = 17.

The impact this crowding effect can have on the derived
magnitude distribution is not small, as illustrated in Figure 2.
Here “counterparts” were inserted into the Trifid Nebula field
according to the distribution in magnitude and the fraction of

5 Confusingly, some authors who use only the likelihood ratio call the
probability they derive from the distribution of likelihood ratios the reliability
as well.
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Figure 2. Example of the effects of using simple field star subtraction on
the estimation of the counterpart magnitude distribution function for the Trifid
Nebula field. The asterisks show the distribution of magnitudes for all stars in the
error circles. The negative-going histogram is the negative of the distribution of
field star magnitudes taken from annular areas around the error circles. The result
of subtracting these two is the dashed blue histogram, which is an estimate of
the counterpart magnitude distribution. This should be compared with the actual
distribution of counterpart magnitudes which is the solid histogram. Note how
this procedure fails to reproduce the input counterpart magnitude distribution,
especially at faint magnitudes.

(A color version of this figure is available in the online journal.)

sources with X-ray counterparts found in Section 5 (the stars in
Figure 2). Any fainter field stars within the error circles were
then removed (as the error circles are typically less than an
arcsecond in radius this is a good simulation of the crowding),
unless there was a brighter field star within 0.′′8 of our simulated
counterpart, in which case the counterpart was removed. We
then selected all stars within typical 68% confidence circles of
these stars, and subtracted from their magnitude distribution
an estimated field-star magnitude distribution from annular
regions around each inserted star. The resulting estimate of
the counterpart magnitude distribution (the dotted histogram
of Figure 2) falls significantly short of the true distribution at
faint magnitudes by, for example, a factor of two at K = 17.

This over-subtraction problem is clearly present in the data of
Mann et al. (1997), where it was thought to be simply noise, and
was correctly identified by Rutledge et al. (2000). Of course,
our problem is more extreme than those quoted above, because
the MYStIX targets are crowded Galactic fields, as opposed to
the relatively uncrowded extra-galactic case.

One possible way of correctly measuring the counterpart
magnitude distribution is that proposed by Brusa et al. (2007).
They chose a set of field stars whose magnitude distribution
matched that of the X-ray sources, and then used the other stars
that fell within a given radius of them to estimate the field star
distribution which would be observed in the real error circles.
Unfortunately our field star distribution changes rapidly with
position, so we require an estimate close to the X-ray position.

To solve the problem requires a measurable quantity that is
related to the counterpart magnitude distribution, but which is
independent of the crowding. The distribution of counterpart
magnitudes required has already been defined in Section 3,
as the probability density function c(m). We will represent
cumulative distribution functions by upper case letters, and
thus the probability that the counterpart is brighter than (i.e.,

Figure 3. Illustrative probability distributions for the derivation of Equation (12).
The probability distributions Zc c(m) and Zf bf (m) for the counterparts and
brightest field stars respectively are shown as the solid curves. The dashed
curves below them show the effects of crowding. The dashed curve below
Zc c(m) is the probability distribution for the hypothesis that the brightest star is
a counterpart, and has a magnitude m, and is given by Zc c(m)[1−Zf Bf (m)]. The
dashed curve below Zf bf (m) is the probability distribution for the hypothesis
that the brightest star is a field star, and has a magnitude m, and is given by
Zf bf (m)[1 − Zc C].

magnitude smaller than) some magnitude m is given by

C(m) =
∫ m′=m

m′=−∞
c(m′)dm′, (8)

which leads to
dC

dm
= c(m). (9)

A distribution which is independent of crowding is the
probability density function for the brightest star (be it field
star or counterpart) in a given error circle, b(m). This is
straightforward to measure by choosing a given confidence
radius and then creating a histogram of the magnitudes of the
brightest stars found within each circle. However, if this is to
be a useful quantity we must establish the relationship between
it and c(m). Since the brightest star in the error circle may
be either a field star or a counterpart, we define the probability
density function of the brightest field stars in our sample of error
circles as bf (m). Of course both bf (m) and b(m) will have their
cumulative distribution functions Bf(m) and B(m) respectively.
As in Section 3, it is important to note that b(m), bf (m) and
c(m) are true probability density functions that are normalized
so they integrate one. However, the answer to the question “what
is the probability that the brightest star in a given X-ray circle
lies between magnitudes m and m + dm,” is Z b(m)dm, where Z
is the probability that there is one or more stars within the error
circle.

Given the above, we can now consider Figure 3, which
shows illustrative probability functions which might occur in a
relatively crowded error circle, where it is likely the counterpart
is bright, but there is a relatively large number of field stars.
Consider first the probability that there is one or more field
stars in the error circle and the brightest of those field stars
has a magnitude of 16. This is given by Zf bf(m) at m = 16,
where Zf is the fraction of error circles that have field stars in
them which are in our IR catalog. It is shown as the larger of
the two solid curves in Figure 3. However, for this field star
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to be the brightest star in the error circle, there must be no
counterpart brighter that outshines it. The probability there is a
counterpart brighter than m is the integral of c(m) from −∞ to
m, which given our definitions above is C(m), multiplied by Zc,
the fraction of X-ray sources that have counterparts within the
error circle and in the IR catalog. This is shown as the smaller
of the two solid curves in Figure 3. Thus the probability there is
not a counterpart that outshines the field star of magnitude m is
1 − Zc C(m). This allows us to write down the probability that
the brightest star in the error circle is a field star of magnitude
m as the combination of the following.

1. The probability there is at least one field star in the error
circle; Zf .

2. The probability that any field star has a magnitude m; bf (m).
3. The probability there is not a counterpart brighter than m;

[1 − Zc C(m)].

The resulting probability distribution

Zf bf(m)[1 − Zc C(m)], (10)

is shown as the dashed curve below Zf bf (m) in Figure 3. This
function must be symmetrical in bright stars and counterparts,
and so the probability the brightest star in the error circle is a
counterpart of magnitude m is

Zc c(m)[1 − Zf Bf(m)]. (11)

In the example shown in Figure 3 the counterparts are suffi-
ciently bright compared with the field stars that Bf(m) remains
small throughout the interesting range. Thus the term in brack-
ets in Equation (11) remains close to one, ensuring that the
dashed curve below Zf c(m) in Figure 3 remains close to the
solid curve. This demonstrates that the crowding has little effect
on the magnitude distribution of counterparts. By contrast the
dashed line showing the effects of crowding on the field stars
falls significantly below Zf bf (m), showing that crowding does
have an effect on these fainter stars.

We can now derive the probability distribution that there is one
or more stars within the error circle, and that the brightest star
is of magnitude m by summing the contributions from the field
stars and counterparts (Equations (10) and (11) respectively) to
give

Z b(m) = Zf bf(m)[1 − Zc C(m)] + Zc c(m)[1 − Zf Bf(m)].

(12)

A crucial distinction here is that the cumulative distribution
function of the magnitude of the brightest field star, Bf(m) is
not the same as the cumulative distribution function of field-star
magnitudes per unit area, NF (m). The latter is what is measured
if one simply plots the cumulative distribution function in
magnitude for a fixed area of the field. There is a relationship
between them, however, that can be derived in the following
way. Let the probability density function of the magnitudes of
field stars be f (m), the area of the error circle A, and the total
number of field stars (i.e., integrated over all magnitudes) per
square arcsecond in the IR catalog N. Then the probability there
is a field star between magnitudes m and m + dm in the circle is
ANf (m)dm. The relationship between F (m) and Bf(m) is

Zf Bf(m) = 1 − e−ANF (m). (13)

This formula has an intuitive derivation in terms of the fraction
of an area covered by randomly placed objects, but is probably

Figure 4. Comparison of the derived counterpart magnitude probability density
functions for the Trifid Nebula field. The dashed red histogram is the result of
the technique described in Section 4, the dashed blue line is the simple technique
from Figure 2. The solid histogram shows the input simulated probability density
function for the counterpart magnitudes.

better derived from the Poisson distribution as the chance of
not counting zero objects given a distribution with a mean of
ANf (m). It can be differentiated to give

Zf bf(m) = ANf (m)e−ANF (m). (14)

Combining the last three equations, and dropping the explicit
statement that the probability density functions are functions of
magnitude, gives

Zb = [1 − Zc C]ANf e−ANF + Zc c e−ANF . (15)

This equation can be understood as giving the probability
density function of the magnitudes of the brightest stars in
the error circles. The first term on the right is the contribution
of the counterparts, and a second term that of the field stars.
Re-arranging it to be explicit in Zc c gives,

Zc c = Z b eANF − [1 − Zc C]ANf. (16)

This equation is the principal result of this section, expressing
the probability density function for the distribution of counter-
part magnitudes (c, C) in terms of the measurable probability
density distribution for the brightest stars found in the error
circles (b) and the probability density function for field stars
(f, F). In principle this equation is for a single error circle, yet
the distributions are summed over all error circles. However it is
straightforward to show (by summing c over many error circles)
that Equation (16) holds for the same quantities averaged over
all error circles.

Equation (16) can be solved by first evaluating Zc c and Z b at
bright values of m where C is zero, and then proceeding to fainter
(larger) values of m. In Section 3 we required Xc, where X is
the fraction of X-ray sources that have counterparts anywhere in
the IR catalog (not just within an error circle). This one obtains
by simply dividing Zc c by the fraction of counterparts expected
to be enclosed in the error circle radius chosen.

The improvement in the estimation of the magnitude proba-
bility density function can be seen in Figure 4. There are two
reasons why the improvement in the estimate of the probability
density function for the counterpart magnitudes is crucial. First
if (as happens for the simple estimate between K = 17 and 18)
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the estimate of the number of sources incorrectly sinks to zero,
then no counterpart stars will be found in that magnitude range.
Second, this is our only way of estimating the relative number
of stars with counterparts between different magnitude ranges.

5. APPLICATION TO THE TRIFID NEBULA FIELD

There is a series of practical issues related to using the results
of Sections 3 and 4 that are best illustrated by following through
a single cluster as an example. We will do this using the MYStIX
Trifid Nebula field data where the X-ray sources are from the
Chandra X-ray Observatory and the IR sources are from UKIRT
data (Feigelson et al. 2013).

To test that our X-ray positions and uncertainties were
reliable, all stars with K < 15 and within 5′′ of an X-ray position
were selected and their differences in R.A. and decl. from the
X-ray position calculated. This distribution was then fitted as a
uniform field-star distribution plus a two-dimensional Gaussian
distribution whose width was that expected from the X-ray data
analysis. When the central position of the Gaussian was allowed
to run free in δR.A. and δdecl. we found a global shift of +0.′′1
in both axes. After correcting this offset, the Gaussian width
was allowed to be a free parameter, parameterized as a scale
factor times the given error circle radius, with a further fixed
value (“systematic”) uncertainty added in quadrature. The best
fitting scale factor was 0.78, which is very close to the 1/

√
2

one might expect since the X-ray positional uncertainty from
Kuhn et al. (2013a) is given as σ63 in the formula e(−r2/σ 2

63),
compared with the definition used here of e−0.5(r2/σ 2

39) (see
Appendix B). Thus the scale factor was fixed at 1/

√
2 which

yielded a systematic uncertainty of 0.′′072. Since the systematic
uncertainty is independent of the accuracy of the X-ray position,
we believe it represents the uncertainty in position in the IR
catalog. Its value is very close to the radius which includes 68%
of stars from our IR astrometric solution, which is approximately
0.′′13 (King et al. 2013), which translates to 0.′′086 in our
definition of σ39.

To derive the counterpart magnitude probability density
function, c(m), as described in Section 4 we must first decide
an area of error circle from which to draw the data to construct
the histogram. This problem is exactly analogous to the one
encountered in aperture photometry, where the issue is what
radius will optimize the signal-to-noise. There is no one radius
which is optimal over all ratios of background to object counts,
but a defensible choice is to optimize for the case when there are
many more field stars than counterparts, since this is where it is
crucial we obtain the best model. Naylor (1998) showed that in
this background-limited case the optimal radius is 0.6 times the
full width at half maximum, which corresponds to 1.4σ39. We
actually chose to use 1.51σ39 since this encloses 68% of all X-ray
counterparts. The field-star contamination is estimated using an
annular region whose inner radius is equal to that within which
99% of X-ray counterparts will fall, and an outer radius of twice
that.

There are two pathological cases of c(m) that are caused by
low number statistics. Our first provision against small-number
statistics is to determine c(m) from a large number of error
circles. We used the nearest 400 positions to the position in
question, and bins of one magnitude. Even then there were
some positions where inaccuracy in the subtraction of the field
star magnitude distribution led to a negative c(m). These occur
mostly at the faint end of the distribution and we replaced them
with zero. There were similar problems at the bright end of

the distribution where both c(m) and the field star magnitude
probability density function f (m) became zero. This could
lead to very bright stars being unassigned, when actually the
correlation of an X-ray position with a bright star is so unusual
that it should almost certainly be assigned as a counterpart.
This led us to extrapolate both c(m) and f (m) to arbitrarily
bright magnitudes, using c(m) ∝ 3m as a simple analytical
function that represented the data at somewhat fainter (larger)
magnitudes. In fact, the precise form is not important, as long
as the ratio c(m)/f (m) is large at bright m.

Having established the counterpart magnitude probability
density function, we then needed to evaluate Equations (6)
and (7) for each star in each error circle. This requires a
much more precise determination of the field-star magnitude
probability density function than the one used for determining
the overall counterpart magnitude distribution, since Nf (m)
is required separately for each error circle. Therefore it was
determined using an inner radius of 5′′, and an initial outer
radius of 50′′. If this resulted in fewer stars defining the
field-star probability density function than had defined the
counterpart distribution, the radius was increased until this
criterion was passed. The distribution of counterparts with
position g(Δxi, Δyi) is simply a two-dimensional Gaussian
normalized to integrate to one, and Xc(m) is derived as described
in Section 4. We used all stars out to a radius of either the 99.9%
confidence radius, or the radius at which g(Δxi, Δyi) = 0.1Nf ,
whichever was the greater.

The final output from this process is a probability for each
star that it is the counterpart, and the probability that there is
no counterpart. These data are available in the online version of
Table 2. Tables 2(a) and 2(b) give the NIR and Spitzer matches,
respectively, for all MYStIX fields with these datasets listed
in Table 2 of Feigelson et al. (2013). The tables give all stars
which have a likelihood of being the counterpart of greater than
0.05 (assuming a star falls within our search radius defined
above), the probability that each such star is the counterpart,
and the probability there is no counterpart in the IR catalog.
The number of sources in each waveband, and the numbers of
matches obtained for each MYStIX field are given in Table 1 of
Broos et al. (2013).

The most straightforward way of using these data is to accept
the most likely “model,” whether it be that a given star is the
counterpart, or that there is no observed counterpart. However,
there are examples where the statistics imply that no definitive
conclusion can be reached, for example when the probability for
the most likely counterpart falls below 0.5. We therefore accept
as counterparts for input into the Bayesian classifier (Broos
et al. 2013) only objects which have a probability of greater
than 0.8 of being the correct counterpart. Sources that satisfy
this probability threshold as being a counterpart to an X-ray
source are assigned MATCH_FLG = 1.

6. COMPARISON WITH NEAREST
NEIGHBOR MATCHING

A useful benchmark is the comparison of our matching results
to those from proximity-only matching. Our X-ray catalog
for the Trifid Nebula field contains 633 sources; the Bayesian
method finds counterparts for 395 of these (at a probability of
more than 0.8) and that there is no counterpart in the NIR catalog
for 137 of them (again with a probability of more than 0.8). For
comparison we define a proximity-only sample as consisting of
the closest star to each X-ray position, provided it falls within
the 99% confidence radius, which yields 507 counterparts. The
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Table 2
Matching Results

Column Label (Table 2(a)) Column Label (Table 2(b)) Units Description

XRAY_NAME XRAY_NAME X-ray catalog source name
XN_PROB_NO_CT XM_PROB_NO_CT Probability that no counterpart exists in the IR catalog
XN_PROB_CP XM_PROB_CP Probability for the first match
RA RA deg Right ascension (J2000) for first match
DEC DEC deg Declination (J2000) for first match
XN_PROB_CP_2 XM_PROB_CP_2 Probability for the second match
RA_2 RA_2 deg Right ascension (J2000) for second match
DEC_2 DEC_2 deg Declination (J2000) for second match
XN_PROB_CP_3 XM_PROB_CP_3 Probability for the third match
RA_3 RA_3 deg Right ascension (J2000) for third match
DEC_3 DEC_3 deg Declination (J2000) for third match
XN_PROB_CP_4 Probability for the fourth match
RA_4 deg Right ascension (J2000) for fourth match
DEC_4 deg Declination (J2000) for fourth match

Note. Columns are only filled if there are counterparts with P (i) > 0.05.

(This table is available in its entirety in FITS format in the online journal. A portion is shown here for guidance regarding its form and content.)

Figure 5. Comparison of the properties of the stars chosen as counterparts in
the Trifid Nebula field by proximity-only matching and our Bayesian technique.
The symbols show Bayesian matches with probabilities of being the counterpart
of greater than 0.99 (blue asterisks) and between 0.99 and 0.8 (red crosses).
Proximity-only matches are shown as open circles. The y-axis is K-band
magnitude of the star, the x-axis its distance from the X-ray position in units of
the error circle radius (see Appendix B). The dotted lines represent the edges
of circles that would contain 90%, 95% and 99% of the counterparts, and so
would be reasonable positions to cutoff a closest match search.

(A color version of this figure is available in the online journal.)

difference between the two samples is illustrated in Figure 5,
where for each counterpart its K-band magnitude is plotted as a
function of distance from the X-ray position, normalized by the
uncertainty in X-ray position. The stars that have a probability
derived by our Bayesian method of greater than 0.99 of being
the counterpart are marked with blue asterisks, and those whose
probability lies between 0.99 and 0.80 with red crosses. The
borderline at a probability of 0.99 has an obvious negative slope
(recall that the magnitude axis is reversed). This reflects the fact
that faint stars far from the X-ray position are more likely to be
field stars than stars of similar magnitude close to the position.

The open black circles in Figure 5 mark the proximity-only
counterparts. Where circles are filled with crosses or asterisks
it shows the proximity-only and Bayesian methods agree as to
which star is the counterpart, but it is clear there is a large
number (almost 100) of faint proximity-only counterparts that

the Bayesian method rejects. This is the behavior we expect;
the Trifid Nebula field is so crowded in the NIR that it is quite
likely that a faint star within an error circle is not the counterpart.
These “empty circles” are not simply cases of stars which have a
significant probability of being counterparts, but do not reach our
0.8 threshold. For around half of these positions the Bayesian
method gives a probability of more than 0.8 that there is no
counterpart in the NIR catalog, and only two of these faint stars
chosen only by the proximity method exceed a probability of
0.5 of being the counterpart. This means that roughly 20% of
the counterparts identified by the proximity-only method are
probably incorrect. Thus we conclude that in crowded fields
the Bayesian procedure outperforms proximity-only matching,
specifically by rejecting as counterparts faint field stars that
would be erroneously included in a catalog derived from taking
the closest neighbors.

One would expect there to be cases where there is a faint star
close to the X-ray position, and a brighter one a little further
away, which causes the Bayesian method to chose the brighter
star, while the proximity-only method chooses the fainter. In
fact there are only five such cases in our Trifid Nebula field
catalog, and for three of those the brighter star does not reach
the probability requirement of 0.8 to be taken as a counterpart.
So, while the displacement problem outlined in Section 1 is a
good example of how the proximity-only matching might go
wrong, the major displacement problem is that faint stars in the
catalog are chosen as counterparts when the true counterpart
probably lies below the completeness limit of the IR data. In the
terminology of Broos et al. (2011) (see their Figure 4), it is not
the “false matches” which the Bayesian technique suppresses,
it is the “false positives.”

In a more practical proximity-only matching scheme one
could limit the number of false positives by choosing a smaller
matching radius. This is illustrated in Figure 6 of Feigelson
et al. (2013) where the rate of false positives and true matches
are plotted as a function of matching radius. It makes clear that
for the Trifid Nebula field a smaller radius than 99% would be
appropriate.

Figure 6 of this paper shows the same plot as Figure 5 but
for the NGC 2264 catalog, which is much less crowded in
the NIR than the Trifid Nebula field. The divide between the
asterisks and the crosses in Figure 6 is set at a probability of
0.999, rather than the 0.99 used for the Trifid Nebula field.
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Figure 6. As Figure 5 but for NGC 2264, and with the division between asterisks
and crosses being drawn at 0.999.

(A color version of this figure is available in the online journal.)

These numbers were chosen to divide the sample of stars with
counterpart probabilities greater than 0.8 roughly in half, and so
this change tells us that in the less crowded field, counterparts
are, on the whole, more likely to be correct. There is still a small
number of faint objects that are chosen by the proximity-only
matching, which are rejected by our technique. The decline in
the number of these is simply that in a less crowded field, it is
less likely that proximity-only matching will find an unrelated
star within the error circle.

In the NGC 2264 field there are 24 objects that the Bayesian
procedure identifies as possible counterparts with a probability
of between 0.999 and 0.8 that lie beyond the 99% confidence
radius. Given there are a total of 763 matches, we would expect
only eight outside this radius. This population represents just
4% of the sources brighter than K = 14, and it is possible
that our astrometric uncertainties are non-Gaussian at this level.
Conversely, the median offsets between the X-ray and IR
positions for this subgroup is 0.′′8, well below the resolution
of Chandra and two pixels (with typical seeing of 2.5 pixels)
of the UKIRT data. Hence astrophysical explanations, such as
fainter stars lying undetected close to bright objects are also
possible. This interpretation is supported by the results of cross-
matching these 24 objects with the optical catalog of Mayne
et al. (2007), which has usable optical photometry for 14 of the
sample. Of those 12 lie in the pre-main-sequence region of the
color–magnitude diagram. Thus it seems likely that a significant
fraction of these stars are in pre-main-sequence binary systems
where one of the objects is an X-ray source.

7. COMPLETENESS

In the ideal case of perfect X-ray and IR positions in an
uncrowded field, the counterpart list would contain all pairings
of X-ray and IR sources whose fluxes lay above some specified
limits in both wavebands. Of course, in any band there is no
hard flux limit, instead there is a completeness function. So the
completeness of the counterparts list at a given X-ray and IR
flux is the product of the individual completeness functions for
each catalog, evaluated at those fluxes. Imperfect positions and
crowding add the possibilities of false positives, false negatives
and incorrect matches, whose occurrence will primarily be a
function of IR magnitude. If a sample is chosen with a very
high P (i) then false positives and incorrect matches will have

little impact upon it, and only false negatives will be important.
The fraction of false negatives can be estimated by dividing the
distribution of magnitudes of accepted counterparts by the true
distribution derived in Section 4 and shown in Figure 4. Hence
the counterpart list completeness at a given X-ray and IR flux is
the completeness of the two catalogs multiplied by the fraction
of false negatives at the appropriate IR magnitude.

8. AN APPROACH FOR MATCHING MANY CATALOGS

In Section 1 we introduced what appears to be a fundamental
asymmetry between our catalogs by introducing the terms
“master” for the X-ray catalog and “slave” for the IR data.
In fact, the equations remain symmetric provided one uses only
differences in position, since they are independent of which
catalog is considered first. The asymmetry is introduced in
Section 3 when one considers the probability that the counterpart
will have an IR magnitude that is drawn from a different
distribution from the IR magnitude distribution of field stars.
Specifically it is the term Xc(m)/Nf (m) which determines
which is the master and which the slave catalog. Clearly
the symmetry can be regained by introducing a similar term
that compares the likelihood that an X-ray source with an IR
counterpart has a given X-ray flux with the likelihood that an
X-ray source without an IR counterpart has that flux.

With that we believe all the pieces are now in place for a
full solution to the problem of matching sources from many
different wavebands to give spectral energy distributions for
those sources. One could construct the network of probabilities
that a given source is related to sources in other bands, and then
propose hypotheses that relate particular sources across bands,
and find the most likely.

Such a procedure would differ from that of Budavári & Szalay
(2008) in that one does not hypothesize a particular model for the
spectral energy distribution, which has the advantage of avoiding
using astrophysical information. It is closer to the approach of
Storkey et al. (2005), although they determine the distribution of
magnitudes for sources that are counterparts at the same time as
determining which sources are related. The best solution is then
iterated using the expectation maximization algorithm, whereas
our solution of determining it beforehand, while potentially less
accurate, is probably good enough and both computationally
and conceptually more straightforward.

9. CONCLUSIONS

We have shown that in typical Galactic plane survey data from
the new generation of NIR surveys such as UKIDSS (Lucas et al.
2008; Lawrence et al. 2007) and those from VISTA (Emerson
et al. 2004), choosing the closest NIR star to an X-ray position
can result in a significant fraction of the NIR counterparts being
incorrectly identified. This is because the density of faint stars
is so high that many X-ray error circles will, by chance, contain
a faint star that is unrelated to the X-ray source. We have
presented a method for finding reliable matches between X-ray
and NIR sources in the face of this extreme NIR crowding. The
method utilizes the data themselves to determine the magnitude
distributions of both the field stars and the counterparts to
the X-ray sources (see Section 4). This is then used in the
Bayesian framework of Sutherland & Saunders (1992) to derive
a probability that any given star is the counterpart (Section 3).

Applying this method to the case of the Trifid Nebula field,
where the crowding is particularly dense, we show that roughly
20% of the counterparts are mis-identified by classical matching.
In four MYStIX fields (the Trifid Nebula, the Eagle Nebula,
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NGC 6357 and M17) more than 10% of stars which are the
closest objects to an X-ray position and within a 99% confidence
error circle are identified as field stars by our technique, and that
those stars are concentrated systemically at faint magnitudes
(Section 6).

The MYStIX project is supported at Penn State by NASA
grant NNX09AC74G, NSF grant AST-0908038, and the Chan-
dra ACIS Team contract SV4-74018 (G. Garmire & L. Towns-
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Science Foundation.

Note added in proof. After this paper was accepted, Chris
Kochanek drew our attention to Brand et al. (2006). This paper
also has an expression for the probability that the counterpart is
not in the catalog. This differs from our Equation (6) since our
likelihoods include a term for IR, the magnitude distribution of
X-ray counterparts.

APPENDIX A

A DERIVATION FROM BAYES’ RULE

The proof given for Equations (6) and (7) in Section 3 is
derived from the fundamentals of the problem, and does not
use Bayes’ rule directly. A direct derivation from Bayes’ rule is
perhaps more rigorous, and certainly establishes the position of
these equations within modern statistical theory, though perhaps
gives less insight into the problem. For such a proof, we begin
by considering two hypotheses. The first is that there is no
counterpart in the catalog, H0, and the second that there is a
counterpart in the catalog H̃0, i.e., not H0.

To apply Bayes’ rule requires the likelihoods that H0 and H̃0

will result in the data, L(D|H0) and L(D|H̃0). These can be
derived by first considering a simplified case where all stars
have the same magnitude, and the stars are placed in a grid
of infinitesimal pixels. The likelihoods for this case we shall
denote with primes, L′(D|H0) and L′(D|H̃0). The pixels are of
area dy dx and each of them has a probability of being occupied
by a field star of O (the occupancy). O is so small there is no
chance of double occupancy. For a dataset with M of the pixels
occupied, L′(D|H0) is the likelihood that a model consisting
only of field stars will produce the observed pattern of filled
and empty pixels. It can be evaluated by working sequentially
through each pixel, and if it is occupied in the dataset, the
model has a likelihood O of matching it, if not 1 − O. Thus the
likelihood of the model where there is no counterpart in the data

matching the data pattern is L′(D|H0) = OM × (1 − O)T −M

where T is the total number of pixels.
Now consider the model where there is a counterpart to the

X-ray source in the dataset. This model can only produce the
observed catalog if the counterpart is one of the stars, and
the other M − 1 stars originate from the field. Cycling the
counterpart through all M stars gives the M ways H̃0 can produce
the data. Consider the case where star j is the X-ray source.
This means the field must produce the observed pattern less
star j, i.e., a pattern of M − 1 stars, for which the likelihood is
OM−1×(1−O)T −M+1 = L′(D|H0) (1−O)/O ≈ L′(D|H0)/O,
since O is small. This must be multiplied by the probability that
the counterpart has fallen in whichever pixel star j occupies.
This is simply g(Δxj , Δyj ) dy dx. So the likelihood that a model
where star j is the counterpart will produce the observed catalog
is

L′(D|Hj ) = L′(D|H0)
g(Δxj , Δyj ) dy dx

O
. (A1)

The sum over all j then gives

L′(D|H̃0) =
∑

j

L′(D|Hj ) = L′(D|H0)

×
∑

j

g(Δxj , Δyj ) dy dx

O
. (A2)

The next step is to remove the infinitesimals by expressing
O in terms of other quantities. The probability any pixel is
occupied is approximately the number of stars per unit area in
the catalog, N, multiplied by the area of a pixel, dy dx. Hence
O = N dy dx, and so our expression for the likelihood of H̃0 is

L′(D|H̃0) = L′(D|H0)
∑

j

g(Δxj , Δyj )

N
. (A3)

We can now change from L′ to L by multiplying L′ by the
probability that the stars lie at the observed magnitudes. For
L(D|H0) the factor is

∏
i f (mi) where the product is taken over

all stars in the catalog. Thus

L(D|H0) = L′(D|H0)
∏

i

f (mi). (A4)

For each term in Equation (A3) which contributes to L(D|H̃0)
there will be a similar factor, except the sum must omit star j,
and include the probability that the counterpart has a magnitude
mj, c(mj ), hence

L(D|H̃0) = L′(D|H0)
∑

j

c(mj )g(Δxj , Δyj )
∏

i �=j f (mi)

N

=
∑

j

c(mj )g(Δxj , Δyj )L(D|H0)

Nf (mj )
. (A5)

The remaining terms in Bayes’ rule

P (H0|D) = P (H0)L(D|H0)

P (H0)L(D|H0) + P (H̃0)L(D|H̃0)
, (A6)

are the priors, which are simply the fraction of stars which do
not have counterparts

P (H0) = 1 − X (A7)
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Table 3
Ratios of Error Circle Radii

99.0 95.0 90.0 68.2 63.2

39.3 3.04 2.45 2.15 1.51
√

2
63.2 2.15 1.73 1.52 1.07
68.2 2.00 1.62 1.42
90.0

√
2 1.14

95.0 1.24

Note. The results are the numbers obtained if the radius of the error circle that
encloses the percentage given on the top row is divided by the radius given in
the first column.

and the fraction which do

P (H̃0) = X. (A8)

This yields

P (H0|D) = 1 − X

1 − X +
∑

j

Xc(mj ) g(Δxj ,Δyj )
Nf (mj )

(A9)

and

P (H̃0|D) =
∑

j

Xc(mj ) g(Δxj ,Δyj )
Nf (mj )

1 − X +
∑

j

Xc(mj ) g(Δxj ,Δyj )
Nf (mj )

. (A10)

If we now consider the hypothesis Hi, that star i is the
counterpart, as we have no prior information as to which star is
the counterpart

P (Hi |D) =
∑

i

P (Hi |D)
L(D|Hi)∑
i L(D|Hi)

= P (H̃0|D)
L(D|Hi)

L(D|H̃0)

=
Xc(mi ) g(Δxi ,Δyi )

Nf (mi )

1 − X +
∑

j

Xc(mj ) g(Δxj ,Δyj )
Nf (mj )

. (A11)

Equations (A9) and (A11) correspond to Equations (6) and (7)
derived in Section 3.

APPENDIX B

THE DEFINITIONS OF σ

For a two-dimensional Gaussian there are at least three
definitions of the quantity σ in common usage, and so to
avoid confusion in this paper we refer to them by using a

subscript that represents the percentage of the probability a
circle of radius σ encloses. Sometimes authors will quote an
error circle that encloses 68.2% of the probability (a definition
of 1σ in one dimension) which we denote σ68. However, it is
perhaps more logical to take the definition of σ from the two-
dimensional formulae e−(r/σ63)2

or e−0.5(r/σ39)2
, where σ63 and

σ39 enclose 63.2% and 39.3% of the probability respectively.
If one works with independent Gaussians in x and y of the
form e−0.5(x/σx )2−0.5(y/σy )2

then if σx = σy then e−0.5(x2+y2)/σ 2
x =

e−0.5(r/σx )2
, and thus σx = σ39. The relationships between all

these radii are given in Table 3.
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