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Abstract

Segmentation of the lumbar spine in 3D is a necessary step in numerous medical

applications, but remains a challenging problem for computational methods due to

the complex and varied shape of the anatomy and the noise and other artefacts

often present in the images. While manual annotation of anatomical objects such

as vertebrae is often carried out with the aid of specialised software, obtaining even

a single example can be extremely time-consuming. Automating the segmentation

process is the only feasible way to obtain accurate and reliable segmentations on

any large scale.

This thesis describes an approach for automatic segmentation of the lumbar spine

from medical images; specifically those acquired using magnetic resonance imaging

(MRI) and computed tomography (CT). The segmentation problem is formulated as

one of assigning class labels to local clustered regions of an image (called superpixels

in 2D or supervoxels in 3D). Features are introduced in 2D and 3D which can be used

to train a classifier for estimating the class labels of the superpixels or supervoxels.

Spatial context is introduced by incorporating the class estimates into a conditional

random field along with a learned pairwise metric. Inference over the resulting

model can be carried out very efficiently, enabling an accurate pixel- or voxel-level

segmentation to be recovered from the labelled regions.

In contrast to most previous work in the literature, the approach does not rely on

explicit prior shape information. It therefore avoids many of the problems associated

with these methods, such as the need to construct a representative prior model of

anatomical shape from training data and the approximate nature of the optimisation.

The general-purpose nature of the proposed method means that it can be used to

accurately segment both vertebrae and intervertebral discs from medical images

without fundamental change to the model.

Evaluation of the approach shows it to obtain accurate and robust performance in

the presence of significant anatomical variation. The median average symmetric

surface distances for 2D vertebra segmentation were 0.27 mm on MRI data and

0.02 mm on CT data. For 3D vertebra segmentation the median surface distances

were 0.90 mm on MRI data and 0.20 mm on CT data. For 3D intervertebral disc

segmentation a median surface distance of 0.54 mm was obtained on MRI data.
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1 Introduction

This thesis describes an approach for automatic segmentation of the lumbar spine

from medical images. Automatic segmentation is one of the fundamental tasks in

medical image analysis and forms a necessary step in numerous medical applications.

In general terms the segmentation problem can be formulated as one of automati-

cally assigning labels to the pixels or voxels of an image, which indicate the object

classes to which they belong. This results in a segmentation mask from which the

anatomical object(s) of interest can be extracted for further processing and analysis.

Although much research has been devoted to this problem, it remains very challeng-

ing for automated computational methods to obtain accurate results. In addition,

the highly complex and varied anatomy of the lumbar spine make it a particularly

difficult problem in medical image segmentation.

Although manual annotation of anatomical objects such as vertebrae and interver-

tebral discs is often carried out with the aid of specialised software, obtaining even

a single example can be extremely time-consuming [Cook et al., 2012]. In addition,

manual delineation of anatomical objects can be highly subjective and prone to both

intra- and inter-annotator variability [Suetens, 2009]. Automating the segmentation

process is the only feasible way to obtain accurate and reliable segmentations on

any large scale. This remains a difficult task for computational methods due to the

complexity of the anatomy (see Figures 2.1 and 2.2) and the various imperfections

often present in the images, such as noise and intensity inhomogeneity.

Previous work on spine segmentation has focused predominantly on computed to-

mography (CT), in part due to the generally higher contrast between bone and

surrounding tissue. However, magnetic resonance imaging (MRI) is the preferred

imaging modality for many applications as it does not use ionising radiation. Be-

cause of this, for most non-clinical applications MRI is likely to be the only way

of acquiring scans of the spine from healthy subjects. Although automatic segmen-

tation of MR images presents additional challenges due to the lower contrast and

usually more limited resolution, there is a strong motivation for a method which

can operate effectively on MRI data. A reliable method for automatic segmentation

may also allow the use of MRI in certain clinical applications where CT is currently

used predominantly.
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Recent work on spinal segmentation has tended to focus on incorporating prior

shape information into the model [Kadoury et al., 2013, Mizaalian et al., 2013,

Kirschner et al., 2011, Lim et al., 2013, Ma and Lu, 2013, Klinder et al., 2009].

One major drawback of shape-based approaches is their reliance on accurate prior

knowledge of anatomical variation to constrain the segmentation. Constructing

a statistical model of shape usually involves the precise placement of anatomical

landmarks across a representative training dataset, a step which is often carried out

manually by an expert. In addition, a representative model of anatomical shape

requires a large enough set of annotated training images in order to capture most of

the global variation in shape. As the acquisition and manual annotation of medical

images is a very laborious and potentially expensive process, this requirement is

often prohibitive. Existing methods also tend to rely on accurate initialisation of

the algorithm to ensure that the optimisation process does not become trapped at

a local minimum, which can result in a poor segmentation.

This thesis presents an alternative approach to lumbar spine segmentation that

makes extensive use of machine learning methods to both find effective representa-

tions of the image data that are robust to noise and intensity inhomogeneity and to

use those representations for accurate prediction. An advantage of this approach to

segmentation is that the resulting method is not completely task-dependent, and can

therefore be applied to segment different anatomical structures without changing the

underlying model. For example, the segmentation of intervertebral discs (IVDs) has

typically been treated as an independent problem in the literature, employing spe-

cialised methods differing from those used for vertebra segmentation. The following

chapters show that it is possible to obtain accurate solutions to both problems by

employing a more general-purpose method. The direct applicability of the method

to different medical imaging modalities is also demonstrated.

1.1 Approach

The primary goal of the thesis is an accurate and reliable method for segmentation

of both vertebrae and intervertebral discs from 3D MR images. Although focused on

MRI, the flexibility of the approach is also demonstrated by evaluating it on compa-

rable CT data, showing that accurate results can be obtained without fundamental

change to the model.

The segmentation problem is formulated as one of assigning class labels to local clus-

tered regions of an image (called superpixels in 2D or supervoxels in 3D). Operating

on superpixels or supervoxels reduces computational complexity and enables descrip-

tive features to be extracted to characterise the different classes. Machine learning
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techniques are used both to learn effective features for the superpixels/supervoxels

and to train a classifier for estimating the class labels. Spatial context is introduced

by incorporating the classifier estimates into a conditional random field along with a

learned pairwise metric to promote spatial consistency. Inference over the resulting

model can be carried out very efficiently using a class of algorithms called graph

cuts, enabling an accurate pixel- or voxel-level segmentation to be recovered from

the labelled superpixels or supervoxels.

One advantage of the proposed approach is that it does not rely on explicit prior

knowledge of anatomical shape to constrain the optimisation. This minimises the

amount of manual intervention required by human annotators and makes it possible

to adapt the approach to other segmentation tasks without requiring any radical

change to the model. The resulting method fully automates the segmentation pro-

cess, with no additional manual initialisation or interaction required on the part of

the user.

1.2 Contributions and Overview

The main contribution of the thesis is the introduction of a novel approach for

automatic segmentation of the lumber spine from medical images. The approach is

evaluated extensively on CT and MRI data consisting of scans of lumbar vertebrae

and intervertebral discs and is shown to obtain state-of-the-art performance when

compared to existing methods.

Chapter 2 starts by providing background material for the following chapters and

reviewing a number of existing approaches to lumbar spine segmentation. The

chapter also provides details on the annotated datasets and methodology used for

the quantitative evaluation of segmentation results.

In Chapter 3 a method for automated segmentation of lumbar vertebrae from 2D

image slices is introduced. The method is based on a conditional random field

(CRF) operating on superpixels and incorporating learned models into the poten-

tial functions. A set of superpixel features is described which includes information

characterising the intensity, texture, location and edge response of the superpixels.

The features are used to train a classifier for estimating the class labels of the su-

perpixels. It is shown that distance metric learning can be incorporated naturally

into a graph-based segmentation framework by defining an appropriate second-order

term for the CRF. The effectiveness of the method is demonstrated on both MRI

and CT images of lumbar vertebrae, where the segmentation results are competitive

with existing approaches.
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In Chapter 4 the method introduced for 2D segmentation is developed and extended

to the problem of 3D segmentation of the lumbar spine. More specifically, the

chapter is focused on segmentation of vertebrae and intervertebral discs from 3D MR

images. It is shown that unsupervised feature learning can be used as an alternative

to standard hand-designed texture descriptors for characterising supervoxels in 3D.

This enables features to be extracted rapidly over 3D volumes and used to train

classifiers to discriminate between the different classes. To this end novel supervoxel

features are introduced based on encoding the responses from dictionaries of filters

learned over volume pyramids. By learning the features over multiple scales, larger-

scale spatial structure can be represented while ensuring the dictionary learning

procedure remains tractable. The method is evaluated on 3D MRI and CT datasets

of lumbar vertebrae and intervertebral discs and in all cases is shown to obtain

results competitive with existing approaches. The chapter also discusses additional

experiments undertaken to evaluate the performance of the method. In particular,

an investigation is carried out to determine how the size of the training dataset

affects the resulting performance.

Finally, Chapter 5 concludes the thesis and summarises the results from the preced-

ing chapters. Possible further extensions of the approach are discussed along with

potential applications to other tasks in medical image analysis.
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2 Background and Related Work

This chapter provides the necessary background material for the rest of the thesis.

The initial sections describe the problem of lumbar spine segmentation and discuss

issues related to the different modalities used to acquire the images. A number of

existing approaches to the problem of spine segmentation are then reviewed. Finally,

details are provided on the annotated datasets and the methodology used to evaluate

the segmentation results presented in the rest of the thesis.

The chapter is organised as follows: Section 2.1 describes the anatomy of the lumbar

spine and introduces the problem of automatic segmentation along with potential

applications. Section 2.2 gives an overview of the two imaging modalities used in the

thesis, namely magnetic resonance imaging (MRI) and computed tomography (CT),

including issues associated with the imaging of bone. Section 2.3 reviews existing

approaches to spine segmentation, focusing on those which are most relevant to the

segmentation of vertebrae and intervertebral discs from magnetic resonance images.

Section 2.4 considers the issue of how segmentation quality is to be evaluated and

Section 2.5 describes the annotated datasets used throughout the following chapters

of the thesis.

2.1 Introduction

2.1.1 The Lumbar Spine

The human lumbar spine consists of five separate vertebrae, named according to

their location in the vertebral column [Bogduk, 2012]. As shown in Figure 2.1, they

are labelled L1 to L5 and are positioned between the thoracic vertebrae above (T1–

T12) and the sacrum in the lower region of the spine (S1–S5). The lumbar spine is

the main weight-bearing section of the spine and consequently plays an important

role in the biomechanics of the spine. The lumbar vertebrae themselves are relatively

complex structures, composed of multiple anatomical parts. This is illustrated in

Figure 2.2, which shows the anatomical features of an individual lumbar vertebra.

The largest part of a lumbar vertebra is the vertebral body, which forms the anterior

part of the vertebra. The interior of the vertebral body is composed of trabecular
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Figure 2.1: Anatomical outline of the human spine [Kurtz and Edidin, 2006]. The
lumbar spine is shown in green with the vertebrae labelled from L1 to
L5. The intervertebral discs are shown in yellow.

bone, which is an irregular lattice structure containing bone marrow. The interior of

trabecular bone is surrounded by an outer layer of hard cortical bone. The vertebral

body is joined to the pedicles and posterior elements of the vertebra, which include

the thin transverse and spinous processes.

Located between the vertebral bodies of each pair of adjacent vertebrae are the in-

tervertebral discs (IVDs), which also play a crucial role in the biomechanics of the

lumbar spine by allowing flexibility [Bogduk, 2012]. Each individual IVD consists

of a central fluid-containing mass called a nucleus pulposus surrounded by an annu-

lus fibrosus consisting of an ordered arrangement of collagen fibres embedded in a

highly-hydrated gel. Unlike the lumbar vertebrae, the individual IVDs are relatively

uniform in terms of their shape and have a much simpler geometry. Note however

that pathologies leading to degeneration of the IVDs can deform the shape and ap-

pearance considerably, for example due to herniation or displacement [Modic and

Ross, 2007].
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Figure 2.2: Anatomical features of an individual lumbar vertebra.

2.1.2 Segmentation of the Lumbar Spine

In order to study the properties of the lumbar spine using computational methods, a

necessary step is to first segment the lumbar spine from scans of individual subjects.

This involves assigning to each pixel or voxel of the image an associated label, which

expresses the class to which it belongs (e.g. vertebra or background). Figure 2.3

shows images of lumbar vertebrae and intervertebral discs acquired using MRI and

CT. Medical images are typically represented as stacks of such 2D images — called

slices — which can later be rendered in three dimensions for visualisation. Although

segmentation can be carried out manually, it is extremely time-consuming to obtain

even a single example as it requires the careful delineation of the anatomy in each

individual slice of the image stack. By automating the segmentation process using

computational methods, this would make it possible to obtain segmentations from

a much larger population of subjects.

Automating the lumbar spine segmentation process requires that the lumbar ver-

tebrae and intervertebral discs be segmented from multi-slice MR or CT images of

the spine.1 Ideally, the segmentation framework should be as automatic as possible,

minimising the amount of manual input required to obtain accurate and consistent

results. This is a problem of considerable difficulty due to the varying shape and size

of the lumbar spine between subjects and the overlapping intensity values of bone

with other non-bone structures in MR images. Comparing the two images in the

top row of Figure 2.3, it can be seen that CT provides a significantly higher contrast

between bone and surrounding tissue when compared to MRI. However, due to the

characteristics of CT imaging it is unsuitable for acquiring scans of the interverte-

bral discs of the spine, as can be seen by comparing the images in the bottom row of

Figure 2.3. A more detailed description of the properties of images acquired using

the two modalities of MRI and CT is provided after discussing potential applications

1Note that this is distinct from volumetric imaging, in which full (isotropic) 3D volume images are
obtained [Hashemi et al., 2010]. For the images considered in the thesis, typically the in-plane
resolution will differ from the slice thickness.
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Figure 2.3: (Top row) Axial cross-sections of two example lumbar vertebrae acquired
using T1-weighted MRI (left) and CT (right). The yellow dots are pro-
vided for reference and mark the location of the spinal canal in both
images. (Bottom row) Sagittal views showing locations of intervertebral
discs (indicated by yellow arrows) in a T2-weighted MR image and a CT
image, respectively.

of lumbar spine segmentation.

2.1.3 Applications

One application area which would benefit greatly from automated segmentation is

statistical modelling of the shape of the lumbar spine. Statistical models of anatomy

have been applied to numerous problems in medical image analysis, such as detect-

ing specific anatomical structures and measuring the variation in shape between

subjects [Cootes and Taylor, 2004, Meakin et al., 2009]. Statistical models of shape

enable an analysis of the anatomical differences between multiple subjects, as well

as potentially providing insights into pathologies associated with the anatomy.

There are also clinical implications of inter-subject shape variation, which may imply

that certain individuals are more prone to injury or pathology [Meakin et al., 2009].
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As an example, the sagittal2 shape of the spine is thought to be associated with

low-grade spondylolisthesis, in which one or more vertebrae are displaced relative

to the vertebrae below [Roussouly et al., 2006]. Understanding the shape variation

of individual lumbar vertebrae can allow for a better diagnosis of vertebral fractures

and other pathologies of the spine [Whitmarsh et al., 2012]. It is hypothesised

that the shape of individual vertebrae may contribute to the overall shape of the

spine. In constructing a 3D statistical model of the lumbar spine, this could help

to explain the source of spinal shape variation between subjects. A fully automated

segmentation method would also enable further biomechanical analysis of the lumbar

spine by providing a surface model of the lumbar vertebrae and intervertebral discs.

A similar approach has been taken in previous studies of bone structures, such as in

Bryan et al. [2009] where a 3D statistical model of the whole femur bone was used to

study fracture risk. This was carried out using finite element analysis, which enables

numerical modelling of biomechanical properties such as stress [Kurtz and Edidin,

2006]. It has been recently noted in the literature that automatic segmentation is

one of the major bottlenecks in constructing subject-specific finite element models

of the spine [Jones and Wilcox, 2008].

In addition to providing a means for computational analysis of the lumbar spine,

there are also direct clinical applications for automated lumbar spine segmenta-

tion. Computational tools for computer-aided diagnosis and surgical planning are

increasingly being used to facilitate the routine work of clinicians [Suetens, 2009]. An

important application of automated segmentation in this area is in aiding the diag-

nosis of intervertebral disc degeneration and subsequent treatment planning [Modic

and Ross, 2007, Violas et al., 2007]. Automated computational methods have the

potential to significantly reduce the time required for diagnosis, while at the same

time reducing errors due to operator variability. One of the contributions of the

thesis is the introduction of a fully automated method for 3D intervertebral disc

segmentation from MR images, presented in Chapter 4.

Another potential clinical application of lumbar spine segmentation is in the auto-

mated detection of vertebral fractures, which could be achieved by using the infor-

mation given by the automatic segmentation to infer the particular fracture status of

the vertebrae. At present, the assessment of patients with traumatic spinal injuries

is one of the most challenging tasks for a radiologist [Yao et al., 2012]. Due to the

difficulty in visually assessing vertebral fractures and the variation between opera-

tors, they are often not recognised clinically [Hospers et al., 2009]. Computational

methods could potentially help to reduce the time required to determine subsequent

treatment planning; this would consequently reduce further patient suffering due to

delays in detection and diagnosis.

2Sagittal refers to a side view of the spine, such as shown in Figure 2.1 [Hashemi et al., 2010].
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2.2 Imaging Modalities

In this section the two different medical imaging modalities used in the thesis are

described. The two modalities have specific advantages and limitations which lend

themselves to certain applications and make them unsuitable for others.

2.2.1 Magnetic Resonance Imaging (MRI)

This thesis is primarily concerned with the segmentation of images obtained through

magnetic resonance imaging (MRI). In contrast to alternative medical imaging tech-

niques, such as computed tomography (CT), MRI does not involve potentially harm-

ful exposure to ionising radiation and can therefore be used for obtaining images of

healthy subjects. MRI also has technical advantages for certain applications, such

as greater soft tissue detail and the ability to image in any plane [Withey and Koles,

2007]. The following is an outline of the basic principles behind MRI.

MRI focuses predominantly on the imaging of tissues containing high quantities of

hydrogen nuclei, such as brain, organ and muscles [Hashemi et al., 2010]. When

exposed to an external magnetic field, the spins of the protons in the nuclei align

with the field. A radio frequency (RF) wave with a specific frequency (called the

Larmor frequency) excites the protons. In returning to their original alignment after

the RF pulse is turned off, they generate an MR signal. Spatial encoding is used

to differentiate between distinct areas of the subject and to construct the image

[Hashemi et al., 2010].

The protons return to their original alignment by relaxing back into their lowest

energy state, referred to as the equilibrium state. This return to the equilibrium

state is called relaxation, of which there are two different kinds: T1 (Spin-lattice)

relaxation and T2 (Spin-spin) relaxation. The relaxation times of both T1 and

T2 depend significantly on the tissue type, although T1 is always larger than T2.

The process of T1- and T2-weighting allows the image contrast to be enhanced

for a particular tissue type by exploiting the different relaxation times [Hashemi

et al., 2010]. For example, T2-weighting is often used for acquiring images of the

intervertebral discs as the presence of fluid inside of the discs normally causes them

to show up as dark regions in T1-weighted images.

There are certain limitations associated with MRI, which have implications for image

segmentation. These include the presence of intensity inhomogeneities in the result-

ing image, sometimes referred to as the bias field [Guillemaud and Brady, 1997]. The

images can contain high levels of (random) noise caused by external RF interference

or internal defects and imperfections. Motion artefacts can also be present in the
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image, either due to small movements of the subject, or periodic changes (such as

occur inside blood vessels). Any segmentation method dealing with MRI must take

into account these issues, in the simplest case by applying pre- or post-processing to

the image. However in certain cases artefacts may also exist, such as geometric dis-

tortion caused by gradient power drop-off, which are much more difficult to counter

directly through image processing techniques [Hashemi et al., 2010].

MRI of Bone

As MRI is particularly effective at imaging soft tissue, most of the segmentation

methods existing in the medical image analysis literature are applied to problems

in this domain. An important example in this area is the separation of brain MR

images into white matter, grey matter and cerebrospinal fluid [Zhang et al., 2001].

There are significantly fewer examples dealing with the segmentation of structures

composed of bone, which can introduce additional challenges. Discussed next are

some of these challenges and how they relate to lumbar spine segmentation.

As bone by itself appears dark in MR images, what is actually seen in the image

is a mixture of bone, fat and water. Given that there are often other structures in

the image containing fat and water, this can lead to overlapping intensity ranges.

As a consequence, simpler approaches to segmentation, such as those based on

intensity thresholding or basic edge detection, are not applicable as they result in

too many errors. In addition, anatomical objects such as vertebrae have complex

geometries which vary significantly between subjects. In particular, the long and

thin posterior elements of the vertebrae can be extremely difficult to distinguish

due to partial volume effects and intensity overlap with surrounding tissue. This

difficulty is compounded by the often limited resolution of images acquired using

most current MRI scanners.

2.2.2 Computed Tomography (CT)

Computed tomography (CT) is one of the predominant imaging modalities for ob-

taining scans of the spine. In addition, most existing approaches to spine segmenta-

tion in the literature are applied to CT in part due to the greater contrast between

bone and surrounding tissue when compared to MRI. Although the physical and

mathematical foundations of CT are beyond the scope of this chapter, a description

is provided in this section of the basic concepts involved in CT imaging and how it

differs from MRI.

Images are acquired in CT by sending X-rays through the subject from different

directions to obtain a set of 2D slices, which are then used to reconstruct a 3D
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representation of the object of interest [Suetens, 2009]. One or more X-ray sensors

are placed against the subject to detect the incoming source X-rays after passing

through the subject. The intensity of a point on the resulting image is proportional

to the energy of the X-rays impacting on that point after having passed through the

subject. For example, structures composed of bone mineral provide good contrast

due to greater attenuation of the X-rays on subsequently reaching the sensors. Cru-

cially, the contrast of the resulting image depends on the dose (i.e. the amount of

radiation the subject is exposed to). In general, lowering the dose used to acquire

the images leads to a degradation in image quality, making it harder to discern

finer anatomical details. Due to concerns about the increasing and routine usage of

CT imaging in a clinical setting, the recent trend has been towards imaging with

minimum possible dosages [Suetens, 2009].

Although CT provides good contrast for bone and a shorter scanning duration com-

pared to MRI, the main disadvantage is the exposure to potentially harmful ion-

ising radiation. This makes it unsuitable for most of the non-clinical applications

described earlier in this chapter, where the subjects are assumed to be healthy. As

noted previously, another limitation of CT is that it is generally not adequate for

acquiring images of the intervertebral discs, whereas T2-weighted MRI is able to

provide good contrast due to being more capable of imaging structures composed

of soft tissue. However, there do exist a number of important clinical applications

of lumber spine segmentation for which CT is a suitable modality. These include

the automated analysis and diagnosis of vertebral fractures and other traumas of

the spine, as well as assisting in the planning of surgical procedures involving the

lumbar spine.

2.3 Review of Spine Segmentation Methods

The general problem of image segmentation is fundamentally ill-posed [Hadamard,

1923]. This implies that there is no unique formulation of the problem offering a

stable algorithmic solution; additional regularisation assumptions (such as smooth-

ness) are instead required in order to constrain the set of possible solutions. As

a consequence the type of approach used for medical image segmentation is often

dependent on the particular problem under consideration, taking into account in-

formation such as the shape and appearance of the anatomy and the properties of

the imaging modality used to acquire the images.

This section describes a number of existing methods in the literature that are spe-

cific to spine segmentation. As mentioned previously, existing methods for spine

segmentation tend to focus on CT and are much less often evaluated on MRI data.
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The focus of this review is on methods that are likely to be applicable to both

modalities, although the methods may need to be adapted to cope with the addi-

tional challenges associated with MRI. The review is also focused predominantly on

3D segmentation, both to limit the scope and also because most methods for 2D

segmentation are not directly applicable to 3D data without fundamental changes

being made.

The review is organised according to the general segmentation framework to which

the methods belong. Although this distinction is not always easy to make, most

existing methods tend to fall into one of a few general classes with a common un-

derlying approach, or are combinations thereof. In each section a brief description

of the general framework is given, followed by a number of specific applications to

spine segmentation and a discussion of their particular strengths and weaknesses.

2.3.1 Statistical Shape Models

Statistical shape models are commonly used for medical image segmentation as they

provide a convenient way of incorporating prior knowledge of anatomy to guide the

segmentation algorithm [Heimann and Meinzer, 2009, Castro-Mateos et al., 2014].

By enabling a global, top-down approach to segmentation, shape models can be

more robust to local image variation than methods based purely on local properties

of the images. The main difficulty associated with using shape models is how to

construct an accurate and representative model of shape given a necessarily finite

set of training images.

Although there exist numerous techniques for representing shape in a form amenable

to automated processing, statistical shape models are the most common in medical

image analysis [Heimann and Meinzer, 2009]. In the point distribution model (PDM),

a shape is described by a set of N points placed on the object:

p = {(x1, y1, z1), . . . , (xN , yN , zN)}. (2.1)

These points are called landmarks and typically correspond to salient anatomical fea-

tures which are preserved between all subjects in the population. Alternatively the

landmarks may be defined mathematically or geometrically, for example as points

of high curvature or other extrema.

In order to construct a statistical shape model, the landmarks from each example

in the training data must be aligned so that they are in correspondence. The most

common method for aligning the training examples is generalised Procrustes analysis

(GPA) [Gower, 1975]. Essentially GPA transforms the training examples to minimise

the Euclidean distance to the mean shape (i.e. the mean of the landmark points in
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the training set). After alignment of the shapes using GPA, dimensionality reduction

is applied to find the principal modes which best describe the observed variation.

This is usually carried out using linear principal component analysis (PCA) [Jolliffe,

2002].

As the set of landmark points p describe the shape of an object, valid shapes can

be approximated by a linear combination of modes (eigenvectors), written as

p = p̄ +
∑
i

bivi (2.2)

where p̄ is the mean shape vector, vi are the orthogonal modes of shape variation

and bi are the shape parameters [Cootes and Taylor, 2004]. By changing the shape

parameters, variations around the mean shape can be obtained. A common choice

is to limit the range of each parameter bi to [−3νi, 3νi] where νi is the associated

eigenvalue, which constrains it to be within ±3 standard deviations of the mean.

Note that this assumes the population of shapes follows a Gaussian distribution,

which is not always a reasonable assumption [Cremers et al., 2003, Kirschner et al.,

2011]. This issue is discussed in more detail after a description of how shape models

can be used for segmentation.

The most widely used segmentation techniques incorporating statistical shape mod-

els are the so-called active shape models (ASMs) [Cootes et al., 1995]. These al-

gorithms use statistical shape models learned from a representative training set of

example shapes (expressed as landmark points) to constrain the segmentation to

be within some plausible range of shape variation. The performance of ASM meth-

ods depends to a large extent on the quality of the learned shape model, which in

turn requires a large enough training set of (usually manually) annotated data with

corresponding landmarks. Active appearance models (AAMs) differ from ASMs by

modelling the appearance properties of the region covered by the structure, rather

than just the shape [Cootes and Taylor, 2004]. They are essentially an extension

of ASMs which also incorporate models of the object appearance by taking into

account intensity and textural properties of the image. These models have gener-

ally superseded purely ASM-based approaches to segmentation, mainly due to the

performance increase obtained when additional features of the object are incorpo-

rated into the model [Cootes and Taylor, 2004]. A number of existing approaches

to vertebra segmentation are based on active shape and appearance models or are

extensions of the original techniques [Kadoury et al., 2013, Mizaalian et al., 2013,

Kirschner et al., 2011, Pereanez et al., 2015, Castro-Mateos et al., 2015].

In Mizaalian et al. [2013] the authors present a method for 3D segmentation of

vertebrae from CT using statistical shape models built from annotated training

data. The statistical shape models were first generated using a training dataset
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of 154 manually annotated single vertebra 3D volumes. At test time, a boundary

detector trained on features extracted using orientation-selective filters was applied

to guide the registration of the shape model to obtain the segmentation. Combining

the top-down shape model with local boundary cues was shown to be effective on

the CT images from 7 subjects considered as test cases by the authors.

It is well known that the standard point distribution model applied to image segmen-

tation suffers from a number of limitations arising from the linearity of PCA applied

to find the modes of variation. The standard formulation of PCA is sensitive to out-

liers in the population due to the least squares estimation of the principal modes,

which has motivated alternatives to be put forward in the literature [Heimann and

Meinzer, 2009]. In addition, the assumption that the shape variation is Gaussian

distributed is not always appropriate. Shape models learned using linear PCA can-

not capture more complex deformations of the vertebrae, such as those that may

occur in the presence of pathology [Kirschner et al., 2011].

In Kirschner et al. [2011] the authors attempt to address these limitations by us-

ing nonlinear shape models based on kernel principal component analysis (KPCA)

[Scholkopf et al., 1998]. The idea behind KPCA is to first map the original data

to a feature space using the so-called kernel property [Hastie et al., 2009]. Stan-

dard linear PCA in then applied in this transformed space defined by the choice of

(centred) kernel function K̃(p,p′) (see Kirschner et al. [2011] for a more detailed

description). The energy function for the shape model is given by

E(p) =
∑
i

β2
i

νi
+

1

ε

(
K̃(p,p)−

∑
i

β2
i

)
(2.3)

where νi is an eigenvalue of the kernel (Gram) matrix and βi =
∑

j bijK̃(pi,p) where

bij is the j-th element of eigenvector bi. Larger values of the parameter ε allow larger

deviations from the shapes in the training set. Minimisation of the shape energy

function was carried out iteratively using the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [Press et al., 2007]. The shape energy term was

combined with an appearance-based energy term by fitting Gaussian distributions

to values of the gradient and gradient magnitude around the landmark points. The

authors apply the model to vertebra segmentation from CT images and show that the

nonlinear shape model leads to improvements in accuracy compared to the standard

(linear) statistical shape model. While obtaining promising results on CT data,

the method did however rely on manual interaction to initialise the optimisation

parameters.

It is interesting to note that the same shape energy as equation (2.3) was previously

formulated within a variational framework in Cremers et al. [2003]. In this work
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the authors described a level set segmentation process based on the Mumford-Shah

functional (discussed in Section 2.3.4), which integrated a nonlinear shape term

into the energy. The training data was transformed non-linearly into a feature

space and the resulting mapped data was modelled by a Gaussian distribution. The

corresponding density in the original space was highly non-Gaussian enabling a more

flexible shape representation. This variational approach has not yet been applied to

problems in medical image segmentation.

Nonlinear shape representations such as those obtained using KPCA are a promis-

ing area for future research in shape-based medical image segmentation. This is

especially true when the method must operate effectively on potentially abnormal

anatomy; for example in clinical applications, where the presence of pathology may

require a more flexible representation of shape.

An obvious disadvantage of using statistical shape models for segmentation is the

need for appropriately labelled training sets, which often requires manual placement

of the landmark points. In 3D this can be extremely time consuming and prone

to annotator variability, although some attempts have been made to automate the

landmark generation procedure [Campbell and Petrella, 2015, Davies et al., 2010,

Cootes and Taylor, 2004, Souza and Udupa, 2005]. In addition, the construction of a

representative prior model of shape may require a prohibitively large set of annotated

training images. Methods that focus instead on lower-level properties of the images

are likely to be better suited to smaller datasets where there is consequently only

limited ability to accurately model global properties such as shape. Another limiting

factor in the use of most shape modelling techniques is that they are generally

unsuitable for segmentation in the presence of pathology (such as tumours) [Heimann

and Meinzer, 2009]. This is because the pathology often deforms the shape of the

object so that it is far outside the range of the statistical shape model. More

generally, any situation causing the shape of the anatomy to deviate substantially

from the training set can be problematic. This is true for example if parts of the

anatomy are missing, additional parts are present, or if they are connected differently

to surrounding structures.

2.3.2 Deformable Surfaces and Level Sets

Active contours have been very influential in general image segmentation, where

they are also referred to as snakes [Kass et al., 1988, Blake and Isard, 1998]. The

general idea is to minimise an energy functional, which describes a parametric con-

tour subject to various internal and external forces. As the functional is minimised

iteratively, the contour “moves” to fit the edges of the region of interest.
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Let m : [0, 1] 7→ R2 be a parameterised contour. The energy functional itself is given

by the sum of the internal and external energy of the contour, which can be written

as

E(m) = α

∫ 1

0

∣∣∣∣∂2m

∂u2

∣∣∣∣2 du+ β

∫ 1

0

∣∣∣∣∂m∂u
∣∣∣∣2 du︸ ︷︷ ︸

Internal energy

+ γ

∫ 1

0

V (m(u)) du︸ ︷︷ ︸
External energy

. (2.4)

The internal energy enforces smoothness of the contour, while the external energy

forces the contour towards the boundary of the object to be segmented [Wirjadi,

2007]. The two terms of the internal energy can be seen as modelling the tension

and rigidity of the contour, respectively. The external energy is usually defined

heuristically so as to take on lower values at object boundaries, with a common

choice being some function of the gradient (e.g. V (m(u)) = −|∇I (m(u)) |2). The

coefficients α, β and γ control the relative importance of each term and are dependent

on the particular problem under consideration. Many active contour formulations

additionally incorporate a so-called “balloon” term [Cohen, 1991] that provides an

outward normal force to the contour, enabling the contour to be initialised inside of

the object before expanding outward towards the boundary.

The analogue of active contour methods for three dimensional images is provided

by deformable surfaces [McInerney and Terzopoulos, 1996]. As the name suggests,

rather than considering one dimensional contours, these approaches fit a 2D surface

to the 3D object using a similar energy formulation. In this case the evolution of

the surface typically corresponds to the deformation of the vertices of a discrete

triangular or tetrahedral mesh.

Despite being widely used in medical image analysis, the original snakes model

suffers from several major limitations. The standard snakes model uses an explicit

representation of the curve or surface and is evolved towards a local optimum of the

search space. The local nature of the optimisation means that the curve or surface

is prone to becoming stuck at local minima, resulting in a poor segmentation. As

the explicit representation of the snake forms a single unbroken curve or surface,

segmentation of objects with holes (such as a simple torus) is not possible in a

single step. Application to more complex topology requires multiple initialisations

near to the boundaries of the object and thus is usually carried out in an interactive

manner. These limitations motivate more flexible implicit representations of the

surface, which have the additional advantages of being less sensitive to noise and

more numerically stable [Younes, 2010].

Implicit representations are usually defined in terms of level set methods [Osher and

Sethian, 1988, Cremers et al., 2007]. In level set methods a function φ : Ω 7→ R is
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used to define the implicit representation of a contour C as the following

C = {p ∈ Ω | φ(p) = 0} (2.5)

where p denotes the coordinates of a point in the image domain. The level set

function φ is typically defined to be a signed distance function between p and the

contour, i.e.:

φ(p) = ±dist(p, C) (2.6)

where φ is negative inside C and positive outside (or vice versa). Optimisation is

carried out by evolving the function φ, which propagates the contour. The main

advantage of the implicit representation is that the topology of the curve or surface is

not fixed, enabling segmentation of disjoint structures that are otherwise problematic

using an explicit representation.

One level set formulation which has become very popular in medical image analysis

is known as geodesic active contours [Caselles et al., 1995, 1997]. In geodesic ac-

tive contours the contour evolves by gradient descent with respect to the level set

function:
∂φ

∂t
= g(I) |∇φ| div

(
∇φ
|∇φ|

)
+∇g(I)∇φ (2.7)

where ∂φ
∂t

denotes the derivative with respect to time and g(I) is some function of

the image I that attracts the contour towards the boundary of the object. Note

that the divergence of the normal vector is equivalent to the local curvature.

Based on the geodesic active contour formulation, in Huang et al. [2013] the authors

introduced a variational3 level set method for segmentation of vertebrae slices in CT

images. The method used an energy functional integrating both edge and region

terms that is able to better cope with intensity inhomogeneities and blurred bound-

aries compared to the standard geodesic active contour formulation. Initialisation of

the level set function was carried out using Otsu’s method to find a global intensity

threshold, enabling automated segmentation without user interaction. The authors

demonstrated that 3D segmentations could also be obtained from CT images by

reconstructing the volumes from individually segmented slices.

In Lim et al. [2013] the authors describe a deformable model for vertebrae segmen-

tation from CT images based on the Willmore flow. Optimisation was carried out

within a level-set framework which also incorporated prior shape information in the

form of a kernel density estimator [Cremers et al., 2006]. The Willmore energy is

formulated as

E(M) =

∫
M

h2 dA (2.8)

3Variational methods are discussed in detail later in the review.
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where h is the mean curvature of the surface M . The Willmore energy can be viewed

as a measure of the degree to which the surface M deviates from a sphere, and so

effectively encodes a prior preference for spherical shapes; the Willmore flow refers

to the geometric (gradient) flow of the Willmore energy. The authors incorporated

the Willmore flow into a level set framework as a geometric functional along with

a gradient-based edge indicator function to better preserve the vertebra boundary.

The method was shown to obtain superior performance when compared with a num-

ber of other segmentation methods, both with and without shape constraints. The

authors note however that the improvement in accuracy does come at a computa-

tional cost due to the energy functional incorporating multiple terms. In addition,

segmentation was only performed semi-automatically, with the user required to se-

lect a seed point within each vertebra prior to processing. A legitimate question

with all semi-automatic approaches to segmentation is how dependent the results

are on the manual initialisation. This is an obvious concern when the method is

aimed at clinicians and other end users where the required manual interaction with

the method is to be minimised. However, it could be possible to automate the place-

ment of the initial seed points by using a separate method to detect the vertebrae

prior to segmentation.

In Kim and Kim [2009] the authors introduced a method using deformable surfaces

(or “fences”) to separate and label individual vertebrae in CT images. The authors

started by pre-processing the image using Gaussian filtering and greyscale morpho-

logical operations to obtain a “valley-emphasised” image. The intervertebral discs

were then detected by searching along rays initialised from seed points placed inside

the vertebrae. A deformable surface was then fitted through the intervertebral discs

between adjacent vertebrae, which enabled a separate labelling of each individual

vertebrae in the volume. The authors used an energy function for the deformable

surface based on first- and second-order derivatives of the contour, as in the original

snakes model. The valley-emphasised image was also used in the energy function

to promote alignment of the segmentation along the boundaries of the vertebrae.

The authors only reported a qualitative evaluation of the method by radiologists,

so direct comparison of the segmentation performance with other techniques is not

possible. Although the resulting method is fully automated, by tailoring the method

to the properties of CT images it is not likely to be effective when applied to MRI

data.

A disadvantage of deformable models of the kind described in this section is that

they are highly sensitive to the initial conditions, meaning that the final segmen-

tation result is dependent on an accurate initialisation [Withey and Koles, 2007].

As such, they have a tendency to become stuck at local optima if the initialisation

is not chosen correctly. Although in certain cases it is possible to automate the
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initialisation, this is often assisted by manual interaction with the user and thus

is time-consuming and subject to human error. Another primary drawback of de-

formable models is that they are generally slow to converge, especially in the case

of 3D segmentation where the discretisation of the surface may lead to a heavy

computational load during optimisation.

2.3.3 Registration and Atlas-Based Methods

Image registration is a central topic in medical image analysis with many applica-

tions in areas such as multi-modality image fusion and population modelling [Sotiras

et al., 2013]. Registration-based approaches to segmentation typically start with a

labelled reference image (or atlas) constructed from training data, which is then

“warped” onto a new image using some class of transformation. Once the atlas has

been registered to the target image, the class labels can simply be transferred from

the atlas to obtain the segmentation. The registration of a template can also be used

to propagate information on the global shape (for example of individual vertebrae

or the lumbar spine), which can then guide the segmentation on a pixel or voxel

level.

In medical image segmentation the class of transformation is most commonly a non-

rigid registration [Sotiras et al., 2013], which is better able to deal with the complex

deformations arising due to anatomical variation. Mathematically, an atlas A is a

mapping from the n-coordinates of the image to a set of class labels:

A : Rn 7→ L. (2.9)

The estimated class label lp ∈ L for a location p ∈ Rn in the target image is found

by the mapping

lp 7→ A(T (p)). (2.10)

The transformation function T (p) is parameterised and the process involved in find-

ing the optimal set of parameters is referred to as image registration [Rohlfing et al.,

2005]. In common with other image segmentation approaches, image registration

is an inherently ill-posed problem and many different methods have been proposed

in the literature using various regularisation techniques to constrain the solution

[Sotiras et al., 2013].

Atlas-based methods have a long history in medical image segmentation and have

recently been applied to segment the spine from CT data [Forsberg, 2015]. In this

work the authors applied a non-rigid registration procedure which involved minimis-

ing the local phase difference between the reference and target images [Knutsson and

Andersson, 2005]. The authors used multiple grey-level atlases to improve perfor-
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mance, with the final labelling obtained by taking a majority vote over all of the

individually registered atlases. As the resulting registration procedure is compu-

tationally intensive, it was implemented on a graphics processing unit (GPU) to

reduce the run time complexity. The method was shown to obtain high accuracy

when evaluated on a CT dataset consisting of 10 subjects.

The strength of atlas-based approaches is a result of their ability to consider the

global anatomical structure of objects, rather than simply the intensity or textural

properties of the image. Although they can often obtain accurate results, atlas-

based methods suffer from the limitations associated with image registration in

general. In particular the optimisation is often only guaranteed to find a local

optimum and is dependent on initialisation. To obtain an accurate initialisation,

additional steps are often necessary to roughly locate the object of interest. For

example, in Forsberg [2015] the authors carry out extensive pre-processing involving

intervertebral disc detection and vertebrae pose estimation prior to registration of

the atlases. Constructing a representative atlas is also a challenging problem due

to both the limited data available and the computational cost incurred when using

multiple atlases. Care must be taken to make sure the atlas is not biased towards

a specific set of subjects, which can only be countered by increasing the number

of subjects and/or atlases. It has been suggested that these issues make atlas-

based approaches best suited to segmenting structures with relatively low variability

[Rohlfing et al., 2005]. These problems are similar to those discussed previously in

the context of statistical shape models; namely the inability of the methods to

cope with normal variants such as extra or missing anatomical parts, or various

pathologies causing the anatomy to differ widely from the training examples.

A number of recent methods for vertebra or spine segmentation incorporate regis-

tration as one component of a larger, multi-stage segmentation framework [Kadoury

et al., 2013, Klinder et al., 2009, Hammernik et al., 2015]. For example, in Klinder

et al. [2009] the authors propose a multi-stage framework for segmentation of the

spine from CT data. A rigid registration procedure is used to identify the individual

vertebrae after they have been detected using an algorithm based on the generalised

Hough transform. The final segmentation is obtained by adapting triangulated mesh

shape models of the individual vertebrae using a collision detection algorithm. While

the method was shown to obtain good results on CT data, the multi-stage architec-

ture is very computationally intensive, which could limit its practical application.

Adapting the method for segmentation of MR images also poses difficulties as certain

pre-processing steps (such as spinal cord extraction), along with the gradient-based

mesh adaptation algorithm rely on the higher contrast provided by CT.
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2.3.4 Variational Methods

Variational methods for image segmentation have their origin in the work of Mum-

ford and Shah [Mumford and Shah, 1989], who first proposed minimising the fol-

lowing energy functional to obtain a piecewise smooth approximation to the input

image f :

E(u) = λ

∫
Ω

(f − u)2 dx+

∫
Ω\Su
|∇u|2 dx+ νH1(Su) (2.11)

where u : Ω 7→ R is a piecewise smooth function describing the sub-regions (seg-

ments) of the image, H1 is the one-dimensional Hausdorff measure and Su is a dis-

continuity set (segmentation boundary) [Pock et al., 2009]. The first two terms of

the functional impose smoothness of u, while the third term regularises the boundary

in terms of its one-dimensional Hausdorff measure (i.e. the length of the contour).

A popular extension of the Mumford-Shah functional is the Chan-Vese model [Chan

and Vese, 2001], which includes an additional term penalising the enclosed area and

restricts the range of u to take on only two values [Getreuer, 2012].

Although the Mumford-Shah model has a sound mathematical basis, the lack of

efficient algorithms for numerical implementation has limited its direct application

to medical image segmentation (particularly 3D segmentation). The difficulty in

finding efficient numerical approximations of the Mumford-Shah model is due to the

non-regularity of the edge term [Pock et al., 2009]. Recently, more efficient primal-

dual algorithms have been devised which allow for a globally optimal solution after

convex relaxation [Chambolle and Pock, 2011]. The resulting optimisation problem

is known as a “saddle point” problem and is more amenable to efficient minimisation

algorithms.

A variational approach to 3D vertebra segmentation from CT data was recently

described in Hammernik et al. [2015], which incorporates both shape and intensity

priors into an energy functional. Letting Ω denote the image domain as before

and u : Ω 7→ {0, 1} denote the segmentation, the energy functional defined by the

authors can be written as

E(u) = TVg + λ1

∫
Ω

ufs dx+ λ2

∫
Ω

ufb dx (2.12)

where fs is a pre-registered mean shape model and fb is a bone probability map.

TVg is the weighted total variation (TV) norm described in Reinbacher et al. [2010],

which is particularly suitable for the segmentation of thin structures such as the

vertebral processes. The weighted TV norm can be written as

TVg = g(p)nn> + n0n
>
0 + n1n

>
1 (2.13)
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where n = ∇I/‖∇I‖, n0 is the tangent of n and n1 = n × n0. The edge function

g(p) is defined as g(p) = exp
(
−α‖∇I(p)‖β

)
.

The shape term fs of the energy functional was obtained by first registering a mean

shape model to the thresholded bone probability map. By using only coarse mean

shape models, the authors avoid the requirement for manually annotated landmark

points prior to registration. The bone probability map fb was estimated using

intensity histograms of foreground and background regions from the training data.

After discretisation, minimisation of the energy can be carried out using the primal-

dual algorithm described in Chambolle and Pock [2011]. Numerical implementation

of the method made use of a GPU to exploit parallelisation and improve run time

performance. The method was shown to obtain accurate results when evaluated on

a dataset of CT volumes from 10 different subjects, although manual interaction

was required to initialise a single point at the centre of each vertebrae.

One of the main advantages of spatially continuous variational approaches to seg-

mentation is the avoidance of metrication artefacts, which can occur with grid-based

random field models due to the discrete approximation of the Euclidean boundary

[Nieuwenhuis et al., 2013]. However, as mentioned previously one of the main chal-

lenges in using variational methods is in finding efficient algorithms for minimising

the resulting energy functionals [Pock et al., 2009]. The development of more efficient

algorithms for numerical approximation of variational methods, in combination with

the decreasing cost of GPU hardware, should enable more widespread application

of these methods to 3D medical image segmentation.

2.3.5 Markov Random Fields

Markov random fields (MRFs) are a type of undirected graphical model which have

proven to be successful for a wide range of tasks in image processing and computer

vision [Geman and Geman, 1984, Blake et al., 2011]. An MRF represents an image

by an undirected graph where the nodes correspond to the individual elements of the

image (e.g. pixels or voxels) and the local neighbours of a node are linked by edges.

One of the main advantages of MRF models is that long range correlations across the

image are obtained implicitly by considering only local interactions between pairs

of neighbouring nodes, which ensures that the computations remain tractable. A

brief description is first given of the main concepts behind MRFs. A more in-depth

discussion of MRFs is provided in the next chapter, where they form the basis for

an approach to vertebra segmentation from 2D images.

In an MRF the state of each variable i depends on the state of its neighbours in

the graph, where Ni is used to denote the indices of the sites neighbouring i. Pixels
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or voxels are usually defined to be neighbours if they are immediately adjacent (in

cardinal or diagonal directions). A configuration of a random field X is denoted x =

{x1, . . . , xN} and corresponds to a particular assignment of states to the variables.

For image segmentation, the variables are associated with the image sites and the

states correspond to the class labels assigned to those sites. Formally, letting X
denote the set of all configurations, a random field X is an MRF if

P (x) > 0 ∀x ∈ X (2.14)

and

P (xi | xj 6=i) ≡ P (xi | xNi). (2.15)

The latter condition is known as the Markov property. The Hammersley-Clifford

theorem shows that P (x) is characterised by a Gibbs distribution:

P (x) = Z−1 exp (−E(x)) (2.16)

where Z is a normalisation constant called the partition function. The term E(x)

is an energy function, given by a sum over the neighbourhoods (or cliques) of the

MRF:
E(x) =

∑
c

Vc(x) (2.17)

where Vc(x) is a potential function whose value depends on the configuration of the

clique c. A popular class of MRF models are conditional random fields (CRFs),

which define a posterior distribution for the labels x given an associated set of

observations (features) [Blake et al., 2011]. CRFs allow for the representations of

complex dependencies between the labels and observations and are powerful models

for image segmentation problems. A more detailed discussion of CRFs is given in

the next chapter of the thesis.

The increasing popularity of MRFs in computer vision has been driven by a class

of efficient algorithms for inference known as graph cuts [Boykov and Funka-Lea,

2006]. In specific cases, such as the problem of binary segmentation, graph cuts can

find the globally optimal solution (i.e. the global minimum energy) in polynomial

time provided that the energy function is submodular [Kolmogorov and Zabih, 2004,

Szeliski et al., 2008]. Figure 2.4 is a simple illustration of how a cut through a

graph representation of an image results in a binary segmentation, expressed as an

assignment of class labels. The successful results obtained in the general field of

computer vision has led to increasing interest in these models for various tasks in

medical image analysis, particularly with respect to segmentation.

Despite the widespread use of MRF models for general image segmentation prob-

lems, relatively few attempts have been made to apply them to 3D segmentation
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Figure 2.4: (a) Example graph construction for a 2-class segmentation problem on
a 4 × 4 pixel image. In blue are the edge links between pixel nodes. In
orange are the links between class nodes and pixels. (b) Segmentation
resulting from cutting the graph through the dashed black line. Each
of the 4 pixels are connected to a single unique class, which determines
their class label assignment (i.e. (x1, x2) ∈ l1 and (x3, x4) ∈ l2).

of the spine from medical images. One reason for this is that the sheer size of the

3D volumes often prohibits the direct application of MRFs on a voxel level using

standard hardware. Recently, effective algorithms for clustering voxels into larger

groups (called supervoxels) have made it more feasible to apply various forms of

MRF models to these problems. Operating on supervoxels dramatically reduces the

computational complexity and enables the globally optimal solution to be obtained

in polynomial time using graph cuts. An MRF model based on supervoxels is pre-

sented in this thesis for 3D segmentation of the lumbar spine and is discussed at

length in Chapter 4.

Another possibility for applying MRF models in 3D is to first detect the regions of

interest for initialisation prior to segmentation on a voxel level. This is the approach

taken in Kelm et al. [2013], who used a Markov random field to segment vertebral

bodies and intervertebral discs from CT images after fast detection using an algo-

rithm based on marginal space learning [Zheng et al., 2008]. The proposed MRF

formulation modelled the distribution of voxel intensities for each class using stan-

dard histograms estimated from randomly sampled voxels within detected regions of

the image. The authors used a standard pairwise term to model the intensity differ-

ence between voxels that was first introduced in Boykov and Funka-Lea [2006]. The

method was shown to obtain good results on CT data in terms of vertebral body

segmentation and was also able to segment intervertebral discs from MR images,

although no quantitative evaluation of the segmentation results was presented in

this case. For application of the method to vertebra segmentation from MRI data,

purely intensity-based information is likely to fail due to the lower contrast and

intensity inhomogeneity of the images. More robust models are therefore required

to obtain accurate and consistent results, such as those discussed in the following
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chapters of the thesis.

Recent work has also investigated the use of MRF models with higher-order potential

functions, which can lead to improvements over standard pairwise formulations in

certain cases [Wang et al., 2013, Komodakis and Paragios, 2009, Kohli et al., 2008].

A recent application of higher-order MRFs to the problem of vertebra segmentation

from CT and MRI was described in Kadoury et al. [2013], which enabled global

pose and local shape parameters to be incorporated into a discrete optimisation

framework. The higher-order potentials of an MRF model were used to encode

geometric modes of variation of the vertebrae. In order to address some of the

limitations associated with standard shape models, the authors used a nonlinear

manifold embedding to capture global shape variations from a set of training images.

The shape manifold was learned from a large training set of 711 scoliotic spines, each

of which had been manually annotated with landmark points. Optimisation of the

model was carried out using linear programming and the fast primal-dual algorithm

of Komodakis et al. [2011]. The method obtained promising segmentation results

on both CT and MRI images of the lumbar vertebrae. As the authors relied on a

large annotated training set to learn the manifold, it is unclear how successful this

approach would be on the much smaller datasets common in medical image analysis.

A promising area of future research is the possible combination of MRF models with

deformable registration techniques, such as those described earlier in the review.

This presents the possibility of using top-down shape constraints provided by a

registration procedure, alongside low-level cues from MRFs in a joint optimisation

framework. A similar approach has recently been explored in the context of brain

tumour segmentation from 3D MR images [Parisot et al., 2013].

2.3.6 Conclusion

It is evident from the various methods covered in this review that a completely gen-

eral purpose method for automatic lumbar spine segmentation does not yet exist.

This is perhaps not surprising given that medical image segmentation is very chal-

lenging even for human experts. Previous results from the literature suggest that

some notion of spatial context needs to be present in order to achieve accurate and

reliable segmentation, as discrimination of structures is usually not possible using

only information on the intensity distribution of the images. This is especially true

of MRI, where the lower contrast often leads to overlapping intensity values at the

boundaries of objects.

Approaches based on Markov random fields have the advantage of enabling a globally

optimal solution to be obtained in polynomial time using graph cuts. They are also
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very flexible, allowing multiple constraints to be incorporated into the potentials

to enhance performance. The main drawback is the difficulty in incorporating into

the model high-level information on global properties such as the shape or pose

(orientation) of the anatomy, due to the local nature of the potentials. In the context

of medical image registration, this type of global information is often provided by a

single manually-annotated atlas or multiple atlases. However, relying on atlas-based

techniques alone could pose problems due to the large variation between spines,

which can make it difficult to construct a representative atlas.

The choice of approach also depends on the particular type and amount of anno-

tated training data available. It is well known that methods depending on learned

global representations of shape, such as atlases and statistical shape models, are

particularly sensitive to the properties of the training set [Heimann and Meinzer,

2009]. Successful application of these methods requires a large enough dataset to

capture most of the anatomical variation likely to occur in a population, which is

clearly problematic in cases where only small annotated datasets are available.

A promising area of future research is in the combination of registration-based meth-

ods with graph-based models such as Markov random fields. This could allow the

incorporation prior knowledge of anatomical shape into the model alongside local

cues based on low-level image appearance. In the simplest case this could take the

form of local constraints on the shape and appearance which are encoded into the en-

ergy function. The development of efficient optimisation algorithms for higher-order

MRFs also presents opportunities for more expressive segmentation models.

2.4 Evaluating Segmentation Quality

In order to evaluate the quality of segmentations obtained using an automated

method, a standard approach is to compare them with a set of manually annotated

images. This provides a direct measure of the agreement between the automated

method and a human annotator or annotators. This section describes the evaluation

measures used throughout the thesis to evaluate the segmentation method, while

the next section provides details on the annotated datasets themselves. In order

to facilitate comparison with other existing segmentation methods, the evaluation

measures considered in this thesis are well known and widely used in medical image

analysis for assessing the quality of segmentation results.
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2.4.1 Evaluation Measures

The Dice similarity coefficient (DSC) is used to measure the segmentation quality in

terms of the overlap between two segmentations and is equivalent to the well-known

F-score. Given two segmentations x and x′, the Dice score is defined as

DSC(x,x′) =
2|x ∩ x′|
|x|+ |x′|

. (2.18)

The score is in the range [0, 1] with 0 indicating no overlap and 1 indicating maximum

overlap (i.e. a perfect match between the two segmentations). Note that the Dice

score is sometimes reported in the literature as a percentage value between 0% and

100%. In order to avoid confusion, all Dice scores reported in this thesis are in the

range from 0 to 1 and are converted from percentages where necessary.

Three standard surface distance measures are also used in the thesis to evaluate the

segmentation quality:

1. The average symmetric absolute surface distance (ASD) is determined by find-

ing for each set of boundary points of both the segmentation and corresponding

manual annotation, the closest boundary points of the other set. The mean of

the Euclidean distances to the closest points gives the score, with 0 indicating

a perfect segmentation. This can be written as

ASD(B,B′) =
1

|B|+ |B′|

(∑
i∈B

min
j∈B′

dij +
∑
j∈B′

min
i∈B

dij

)
(2.19)

where B and B′ are the sets of boundary points for the two segmentations and

dij is the distance between boundary points i and j.

2. The RMS symmetric surface distance takes the squared distances between the

two sets of boundary points, with the final score defined as the square root of

the average squared distances:

RMS(B,B′) =

(
1

|B|+ |B′|

(∑
i∈B

min
j∈B′

d2
ij +

∑
j∈B′

min
i∈B

d2
ij

))1/2

. (2.20)

3. Finally, the maximum symmetric absolute surface distance (MSD) is similar

to the first measure but takes the maximum of the distances instead of the

mean:

MSD(B,B′) = max

{
max
i∈B

min
j∈B′

dij,max
j∈B′

min
i∈B

dij

}
. (2.21)

This is mathematically equivalent to the Hausdorff distance between the two

sets of boundary points.
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Figure 2.5: Close-up of a right transverse process from an example T1-weighted axial
MR image, showing merging between vertebra and background regions.

Further discussion of these evaluation measures is provided in Gerig et al. [2001].

Note that the three surface distance measures are usually scaled based on the image

resolution and reported in terms of physical distances in millimetre units (mm).

2.5 Annotated Datasets

Although the goal of this thesis is a method for fully-automated lumbar spine seg-

mentation, manual annotation is still required in order to provide a means for eval-

uating the performance of the method. In addition, annotated data is required in

order to form a training dataset for learning model parameters.

The quality of a segmentation is usually quantified by comparison with a manual

annotation of the same dataset, often by measuring the degree of overlap between

the two. The objective is for the method to obtain a high level of agreement with

the manual annotations, ideally obtaining comparable performance to a human an-

notator. This section provides details on the manually annotated datasets used in

the following chapters of the thesis.

2.5.1 Comparison of MRI Protocols

A common issue with axial MR images is the blending of intensity and texture of

the vertebral regions with other non-vertebra regions at the boundary, as shown in

Figure 2.5. This may introduce difficulties for automated segmentation, especially

when the method is dependent on local properties of the images.

41



Figure 2.6: Axial slices showing vertebra on the left and intervertebral disc on the
right. Images on the top row are T1-weighted. The bottom row shows
the images obtained of the same subject using fat suppression.

Prior to obtaining a 3D MRI dataset of lumbar vertebrae (described in the next

section under MRI Dataset 2), a number of different scanning protocols were also

considered and evaluated with respect to their suitability for segmentation. The

images were obtained on 29 August 2013 using the MRI scanner at St Luke’s Cam-

pus, University of Exeter. Scans were carried out on two subjects under different

parameter settings. It was decided that T1-weighted images were the most suitable,

as loss of anatomical detail (particularly the merging of object boundaries) was a

concern when using the alternative MRI protocols.

Fat suppression techniques [Hashemi et al., 2010] were also tested as a way of en-

hancing the cortical boundary surrounding the vertebrae. Figure 2.6 shows the

result of using fat suppression alongside a standard T1-weighted image of the same

subject. In particular, the boundary around the vertebral body is noticeably easier

to distinguish in the fat suppressed slice. A major limitation of images acquired

in this way is that the intensity properties of the resulting images make it difficult

to distinguish between vertebra and intervertebral disc regions of the same subject,

which will affect segmentation performance in 3D. This is illustrated in the bottom

row of Figure 2.6, which shows a vertebra and intervertebral disc slice obtained us-

ing fat suppression. As the ultimate aim of the thesis is 3D segmentation of both

vertebrae and intervertebral discs as distinct objects, fat suppression was rejected

as an enhancement technique for the MRI data.
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Table 2.1: Overview of datasets used in the thesis. IPR is the in-plane resolution
and CPR is the cross-plane resolution (slice thickness). The last column
gives the number and dimension of the manually annotated images.

Dataset Modality Subjects IPR (mm) CPR (mm) Annotated
MRI Dataset 1 T1 MRI 21 0.49–0.50 mm 4.00 mm 63 (2D)
MRI Dataset 2 T1 MRI 8 1.02 mm 1.20 mm 8 (3D)
MRI Dataset 3 T2 MRI 15 1.25 mm 2.00 mm 15 (3D)
CT Dataset CT 10 0.31–0.36 mm 1.00 mm 10 (3D)

2.5.2 Description of Datasets

Table 2.1 provides an overview of the different datasets used in the thesis. The

following sections discuss the properties of each dataset in detail and also describe

how manual annotation of the images was carried out.

MRI Dataset 1

The first MRI dataset used for the experiments consists of 2D axial cross sections

of lumbar vertebrae from 21 healthy subjects. The images were acquired on a 1.5 T

MR scanner (Intera, Philips) using a receive-only spine coil (Synergy, Philips). T1

weighted turbo-spin-echo scan sequences were used with a repetition time, TR, of

either 400 ms or 497 ms, an echo time, TE, of 8 ms and 4 signal averages. Slices were

obtained with an in-plane resolution of between 0.49 mm and 0.50 mm (depending

on TR) and a slice thickness of 4 mm. The dataset was collected as part of a study

carried out at the University of Exeter. All subjects gave informed consent prior to

taking part in the study.

Manual annotation of the images was carried out by the author, which required

delineation of the vertebrae in each individual slice. A total of 63 manually anno-

tated images were obtained by selecting 3 central slices from each of the subjects.

A subset of the annotated images were compared with a second annotator4 in order

to measure the inter-annotator agreement (see Section 2.5.3).

MRI Dataset 2

The second MRI dataset consists of 3D scans of a section of the lumbar spine from

8 different subjects, encompassing the lumbar vertebrae from L3 to L5. The images

were acquired on a 1.5 T MR scanner (Intera, Philips) using a receive-only spine coil

(Synergy, Philips). T1-weighted turbo-spin-echo scan sequences were used with a

repetition time, TR, of 1000 ms and an echo time, TE, of 8 ms. The images were

4Dr Judith Meakin from the Department of Physics, University of Exeter, UK.
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obtained with an in-plane resolution 1.02 mm and a slice thickness of 1.2 mm. Ethical

approval was granted by the College of Engineering, Mathematics and Physical

Sciences at the University of Exeter. All subjects gave informed consent prior to

taking part in the study.

Annotation of the MRI data was carried out by the author, which involved manual

delineation of the vertebrae boundaries in individual 2D slices of the 3D volumes. For

manual annotation of the 3D MRI dataset the ITK-SNAP [Yushkevich et al., 2006]

application was used, which enables volumes to be viewed from different anatom-

ical planes for additional context during annotation. The voxels belonging to the

separate vertebrae and sacrum in each scan were assigned unique labels to enable

identification of the different structures.

MRI Dataset 3

The third MRI dataset used for the evaluation consists of T2-weighted turbo-spin-

echo MR images from 15 different subjects provided for the MICCAI 2015 inter-

vertebral disc localisation and segmentation challenge [Chen et al., 2015].5 Each

image consists of intervertebral discs of the lower spine from T11 to L5. A total of 7

intervertebral discs in each image have been manually annotated by the providers of

the data. The images were acquired using a 1.5 T MRI scanner (Siemens Magnetom

Sonata) and have an in-plane resolution of 1.25 mm and a slice thickness of 2 mm.

An evaluation of the inter-annotator agreement on the dataset is given in Zheng

et al. [2016], where it was found that the manual segmentations are consistent.

CT Dataset

The CT dataset consists of 3D scans of the lumbar spine from 10 different subjects.

The dataset was provided for the MICCAI 2014 spine and vertebrae segmentation

challenge and is publicly available (see footnote 5). All vertebrae in the images have

been manually annotated by the providers of the data. The images were acquired

with Philips or Siemens multidetector CT scanners using an in-plane resolution of

between 0.31 mm and 0.36 mm with a slice thickness of 1 mm [Yao et al., 2012]. As

the sacrum has not been annotated, it was cropped from the volumes below the

middle axial slice of lumbar vertebra L5 to remove it from the evaluation. The

volumes were additionally cropped above L1 to remove the thoracic vertebrae from

evaluation.

5The dataset is available from http://spineweb.digitalimaginggroup.ca.
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Table 2.2: Inter-annotator agreement on a sample of 10 images from MRI dataset
1. The table shows the minimum, median and maximum values over all
individual images.

Sample size Measure Min Median Max

10 images

Dice score 0.88 0.93 0.97
Avg. surf. dist. (mm) 0.02 0.11 0.33
RMS surf. dist. (mm) 0.13 0.56 1.91
Max. surf. dist. (mm) 2.12 6.61 21.15

2.5.3 Inter-Annotator Agreement

To assess the reliability of the manual annotations of the MRI data, the inter-

annotator agreement between the author and a separate annotator was measured on

a randomly sampled subset of the images from the dataset described in Section 2.5.2.

MRI Dataset 1. The manual segmentations were carried out independently by both

annotators and then compared using the same evaluation measures as described in

Section 2.4. The evaluation measures essentially quantify the overlap and surface

distances between the two sets of segmentations and together provide a measure of

agreement between the annotators.

The results from the analysis are summarised in Table 2.2 for each individual eval-

uation measure. The mean Dice score between the two annotators was 0.93± 0.03

taken over all images in the sample. The values indicate a generally high level of

agreement between the two annotators on the MRI data, suggesting that the manual

segmentations are consistent. The maximum surface distance obtained over all of

the comparisons was due to disagreement between annotators on the presence of a

thin spinous process in one of the images.

2.6 Conclusion

In this chapter the problem of lumbar spine segmentation was introduced and a

number of existing methods in the literature were reviewed. The chapter also pro-

vided details on the annotated datasets used in the remaining chapters of the thesis

for evaluating segmentation results and investigated the inter-annotator agreement

on a sample of the data.

Although the segmentation methods covered in the review have their own particular

strengths, they tend to share certain problems; these include the inherent limitations

of the optimisation procedure, sensitivity to initialisation and reliance on accurate

prior information to constrain the solution. In addition, most of the approaches dis-

cussed are not suitable for small datasets due to the dependence on a representative
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prior model of shape, which requires a large enough dataset to capture most of the

anatomical variation in a population.

A comparison between manual segmentations carried out independently by two sep-

arate annotators showed a generally high level of inter-annotator agreement on a

randomly sampled subset of MR images. A separate comparison between manual

segmentations of the IVD dataset also found a high level of agreement among the

annotators [Zheng et al., 2016]. As one of the main goals of automatic segmentation

is to match the performance of human annotators, the manually annotated data can

be used as a reference for evaluating the performance of automated segmentation

methods.

The next chapter introduces a method for fully-automated 2D segmentation of lum-

bar vertebrae from MR and CT images. Although segmentation of vertebrae in 2D

has direct application in a number of areas, the main motivation for initially focus-

ing on 2D segmentation is that it provides a clearer picture of which path to take

towards full 3D segmentation of the lumbar spine.

46



3 2D Segmentation of Lumbar

Vertebrae

This chapter describes an approach for segmentation of lumbar vertebrae from 2D

axial slices.1 Although the focus of this chapter is predominantly on segmentation

from MR images, results obtained on CT data using the same approach are also

presented.

3.1 Introduction

Segmentation of vertebrae in axial cross sections has potential applications for clin-

ical research in orthopaedics. This includes the measurement of axial vertebral

rotation, where identification of anatomical landmarks is often carried out manually

by multiple annotators [Vrtovec et al., 2010, Janssen et al., 2010]. Segmentation of

axial slices also facilitates the analysis of specific parts of the vertebra which are

either not present or only partially visible in sagittal cross sections, such as the

neurocentral junction which bilaterally connects the pedicles to the vertebral body

[Schlosser et al., 2013].

With respect to segmentation of vertebrae from MR images, a number of methods

have been reported in the literature for automated segmentation of vertebral bodies

in the sagittal plane [Carballio-Gamio et al., 2004, Huang et al., 2009, Zukic et al.,

2012]. However, as these techniques only consider the vertebral bodies, the pedicles

and posterior elements of the vertebrae are not taken into account. Attempting to

segment all of the vertebra parts represents a greater challenge due to certain parts

appearing disconnected in individual slices, which often include thin transverse and

spinous processes (see left panel of Figure 3.1). The different intensity and textural

properties of the vertebra parts also means that these features cannot be relied

upon alone to discriminate the vertebra from the other background structures in

the image. A method for segmentation of vertebrae in multiple anatomical planes

was recently introduced in Wang et al. [2015], although manual cropping of the

vertebrae was required in order to obtain accurate results.

1This chapter is based on work first published in Hutt et al. [2015a].
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Figure 3.1: The left figure shows a 2D axial MR slice with ground truth contour
(yellow) for a section of the vertebra. The right figure shows boundaries
for superpixels assigned to the vertebra class (cyan) and background
class (magenta). The superpixels preserve the boundary detail of the
vertebrae by clustering contiguous pixels with similar intensities.

Many existing approaches to vertebra segmentation rely heavily on prior shape in-

formation, often in the form of an explicit shape template or statistical shape model

[Peng et al., 2005, Kirschner et al., 2011, Kadoury et al., 2013]. While such meth-

ods have been applied successfully to segment a wide range of structures, there are

a number of issues which make the application to vertebra segmentation problem-

atic. The shape of the vertebra structure itself varies widely, both between different

subjects and between different vertebrae within the same subject. As mentioned

previously, when considering 2D slices various parts of the vertebra may appear

disconnected in a single slice due to overlapping tissue and the presence of partial

volume effects. These issues make it difficult to construct representative models of

shape in 2D, especially when very large datasets of manually annotated images are

not readily available.

This chapter describes a novel fully automated method for segmentation of lumbar

vertebrae from 2D axial slices. The method uses a conditional random field (CRF)

model on superpixels (groups of contiguous pixels with similar intensities). Operat-

ing on superpixels reduces computational complexity and enables more descriptive

features to be extracted to characterise the separate classes, while the CRF relates

the underlying class labels of the superpixels to the observed features and promotes

spatial consistency. Supervised learning is used to train a classifier on labelled super-

pixel features and obtain probability estimates expressing the likelihood of belonging

to either the vertebra or background class. Distance metric learning [Weinberger

and Saul, 2009] is also used to find an appropriate dissimilarity measure between

superpixel pairs. The probability estimates and learned distance metric are incor-
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porated into the CRF model in the form of first- and second-order clique potentials

of the CRF energy function. This formulation enables minimisation of the energy

function to be carried out efficiently using graph cuts [Boykov and Funka-Lea, 2006].

The performance of the method is evaluated on MR data consisting of 2D axial slices

of lumbar vertebrae from a range of subjects (details are given in Section 2.5.2. MRI

Dataset 1). The method is shown to obtain consistently high segmentation perfor-

mance when applied to vertebrae encompassing significant anatomical variation.

The main contributions of the chapter can be summarised as the following:

• A method is proposed for reliable automatic segmentation of axial vertebra

slices from MR images. This is seemingly the first approach to deal specifically

with this problem, which places demands on the generalisation performance

of the segmentation method to account for the highly varied nature of the

images.

• A novel way of deriving features is described which encodes the relative loca-

tion of superpixels based on the output of a contour matching algorithm. This

effectively translates global location information into local features which can

be used to characterise the individual superpixels.

• It is shown how distance metric learning can be incorporated into the CRF

model, offering potential improvements over the standard Euclidean-based

measures often used in the literature.

• The method is evaluated extensively on MR images encompassing a diverse

range of shape and textural properties and is shown to perform consistently

well. It is also shown that the method is directly applicable to CT images

without requiring any fundamental change to the model.

The rest of the chapter is organised as follows: Section 3.2 outlines the segmentation

model. Sections 3.3–3.4 discuss superpixels, including feature extraction and clas-

sification. Section 3.5 describes the final form of the CRF potential functions and

discusses probability estimates obtained from graph cuts. Section 3.6 describes the

experimental setup and segmentation results. Section 3.7 concludes the chapter.

3.2 Segmentation Model

3.2.1 Markov Random Fields

Markov random fields were first introduced in Section 2.3.5; for completeness, some

of the initial material is repeated here. Let S = {1, . . . , N} be a set of indices into
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the image sites (pixels or superpixels). A random field is a set of random variables

X = {xi | i ∈ S} where each of the variables Xi takes a value xi in its state space.

A configuration of X is denoted x = {x1, . . . , xN} and corresponds to a particular

assignment of states to the variables. For image segmentation, the variables are

associated with the image sites and the states correspond to the class labels assigned

to those sites. For example, in binary segmentation each pixel or superpixel has an

associated label (0 or 1) that signifies background or foreground, respectively. The

configuration x is then a segmentation of the image (i.e. a particular assignment of

background or foreground labels). Furthermore, let X denote the set of all possible

configurations:

X = {x = {x1, . . . , xN} | xi ∈ L, i ∈ S} (3.1)

where L is the set of class labels. This corresponds to the set of all possible segmen-

tations (assignments of class labels) for an image.

In a Markov random field (MRF), the state of each variable depends on the state of

its neighbours N = {Ni | i ∈ S}, where Ni are the indices of the sites neighbouring

i. Pixels are usually defined to be neighbours if they are immediately adjacent (in

cardinal or diagonal directions), whereas two superpixels are neighbours if they share

a common boundary. Formally, a random field X is an MRF if

P (x) > 0 ∀x ∈ X (3.2)

and

P (xi | xj 6=i) = P (xi | xNi). (3.3)

The latter condition is known as the Markov property. The Hammersley-Clifford

theorem shows that P (x) is characterised by a Gibbs distribution:

P (x) = Z−1 exp (−E(x)) (3.4)

where Z is a normalisation constant called the partition function. The term E(x)

is an energy function, given by a sum over the neighbourhoods (or cliques) of the

MRF:

E(x) =
∑
c

Vc(x) (3.5)

where Vc(x) is a potential function whose value depends on the configuration of the

clique c. For the model considered here, a clique can be defined as a subset of sites

in which every pair are neighbours.
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Figure 3.2: (a) A graphical representation of a conditional random field (CRF) on a
2D grid. The class label xi of node i is dependent on the class labels of
its neighbours (shown in blue), given the observation (shown in green).
(b) The factor graph representation for two nodes (superpixels) i and j,
showing the relationship between the variables and the first- and second-
order potentials of the energy function (3.6).

3.2.2 Conditional Random Fields

In a conditional random field (CRF) model, the energy function is generalised to

incorporate the observed data (e.g. pixel intensities or superpixel features) into the

potential functions [Blake et al., 2011]. The energy function then defines a posterior

probability distribution P (x | y) for the variables x given the observed data y and

can be written as a sum of first- and second-order potential functions in the form

E(x,y) =
∑
i∈S

ψ(yi | xi)︸ ︷︷ ︸
Data term

+λ
∑
i∈S

∑
j∈Ni

φ(yi,yj | xi, xj)︸ ︷︷ ︸
Smoothness term

(3.6)

where the constant λ controls the relative importance of the data and smoothness

terms. The data term of the CRF gives the cost of assigning the label xi at site

i. The smoothness term gives the cost of assigning the labels xi and xj at the

neighbouring sites i and j and is defined so as to promote spatial consistency of the

labels. Note that the form of the CRF is similar to the hidden Markov random field

of Zhang et al. [2001], except that the second-order potential also has a dependency

on the data. Section 3.5 describes how the potential functions used in the model are

learned from data. Figure 3.2 shows a graphical representation of a CRF alongside

its factor graph representation [Bishop, 2006] for two nodes in the graph.

The CRF formulation enables maximum a posteriori (MAP) inference over the

model to be carried out efficiently using graph cuts [Boykov and Funka-Lea, 2006].

Finding the MAP estimate of P (x | y) is equivalent to finding a labelling x̂ that

minimises the energy:

x̂ = arg min
x∈X

E(x,y). (3.7)
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For the problem of binary segmentation, graph cuts can find the globally optimal

solution (i.e. the global minimum energy) in polynomial time provided that the

energy function is submodular [Kolmogorov and Zabih, 2004, Szeliski et al., 2008].2

The min-cut/max-flow algorithm of Boykov and Kolmogorov [2004] is used to find

the optimal solution.

3.3 Superpixels

While most graph-based image representations tend to be constructed from the in-

dividual pixels of the image, recent work has demonstrated the advantages of using

local aggregates of similar pixels (or superpixels) rather than unary pixels as the

image primitives [Fulkerson et al., 2009, Lucchi et al., 2010]. The advantages of this

approach are twofold: firstly, as the number of nodes in the graph tends to decrease

significantly, there is a corresponding reduction in computational complexity. Sec-

ondly, multiple features can be extracted from the superpixel regions which can help

to discriminate between the classes more effectively.

This section first considers two different methods for generating superpixels to de-

termine which is the most appropriate for the segmentation problem. The two

superpixel algorithms discussed have both been demonstrated to obtain very good

performance on natural images [Achanta et al., 2012] and are also suitable for ap-

plication to the MR and CT images considered in this chapter. They are therefore

a natural choice for further investigation.

3.3.1 Quick Shift

Quick shift [Vedaldi and Soatto, 2008] is a clustering method which can be used

for superpixel generation. It is an example of a mode seeking algorithm, which

attempts to associate each data point with a mode of the underlying probability

density function. Mode seeking algorithms start by computing the kernel density

estimate [Hastie et al., 2009] of the data:

P (y) =
1

N

N∑
i=1

K(yi − y) (3.8)

where K is a suitable kernel function (e.g. Gaussian) and the features are usually the

image intensity values (for greyscale images). Each of the data points is then moved

2The energy function is submodular if the pairwise term of (3.6) satisfies φ(yi,yj | 0, 0)+φ(yi,yj |
1, 1) ≤ φ(yi,yj | 0, 1) + φ(yi,yj | 1, 0) for every pair [Kolmogorov and Zabih, 2004]. It is easy
to verify that this condition holds from the definition of equation (3.23).
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towards a mode of the density by following the direction of highest gradient from the

current point. The points that converge on the same mode form a cluster. Mode

seeking algorithms differ primarily in the scheme they use to evolve the gradient

trajectories.

Rather than using a gradient evolution, quick shift moves each data point to the

nearest neighbour for which there is an increment of the density function. The

algorithm constructs a tree of data points with the branches expressing the distance

between those points. Branches that have a greater distance than a threshold value

τ are cut, forming the superpixels of the image. In addition to its computational

efficiency, one of the main advantages over mode seeking algorithms is its ability to

effectively balance under- and over-segmentation of the image through the choice of

the τ parameter. Despite its simplicity, the segmentation performance is comparable

to the slower mean shift procedure [Vedaldi and Soatto, 2008].

A major limitation of quick shift is the inability to directly control the size of the

superpixels, which can lead to some superpixels in an image having a much larger

or smaller size compared to the majority. This is undesirable for segmentation as

it will affect the statistics of the features computed within the superpixel regions.

As the segmentation model is a graph over the superpixels in an image, allowing

the superpixels to take on any size also results in some superpixels having a sig-

nificantly larger number of neighbours than others, which could present problems

during inference.

The next section describes a different method which has the ability to constrain

the average size of the superpixels in an image, making it more suitable for the

segmentation framework described in this chapter.

3.3.2 SLIC

The method presented in this chapter uses the Simple Linear Iterative Clustering

(SLIC) [Achanta et al., 2012, Vedaldi and Fulkerson, 2008] algorithm to partition

the image into superpixels. The SLIC algorithm generates superpixels by clustering

pixels based on their intensity values and spatial proximity in the image. The

algorithm starts by initialising the cluster centres on a regularly spaced grid. In

order to avoid placing the centres on edges or noisy regions in the image, the 3× 3

pixel neighbourhood around each centre is searched to find the position with the

lowest gradient. The algorithm then assigns each pixel in the image to the cluster

centre with the smallest distance within a local region. After all pixels have been

assigned, the updated cluster centres are computed and the procedure is repeated

until convergence. As a final step, connectivity of the superpixel regions is enforced
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Algorithm 1 SLIC superpixels

Require: Image I
1: Initialise cluster centres ck on a regular grid with step size S
2: Move centres to lowest gradient position in 3× 3 neighbourhood
3: di ←∞ for all pixels
4: li ← −1 for all pixels
5: repeat
6: for each cluster centre ck do
7: for each pixel i in 2S × 2S region around ck do
8: dist(ck, i)← distance between ck and i
9: if dist(ck, i) < di then

10: di ← dist(ck, i)
11: li ← k
12: end if
13: end for
14: end for
15: Compute new cluster centres
16: Compute residual error r between previous and updated centres
17: until r ≤ threshold
Ensure: Connectivity of superpixels

by detecting any disjoint segments sharing the same label and assigning the smallest

segment to its largest neighbouring cluster. Algorithm 1 gives pseudocode for the

SLIC superpixel generation process. As shown in Figure 3.1, boundaries of SLIC

superpixels have the property of adhering to object boundaries, enabling an accurate

pixel-level segmentation to be recovered from the classified superpixels.

The number and regularity of the resulting superpixels is controlled by two param-

eters S and m, which determine the average size of the regions and their spatial

regularity. These are set to S = 6 and m = 0.05 for all of the experiments described

below, resulting in approximately 1700 superpixels per image. These parameters

were found by searching for the maximum average superpixel size that obtained an

adequate level of overlap with the ground truth segmentations on a set of 63 man-

ually labelled images (see Section 2.5.2. MRI Dataset 1). For each setting of the

parameters, the class of each superpixel was first determined by taking the majority

vote of the pixel-level ground truth labels within the superpixel. The Dice score was

then computed between the pixel-level ground truth labels and the superpixel-level

labels. Compared to the superpixels generated by Quick Shift and a number of other

competing methods, the advantages of SLIC superpixels are their spatial regularity

(they tend to be approximately convex) and the ability to constrain the average size

of the superpixels in an image. Experiments have also shown that SLIC superpixels

tend to be better at preserving boundary details than competing methods [Achanta

et al., 2012].

Note that unlike graph-based image representations on standard pixels, which tend
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to use an isotropic neighbourhood system of a constant size, superpixel neighbour-

hoods vary in connectivity depending on their spatial regularity. In the following

sections two superpixels are defined to be neighbours if they share a common bound-

ary (i.e. they contain at least one adjacent pixel). For the parameters and images

used here, the superpixels have an average neighbourhood size of 6.

3.4 Characterising Superpixels

The set of pixels comprising a superpixel can characterise the region in many ways,

providing a greater range of descriptive features than a single pixel value. Recent

work has investigated the use of superpixels within a supervised learning context

by training a classifier on a labelled set of features [Fulkerson et al., 2009, Lucchi

et al., 2010]. In particular, it is possible to learn estimates of class probabilities

P (yi | xi), where yi is a feature vector for superpixel i. Incorporating these learned

probability estimates into a graph cut framework can significantly improve the seg-

mentation performance compared to simpler parametric models (such as a mixture

of Gaussians).

The aim is to characterise the superpixels by extracting multiple features from them

that incorporate information about intensity, texture, location and edge detection

response. The features are used to discriminate between the vertebra and back-

ground superpixels by training a classifier on a set of ground truth images. Note

that this training occurs only once, after which the trained classifier can be used to

provide probability estimates for any further images. The pixel-level ground truth

labels are first converted into superpixel-level labels by assigning each superpixel to

the class with the majority vote. In the vast majority of cases this vote is unani-

mous. The superpixel feature/label examples are then used to train a support vector

machine (SVM) [Chang and Lin, 2011] using a radial basis function (RBF) kernel,

given by

K(yi,yj) = exp
(
−γ||yi − yj||22

)
(3.9)

where γ is a kernel width parameter found using cross-validation on the training

data. Probability estimates for the vertebra and background classes are obtained

from the SVM using the method of Wu et al. [2004] and incorporated into the data

term of the CRF. To do this the data term of equation (3.6) is defined as the negative

log likelihood of an observation (feature vector) given the class label (i.e. vertebra

or background):

ψ(yi | xi) = − log (P (yi | xi)) (3.10)

where the likelihood term P (yi | xi) is found by computing the SVM probability

estimates for each of the superpixels. The probability estimates are obtained using
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an improved version of Platt scaling [Platt, 1999], which approximates the posterior

distribution over the classes by fitting a logistic regression model to the raw classifier

scores. The improved version (as detailed in Wu et al. [2004]) extends this approach

in a number of ways to provide more reliable estimates of the class probabilities. In

Section 3.5 the potential functions of the CRF model are described in full.

A number of different features for classification are evaluated, which are summarised

in Table 3.1 and discussed below. The data used for the experiments consists of 63

2D axial MR images of the lumbar spine from 21 different subjects, details of which

are given in Section 2.5.2. MRI Dataset 1. To train the SVMs, leave-one-out cross-

validation was performed by leaving out one subject (i.e. 3 images) on each iteration

and training on the remaining 60 images. The model was then tested on the 3 images

from the held out subject and the process was repeated for all 21 subjects. Thus

the training and test images were always from separate subjects.

To evaluate the performance of the SVM using the different features, Receiver Op-

erating Characteristic (ROC) [Fawcett, 2006] curves are calculated from the proba-

bility estimates of the trained SVMs, taken over all leave-one-out iterations. As the

ground truth has pixel-level granularity, the superpixel-level probability estimates

are first converted to pixel-level before calculating the ROC curves. This was car-

ried out by assigning the probability estimate for each superpixel to the individual

pixels comprising the superpixel. The area under the ROC curve (AUC) provides

a measure of the overall classification performance of the SVM trained on different

sets of features.

The following sections give a detailed description of the features and assess their

impact on the classification performance on the SVM. Section 3.6.1 describes the

experimental setup in more depth.

3.4.1 Intensity and Texture

Intensity Histograms

The feature vector yT1i provides intensity information in the form of histograms over

the superpixel regions. The histogram hi for superpixel i is defined to be a 10-

bin normalised image intensity histogram over the pixels in i. Specifically, for each

superpixel i a concatenation is used of the intensity histogram over the superpixel

and an average histogram computed from the neighbouring superpixels in Ni:

yT1i =

[
hi,

1

|Ni|
∑
j∈Ni

hj

]>
. (3.11)
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Table 3.1: Superpixel features (pn denotes the n-th percentile). The right column
gives the dimension of the superpixel feature vector.

Feature Description Dim.

yT1i Concatenation of intensity histogram from superpixel i and
average histogram from neighbours Ni.

20

yT2i SIFT descriptor calculated at the centroid of superpixel i. 128

yL1
i Mean, p10 and p90 of the row and column pixel coordinates in

the superpixel, centred on the matched contour region.
6

yL2
i Mean, p10 and p90 of the matched contour distance transform

gradient in the superpixel, in both the horizontal and vertical
directions.

6

yE1
i Mean, p10 and p90 of the LoG response within the superpixel,

taken over 4 scales.
12

yE2
i Mean, p10 and p90 of the structure tensor eigenvalues of the

superpixel, taken over 4 scales.
24

The motivation for including the average histogram over the neighbours of i is that

the range of intensities within an individual superpixel tends to be small, meaning

that the histogram is not always distinctive. Including the average histogram of

neighbouring superpixels acts to counter this effect and improve classification per-

formance [Fulkerson et al., 2009]. Figure 3.4 shows the ROC curve for the SVM

trained on intensity histogram features, which obtained a test AUC of 0.63. Other

bin sizes were also tested for the histograms, but it was found in practice that the

performance of the SVM was not sensitive to the chosen number of bins.

SIFT Descriptors

The scale-invariant feature transform (SIFT) [Lowe, 2004] is a method for feature

description and detection widely used within computer vision for tasks such as object

recognition and tracking. Although originally proposed as both a keypoint detector

and descriptor, the descriptors can be used independently to characterise the textu-

ral properties of regions at arbitrary locations within an image. A brief description

of the SIFT descriptor is next provided, before discussing how it can be effectively

used to characterise superpixels.

The SIFT descriptor is essentially a weighted spatial histogram of image gradient

orientations computed around a specified keypoint (see Figure 3.3 for an illustra-

tion). A histogram is first formed from the orientations around the keypoint3 and

each of the histogram samples is then weighted by its corresponding gradient mag-

nitude. The orientations corresponding to the highest peak of the histogram and

the local peaks within 80% of the highest peak are used to assign the orientation

3The term keypoint here refers to an arbitrary location in the image.
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Figure 3.3: Illustration of the SIFT descriptor [Lowe, 2004]. The magnitudes and
orientations of local image gradients are weighted by a Gaussian window
(blue circle). The samples are aggregated into orientation histograms
characterising sub-regions (shown on the right), where the length of the
arrows is determined by the sum of gradient magnitudes near their di-
rections.

to the keypoint. To maintain orientation invariance, the coordinates of the descrip-

tor and gradient orientations are rotated relative to the keypoint orientation. Each

individual SIFT descriptor is a vector constructed by concatenating the orientation

histogram entries. The standard SIFT descriptor computes multiple histograms

from a 4× 4 sample region with 8 orientation bins each; the resulting descriptor is

then a vector with 4× 4× 8 = 128 elements.

In order to more effectively characterise the local textural properties of the super-

pixel regions, 128-dimensional SIFT descriptors of a fixed size are computed at the

centroid of each superpixel (denoted by yT2i ). This results in a set of highly distinc-

tive features that are robust to noise and changes in scale and intensity. The ROC

curve for the SIFT features is shown in Figure 3.4. Using the SIFT features, the

SVM obtained a test AUC value of 0.96.

3.4.2 Location

By reliably detecting specific regions of the vertebrae, it is possible to obtain informa-

tion on the location of superpixels relative to these detected regions. In particular, it

is noticeable that the upper part of the vertebral body is surrounded by a boundary

of cortical bone with a distinctive, roughly semi-circular shape (see Figure 3.5a).

Locating the upper part of the vertebra in an axial image makes to possible to cor-

rectly classify a large section of the image, as the superpixels above the region are

known to belong to the background class. Described next is a contour matching

approach that can be used to detect these boundary regions consistently.

A set of partial segmentation contours is first extracted from the ground truth images
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Figure 3.4: ROC curves of SVM probability estimates for the individual and com-
bined superpixel features.

by cropping the original contours below their centroids, so that the resulting contour

set C corresponds to the contours around the upper part of the vertebral body. Each

ground truth image is therefore associated with a single contour C ∈ C and the goal

is to find the best matching contour of the set for a new image. A Laplacian of

Gaussian (LoG) filter is used to detect the outer boundary of the vertebra (see the

next section for a detailed description of the LoG filter). Given an image I(r, s), the

function Lσ(r, s) is defined as the convolution of the LoG with the image:

Lσ(r, s) = ∇2Gσ(r, s) ∗ I(r, s) (3.12)

where ∇2 is the Laplacian operator and Gσ(r, s) is a Gaussian kernel with standard

deviation σ. For each contour C ∈ C, a search is then performed over the convolved

image to find the point where the average LoG response along the contour is greatest.

The best match is the contour with the maximum response of the set:

arg max
C∈C

 max
(r,s)∈Ω

 1

|C|
∑

(u,v)∈C

Lσ(r + u, s+ v)

 (3.13)

where Ω denotes the set of all (r, s) coordinate pairs for the image and (u, v) ∈
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(a) (b)

(c)

Figure 3.5: (a) Example MRI vertebra slice. The cortical bone can be seen as the
dark boundary surrounding the vertebra. (b) Example matched contour
(magenta) found using (3.13). Also shown are the axes of the centred co-
ordinates (cyan). (c) Gradient of the contour region distance transform
in the horizontal and vertical directions, respectively.

C are the coordinates of the contour. Note that the matching procedure can be

implemented very efficiently using convolution operations. An example matched

contour is shown in Figure 3.5b.

The matched contours are used to extract location features for the superpixels. For

the first set of location features yL1
i , the pixel coordinates are set to have their origin

at the centroid of the matched contour region, as shown in Figure 3.5b. Letting

pn denote the n-th percentile the mean, p10 and p90 of the row and column pixel

coordinates within the superpixel are then taken to form the first 6-dimensional

feature vector.

The second set of location features yL2
i is obtained from the distance transform
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Figure 3.6: Visualisation of a Laplacian of Gaussian filter.

[Maurer et al., 2003] of the matched contour region. The features are formed by

taking the gradient of the distance transform in both the horizontal and vertical

directions, as illustrated in Figure 3.5c. The feature vector is then formed by taking

the mean, p10 and p90 of these gradients within the superpixel. Note that the gradi-

ents of the distance transform have unit norm almost everywhere (i.e. they are unit

vectors) [Osher and Sethian, 1988]. However, the horizontal and vertical gradients

encode local information defined over the space of orientations, the distribution of

which can be seen as providing a general representation of object shape [Gurumoor-

thy et al., 2011]. The combined 12-dimensional feature vector yLi = [yL1
i ,y

L2
i ]>

therefore provides important information on the superpixel location relative to the

upper part of the vertebra. Figure 3.4 shows the ROC curve for the SVM trained

on the combined location features, which obtained an AUC of 0.97.

3.4.3 Edge Response

The feature vector yEi incorporates information on the “edgeness” of the superpixels.

These features are distinctive of superpixels at the edges and corners of the vertebrae

and help to separate the vertebra and background classes around the boundary.

Laplacian of Gaussian

In order to detect the boundary, convolution of the image with a Laplacian of Gaus-

sian (LoG) filter is carried out to highlight areas corresponding to rapid changes of

intensity. Unlike filters based on first-order derivatives of the image, the Laplacian

is a second-order operation. As a consequence, it is isotropic (rotation invariant)

and obviates the need for multiple filter masks to highlight edges at different angles

[Gonzalez and Woods, 2008].

Convolution with the LoG filter can be viewed as applying the Laplacian operator to
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an image which has been first smoothed with a Gaussian filter. The representation

of image I at scale σ is defined as the convolution of I and a Gaussian kernel with

standard deviation σ:

Iσ(r, s) = Gσ(r, s) ∗ I(r, s) (3.14)

where

Gσ(r, s) =
1

2πσ2
e−

r2+s2

2σ2 (3.15)

To obtain the LoG, the Laplacian operator is then applied to the resulting image:

Lσ(r, s) =
∂2Iσ(r, s)

∂r2
+
∂2Iσ(r, s)

∂s2
(3.16)

The value of σ is chosen based on the size of the regions to be detected. The

zero crossings of the LoG occur at r2 + s2 = 2σ2, defining a circle centred on the

origin of radius
√

2σ. Thus, applying the LoG filter to an image will result in a

positive response for low intensity regions of extent 2
√

2σ [Gonzalez and Woods,

2008]. Figure 3.6 shows a visualisation of a 20× 20 LoG filter with σ = 3.

The first set of features yE1
i is obtained from the LoG response over the superpixel

region. The LoG at 4 different scales is calculated by setting the standard deviation

to {2, 4, 6, 8} pixels. The mean, p10 and p90 over the superpixel is then taken at each

scale to form a 12-dimensional feature vector for the superpixel. Using multiple

scales enables the features to capture edge regions of different width and extent,

which are generally not known a priori.

Structure Tensor

The second set of features yE2
i is obtained from the structure tensor of the image

[Forstner and Gulch, 1987, Knutsson, 1989]. For an image I(r, s), the structure

tensor can be written as

Jρ(∇I) = Gρ ∗
(
∇I∇I>

)
=

[
Gρ ∗ I2

r Gρ ∗ (IrIs)

Gρ ∗ (IrIs) Gρ ∗ I2
s

]
(3.17)

where Ir and Is are the partial spatial derivatives of the image in the horizontal

and vertical directions and Gρ is a Gaussian kernel with standard deviation ρ. The

parameter ρ is called the outer scale and determines the extent of spatial averaging,

with larger scales acting to reduce noise present at smaller scales. The partial

derivatives of the image are computed by convolution with Gaussian derivative filters

of standard deviation τ , referred to as the inner scale.

The two eigenvectors and eigenvalues of the structure tensor at each pixel charac-

terise the gradient of the image at a given scale, providing information on the local
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structure of the image. Specifically, the eigenvalues describe the average contrast

in the corresponding directions given by the eigenvectors [Weickert, 1999]. The

eigenvalues of the structure tensor are computed at each pixel within the superpixel

region, taken over outer scales ρ ∈ {2, 4, 6, 8} with the inner scale set in proportion

τ = ρ/2. The mean, p10 and p90 of the eigenvalues at each scale are combined to

form a 24-dimensional feature vector for the superpixel.

The ROC curve for the edge features is shown in Figure 3.4. An AUC of 0.76 was

obtained using the SVM trained on edge features. The relevance of these superpixel

features comes from the performance increase when used with other features in

combination, which is discussed in the next section.

3.4.4 Performance of Combined Features

Finally, this section considers the performance of the SVM trained on the combined

superpixel features. The features are concatenated into a single feature vector yi for

each superpixel:

yi =
[
yTi ,y

L
i ,y

E
i

]>
. (3.18)

Figure 3.4 shows the ROC curve for the SVM trained on the combined features,

which obtained an AUC of 0.98. Other subsets of features were exhaustively tested

but it was found that the best results were obtained by using a combination of

all the features. Comparing this with the ROC curve using only the histogram

features shows the importance of incorporating multiple features that are not based

solely on intensity information. While the ROC curves of the individual SIFT and

location features obtain much higher performance, the improvement provided by

the combined features translates into a significant increase in the amount of overlap

with the ground truth segmentations.

Figure 3.7b shows example images of the class probabilities P (yi | xi) obtained from

the SVM using the combined features. Note that all pixels within a given superpixel

are assigned the same probability, so the figure shows the superpixel-wise probability

estimates. Example images of the SVM probability estimates obtained on CT data

are shown in Figure 3.8b. As these probability estimates correspond to the data

term of the CRF without the influence of the smoothness term, they are not fully

representative of the final segmentations. The next section describes the full CRF

model used to obtain the segmentations.
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Figure 3.7: (a) Shown top to bottom are MR images for which the CRF obtained the
minimum, median and maximum Dice similarity score (0.81, 0.88 and
0.95), respectively. (b) Probability estimates using the combined super-
pixel features for the images in the first column. Darker regions indicate
higher probability of belonging to the vertebra class. (c) Max-marginals
computed from the CRF graph cut solutions. (d) Segmentation contours
shown for both the ground truth annotations (magenta) and CRF model
(cyan).

3.5 Potential Functions and Max-Marginals

This section defines the potential functions used for the CRF of (3.6), each of which

incorporates information learned from the superpixel training examples. Also dis-

cussed are the probability estimates for the final superpixel labels obtained using

graph cuts.

3.5.1 First-Order Potential

The first-order potential function incorporates the SVM probability estimates into

the CRF as the negative log likelihood, defined in equation (3.10). The superpixel
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Figure 3.8: (a) Shown top to bottom are CT images corresponding to the mini-
mum, median and maximum Dice similarity score (0.88, 0.97 and 0.98),
respectively. (b) SVM probability estimates for the images in the left
hand column. Darker regions indicate higher probability of belonging
to the vertebra class. (c) Final segmentation contours from the CRF
shown overlaid with the probability estimates (cyan). (d) Segmentation
contours shown for both the ground truth annotations (magenta) and
CRF model (cyan).

likelihoods given by the data term are highly discriminative and localised to the

vertebrae regions, as can be seen in the examples shown in Figures 3.7b and 3.8b.

While in many cases accurate segmentations can be obtained by simply thresholding

the probability estimates of the data term, the smoothness term of the CRF (de-

scribed in the next section) can improve the accuracy further by promoting spatial

consistency.

3.5.2 Second-Order Potential

Many graph cut formulations incorporate a penalty based on a Euclidean distance

measure between the features of neighbouring sites, such as the one proposed in

Boykov and Funka-Lea [2006]. However, using a standard Euclidean distance disre-
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gards any regularities that may be present in the data and which can be exploited

to improve performance [Weinberger and Saul, 2009].

In order to address these issues, the focus can instead be placed on using distance

metric learning to learn an appropriate distance metric for the second-order poten-

tial. In particular, the Large Margin Nearest Neighbour (LMNN) [Weinberger and

Saul, 2009] algorithm is used to learn a pseudometric4 of the form

DM(yi,yj) = (yi − yj)
>M(yi − yj) (3.19)

where M is a positive semidefinite matrix. This matrix can be expressed in terms of

a linear transformation L such that L>L = M. The objective is to learn the metric

such that the k-nearest neighbours of examples in the transformed space (determined

by L) belong to the same class while those belonging to different classes are separated

by a large margin. There are a number of parallels between the LMNN algorithm

and SVMs as a consequence of their shared focus on margin maximisation, with

both methods involving a convex optimisation procedure using similar loss functions

[Weinberger and Saul, 2009].

The first term of the LMNN loss function penalises large distances between the input

and target neighbours and can be seen as having a “pulling” effect on the target

neighbours. It can be written as

`pull(L) =
∑
j→i

‖L(yi − yj)‖2
2 (3.20)

where j → i denotes that i is a target neighbour of j. The second term of the

loss function penalises small distances between examples with different class labels

(termed impostors). The term can therefore be seen as exerting a “pushing” force

on the examples and can be written as

`push(L) =
∑
i,j→i

∑
l

(1− [xi = xl]) max
{

0, 1 + ‖L(yi − yj)‖2
2 − ‖L(yi − yl)‖2

2

}
(3.21)

where [xi = xl] is 1 if xi = xl and 0 otherwise. The combination of the two competing

terms of the LMNN loss function is analogous to the formulation of the loss function

used for SVM learning [Scholkopf and Smola, 2002]. The optimisation problem

can be solved efficiently by formulating the problem as an instance of semidefinite

4Unlike a metric, a pseudometric allows two distinct points to have a distance of zero.
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Figure 3.9: The left image shows the projection of a sample of 2000 superpixel fea-
tures onto their first 2 principal components prior to metric learning
(red are positive examples, blue are negative). The right image shows
the projected features in the transformed space found by LMNN.

programming [Boyd and Vandenberghe, 2004]. The objective then becomes

min
M

∑
i,j→i

DM(xi,xj)

subject to DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl
ξijl ≥ 0

M � 0

(3.22)

where ξijl are slack variables for target neighbours i, j and impostors l, which are

introduced to control violations of the large margin inequality.

A demonstration of the application of LMNN to the superpixel features is given in

Figure 3.9, which shows the projection of a sample of superpixel features onto their

first 2 principal components, both in the original and transformed space found by

LMNN. In general, the two classes are better separated in the transformed space,

with the nearest neighbours of the superpixels tending to belong to the same class.

The singular values of a transformation matrix L learned using LMNN are shown

in Figure 3.10. Notice that there is a significant number of singular values near

zero, indicating the subset of the features that are collapsed by the transformation.

Under this view, the transformation can be interpreted as carrying out a form of

feature selection on the original superpixel vectors.

The learned metric is incorporated into the second-order potential function as follows

φ(yi,yj | xi, xj) =

exp (−DM(yi,yj)) if xi 6= xj

0 otherwise
(3.23)

which penalises neighbouring superpixels which have similar feature vectors and are
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Figure 3.10: Singular values of an example transformation matrix learned by LMNN
on the superpixel features.

assigned to different classes. Note that, as with the SVM used in the data term, the

metric M need only be learned once on the training data.

The LMNN algorithm can be related to more traditional statistical methods such

as Fisher’s linear discriminant [Fisher, 1936], which can also be viewed as inducing

a metric via a linear transformation of the original feature space. The objective of

Fisher’s discriminant is essentially to find a linear transformation that maximises the

ratio of the inter-class variance to the intra-class variance [Bishop, 2006]. In com-

mon with LMNN, Fisher’s discriminant tries to maximise the separation of different

classes and operates in a supervised setting, but seeks to minimise the variance of

all examples within a class rather than a subsample of target neighbours.

3.5.3 Max-Marginals

In order to obtain confidence measures for the CRF segmentations, the max-marginal

probability estimates P (xi | yi) are computed from the graph cut solution. The min-

marginal energies are defined as the graph cut solution of the CRF where a single

variable xi is clamped to take the label k:

ξ(xi, k) = min
x∈X ,xi=k

E(x,y). (3.24)

The min-marginals can be computed very efficiently using the method of Kohli

and Torr [2008]. By taking advantage of dynamic programming [Felzenszwalb and
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Zabih, 2011], the time required to compute the min-marginals is only slightly more

than required for a single graph cut solution. After the min-marginals have been

computed, the max-marginals are then obtained using a softmax function over the

negative min-marginals:

P (xi = 1 | yi) =
exp (−ξ(xi, 1))

exp (−ξ(xi, 1)) + exp (−ξ(xi, 0))
. (3.25)

Example images of the resulting max-marginal probabilities for the superpixels are

shown in Figure 3.7c. Compared with the estimates obtained using just the data

term (shown in Figure 3.7b), the CRF probabilities tend to be more localised to the

region outlined by the ground truth, which reduces the likelihood of false positives

occurring outside the vertebra region.

3.6 Experiments

The performance of the method is next assessed on both MR and CT images from

a number of different subjects. A description is first given of the datasets used for

the experiments and the training procedure for the CRF model. The segmentation

results obtained on each dataset are then presented and discussed.

3.6.1 Image Datasets

MRI Dataset

The MRI dataset used for the experiments consists of 2D axial images of the lumbar

spine from 21 healthy subjects with an in-plane resolution of between 0.49 mm and

0.50 mm and a slice thickness of 4 mm. A detailed description of the dataset is given

in Section 2.5.2. MRI Dataset 1. It is emphasised that the acquisition protocol used

to obtain the images was not tuned for segmentation and is typical of those used for

clinical work.

Each of the 512× 512 pixel training images were cropped to 251× 241 using a mini-

mum bounding box calculated from the set of ground truth segmentations. Prior to

processing, the MR images were contrast enhanced by saturating 1% of the inten-

sities (using the MATLAB imadjust function). This prior contrast enhancement

step was carried out mainly to improve the boundary adherence properties of the

SLIC superpixels.
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Table 3.2: Segmentation results on the MRI data. The table shows the minimum,
median and maximum values over all individual volumes.

Measure Min Median Max
Dice score 0.81 0.88 0.95
Avg. surf. dist. (mm) 0.06 0.27 0.93
RMS surf. dist. (mm) 0.33 1.26 3.41
Max. surf. dist. (mm) 3.50 12.82 29.47

CT Dataset

The CT data consists of central 2D axial slices of lumbar vertebrae from 10 different

subjects obtained from the dataset detailed in Section 2.5.2. CT Dataset. The

images have an in-plane resolution of between 0.31 mm and 0.36 mm with a slice

thickness of 1 mm.

A total of 50 ground truth images were obtained by selecting the middle vertebral

slice from each of the 5 lumbar vertebrae of each manually annotated subject. The

512×512 pixel images were cropped to 391×371 using a global bounding box around

the vertebrae regions.

3.6.2 Model Training

The SVMs were trained using the procedure described in Section 3.4. Note that

the training data is unbalanced, as there are many more negative (background)

superpixel examples in an image than positive (foreground) examples. This was

addressed by training on a fixed proportion of randomly sampled positive and nega-

tive examples at each leave-one-out iteration. An alternative approach to handling

unbalanced data is to weight the separate classes in proportion to their frequency

in the training data. However, for the data considered here the number of negative

examples is prohibitively large, so subsampling is necessary to reduce computation.

The same leave-one-out testing approach was used for the LMNN algorithm, with

the distance metric learned on the training images for each leave-one-out iteration

and applied on the 3 images from the held out subject.

3.6.3 Segmentation Results

The Dice Similarity Coefficient (or Dice score) was used to evaluate the segmenta-

tion quality, as defined in Section 2.4.1. Leave-one-out testing was used to evaluate

the segmentation performance of the method, with the summary statistics of the

Dice score taken over all leave-one-out iterations. A morphological closure opera-
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Table 3.3: Segmentation results on the CT data. The table gives the minimum,
median and maximum values of the evaluation measures for each lumbar
vertebra.

Measure L1 L2 L3 L4 L5

Dice score
Min 0.92 0.96 0.95 0.94 0.88
Median 0.97 0.97 0.97 0.97 0.97
Max 0.98 0.98 0.98 0.98 0.98

Avg. surf. dist. (mm)
Min 0.01 0.01 0.01 0.01 0.01
Median 0.02 0.03 0.02 0.03 0.02
Max 0.32 0.05 0.04 0.09 0.58

RMS surf. dist. (mm)
Min 0.08 0.06 0.07 0.07 0.06
Median 0.15 0.19 0.18 0.20 0.12
Max 2.43 0.88 0.55 0.62 3.75

Max. surf. dist. (mm)
Min 1.25 0.99 2.28 1.77 1.88
Median 3.40 3.88 3.50 3.92 2.60
Max 28.68 22.46 11.76 13.22 34.91

tion was applied as a final post-processing step to smooth the boundaries of the

segmentations.

The average Dice score for the MR images was 0.88 with standard deviation 0.03.

Table 3.2 summarises the segmentation results using the evaluation measures that

were described in Section 2.4.1. Figure 3.7d shows example segmentation contours

for both the ground truth and CRF model, corresponding to the minimum, median

and maximum Dice score. Although benchmark datasets for axial vertebra segmen-

tation are not publicly available, it is noted here that the worst case Dice score of

0.81, obtained on images which include the pedicles and posterior elements, is still

higher than the average score reported in Zukic et al. [2012] for vertebral body seg-

mentation. Most of the disagreement with the ground truth segmentations tends to

occur around the posterior elements of the vertebrae, although lower inter-annotator

agreement is also expected in these regions due to the low resolution and presence

of partial volume effects.

On the CT data the average Dice score was 0.97 with standard deviation 0.01. Ta-

ble 3.3 summarises the segmentation results obtained on each lumbar vertebra. Fig-

ure 3.8d shows example segmentation contours for both the ground truth and CRF

model, corresponding to the minimum, median and maximum Dice score (0.88, 0.97

and 0.98). As the figure suggests, in most cases the automatic segmentation is very

close to the manually determined region. The results obtained by the method com-

pare favourably with those recently presented in Huang et al. [2013], who reported

an average Dice score of 0.94 ± 0.02. In the same work, the authors showed that

their method obtained superior results compared with two other recent approaches

to vertebra segmentation [Lim et al., 2013, Kim and Kim, 2009].
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Figure 3.11: The top figure shows a 3D segmentation of a lumbar vertebra (L2) con-
structed from segmentations of the constituent CT slices. The bottom
figure shows the overlap between the CRF segmentation (cyan) and
ground truth (magenta).

3.6.4 3D Reconstruction

Although the focus of this chapter is on 2D segmentation, the method can also

be used to reconstruct 3D segmentations of vertebrae from individually segmented

slices by modifying the way the location features are derived. To do this, the contour

matching is first carried out on each slice of the image stack. The M-estimator sam-

ple consensus (MSAC) [Torr and Zisserman, 2000] algorithm is then used to remove

poor contour matches by detecting and eliminating outliers. Outliers are determined

based on the distance to their k-nearest neighbours in the set of matched contours

and removed by fitting a line through the set of inliers. Location features analogous

to the 2D case can then be derived from the correctly matched contours by com-

puting the distance transform in 3D. This method of obtaining 3D location features

is described more completely in the next chapter. Figure 3.11 shows an example

3D vertebra segmentation constructed from segmentations of the constituent slices.

Note that while this makes it possible to construct a 3D segmentation from CT

data, it is not suitable for MRI due to the much greater difficulty in discriminating

between the vertebra and background structures in the individual axial slices.
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3.7 Conclusion

This chapter presented an automatic approach for segmentation of vertebrae from

MR images. The method avoids the requirement of explicit prior shape information

and can therefore deal with a range of normal anatomical variation. An advantage

of the method is that it can be applied to images acquired using standard clinical

protocols and does not require specialised scanning sequences.

The experimental results show that the method achieves very good segmentation

performance on vertebrae from a variety of subjects. The segmentations them-

selves are highly localised to the vertebra region, with most of the disagreement

with the ground truth occurring around the thin posterior elements where lower

inter-annotator agreement is expected. The time to segment a single image was

approximately 50 seconds using an Intel Core i5 2.50 GHz machine with 8 GB of

RAM running Linux (64-bit).

The efficacy of the method relies on the contribution of several methods novel to

medical image segmentation. The use of superpixels provides computational effi-

ciency and allows us to more fully characterise an image region in terms of texture

than is possible with single pixels. Although similar in spirit to the hidden Markov

random field approach introduced by Zhang et al. [2001], the use of conditional

random fields allows the similarity between the hidden (super)pixel states to be

conditioned on the observed data. Furthermore the use of metric learning tailors

the similarity measure between superpixel features to the data itself, rather than

relying on a metric chosen ad hoc; this promotes spatial consistency and reduces the

number of false positives. In contrast to methods that use a parametric form for

assessing likelihood of an observed intensity conditioned on the (super)pixel state

(e.g. a Gaussian or mixture of Gaussians), an important contribution to the model’s

accuracy is made by the learning of this likelihood with SVMs. Finally, the combina-

tion of descriptive superpixel features, namely the SIFT, location and edge features

significantly enhances the segmentation accuracy.

Although this work has focused on the segmentation of vertebrae from MR images,

the approach that has been described is applicable to general segmentation problems.

MR images have low resolution, low contrast and are noisy compared with CT

images and the experiments carried out on CT data demonstrate that very accurate

segmentations can be achieved without modification of the underlying algorithm. It

is reasonable to assume that the learning of both first- and second-order potential

functions will be effective for general medical image segmentation problems given

a large enough dataset of labelled images. The formulation of the segmentation

problem as one of assigning class labels to local regions of the image also enables a

natural extension to 3D segmentation, which is described in the next chapter.
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4 3D Segmentation of the Lumbar

Spine

The previous chapter demonstrated that accurate segmentation is possible in 2D

using descriptive image features in combination with a superpixel-based conditional

random field model. This chapter extends the approach described in the previous

chapter for 2D segmentation to enable segmentation of the lumbar spine from 3D

MRI data.1 The method is shown to obtain accurate 3D segmentations of both lum-

bar vertebrae and intervertebral discs. Additional results obtained on CT data are

also presented along with a report of the MICCAI-CSI 2015 challenge on automatic

IVD localisation and segmentation from 3D T2 MRI data [Zheng et al., 2016].

In order to extend the approach to 3D, one of the main issues is in finding descriptive

features that are able to capture the properties of local voxel regions (as opposed to

pixel regions). This chapter demonstrates that very effective features can be learned

from data, thus avoiding the need to hand-design features analogous to those used

for 2D segmentation.

4.1 Introduction

Segmentation of the lumbar spine remains a difficult task for automated methods

due to the complexity of the anatomy (see Figure 4.1) and various imperfections that

are often present in the images, such as noise and intensity inhomogeneity. Recent

work on vertebra segmentation in 3D has tended to focus on incorporating prior

shape information into the model. This is achieved using methods such as statistical

shape models [Kadoury et al., 2013, Mizaalian et al., 2013, Kirschner et al., 2011] or

shape-constrained deformable surfaces [Lim et al., 2013, Ma and Lu, 2013, Klinder

et al., 2009]. One drawback of shape-based approaches is their reliance on prior

knowledge of anatomical variation to constrain the segmentation. Construction of

statistical shape models requires the accurate placement of anatomical landmarks

across a representative training dataset, a step which is often carried out manually

by an expert. As discussed in Section 2.3.2, deformable models also rely on accurate

1This chapter is based on work first published in Hutt et al. [2015b] and Zheng et al. [2016].
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(a) (b)

Figure 4.1: Annotated sections of the lumbar spine showing vertebrae (a) and inter-
vertebral discs (b). Note that the two figures have different scale.

initialisation to ensure the optimisation process does not become trapped at a local

minimum, which can result in a poor segmentation. A few alternative methods

have recently been introduced which avoid explicit shape constraints [Huang et al.,

2013, Kim and Kim, 2009]. However, these methods are tailored specifically to the

properties of CT images and are not likely to be effective when applied to lower-

contrast MRI data. Furthermore, existing methods that are designed for automatic

segmentation of 2D images are likely to become either intractable or ineffective in

3D due to the demands of operating on much larger and more complex images.

Unlike the proposed approach, the segmentation of intervertebral discs (IVDs) has

typically been treated as an independent problem in the literature, employing spe-

cialised methods differing from those used for vertebra segmentation. Existing meth-

ods for IVD segmentation are predominantly focused on 2D images, recent examples

being the atlas-based approach of Michopoulou et al. [2009] and the level set ac-

tive contour approach of Law et al. [2013]. A 3D approach was proposed by Kelm

et al. [2013] using marginal space learning to estimate the location of the IVDs,

followed by a graph-based segmentation. The recent work of Chen et al. [2015] ob-

tained state-of-the-art results in 3D using a two-step localisation and segmentation

approach.

In this chapter, a novel approach is described for segmentation of the lumbar spine

from 3D MR images based on a conditional random field (CRF) operating on su-

pervoxels. Basing the model on supervoxels reduces computational complexity and

enables more descriptive features to be extracted to characterise the separate classes.

Features are obtained by learning dictionaries of filters from multi-scale volume pyra-

mids. By learning the features over multiple scales, larger-scale spatial structure
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Figure 4.2: Overview of the proposed segmentation method. Features are extracted
densely over the input volume at multiple scales and pooled within su-
pervoxels. Estimates of the supervoxel class labels are obtained using
an SVM with a generalised RBF kernel. A CRF model incorporating
the SVM predictions and a learned pairwise metric is used for the final
labelling of the supervoxels.

can be represented while ensuring the learning process remains tractable. Addi-

tional features are described that encode the relative location of supervoxels using

an extension of the contour matching procedure introduced in the previous chapter

for 2D segmentation. Closely following the approach used in the previous chapter,

supervised learning is used to train a support vector machine (SVM) on labelled

supervoxel features and obtain probability estimates expressing the likelihood of be-

longing to either the object or background class. Distance metric learning is used to

find an appropriate dissimilarity measure between supervoxel pairs. The probability

estimates and learned metric are incorporated into a CRF model in the form of first-

and second-order clique potentials of the CRF energy function. This formulation

enables minimisation of the energy function to be carried out efficiently using graph

cuts [Boykov and Funka-Lea, 2006]. Figure 4.2 illustrates the main components of

the proposed segmentation method.

The method is evaluated extensively on 3D MRI datasets of lumbar vertebrae and

intervertebral discs. An initial report of the IVD segmentation results obtained by

the method was given in Hutt et al. [2015b].

The main contributions of the chapter can be summarised as the following:

• A method is introduced for automatic segmentation of the lumbar spine from

3D MR images. It is shown that the method is able to obtain accurate seg-

mentations from scans of lumbar vertebrae and intervertebral discs.

• A multi-scale dictionary learning approach is used to obtain descriptive fea-

tures for the supervoxels, which are subsequently used to train a classifier for

estimating the supervoxel class labels. Additional features are described which

encode the relative location of supervoxels.

• A CRF model is introduced with learned potential functions incorporating
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the classifier label estimates in addition to a learned metric between pairs of

supervoxel features.

• The method is evaluated on 3D MRI datasets of vertebrae and intervertebral

discs from a number of different subjects.

The first MRI dataset consists of 3D scans of a section of the lumbar spine from 8

different subjects, encompassing the lumbar vertebrae from L3 to L5. The details

of the dataset are given in Section 2.5.2. MRI Dataset 2. The dataset is referred to

in this chapter by the abbreviation LV.

The second dataset used for the evaluation consists of T2-weighted turbo-spin-echo

MR images from 15 different subjects provided for the MICCAI 2015 intervertebral

disc localisation and segmentation challenge. A detailed description of the dataset

is given in Section 2.5.2. MRI Dataset 3. The dataset is referred to in this chapter

by the abbreviation IVD.

In the first part of the chapter supervoxel classification is discussed as follows: Sec-

tion 4.2 discusses supervoxels. Section 4.3 describes the learned set of supervoxel

features. Section 4.4 describes the location features. Section 4.5 discusses super-

voxel classification and evaluation. The second part of the chapter describes the

segmentation model and presents the final results as follows: Sections 4.6 and 4.7

discuss the final form of the CRF model with learned potential functions. Sec-

tion 4.8 presents additional experiments along with the final segmentation results.

Section 4.9 investigates the influence of sample size on the resulting performance of

the method and Section 4.10 concludes the chapter.

4.2 Supervoxels

The 3D segmentation problem is formulated as one of assigning class labels to super-

voxels (groups of similar voxels). The advantages of using supervoxels are twofold:

firstly, multiple features can be extracted from the supervoxel regions to discrimi-

nate between the separate classes more effectively [Lucchi et al., 2012]. Secondly, for

graph-based models such as CRFs the number of nodes in the graph decreases dra-

matically from the millions of individual voxels in a volume to a much smaller set of

supervoxels. This leads to a corresponding reduction in computational complexity,

enabling segmentation of a volume to be carried out very efficiently.

77



(a) (b) (c)

Figure 4.3: Figures show supervoxels belonging to an example vertebra, where the
class of each supervoxel is determined by majority vote. (a) Boundaries
of supervoxels in an axial slice of a CT volume. Note that the image
shows a single 2D slice through the 3D supervoxels. (b, c) Surfaces of
supervoxels where the vertebra supervoxels have been assigned random
colours and background supervoxels are shown in grey. The supervoxels
preserve the boundary detail of vertebrae, enabling an accurate voxel-
level segmentation to be recovered.

4.2.1 Axis-Weighted SLIC

The Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012] algorithm is

used to partition a volume into supervoxels. As discussed previously in Section 3.3.2,

the advantages of SLIC supervoxels compared to those obtained by similar algo-

rithms are their spatial regularity (they tend to be approximately convex) and the

ability to constrain the average size of the supervoxels in a volume. The number

and regularity of the resulting supervoxels is controlled by two parameters, which

determine the average size of the regions and their spatial regularity, respectively.

The parameters are determined empirically by searching for the maximum super-

voxel size that still preserves almost all object boundaries in the training images.

The effect of the supervoxel parameters is discussed in more detail in Section 4.8. As

shown in Figure 4.3, boundaries of SLIC supervoxels have the property of adhering

to object boundaries, enabling an accurate voxel-level segmentation to be recovered

from the classified supervoxels.

The SLIC algorithm generates supervoxels by clustering voxels based on their in-

tensity values and spatial proximity in the volume. One issue that needs to be

accounted for is that the volumes may have an in-plane resolution which is different

to the slice thickness (i.e. the voxel grid may be anisotropic). This is achieved by

adapting the SLIC algorithm to assign the appropriate weight to distances computed

along the depth dimension, where the weight is given by the ratio of the in-plane

image resolution to the slice thickness. This modification to the algorithm leads to

supervoxels with approximately equal physical extent in all directions. More for-

mally, letting (r, s, t) denote the spatial coordinates of a voxel and τ denote the ratio
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of the in-plane resolution to the slice thickness, the spatial distance is defined as

spatial distance =
√

(r − r′)2 + (s− s′)2 + τ 2(t− t′)2 (4.1)

where r′, s′ and t′ are the coordinates of a cluster centre. In addition, the SLIC

algorithm begins with an initialisation step where an initial set of cluster centres are

sampled on a regularly spaced grid. In order to account for anisotropic volumes, a

further adaptation of the algorithm is made so that the initial grid of cluster centres

is scaled based on the resolution. For example, this means that a volume with a

slice thickness of 1 mm results in twice the number of initial centres along the depth

dimension of the grid compared with a volume of equal dimensions having a slice

thickness of 2 mm.

Note that unlike graph-based image representations on standard pixels or voxels,

which tend to use a fixed neighbourhood system of a constant size, supervoxel neigh-

bourhoods vary in connectivity depending on their spatial regularity. For the rest

of the chapter two supervoxels are defined to be neighbours if they share a common

boundary (i.e. they contain at least one adjacent voxel).

The aim is to characterise the supervoxels by extracting descriptive features from

them which can then be used to learn a model from training data to estimate the

class label (i.e. object or background). In the next few sections the supervoxel

features are described in detail.

4.3 Learned Supervoxel Features

Many techniques for obtaining descriptive local image features have been introduced

in the computer vision literature (such as SIFT [Lowe, 2004] and HOG [Dalal and

Triggs, 2005]) and have proven to be effective on 2D natural images. Densely ex-

tracted SIFT descriptors have also been used in combination with other features

to segment vertebrae in 2D image slices (see the previous chapter and Hutt et al.

[2015a]). Generalising these low-level descriptors to 3D is however non-trivial and

greatly increases the computational cost of feature extraction. In addition, designing

comparable features by hand for imaging modalities such as MRI is a very difficult

task requiring that accurate assumptions are made about the data based on prior

knowledge.

Recent work has focused on addressing the limitations associated with standard

descriptors such as SIFT by instead attempting to learn features from data, often in

an unsupervised fashion [Bengio et al., 2013]. Approaches based on learned features

have proven to be successful in a wide range of computer vision tasks, in many
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cases obtaining superior performance when used in place of standard descriptors.

Motivated by this, an approach is next described for learning descriptive multi-scale

features from data which can be used to characterise supervoxels.

4.3.1 Multi-Scale Dictionary Learning

In order to learn features an unsupervised approach is used based on encoding ran-

domly sampled image patches into a bank of linear filters, also known as a dictionary

[Elad, 2010]. First, a set of N patches of fixed dimension (in this case 5 × 5 × 5

voxels) are sampled from the training images and reshaped into vectors {vi}Ni=1 of

dimensionality d = 125. The patches are standardised to zero mean and unit stan-

dard deviation and then whitened (decorrelated) using the ZCA transform [Bell and

Sejnowski, 1997].2 After these pre-processing steps, sparse coding [Olshausen and

Field, 1996] is applied to obtain a dictionary of k filters D ∈ Rd×k. To do this,

optimisation is carried out according to the following

min
D,s

N∑
i=1

‖Dsi − vi‖2
2 + β‖si‖1

subject to ‖D:j‖2 = 1 ∀j

(4.2)

where s are the “code vectors” and D:j denotes the j-th column of D. The regulari-

sation parameter β controls the sparsity of the solution. The resulting optimisation

problem is both convex in s (with D held fixed) and convex in D (with s held fixed)

and can be solved by alternating the optimisation of both sub-problems using the

fast feature-sign search algorithm and Lagrange dual proposed in Lee et al. [2006].

An alternative method for learning dictionaries of filters is spherical k-means, as

described in Coates and Ng [2012]. Specifically, spherical k-means replaces the

optimisation of (4.2) with the following

min
D,s

N∑
i=1

‖Dsi − vi‖2
2

subject to ‖si‖0 ≤ 1 ∀i

‖D:j‖2 = 1 ∀j

(4.3)

where the code vectors s now simply indicate which k-means cluster (column of

D) each patch belongs to. An advantage of this approach is that learning the

dictionaries is much more efficient, although this comes at a small cost in terms

of representational power. A comparison of the performance of both dictionary

2If Σ = VΛV> is the eigendecomposition of the data covariance matrix Σ, the whitened patches
are given by V(Λ + εI)−1/2V>v, where ε is a small constant that is set to 0.1.
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(l−1)
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D
(l)
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l − 1

l

Figure 4.4: Representation of filters at two successive levels of a pyramid. A learned
5 × 5 × 5 filter D

(l)
:j at level l of the pyramid (cyan) captures a greater

spatial area than a filter D
(l−1)
:j with equal dimensions at level l − 1

(magenta).

learning algorithms is given in Section 4.5. Unless stated otherwise, it is assumed

in this chapter that the dictionaries have been learned using sparse coding.

Although the features learned using sparse coding are effective at representing local

image structure, the small and fixed size of the sampled patches severely limits the

amount of spatial context that can be captured when the dictionaries are learned

over a single scale. In order to obtain features which can be used for accurate and

robust classification, larger-scale spatial context needs to be taken into account. In

theory this could be achieved by simply expanding the size of the sampled patches,

but in practice this quickly becomes intractable as the number of samples required

to learn effective sparse projections of the data tends to increase dramatically with

larger patch sizes [Elad, 2010, Coates and Ng, 2012].

To address this issue, an alternative approach is taken based on learning features

over multiple scales using volume pyramids. A Gaussian pyramid is first constructed

by successive smoothing and downsampling along each axis by a factor of 2. A

separate set of features is then learned over each level of the pyramid using sparse

coding, where the patch size is held constant over all levels (see Figure 4.4 for an

illustration). This results in a set of dictionaries {D(l)}Ml=1 corresponding to M

different scales which are able to capture larger-scale 3D structure in the volume,

but are also efficient to learn due to the small size of the sampled patches. Figure 4.5

81



F
ig

u
re

4.
5:

E
x
am

p
le

s
of

5
×

5
×

5
fe

at
u
re

s
le

ar
n
ed

u
si

n
g

sp
ar

se
co

d
in

g
on

3D
M

R
I

d
at

a.
T

h
e

fe
at

u
re

s
sh

ow
n

co
rr

es
p

on
d

to
a

d
ic

ti
on

ar
y

D
(1

)

le
ar

n
ed

ov
er

th
e

fi
rs

t
p
y
ra

m
id

le
ve

l.

82



shows examples of first-level learned features, corresponding to the dictionary D(1).

Consistent with dictionaries learned from 2D images, the learned filters are sparse

and composed mainly of oriented edges in 3D.

For the experiments described below, a separate dictionary of 128 filters is learned

from 100 000 randomly sampled patches at each level of the training pyramids. A

patch size of 5× 5× 5 is used and the dictionaries are learned over 3-level pyramids.

More information on these parameters is provided in Section 4.5, where a comparison

is given of the classification performance under different settings.

4.3.2 Supervoxel Feature Encoding and Pooling

Given a new image patch v
(l)
r at level l of the pyramid and the learned dictionary

D(l), an encoding function is then used to map the input patch to a vector of features.

A nonlinear function of the filter responses is used that results in a sparse feature

vector for the patch:

u(l)
r = max

{
0,
[
−D(l),D(l)

]>
v(l)
r

}
(4.4)

where
[
−D(l),D(l)

]
is a d× 2k matrix formed by column-wise concatenation. This

effectively splits the positive and negative components of the filter responses into

separate features. Splitting the features in this way addresses the ambiguity associ-

ated with the sign of the filter responses (i.e. it is not known a-priori if the positive

or negative components are more important). The split encoding also maintains

sparsity of the vector, which is not the case if for example the absolute value of the

responses is used. The encoding is very fast, enabling features to be computed over

the entire pyramid.

To extract features for the supervoxels, patches are sampled densely by stepping

over the volume with a step-size of 2 voxels and encoding filter responses using (4.4)

over all levels of the pyramid.3 The features from all M levels are concatenated into

a single vector at each location:

ur =
[
u(1)
r , . . . ,u(M)

r

]>
. (4.5)

As more than one patch is sampled from each supervoxel, the local features ex-

tracted from a supervoxel region are then pooled to aggregate them into a single,

fixed-size feature vector. A commonly used method for pooling features is to take

3Note that the coordinates of a sampled location are reduced in proportion to the reduction
of the volume due to downsampling. If (r, s, t) are the coordinates of a patch centre at the
first level of the pyramid, the corresponding coordinates at level l of the pyramid are given by(
r/2l−1, s/2l−1, t/2l−1

)
.
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Figure 4.6: Example supervoxel feature vector. The encoded responses at each of
the three pyramid levels are shown in different colours.

the average of each feature within a specified region. However, it has been demon-

strated that max pooling consistently outperforms average pooling in numerous

vision tasks [Boureau et al., 2010]. Initial experiments also confirmed that max

pooling outperforms average pooling for supervoxel classification, details of which

are given in Section 4.5. Max pooling is therefore used to aggregate the features

within the supervoxels. Letting Ri be the locations of the subset of features (4.5)

within the supervoxel region i, the pooled representation is formed by taking the

maximum of each feature over all locations:

ySij = max
r∈Ri

urj ∀j (4.6)

where ySij is the j-th element of feature vector ySi (the superscript denotes the

feature type). The final pooled features obtained in this way are robust to local

spatial variation within the supervoxel regions. Figure 4.6 shows an example pooled

supervoxel feature vector.

4.4 Location Features

In addition to the learned set of sparse features described in the previous section,

features are next introduced for the supervoxels which encode their relative location

in the volume. The location features are similar to those introduced in the previous

chapter and are based on computing the distance transform from a set of elliptical
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contours matched to the anterior part of the vertebral bodies.

4.4.1 Contour Matching

The contour matching procedure is adapted from the algorithm introduced in Sec-

tion 3.4.2 to enable reliable and efficient matching over an entire volume. The main

difference with respect to the original algorithm is that the template contours are

obtained by generating a set of partial ellipses, rather than cropping the contours

from a set of manual segmentations. This increases the robustness of the matching

algorithm as it no longer relies on the manually segmented training images to pro-

vide a suitable set of template contours. The resulting algorithm shares similarities

with the generalised Hough transform introduced by Ballard [1981], but is more

efficient and does not use a hard edge detection prior to template matching.

A set of template contours is first obtained by generating ellipses of differing scales

and eccentricities, where the range of scales used to generate the ellipses is based

on the resolution of the data. The ellipses are then cropped below the major axis,

so that the resulting set of contours C can be used as templates for matching to the

boundary regions. The goal is then to find the best matching contour of the set for

each axial slice in a volume. Following the procedure that was previously discussed

in Section 3.4.2, a Laplacian of Gaussian (LoG) filter is used to detect the outer

boundary of the vertebra. Given a 2D axial slice I(r, s) of the volume, the function

Lσ(r, s) is defined as the convolution of the LoG with the image:

Lσ(r, s) = ∇2Gσ(r, s) ∗ I(r, s) (4.7)

where ∇2 is the Laplacian operator and Gσ(r, s) is a Gaussian kernel with standard

deviation σ. For each contour C ∈ C, a search is then performed over the convolved

image to find the point where the average LoG response along the contour is greatest.

The best match is the contour with the maximum response of the set:

arg max
C∈C

 max
(r,s)∈Ω

 1

|C|
∑

(u,v)∈C

Lσ(r + u, s+ v)

 (4.8)

where Ω denotes the set of all (r, s) coordinate pairs for the image and (u, v) ∈ C
are the coordinates of the contour.

Note that the matching procedure can be implemented very efficiently using con-

volution operations, enabling a relatively large set of contours to be used. For the

results given in this chapter, ellipses of 10 different scales and eccentricities were gen-

erated resulting in a total of 100 template contours. An example matched contour
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Figure 4.7: (Left) Matched contour (magenta) for an example axial vertebra slice.
(Right) The contour distance transform (darker regions are further from
the contour).

is shown in Figure 4.7.

Outliers can result from the matching procedure described above due to the matching

taking place at every slice of the volume. The outliers occur predominantly at

the locations of the intervertebral discs, due to lower edge response in these areas.

The following section describes how to remove the outliers from the set of matched

contours.

4.4.2 Outlier Removal

Let ct be the 3D vector of coordinates of the centroid of the matched contour at

axial slice t of a volume. A matched contour is identified to be an outlier if the

maximum distance to the centroids of its k-nearest neighbours is greater than a

specified threshold. More formally, the maximum distance among the neighbours of

centroid ct is written

dt = max
k∈Kt
‖ct − ck‖2

2 (4.9)

where Kt is the set of indices for the k-nearest neighbours (by distance) of ct. In-

tuitively, the t-th matched contour is an outlier if dt > δ for some threshold δ

estimated from the data. Based on this observation, an algorithm is next described

for removing the outliers from the set of matches.

The m-estimator sample consensus (MSAC) [Torr and Zisserman, 2000] algorithm is

an improved modification of the well known random sample consensus (RANSAC)

[Fischler and Bolles, 1981] method for fitting a model in the presence of outliers.

MSAC is used to model the inliers in the set of centroid distances d = {d1, . . . , dT}
corresponding to each of the T axial slices of the volume as a linear function of the
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axial slice coordinate, t. That is, the inlier distances are modelled as d̂t = mt + b

and w denotes the parameters (m, b).

To do this, the following overall cost is sought to be minimised

R(w) =
T∑
t=1

ρ(dt, d̂t(w)) (4.10)

where the loss function ρ is defined as

ρ(dt, d̂t) =

(dt − d̂t)2 if (dt − d̂t)2 < δ2

δ2 otherwise.
(4.11)

The best fit w is found by random search. At each iteration of the algorithm,

2 samples are selected at random from d and used to determine a candidate line

through the data. The line is scored according to the cost assigned by (4.10) and

the candidate with the smallest score is retained. This procedure is repeated until

convergence of the score, after which outliers are deemed to be those ct for which

|dt − d̂t(w)| > δ. The threshold δ determines the cost assigned to outliers, which

is set to δ = 0.1σ where σ is the standard deviation of the centroid distances d.

The number of nearest neighbours used to compute d is set to k = 12. Note that

this outlier removal algorithm ensures that the matching procedure is robust, as the

only required assumption is that some majority of contours are accurately matched

to the vertebrae.

4.4.3 Feature Extraction

Given the set of matched contours, the location features for the supervoxels are

obtained from the Euclidean distance transform [Maurer et al., 2003] of the union

of the contours (see Figure 4.7). The features for a supervoxel take the form of the

mean and the 10-th and 90-th percentile values of the distance transform within the

supervoxel. Also computed are the mean and 10-th and 90-th percentile values of

the vertical gradient of the distance transform and the absolute horizontal gradi-

ent, which encode local orientation information (see Section 3.4.2). The values are

concatenated to form a 9-dimensional vector yLi for the supervoxel. These features

provide detailed information on the location of the supervoxels relative to the ante-

rior part of the spine, which helps to isolate the vertebrae from other structures in

the volume when combined with the learned sparse features.
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4.5 Supervoxel Classification

The features are used to discriminate between the object and background supervox-

els by training a classifier on a set of manually annotated volumes. The features

are first standardised by subtracting the mean and dividing by the standard devi-

ation of each feature in the training set. Each instance is then normalised so that

‖ySi ‖2 = ‖yLi ‖2 = 1. For the remainder of this chapter superscripts are not used to

denote different feature types, as this will be clear from the context.

The classifier training procedure closely follows the approach described in the previ-

ous chapter (Section 3.4) for superpixel classification. To obtain training examples,

the original voxel-level class labels are first converted into supervoxel-level labels by

assigning each supervoxel to the class with the majority vote. In almost all cases this

vote is unanimous. To estimate the class labels for the supervoxels a support vector

machine (SVM) [Chang and Lin, 2011] is trained on the supervoxel feature/label

examples. A generalised RBF kernel is used, given by

K(yi,yj) = exp
(
−γ(yi − yj)

>M(yi − yj)
)

(4.12)

where γ is an overall kernel width parameter found using cross-validation on the

training data. The positive semidefinite matrix M defines a pseudometric between

supervoxel features, which is learned from data using the Large Margin Nearest

Neighbour (LMNN) algorithm [Weinberger and Saul, 2009]. Metric learning using

LMNN was discussed in detail in Section 3.5.2. Note that setting the matrix M to the

identity I results in the standard Euclidean RBF kernel that was previously discussed

in Section 3.4 in the context of superpixel classification. Probability estimates for

the object and background classes are obtained from the SVM using the method of

Wu et al. [2004]. The probability is denoted by P (yi | xi) where xi ∈ {0, 1} is the

class label for the supervoxel i.

4.5.1 Mining for Hard Examples

The data for training the classifiers is unbalanced, as there are many more negative

(background) supervoxel examples in a volume than positive (foreground) examples.

Furthermore, the sheer number of examples means that training a single SVM si-

multaneously on all the data is prohibitively expensive. To address this, a retraining

approach is instead used that works by iteratively mining the data for hard examples

and learning a new model on the updated set of examples.

The model is first learned on a small, randomly sampled subset of N = 400 examples

from the training data and hard examples generated by the model are added to a
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Figure 4.8: (Left) Precision-recall curves for the IVD dataset using k-means (K)
and sparse coding (S). (Right) Precision-recall curves for the LV dataset
using location features (L), k-means (K), sparse coding (S) and sparse
coding combined with location features (SL).

cache. The hard examples are defined for a learned model as those assigned the

highest probability P (yi | xi) of belonging to the opposite of the true class (i.e.

the most confusing for the classifier). The process is then iterated by learning a

new model using the updated cache and adding new hard examples found at the

current iteration. The mining process is repeated until a specified cache size limit

is exceeded, which is set to 20 000.

4.5.2 Evaluation

To evaluate the classification performance under different settings, leave-one-out

cross-validation was used to estimate the generalisation performance. By leaving

out one subject on each iteration and training on the remaining subjects, maximal

use is made of the data for learning, while at the same time ensuring that the training

and test data are always from separate subjects. The performance measures given in

the following sections are taken over all leave-one-out iterations. Prior to processing,

each volume was standardised by subtracting from each voxel the mean intensity of

the volume and dividing by the standard deviation.

To measure the SVM classification performance, precision-recall curves are calcu-

lated from the supervoxel probability estimates of the trained SVMs, taken over

all leave-one-out iterations. The F-score is also calculated to measure the overall

classification performance, defined as:

F =
2 · precision · recall

precision + recall
. (4.13)
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Table 4.1: F-scores averaged over all leave-one-out iterations using different features
for classification (see text for details). The number of pyramid levels used
for dictionary learning is M .

Features IVD dataset LV dataset
Location N/A 0.49
k-means (M = 3) 0.91 0.80
k-means + Location N/A 0.84
Sparse coding (M = 1) 0.79 0.54
Sparse coding (M = 2) 0.90 0.75
Sparse coding (M = 3) 0.92 0.83
Sparse coding + Location N/A 0.86

For the data considered here the F-score is a more appropriate measure of classifica-

tion performance than accuracy, which can be misleading given that the classes are

imbalanced (i.e. there are many more negative than positive examples in the data).

Comparison of Sparse Coding and Spherical k-Means

To justify the use of sparse coding for dictionary learning, the classification perfor-

mance is next investigated in comparison with spherical k-means. Note that the

execution time after learning is essentially identical using both methods, as the re-

sulting dictionaries are the same size and the same encoding function (4.4) is used.

Figure 4.8 shows the precision-recall curves for the SVMs trained on the IVD and

LV datasets and Table 4.1 gives the F-scores.

The results show a consistent decrease in performance when using spherical k-means

in place of sparse coding. A Wilcoxon signed-rank test for pairwise comparisons also

showed a significant difference in the classification performance between the two

dictionary learning methods (p < 0.001 for both datasets). Apart from the faster

learning procedure, there appears to be no compelling advantages to using spherical

k-means over sparse coding for learning the dictionaries.

Note that although it is also possible to evaluate other low-level features for super-

voxel classification, such as 3D Gabor filters or Haar-like features, the focus in this

work is on learning features from data in an unsupervised fashion. As mentioned

previously, one of the main advantages of using dictionary learning is the avoidance

of having to explicitly design and tune the features and parameters by hand.

Effect of Multiple Scales

The use of multi-scale dictionaries is next justified by comparing the classification

performance on both datasets as the number of pyramid levels is varied. Table 4.1
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shows the F-scores as the number of pyramid levels increases from M = 1 (no

pyramid) to M = 3.

The results show a dramatic improvement in performance when using pyramids,

demonstrating the importance of multiple scales for accurate classification. For all

other results reported in this chapter, the number of pyramid levels for dictionary

learning was set to 3 for both datasets. The number of levels can be approximated

based on the resolution of the data, as a higher resolution is more likely to capture

structure over a wider range of scales. Using more than 3 levels is not practical for the

datasets considered here as the resolution becomes too coarse after downsampling

to provide any useful information.

Effect of Location Features

For the LV dataset the location features provide important information on relative

location when combined with the learned sparse features. Figure 4.8 shows the

precision-recall curve for the location features on the LV dataset and Table 4.1 gives

the F-score. Note the sharp decrease during the initial section of the precision-

recall curve due to an increase in false positives. As precision does not necessarily

decrease when recall increases, this can cause the precision-recall curve to fluctuate.

Also shown are the results from combining (by concatenation) the location features

with those learned using k-means and sparse coding. Combining the two feature

types improves performance in both cases, with the best performance on the LV

dataset obtained using location features in combination with sparse coding.

4.5.3 Discussion

Example SVM probability estimates for the best performing features are visualised

in Figure 4.9. Note that all voxels within a given supervoxel are assigned the same

probability, so the figure shows the supervoxel-wise probability estimates. While

the outputs from the classifier provide generally good predictions of the supervoxel

class labels, each supervoxel is only considered in isolation (i.e. there is no spatial

context from surrounding supervoxels). In particular this means that isolated errors

can occur due to similarity between the object and background supervoxels. In the

following section the segmentation model is described, which incorporates spatial

context from surrounding supervoxels enabling a more accurate prediction of the

class labels.
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4.6 CRF with Learned Potentials

In order to introduce spatial context into the segmentation method, a CRF is defined

over the supervoxels that incorporates the SVM predictions in addition to promoting

spatial consistency of the labels using a learned metric.

A detailed description of Markov random fields and conditional random fields was

given in Section 3.2 of the previous chapter. The CRF model used in this chapter

differs only in that it is defined on a 3D supervoxel graph as opposed to a 2D

superpixel graph. Letting S denote the set of supervoxel sites and Ni denote the

neighbours of supervoxel i, the energy function can once again be written

E(x,y) =
∑
i∈S

ψ(yi | xi)︸ ︷︷ ︸
Data term

+λ
∑
i∈S

∑
j∈Ni

φ(yi,yj | xi, xj)︸ ︷︷ ︸
Smoothness term

(4.14)

where the constant λ controls the relative importance of the data and smoothness

terms. The data term of the CRF gives the cost of assigning the label xi at site

i. The smoothness term gives the cost of assigning the labels xi and xj at the

neighbouring sites i and j and is defined so as to promote spatial consistency of the

labels.

As with the CRF model presented in the previous chapter for 2D segmentation,

graph cuts can find the optimal solution (global minimum) of the energy function.

The min-cut/max-flow algorithm of Boykov and Kolmogorov [2004] is used to find

the optimal solution.

4.6.1 Potential Functions

The definition of the CRF potential functions follows Section 3.5 and is repeated

here for completeness. The first-order potential of the CRF (4.14) is defined as the

negative log likelihood of an observation (feature vector) given the class label (i.e.

object or background):

ψ(yi | xi) = − log (P (yi | xi)) (4.15)

where P (yi | xi) is the SVM probability estimate for the supervoxel.

Many graph cut formulations incorporate a second-order penalty based on a Eu-

clidean distance measure between the features of neighbouring sites, such as the one

proposed by [Boykov and Funka-Lea, 2006]. However, using a standard Euclidean

distance disregards any regularities which may be present in the data and which can

be exploited to improve performance. In order to address these issues, the focus is
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Figure 4.10: The left image shows the projection of a sample of 2000 supervoxel
features onto their first 2 principal components prior to metric learning
(red are positive examples, blue are negative). The right image shows
the projected features in the transformed space found by LMNN.

instead placed on using distance metric learning to learn an appropriate distance

metric for the second-order potential. More specifically, the Large Margin Near-

est Neighbour (LMNN) [Weinberger and Saul, 2009] algorithm is used to learn a

pseudometric of the form

DM(yi,yj) = (yi − yj)
>M(yi − yj) (4.16)

where M is a positive semidefinite matrix. This matrix can be expressed in terms of

a linear transformation L such that L>L = M. The objective is to learn the metric

such that the k-nearest neighbours of examples in the transformed space (determined

by L) belong to the same class while those belonging to different classes are separated

by a large margin. There are a number of parallels between the LMNN algorithm and

SVMs as a consequence of their shared focus on margin maximisation, with both

methods employing a convex optimisation procedure using similar loss functions.

Figure 4.10 shows the projection of a sample of supervoxel features onto their first

2 principal components in the original and transformed space. The learned metric

is incorporated into the second-order potential function as follows

φ(yi,yj | xi, xj) =

exp (−DM(yi,yj)) if xi 6= xj

0 otherwise
(4.17)

which penalises neighbouring supervoxels that have similar feature vectors and are

assigned to different classes. Note that, as with the SVM used in the data term, the

metric M need only be learned once on the training data. The same leave-one-out

testing approach was used for the LMNN algorithm, with a metric learned on the

training volumes for each leave-one-out iteration and then applied on the volume
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Figure 4.11: Precision-recall curves for the voxel-level smoothed CRF max-marginals
(red) and SVM predictions (blue). Results are shown for the IVD
dataset (left) and LV dataset (right).

from the held out subject.

4.7 Smoothed Max-Marginals

Soft estimates of the supervoxel class labels are obtained from the CRF by com-

puting the max-marginals using the same method that was described previously in

Section 3.5.3. As the max-marginals are on a supervoxel-level, before thresholding

to obtain the final segmentations the probability maps are filtered on a voxel-level to

smooth any boundary errors which may occur from inaccuracies of the supervoxel

layout. A Gaussian filter is used with a kernel size of 5 and σ = 1.5 to smooth

the probabilities. Example probability maps after Gaussian filtering are shown in

Figure 4.9.

To evaluate the CRF in comparison with the raw classifier predictions, precision-

recall curves are calculated using the smoothed max-marginals and the SVM prob-

ability estimates on the voxel-level (shown in Figure 4.11). The additional spatial

context provided by the CRF significantly improves the performance over the raw

classifier predictions. The final hard label assignments to the individual voxels are

obtained by thresholding the smoothed max-marginals, where the threshold is cho-

sen to maximise the F-score on the training data. As a final post-processing step,

any isolated components of the segmentation that are below a small threshold size

are removed.
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4.8 Experiments and Results

In this section implementation details are discussed along with further experiments

investigating the effect of the supervoxel parameters. The final segmentation results

are subsequently presented and discussed in detail.

4.8.1 Datasets

The two MRI datasets used for the experiments are as described in Sections 2.5.2.

MRI Dataset 2 and 2.5.2. MRI Dataset 3. To recap, the LV dataset consists of

manually annotated T1-weighted turbo-spin-echo MR images of a section of the

lumbar spine from 8 different subjects, encompassing the lumbar vertebrae from L3

to L5. The IVD dataset consists of manually annotated T2-weighted turbo-spin-

echo MR images of intervertebral discs from 15 different subjects. The CT dataset

is described in Section 2.5.2. CT Dataset.

4.8.2 Implementation Details

Learning the dictionaries using sparse coding (4.2) requires setting the parameter

β, which controls the sparsity of the solution. For all results given in this chapter

the parameter is simply fixed to β = 0.4. It was found that the method is not

very sensitive to the exact choice of β, with values in the range 0.2-0.6 yielding

consistently good results.

When extracting and pooling the learned sparse features within supervoxels, the

boundary conditions need to be determined. One option is to allow the non-centre

voxels of the sampled patches to cross the supervoxel boundary; the other is to con-

strain them to always be within the interior of the supervoxel boundary. A Wilcoxon

signed-rank test showed that there was no significant difference in classification per-

formance using either option (p = 0.36 for the IVD dataset and p = 0.63 for the LV

dataset). The first option is therefore used as not having to check for supervoxel

membership results in a slight speedup during feature extraction.

4.8.3 Effect of Supervoxel Size

The supervoxels generated using SLIC are controlled by two parameters, S and m,

which control their average size and spatial regularity. This section evaluates the

effect that varying the size of the supervoxels has on the voxel-level overlap with the

manual annotations. Note that for a given value of the parameter S, the approximate
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Figure 4.12: (Left) Effect of SLIC size parameter S on the voxel-level Dice score.
The values are given for both the IVD dataset (blue) and LV dataset
(red). (Right) Boundary recall as a function of the S parameter.

volume of a supervoxel is S3. In general terms larger supervoxels are favoured as

they are more descriptive and reduce computational complexity. However, smaller

supervoxels are less likely to reduce the voxel-level accuracy of the segmentation

by crossing object boundaries. The correct choice of the supervoxel parameters is

therefore a trade-off between size and boundary adherence.

The voxel-level accuracy of the supervoxels is quantified using two standard mea-

sures: the Dice score and boundary recall. The Dice score measures the degree of

overlap between the voxel-level manual annotations and the supervoxels (see Sec-

tion 2.4.1 for the definition). Boundary recall measures the fraction of boundary

voxels in the manual annotations that are within a small threshold distance (2 vox-

els) from at least one voxel of a supervoxel boundary. Figure 4.12 shows the effect

of varying the size parameter for both the IVD and LV datasets; for all results the

spatial regularity parameter is kept fixed at m = 1. It can be seen that increasing

the supervoxel size results in an essentially monotonic decrease in both the Dice

score and the boundary recall.

It is clear that the limited contrast and resolution of the MR images necessitates a

small supervoxel size to preserve the object boundaries. Note however that although

the supervoxel size needs to be relatively small, this still translates into a large

reduction in time and memory complexity compared to operating on the individual

voxels. For example, setting S = 3 reduces the number of image regions that

need to be processed on average by a factor of 27. This reduction in complexity

is a necessity for implementation on standard hardware, in terms of both time and

memory requirements.
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Figure 4.13: (a, c) Example segmentation results on the IVD dataset overlaid onto a
mid-sagittal slice from two subjects. (b, d) Overlap between the CRF
segmentations (cyan) and manual annotations (magenta).

4.8.4 Segmentation Results

The voxel-level segmentation performance of the method is next evaluated on the

annotated MRI datasets. The Dice similarity coefficient (or Dice score) was used

to measure the segmentation quality, which is equivalent to the F-score (see Sec-

tion 2.4.1 for details). Leave-one-out testing was used to evaluate the segmentation

performance of the method, with the summary statistics of the Dice score taken

over all leave-one-out iterations. The segmentations were also evaluated using the

three surface distance measures described in Section 2.4.1.

The results on the IVD and LV datasets using the different evaluation measures

are summarised in Table 4.2. Figure 4.9 shows 3D views of the final segmentation
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Table 4.2: Segmentation results on the MRI and CT datasets. The table shows the
minimum, median and maximum values over all individual volumes.

Dataset Measure Min Med. Max

IVD

Dice score 0.84 0.91 0.94
Avg. dist. (mm) 0.34 0.54 1.37
RMS dist. (mm) 0.71 0.98 4.51
Max. dist. (mm) 4.00 6.56 33.00

LV

Dice score 0.83 0.86 0.86
Avg. surf. dist. (mm) 0.71 0.90 1.16
RMS surf. dist. (mm) 1.15 1.60 2.28
Max. surf. dist. (mm) 12.36 17.36 19.88

CT

Dice score 0.84 0.96 0.97
Avg. surf. dist. (mm) 0.18 0.20 1.55
RMS surf. dist. (mm) 0.42 0.47 2.99
Max. surf. dist. (mm) 5.66 8.25 17.77

results for example volumes from each dataset.

On the IVD dataset the mean Dice score was 0.90 ± 0.03 and the mean average

surface distance was 0.63±0.32. The method outperforms the state-of-the-art results

recently reported by Chen et al. [2015] on the same dataset, who obtained a mean

Dice score of 0.85-0.88 and a mean average surface distance of 1.3-1.4 mm. Note that

although obtained on a different dataset, the results are also significantly higher than

the 3D IVD segmentation results of Neubert et al. [2011], who reported a mean Dice

score of 0.76-0.80. Figure 4.13 provides a visual comparison between the automatic

segmentations and manual annotations.

On the LV dataset the mean Dice score was 0.85±0.01. The Dice scores are expected

to be lower on the LV dataset due to the low contrast between bone and surrounding

tissue, which makes it extremely challenging for automated segmentation algorithms

to obtain accurate results. Despite this the method shows promising results, with the

segmentations in most cases comparable to the manual annotations (see Figure 4.14).

The Dice scores are similar to those reported for vertebral body segmentation by

Neubert et al. [2011], who obtained a mean Dice score of 0.83-0.85. However, the

method is able to segment the entire vertebrae (i.e. the vertebral body and posterior

elements) while still maintaining a high level of accuracy. The average symmetric

surface distances obtained by the method are very good, exceeding the surface-

to-surface accuracy reported by Kadoury et al. [2013] for lumbar vertebrae. Note

however that in this case the evaluation was not carried out on the same MRI

dataset, so they are not directly comparable. The median average surface distance

and median RMS surface distances are comparable with the in-plane resolution

of 1.02 mm. The maximum surface distances obtained by the method are due to

the segmentation occasionally missing a very thin transverse or spinous process. A

limitation of the method when applied to this dataset is the fusion of the facet joints
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(a) (b)

(c) (d)

Figure 4.14: (a, c) Example segmentation results on the LV dataset showing the
volume overlap between CRF segmentations (cyan) and manual anno-
tations (magenta) for two subjects. (b, d) Segmentation boundaries in
the axial slices marked by the grey plane.

connecting adjacent vertebrae. This occurs in most cases due to the low contrast and

limited resolution of the MR images, which make it extremely difficult to distinguish

the facet joint regions from other surrounding structures.

The average Dice score on the CT data was 0.95 ± 0.04. Figure 4.15 is a visual

comparison between the automatic segmentations and manual annotations. The

results on CT compare favourably with state-of-the-art methods recently evaluated

using the same dataset. For example, Korez et al. [2015] use a shape-constrained

deformable model and report an average Dice score of 0.94± 0.02 on lumbar verte-

brae. Also on the same dataset, Forsberg [2015] obtain a Dice score of 0.94 ± 0.03

using an atlas-based registration approach. A variational framework incorporating

shape and intensity priors is used in Hammernik et al. [2015], obtaining a Dice score

of 0.96 ± 0.02. Note that all of these methods rely on an explicit prior model of

vertebral shape. The lowest Dice score the method obtained was on subject number

6, which was also noted as problematic in Hammernik et al. [2015]. The reason

given by the authors was the similar appearance of trabecular bone to soft tissue,
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(a) (b)

(c) (d)

Figure 4.15: (a, c) Example segmentation results on the CT dataset showing the
volume overlap between CRF segmentations (cyan) and manual anno-
tations (magenta). (b, d) Segmentation boundaries in the axial slices
marked by the grey plane.

leading to registration errors. The maximum surface distance was also obtained on

subject 6 as a result of the segmentation missing a transverse process. Note that the

median average surface distance and median RMS surface distances are comparable

with the in-plane resolution for these data (between 0.31 mm and 0.36 mm).

4.8.5 Detailed Comparison

To further demonstrate the advantages of the proposed method, a comparison is

next given with two alternative approaches to medical image segmentation based

on the level set method [Osher and Sethian, 1988].4 Level set methods have been

used extensively for medical image segmentation tasks and form a baseline for seg-

mentation performance. Two different variants of level sets are evaluated using the

implementation provided in the popular ITK-SNAP application [Yushkevich et al.,

2006]. The first uses an edge attraction term based on gradient magnitude and

corresponds to the widely-used geodesic active contours as originally described in

4Level set methods for segmentation were discussed in Section 2.3.2.
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Table 4.3: Comparison of different segmentation methods on the two MRI datasets.
The table gives the minimum, median and maximum values over all indi-
vidual volumes. GAC is geodesic active contours, RC-SVM is region com-
petition with SVM pre-segmentation and CRF is the proposed method.
The best scores for the various criteria are highlighted in bold.

Dataset Measure GAC RC-SVM CRF
Min Med. Max Min Med. Max Min Med. Max

IVD

Dice score 0.15 0.48 0.72 0.85 0.89 0.92 0.84 0.91 0.94
Avg. dist. 2.04 5.41 11.16 0.44 0.56 0.77 0.34 0.54 1.37
RMS dist. 3.35 7.40 13.91 0.85 1.04 1.38 0.71 0.98 4.51
Max. dist. 15.91 18.69 39.23 5.62 6.87 11.79 4.00 6.56 33.00

LV

Dice score 0.49 0.57 0.61 0.81 0.82 0.84 0.83 0.86 0.86
Avg. dist. 7.17 8.85 10.34 0.76 0.93 1.03 0.71 0.90 1.16
RMS dist. 11.18 13.45 15.64 1.21 1.45 2.12 1.15 1.60 2.28
Max. dist. 42.05 52.35 59.13 11.00 14.42 22.92 12.36 17.36 19.88

Caselles et al. [1997]. For the second variant the SVM predictions for the supervox-

els are taken as an initial pre-segmentation to initialise a level set method based on

the region competition model of Zhu and Yuille [1996]. As level set methods are a

continuous space alternative to discrete CRF models, providing the same initialisa-

tion (via the SVM) enables a fair comparison between the relative merits of the two

competing approaches. Note that both level set variants require interactive place-

ment of seed points for initialisation, which was carried out in ITK-SNAP using a

single seed point at the centre of each individual vertebra or IVD. Table 4.3 provides

a detailed comparison of the segmentation results obtained by the different methods

on both the IVD and LV datasets.

In the case of geodesic active contours, the low contrast between the different struc-

tures in the images leads to the object boundaries being violated by the segmenta-

tion. This results in severe under- and over-segmentation errors due to the lack of

a clear boundary around the objects and the inhomogeneous intensity properties.

As a consequence of these problems the geodesic active contour method failed to

obtain an adequate segmentation on either dataset, with the best scores in most

cases being significantly lower than the worst scores of the other two methods.

The region competition method initialised with the SVM predictions achieves much

better results, which demonstrates the effectiveness of the supervoxel features and

classification procedure. However, it can be seen that the final segmentation perfor-

mance is significantly worse overall than the proposed CRF model on both datasets.

The one area where the region competition model obtained better results is in terms

of the worst-case performance as measured by the maximum surface distances (see

Table 4.3). This may be explained by the fact that the level set method operates

on a voxel-level, whereas the CRF model is supervoxel-based and can occasionally

miss some of the finer details around the object boundaries.
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Table 4.4: Results from the MICCAI-CSI 2015 localisation and segmentation chal-
lenge. A description of the different evaluation measures is given in the
text.

Dataset Dice ASD (mm) MLD (mm) R2 mm R4 mm R6 mm

Training 0.90± 0.03 0.63± 0.32 N/A N/A N/A N/A
Test 1 0.90± 0.04 1.24± 0.24 1.05± 0.69 94.3 100 100
Test 2 0.91± 0.03 1.19± 0.20 0.89± 0.63 91.4 100 100

4.8.6 MICCAI-CSI 2015 Challenge Results

The method presented in this chapter was a winning entry into the MICCAI-CSI

2015 challenge on automatic IVD localisation and segmentation from 3D T2 MRI

data [Zheng et al., 2016].5 In this section an overview of the challenge is given and

the results obtained by the method are presented.

The dataset used for the challenge consists of 25 different subjects, which is split

into a training dataset of 15 subjects (constituting the IVD dataset used in previous

sections) and two additional test datasets each consisting of 5 subjects. Participants

in the challenge were invited to submit the results from their methods on the test

data, which were then independently evaluated and compared with a number of

competing methods. For the first stage of the challenge the participants submitted

their results obtained on the first test dataset of 5 images. The second stage of

the challenge involved an on-site evaluation where each participant was required to

apply their method on 5 additional test images and submit the results within the

time limit of one hour.

The segmentations were evaluated using the Dice score and average absolute surface

distance (ASD). The mean Dice score on the training dataset was 0.90±0.03 and the

mean ASD was 0.63 mm± 0.32 mm. On the two test datasets the mean Dice scores

were 0.90±0.04 and 0.91±0.03; the mean ASD values were 1.24 mm±0.24 mm and

1.19 mm ± 0.20 mm. A summary of the segmentation results for each stage of the

challenge is given in Table 4.4.

The challenge entries were also evaluated on the test data in terms of localisation

accuracy. This was measured by comparing the centroids of the automatically de-

tected discs with the ground truth centroids. Assuming a total of n IVDs and letting

xi, yi and zi denote the spatial coordinates of the detected IVD centroids, the mean

localisation distance is defined as

MLD =
1

n

n∑
i=1

√
(xi − x′i)2 + (yi − y′i)2 + (zi − z′i)2 (4.18)

5A description and short report on the challenge can be found at http://ijoint.istb.unibe.

ch/challenge/index.html
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Algorithm 2 Model testing as function of sample size

Require: Set of all volumes D
1: for k = 1, . . . , |D| − 1 do

2: for n = 1, . . . ,min

{
19,

(
|D|
k

)}
do

3: Dtrain ← sample k-combination (without replacement)
4: Train model on Dtrain

5: Dtest ← D \ Dtrain

6: Test model on Dtest

7: end for
8: end for

where x′i, y
′
i and z′i are the coordinates of the ground truth centroids. The results

are reported as physical mm distances.

The successful localisation rate Rt is defined as the percentage of correctly localised

IVDs within tmm of the ground truth:

Rt =
number of IVD locations within tmm

total number of IVDs
· 100. (4.19)

A summary of the localisation results is given in Table 4.4. Note that evaluation of

the localisation results was only carried out on the two test datasets. Out of a total

of 10 participating teams, the method was unique in obtaining a top 3 ranking in

both the localisation and segmentation stages of the challenge.

4.9 Influence of Sample Size

This section investigates the influence of the sample size (i.e. the number of indi-

vidual subjects) on the resulting performance of the method. This is an important

consideration as a primary goal of any segmentation method is to generalise well

beyond the finite training set to arbitrary new images. An evaluation of the per-

formance in terms of sample size indicates whether further improvement could be

gained by expanding the training set with more examples. Due to the relatively

small size of the LV dataset and given that the method has been compared on

the IVD and CT datasets with competing methods, attention is focused on the LV

dataset for the remainder of this section.

A random sampling procedure is used to evaluate the performance characteristics

using different subsets of the training data. At each iteration of the procedure a

subset of k subjects is randomly selected without replacement from the dataset to

train the model. The trained model is then tested on the remaining subjects and

the process is repeated n times for each iteration. Algorithm 2 gives pseudocode for
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Figure 4.16: Learning curves for the SVM predictions (left) and the CRF max-
marginals (right) showing the F-score as a function of the training
sample size.

the general procedure. Note that the exhaustive enumeration of all k-combinations

at step 2 is feasible due to the LV dataset only containing 8 volumes. This explicit

enumeration step prevents the results from being biased due to sampling the same

combinations of volumes multiple times. As the number of k-combinations can be

very large even for small k, the maximum number of combinations is restricted to

19 in step 2. This ensures that an adequate number of combinations are sampled at

each iteration, but prevents the algorithm from becoming prohibitively expensive.

Figure 4.16 shows plots of the F-scores (4.13) obtained by the SVM classifier and

CRF as the sample size of the training set is increased (known as the learning

curves). The error bars show the standard deviation over the random samples

at each iteration. It can be seen that most of the improvement is obtained as the

sample size is increased from 1 to 4, after which the learning curves begin to converge

in both cases. This suggests that despite the relatively small size of the dataset,

adding more data will not necessarily lead to an improvement in the classification

performance. By comparing the two plots it is also evident that the CRF only starts

to outperform the SVM after the second iteration. This may be due to the fact that

the λ parameter of the CRF can be more accurately tuned with a larger training

sample size.

A summary of the segmentation results from the experiment is presented in Ta-

ble 4.5, which gives the median Dice scores and surface distance values obtained

on each sampled subset of the training data. Figure 4.17 shows box plots for the

segmentation results taken over each sample. As with the learning curves for the

SVM and CRF, most of the improvement in segmentation performance is obtained

by increasing the sample size from 1 to 4. Although the best results were obtained

using the maximum sample size of 7, the median evaluation scores are consistently

good once the sample size reaches 4. It is important to note that while the perfor-
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Figure 4.17: Box plots of the Dice scores and surface distance measures as a function
of the training sample size.

mance increase for the last few iterations is small, this could still translate into a

noticeable improvement in the anatomical accuracy of the segmentation. The results

suggest that despite the relatively small size of the dataset, the model is still able to

learn and generalise effectively after training on only a subset of the examples. One

explanation for this ability is that while the number of individual subjects in the

sample is small, the number of supervoxels is large enough to enable the model to

capture most of the variation in the local features of the images. This would suggest

that the method is less sensitive to the number of subjects in the sample than those

relying on more global features such as shape.

4.10 Conclusion

This chapter described a fully automated approach to segmentation of the lumbar

spine from 3D MR images. The method is able to obtain accurate segmentations of

lumbar vertebrae and intervertebral discs, which previously have been approached

as largely independent problems employing specialised techniques. Although this

chapter has focused on segmentation from MRI data, the method is not dependent
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Table 4.5: Segmentation performance as a function of the training sample size. The
rows give the median values of the evaluation measures for each sample
size.

Sample size 1 2 3 4 5 6 7
Dice score 0.68 0.77 0.82 0.84 0.85 0.85 0.86
Avg. surf. dist. (mm) 3.50 1.91 1.31 1.05 0.96 0.89 0.86
RMS surf. dist. (mm) 5.79 3.68 2.51 2.00 1.76 1.62 1.53
Max. surf. dist. (mm) 32.52 24.84 20.14 18.51 17.10 16.47 16.71

on a particular imaging modality. Specifically, the method can also obtain accurate

lumbar vertebra segmentations from CT data, which is facilitated by the greater

contrast between bone and surrounding tissue.

The use of unsupervised feature learning as an alternative to hand-designed features

was shown to be very effective for obtaining high classification performance. Fur-

thermore, learning features over multiple scales using pyramids incorporates larger-

scale spatial context whilst ensuring that the dictionary learning process remains

tractable. For vertebra segmentation, combining the learned features with informa-

tion on the relative location of supervoxels further improves performance by helping

to localise the segmentation. Incorporating the learned classifier and metric into

a CRF model over the supervoxels was shown to promote spatial consistency and

enable accurate and robust segmentation.

The method is efficient in terms of computational cost, with each individual 3D MR

image taking approximately 6 min to segment using an Intel Core i5 2.50 GHz ma-

chine with 8 GB of RAM running Linux (64-bit). The implementation is written in

MATLAB with external C++ code for computationally intensive tasks including su-

pervoxel generation, SVM optimisation and computation of the CRF max-marginals.

The performance of the algorithm can be improved by initially classifying a random

sample of the supervoxels. A minimum bounding box around the object class super-

voxels can then be computed automatically, with subsequent processing constrained

to this cropped region. The final segmentation is then padded at the edges of each

axis to recover the original volume dimensions.

Although basing the model on supervoxels is required in order to make the implemen-

tation computationally feasible, this means that the final segmentation performance

is dependent on the voxel-level boundary adherence of the initial supervoxels. This

could be addressed by adopting a coarse-to-fine hierarchical procedure, whereby an

initial (coarse) set of supervoxels are first classified before refining the segmentation

boundary using a finer set of supervoxels. As the finer set of supervoxels need only

be considered in the local area around the segmentation boundary, computational

complexity would remain tractable.
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The general approach outlined in this chapter for 3D MRI segmentation is likely

to be applicable to other segmentation tasks in medical image analysis and related

areas. The absence of object-specific priors means that the method can be trained to

segment structures from different imaging modalities without fundamental change to

the model. The results in this chapter show that although the method was originally

developed for 3D lumbar vertebra segmentation from MR images, it can be applied

with minimal change to the 3D segmentation of intervertebral discs and is directly

applicable to CT data.
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5 Summary and Conclusion

This thesis presented an approach for automatic segmentation of the lumbar spine

from medical images. The efficacy of the approach was demonstrated on the prob-

lems of vertebra and intervertebral disc segmentation from images acquired using

MRI and CT. One of the main advantages of the method is its generality, enabling

segmentation of both vertebrae and intervertebral discs in 3D without fundamental

change to the model. This is in contrast to most previous work in the literature,

which has tended to treat the two problems as largely independent and requiring

specialised techniques.

The segmentation results were shown to be accurate on MRI and CT data in both

2D and 3D; in all cases the evaluation measures are comparable with the correspond-

ing manual annotations. Although segmentation performance is typically quantified

by comparison with manually annotated data, simply maximising the values of the

overlap measures (e.g. the Dice score) is not necessarily advantageous. For exam-

ple, manual annotation of anatomical objects is known to be subjective and some

degree of intrinsic error can be assumed to exist. Thus, the best possible segmen-

tation performance does not in general correspond to a perfect Dice score. A more

reliable estimate of the segmentation performance could be obtained by evaluating

the method against multiple annotators to assess the inter-annotator agreement.

This would give a better estimate of the maximum possible performance that can

be expected from the automated method, in addition to providing a more reliable

measure of the segmentation error by comparing the automatic and consensus anno-

tations. It should be noted however that as pixel- or voxel-level manual annotation

is extremely time-consuming even for the relatively small datasets used in this the-

sis, obtaining segmentations from multiple expert annotators is often prohibitively

expensive for larger datasets.

A central theme of the method introduced in this thesis is the extensive use of both

supervised and unsupervised machine learning techniques. While most previous

approaches to spine segmentation have focused on incorporating top-down prior

shape information, the preceding chapters have shown that it is possible to obtain

accurate segmentations without any explicit shape constraints provided that an

effective representation can be learned that takes into account information across

multiple scales. An interesting question is whether a significant improvement in
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accuracy could be obtained by the introduction of more global shape information into

the segmentation model. Related to this is the possibility of using a sophisticated

model of anatomical shape to enable a decomposition of the segmented object in

terms of its component parts. This type of contextual, part-based information is

much more difficult to obtain using only local features of the images. However,

as discussed in Section 2.3.1, one of the main limitations associated with standard

statistical shape models is the difficulty in constructing a representative prior model

of anatomical shape, which requires the presence of a sufficiently large dataset with

corresponding landmark points. This is compounded by the introduction of bias into

the model due to potentially inaccurate preconceptions of the human annotators, in

addition to variation in both the intra- and inter-annotator agreement.

There are a number of aspects of the current model which could be extended in

future. Although the second-order CRF formulations used in the thesis were shown

to be effective, they are limited in the type of penalties that can be encoded into the

potential functions. Using higher-order CRF models could help to improve the seg-

mentation by encoding more complex interactions between the supervoxels. These

could be designed so as to improve the segmentation of long and thin structures such

as the transverse and spinous processes of vertebrae, where most of the segmenta-

tion errors occur. As mentioned in the conclusion of the previous chapter, adopting

a coarse-to-fine approach could also potentially improve the voxel-level accuracy by

effectively increasing the resolution at the segmentation boundary. Another possi-

bility is the introduction of prior statistical shape information into the model by

incorporating global parameters into the CRF. Recent work has shown that glob-

ally optimal solutions of such models are feasible and can lead to improvements on a

number of 2D segmentation tasks [Lempitsky et al., 2012]. A potential application

of this approach is in assigning unique labels to the individual vertebrae of the lum-

bar spine, which requires separating the adjacent vertebrae at the facet joints. This

is particularly important for applications in the area of biomechanical modelling,

as it enables the model to incorporate the articulation properties of the spine. The

limited resolution of the MR images and presence of partial volume effects at the

facet joints means that this is only feasible when additional prior information is

incorporated into the model.

Due to constraints on the scanning acquisition time, the 3D MR images used in this

thesis have a relatively low in-plane resolution. This makes accurate segmentation

of specific areas of the vertebrae, such as the thin transverse and spinous processes,

extremely challenging due to the small number of voxels comprising these regions.

Increasing the resolution could provide more accurate estimates by enabling a larger

supervoxel size and more descriptive features. A higher resolution could also increase

the boundary adherence of the supervoxels, which is one of the limiting factors in
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obtaining highly accurate voxel-level performance. Another limitation of the 3D

datasets used in this thesis is that they consist of a small number of subjects (i.e.

between 8 and 15). Although the experimental results presented in Section 4.9

suggest that increasing the number of subjects is not necessary for improving the

performance of the method, the question remains as to whether enough inter-subject

variation is captured when using small sample sizes. For more robust estimates of

generalisation performance, additional experiments should ideally be carried out on

much larger datasets. Further investigation could also be carried out into combining

images acquired from multiple modalities to provide information which may not be

captured when using a single modality (e.g. T1- or T2-weighted MRI).

Although the focus of this thesis has been on automatic segmentation, it is also

possible to adapt the method for use in a semi-interactive setting. For example, one

possibility is to enable the user to visually inspect an initial segmentation in order

to check for segmentation errors. Regions of potential errors could be indicated

by the user clicking on specific locations in the image, which would subsequently

be incorporated into the CRF potential functions as additional spatial priors. The

initial segmentation could then be updated with minimal cost using dynamic graph

cuts [Kohli and Torr, 2007]. While this approach could potentially further improve

the segmentation result, the manual search for errors would still be a very labori-

ous process subject to the same limitations associated with manual annotation in

general. It is also unlikely that user-provided spatial information alone can provide

enough additional context to improve certain regions of the segmentation, such as

the transverse and spinous processes of the vertebrae which are most susceptible to

under-segmentation errors.

The multi-scale dictionary learning approach introduced for 3D lumbar spine seg-

mentation is directly applicable to a wide range of tasks in medical image analysis.

This is especially relevant in the case of MR image analysis, where it is often difficult

to design descriptive features by hand that are robust to image artefacts such as noise

and intensity inhomogeneity. In addition, the results suggest that features which

enable high classification performance on MRI data are also likely to obtain high

performance on other modalities such as CT. Although in this work the dictionaries

were learned in an unsupervised fashion, it is also possible to adapt the optimisa-

tion objective for a supervised setting [Mairal et al., 2009]. This enables both the

dictionaries and classifier parameters to be learned jointly, which could lead to im-

provements in performance. Another area for future research is in learning higher

level representations for classification that can take into account more complex fea-

tures of the images. An example within the sparse modelling domain is hierarchical

convolutional sparse coding [Mairal et al., 2014], which performs successive appli-

cations of sparse coding and spatial pooling to extract higher-level representations.
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Autoencoders and their extensions such as stacked denoising autoencoders [Vincent

et al., 2010] are another example in this direction and have proven to be effective

on natural images. Recent work has investigated their application to classification

problems in medical image analysis [Thong et al., 2015], where they show promis-

ing results. The more general area of unsupervised learning is particularly relevant

for medical image analysis as acquiring sufficient labelled data can be expected to

remain a bottleneck in the use of purely supervised machine learning algorithms.

The approach described in this thesis is likely to have applications beyond the seg-

mentation of vertebrae and intervertebral discs, particularly in the area of MR image

analysis. For example, in the context of cardiac MRI automatic segmentation of the

left and right ventricles is known to be a very challenging problem and existing

methods require further improvement to provide results suitable for medical appli-

cations [Petitjean and Dacher, 2011, Petitjean et al., 2015]. The large inter-subject

variation in the shape of the ventricles means that methods relying on global shape

information suffer from the same problems encountered when using shape models

for spine segmentation. The challenges involved in developing automated computa-

tional methods in these areas are therefore similar to those encountered in lumbar

spine segmentation, including the complexity of the anatomy and the limited con-

trast with other structures in the image.
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