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We have used micromagnetic simulations performed with open and periodic boundary conditions to study
the influence of the presence of array boundaries on the spectra and spatial profiles of collective spin-wave
excitations in arrays of magnetic nanoelements. The spectra and spatial profiles of collective spin waves excited
in isolated arrays of nanoelements and those forming a part of quasi-infinite arrays are qualitatively different
even if the same excitation field is used in the simulations. In particular, the use of periodic boundary conditions
suppresses the excitation of nonuniform collective modes by uniform excitation fields. However, the use of
nonuniform excitation fields in combination with periodic boundary conditions is shown to enable investigation
of the structure of magnonic dispersion curves for quasi-infinite arrays (magnonic crystals) in different directions
in the reciprocal space and for different magnonic bands. The results obtained in the latter case show a perfect
agreement with those obtained with the dynamical matrix method for infinite arrays of nanoelements of the same
geometry and magnetic properties.
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I. INTRODUCTION

The recent advances in nanofabrication techniques have
stimulated intense interest in studying static and dynamic
properties of various artificial periodic magnetic structures—
magnonic crystals.1–6 In particular, investigations of propagat-
ing and standing spin waves in such structures are in the focus
of one of the youngest areas of magnetism—magnonics.7,8

From the point of view of technological applications, the study
of spin waves in periodic magnetic structures has attracted
a great deal of attention for two main reasons. First, an
in-depth understanding of collective precessional dynamics
is necessary to master the magnetic switching of magnetic
memory cells (i.e., magnetic recording) at increasingly high
data rates.9 Second, spin waves in nanoscale magnetic
structures promise alternative ways to transmit and process
information, potentially not involving electrical currents.7,10

Being a magnetic counterpart of photonic crystals, magnonic
crystals are expected to give a full control of the dispersion of
spin waves. At the same time, the phenomenon of hysteresis11

and the associated ability of magnetic nanostructures to form
multiple micromagnetic states offer additional opportunities
and challenges for research inquiry into fundamental physics
of magnetism. In particular, the spectrum and dispersion of
spin waves in arrays of magnetic elements and other magnonic
crystals can be controlled and programmed externally, e.g., by
the strength and direction of the applied (bias) magnetic field
or even by the history of their variation.12,13

Two-dimensional (2D) arrays of magnetic nano- and
microelements14–18 and antidots19–22 of various shapes form
the most actively studied class of magnonic crystals. Ex-
perimentally, spin waves in such arrays are studied using
ferromagnetic resonance (FMR),23 time-resolved scanning

Kerr microscopy (TRSKM),12 Brillouin light-scattering (BLS)
spectroscopy,21,24 and other techniques.7 The experimental
results obtained using these techniques are interpreted using
either reciprocal space semianalytical approaches, such as
the plane-wave method25,26 and the modified version of the
dynamical matrix method (DMM),27,28 or time and real space
micromagnetic simulations.12,24,29–31 In the latter case, the
limited available computational power does not normally
allow one to run simulations for realistic samples, often
extending to tens and even hundreds of micrometers in both
in-plane directions. Hence, the simulations are performed for
smaller systems, albeit using different approaches for arrays
of magnetic elements and antidots. In the case of antidots,
periodic boundary conditions (PBCs) are applied to relatively
small arrays, often just to one unit cell.32,33 Quite surprisingly,
precessional dynamics in arrays of magnetic elements are
usually interpreted using simulations performed for finite and
then quite small (normally just 3 × 3) arrays of such elements
without the use of PBCs.34–36 There are only a few works in
which PBCs are employed in micromagnetic simulations for
arrays of magnetic elements.37

PBCs are realized differently in different micromagnetic
packages. The underlying aim is, however, always the same:
to suppress the effect of the finite size of the sample, i.e., to
modify the internal field in a finite sample so that it could be
treated as a part of a larger one. Full micromagnetic simulations
are carried out within this representative finite sample, which
is typically called a primary cell (or unit cell). To calculate
the internal field in the primary cell with account of the
contribution from the larger sample (in which the primary
cell is only a part), a sufficiently large (and sometimes infinite)
number of image cells (or virtual cells) is introduced. Every
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image cell is obtained by translating the primary cell by a
translation vector (which is often a linear combination of
integer numbers of orthogonal basis translation vectors) in
space, and the magnetization dynamics in every image cell is
assumed by definition to be the same as that in the primary cell.
Hence, the image cells do not contribute additional degrees
of freedom to the computational complexity of the problem.
Indeed, the magnetization dynamics in the primary cell are
simulated as if it were an ordinary (i.e., finite) micromagnetic
system, with the only difference that the magnetic dipolar field
is computed taking into account contributions from all image
cells. In the case of the magnetic material in the primary and
image cells being in direct contact, one would also need to
consider the exchange interaction across the interfaces, leading
to coupling of the magnetization at one end of the primary cell
to that at its opposite end. However, this is not necessary for
the arrays of magnetic elements considered in this work.

The conventional implementation of PBCs takes into
account an infinite number of image cells. In micromagnetic
simulations, one-dimensional (1D)38 and 2D39 PBCs with an
infinite number of image cells are available, for example, for
the object oriented micromagnetic framework (OOMMF). A
somewhat different approach has been proposed under the
name of macrogeometry40 in which only a finite number
of image cells are used. These can be placed at arbitrary
positions in space, although the primary and image cells should
not overlap. Thereby, as opposed to the infinite PBCs, the
macrogeometry allows one to simulate a large yet finite sample
by choosing a finite number of image cells and distributing
them spatially so as to approximate its shape and dimensions.
Hence, the choice of the name macrogeometry: the union of
the primary cell and the virtual cells describes the geometry
of the macroscopic sample that one wishes to simulate. The
demagnetizing field experienced by the primary cell depends
on the shape of the entire sample. For example, a spherical
primary cell embedded within a 1D row of virtual cells will
experience a strongly anisotropic demagnetizing field (with the
anisotropy axis being parallel to the axis of the rod), whereas
the same primary cell embedded in an appropriate spherical
arrangement of virtual cells will experience an isotropic
demagnetizing field (if the magnetization in the primary
cell is uniform; see also Sec. I in Ref. 40). Furthermore,
the demagnetizing field experienced by the primary cell
in the first example of a rodlike macrogeometry will depend
on the number of virtual image cells, which corresponds to the
length of the rod. The macrogeometry approach allows us to
fully take into account these geometrical characteristics of the
sample that we want to simulate. In contrast, the conventional
PBCs with an infinite number of image cells can only describe
two geometries: that of an infinitely long rod (with 1D PBCs)
and that of an infinite plane (with 2D PBCs).

We state for completeness that, in addition to systems
exhibiting (quasi) periodicity in 1D and 2D systems, the
macrogeometry can also be used for three-dimensional (3D)
systems, which is impossible for the infinite PBCs.40 We also
note that the conventional PBCs with infinitely many image
cells are a special case of the macrogeometry approach. Indeed,
the macrogeometry approach becomes the same method as the
conventional PBCs (with an infinite number of image cells), if
the image cells are placed on a regular 1D or 2D grid of a lattice

FIG. 1. (Color online) The geometry used in the simulations is
shown. The thickness and diameter of the disks are L = 2.5 nm and
d = 50 nm, respectively. The in-plane edge-to-edge separation is c =
b = 2.5 nm. The bias magnetic field Hbias = 2.5 kOe is applied in the
plane of the array along the y axis.

points and the number of image cells is increased to infinity.
The contributions to the demagnetizing field in the primary cell
decay as the distance between image cells and the primary cell
increases. So, in practice, it is sufficient to use a finite number
of image cells to obtain a numerically identical demagnetizing
field in the primary cell. This is indeed the approach used to
compute the demagnetizing tensor in the implementation of the
PBCs in OOMMF: contributions from image cells are added
until they are so small that the required numeric accuracy is
achieved. In the example of a single line of image cells centred
around the primary cell, the macrogeometry approach with ten
image cells closely stacked to either side of the primary cell
yielded a demagnetizing field comparable to that calculated
using the infinite PBCs (see Fig. 1 and example 1 in Ref. 40).

In this work, we use the finite element package NMAG,41

which provides an implementation of the macrogeometry
to systematically study the influence of the finite size (and
therefore the existence of boundaries) of arrays of magnetic
nanoelements on the spectrum and profiles of their preces-
sional modes. In the remainder of the manuscript, the term
PBCs refers to the use of the macrogeometry approach with a
finite number of image cells, which is specified for each of the
studies.

Unlike isolated magnetic elements, for which the influ-
ence of the inhomogeneity of the internal magnetic field at
their edges on the magnonic spectrum has been thoroughly
investigated,42–45 the influence of the lateral boundaries of
finite arrays of magnetic nanoelements on their spectrum has
not been investigated in much detail. In the present paper,
we compare the spectra of collective standing spin waves
in isolated arrays of permalloy disk-shaped elements with
those in the same arrays surrounded by different numbers
of virtual image cell arrays. The results are discussed in
terms of the micromagnetic model choice (open versus
PBCs) for interpretation of experimental results produced by
different techniques. In addition, we demonstrate how one
can investigate the structure of magnonic dispersion curves of
quasi-infinite arrays. We show how the position of the edges
of magnonic bands and band gaps along different directions in
the reciprocal space can be determined from micromagnetic
simulations with PBCs (or macrogeometry approach) and
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spatially nonuniform excitation fields applied to small arrays
of just a few nanoelements. The results obtained with this
method are shown to be in perfect agreement with those
obtained within the DMM. So far, PBCs have been used
in micromagnetic simulations only with spatially uniform
excitation fields, thereby limiting results to uniform collective
excitations. Hence, the proposed approach increases the range
of problems of magnonics that may be successfully solved
using micromagnetic simulations.46

II. NUMERICAL MODEL

We consider arrays of magnetic disks with thickness L =
2.5 nm and diameter d = 50 nm. The edge-to-edge separation
between the elements in the arrays is c = b = 2.5 nm (Fig. 1).
We performed simulations with different numbers of disks in
the primary cell (i.e., primary array): from a single disk to a
5 × 5 array. In each case, two simulations were performed: one
with open boundary conditions (isolated array) and one with
the use of the 2D macrogeometry approach applied along two
orthogonal directions in the plane of the array. In the latter case,
the number of virtual copies was chosen so that the dimensions
of large (virtual) arrays with the primary array in the middle
were always similar (about 1.31 × 1.31 μm2), while the total
number of elements was greater than or equal to 25 × 25. So,
for the 5 × 5, 4 × 4, 3 × 3, and 2 × 2 arrays of elements and
for the single element, we took 2, 3, 4, 6, and 12 virtual images
on each side of the primary cell, respectively. The same mesh
size of 1.25 nm was used in each case. In the simulations, we
assumed the saturation magnetization of MS = 860 G, and the
exchange stiffness constant of A = 1.3 μerg/cm. We assumed
a magnetic damping constant of α = 0.0001 in order to reduce
the width of peaks in the spectrum. The constant bias magnetic
field of Hbias = 2.5 kOe was applied in the plane of the disks
along y (vertical) direction.

We used the standard procedure to find the spectrum of spin-
wave excitations. First, we calculated the static magnetization
configuration of the system. The obtained magnetic ground
state was used as the initial magnetization configuration in the
dynamical simulations in which the sample was excited by
an in-plane magnetic pulse with amplitude of h = 18 Oe and
duration of 10 ps applied perpendicularly to the bias magnetic

field. We considered both spatially uniform and nonuniform
excitation fields applied to different parts of the arrays. We
recorded the magnetization dynamics for 32.8 ns and saved
the spatially resolved magnetization every 10 ps. The time-
and space-resolved data were used to calculate the spectra
and associated spatial mode profiles with help of SEMARGL
software.47

III. STATIC INTERNAL DEMAGNETIZING FIELD AS A
FUNCTION OF THE NUMBER OF VIRTUAL COPIES

The spatial profile of the static demagnetizing field is one of
the main factors determining the mode spectrum of magnetic
nanoelements.34,37,42 So, in this section, we study the variation
of the profile of the demagnetizing field in individual elements
as a function of the number of elements in the array. In the static
simulations, it is sufficient to consider a system with a single
disk in the primary cell. Figure 2 shows the spatial profiles of
the projection of the static demagnetizing field on the direction
of the bias field for an isolated disk and a disk in the center
of 3 × 3, 9 × 9, and 21 × 21 arrays (i.e., for cases of 1, 4,
and 10 virtual copies on each side of the disk, respectively).
The spatial dimensions of the 3 × 3, 9 × 9, and 21 × 21 virtual
arrays are 155 × 155 × 2.5 nm3 (the aspect ratio is 0.016),
470 × 470 × 2.5 nm3 (0.0053), and 1100 × 1100 × 2.5 nm3

(0.0023), respectively.
Figure 2 reveals deep demagnetized “wells” at the ends of

an isolated disk along the direction of the bias field. The depth
of the wells significantly decreases as the number of elements
in the virtual array increases. Small demagnetized wells are
also formed near the ends along the direction perpendicular to
the bias field. The depth of the wells increases as the number of
elements in the virtual array increases. However, the strength
and profile of the demagnetizing field in the central element
show almost no variation as the size of the virtual array is
increased from 9 × 9 to 21 × 21 elements. This shows that the
numbers of virtual copies of the primary arrays assumed in the
present study are large enough to extrapolate our conclusions
to models in which the primary arrays would be located in
the middle of infinite arrays. We therefore refer to them as
“quasi-infinite” in the rest of the paper.

FIG. 2. (Color online) The spatial profiles of the projection of the static demagnetizing field on the direction of the bias field (i.e., y axis) is
shown for an isolated disk and the same disk in the center of the 3 × 3, 9 × 9, and 21 × 21 arrays. Panels (a) and (b) correspond to the profiles
along the x and y axes, respectively.
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IV. SPECTRA AND SPATIAL PROFILES OF
PRECESSIONAL MODES IN FINITE AND

EFFECTIVELY INFINITE ARRAYS

In this section, we compare the spectra and associated mode
profiles of isolated disk arrays (open boundary conditions)
and the same arrays forming a part of larger (quasi-infinite)
arrays (PBCs). In both cases, we have used spatially uniform
magnetic fields to excite magnetization dynamics. Figure 3
shows spectra of spin-wave excitations of 1 × 1, 2 × 2, 3 × 3,
4 × 4, and 5 × 5 arrays of disks with and without the use of
PBCs in micromagnetic simulations. The spectra calculated
from data simulated with the use of PBCs resemble closely
the spectrum of an isolated element, with the blueshift of the
resonant frequencies being the only significant difference. In
contrast, the spectra of isolated arrays contain many additional
peaks in comparison to the isolated element. Similar to the
previous work,12,14 the additional peaks are attributable to
collective modes of the arrays of finite size. The excitation
of the modes by the spatially uniform pulsed fields is enabled
by distortion of the periodicity of the internal field at the array
boundaries. At the same time, the modes are not visible in the
simulations with PBCs since the latter suppress the boundary
effects associated with the finite size of the arrays and thereby
also suppress the ability of the nonuniform collective modes
to couple to the uniform pulsed fields.

Figure 4 compares the amplitude and phase of spin-wave
modes in an isolated disk and semi-infinite arrays simulated
with either a single disk or a 3 × 3 array of those in the primary
cell. As before, the pulsed field is uniform and applied in
the plane of the disks perpendicular to the bias magnetic
field. The spectrum and mode profiles of isolated magnetic
elements in the quasiuniform ground state of various, e.g.,
rectangular,37 elliptical,48,49 stadiumlike,50 and round,36,51–53

shapes were extensively studied by experimental, numerical,
and analytical means. For rectangular elements, it is possible to
use the mode classification scheme derived in Ref. 54 from the
one for spin waves in continuous magnetic films. In particular,
one can distinguish Damon-Eshbach-like modes (nDE; n is
the number of nodal lines parallel to the static magnetization),

FIG. 3. (Color online) The spectra of spin-wave excitations in
isolated arrays and semi-infinite arrays are shown in linear (a) and
logarithmic (b) scales. The different curves are arbitrarily offset along
the y axis for visual clarity.
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FIG. 4. (Color online) The amplitude (top) and phase (bottom)
of spin-wave excitations are shown for an isolated disk (a) and for
semi-infinite arrays with a single disk (b) and a 3 × 3 array of those
(c) in the primary cell. The bias magnetic field is applied vertically
in the plane of the figure.

backward-volume-like modes (mBA; m is the number of
nodal lines perpendicular to the static magnetization), the
fundamental (F) mode (or quasiuniform mode, characterized
by the absence of nodes within an element), and edge modes
(EM; localized at the edges of an element). Finally, the EM can
also be subdivided into DE-like and BA-like modes, depending
on the presence of corresponding nodal lines in the region of
its localization. One can see from Fig. 4 that this classification
is not fully applicable to disk-shaped elements in which the
nodal lines have a complicated structure because of the round
shape. However, we will be able to use this classification to
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label collective excitations in the square arrays due to their
square symmetry.

The dominant peak in the spectrum of an isolated disk
corresponds to a mode the amplitude of which near the ends
is greater than that in the central region of the disk. However,
the mode profile does not really split into two separate edge
regions, as it would be expected for an EM.34 Hence, it is
more appropriate to classify the mode as the F (quasiuniform)
rather than EM. This is consistent with the fact that the
frequency of the mode is close to that of the uniform FMR of a
tangentially magnetized ferromagnetic film. The other modes
of the isolated disk have nodal lines within the disk plane and
are labeled here as s1, s2, and s3. The modes have much greater
frequencies in comparison with the F mode. This indicates that
the dominant contribution to their frequencies originates from
the exchange interaction, leading to the positive dispersion
of the modes.

The spatially uniform pulsed field used in the simulations
cannot excite antisymmetric modes of the disk. However, such
modes could be excited in simulations with nonuniform pulsed
fields.55 For example, by applying the pulsed field only to the
disk’s upper (or lower) part, we could excite a mode with
the amplitude profile similar to that of s1 but with the opposite
ends oscillating out of phase—antisymmetric s1.48,50 However,
such modes are beyond this study.

Figures 4(b) and 4(c) show that the modes retain their
character in the simulations for semi-infinite arrays with both

one disk and a 3 × 3 array of those in the primary cell. The
only exception is the F mode that gets fully uniform due
to the suppression of the demagnetized regions at the disk ends.
The resonant frequencies also experience significant blueshift
(e.g., 0.56 GHz for the dominant peak) due to the demagne-
tizing field produced by the virtual images. We note that this
behavior is in contrast to that of truly edge localized mode pro-
files of which were found to be rather soft in Refs. 35 and 50.

As mentioned earlier, the distortion of the periodic internal
field in the vicinity of the boundaries of isolated arrays leads
to excitation of additional collective modes, which cannot
be excited by uniform pulsed fields in the same arrays
forming part of semi-infinite arrays. To study this effect,
let us consider the spatial profiles of precessional modes
of an isolated 3 × 3 array that are shown on Fig. 5. As a
result of a strong magnetodipole interaction, the mode profiles
vary somewhat from element to element since the elements
experience different fields and have different ground states,
depending on their position within the 3 × 3 array. However,
by comparing the spectra (Fig. 3) and mode profiles (Fig. 4) of
a single element and a 3 × 3 array, the origin of the collective
modes can still be traced back to modes of a single element.

Let us use the classification scheme described above for
a square element to classify the collective modes by their
spatial character. We will need to note that the nodal line can
fall into the gap between elements. We will add the name of
the single-element mode to that of the associated collective

FIG. 5. (Color online) The amplitude (top) and phase (bottom) of spin-wave modes in an isolated 3 × 3 array of magnetic disks are shown.
The modes are grouped in the different panels according to their spatial character compared to modes of a single element. The bias magnetic
field is applied vertically in the plane of the figure.
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modes. For convenience, we group the collective modes by
their origin into the four sets shown in the different panels of
Fig. 5. The first set of collective modes originates from the
F mode of a single element. It consists of three modes with
different values of the k vector: a nonzero k vector along the
bias field (F-2BA), a zero k vector (uniform collective mode,
i.e., F-U) and a nonzero k vector perpendicular to the direction
of the bias field (F-2DE). Due to the anisotropy inherent to
the magnetodipole interaction, the frequency shifts of the F-
2BA and F-2DE modes relative to the F-U one have opposite
signs, as was observed, e.g., in Refs. 12 and 14. However, the
frequency shifts are very similar in value, although it is known
that the dispersion of DE modes is generally stronger than that
of BA modes. This is attributable to an additional decrease of
the F-2BA mode frequency resulting from the reduction of the
internal magnetic field caused by the demagnetizing field from
the magnetic charges at the boundaries of the array as a whole
that are perpendicular to the applied magnetic field. Indeed, as
opposed to the F-2DE and F-U modes, the F-2BA mode has
significant amplitude in the boundary rows of disks that are
orthogonal to the direction of the applied magnetic field.

Set 2 consists of the modes localized in the boundary
rows and columns of the array. These modes originate from
antisymmetric modes of a single element, for which the
opposite ends of the disk oscillate out of phase and which
therefore has not been observed in the simulations for a
single element and a uniform pulsed magnetic field. We
call them here “boundary modes,” in analogy to edge (end)
modes of isolated elements. The two lowest-frequency modes
have zero amplitude in the central row and can therefore be
classified as localized in the boundary rows. The latter are
demagnetized, thereby reducing the frequency of the modes.
The two higher-frequency modes have nearly zero amplitude in
the central column and can therefore be classified as localized
in the boundary columns. The highest frequency mode in the
set has nearly zero amplitude in the demagnetized regions of
the array. The second boundary mode (counting from left to
right) has a DE character, which leads to positive dispersion
and an increased frequency relative to the first mode, which
has a zero k vector. Similarly, the third mode has an additional
(relative to the fourth mode) phase variation in the direction
parallel to the applied magnetic field and is therefore of the
BA volume character. This leads to a negative dispersion and
a reduced frequency relative to that of the fourth mode in
the set. At the same time, the increased frequency of the
third and fourth modes relative to the first two modes in the
set is in due to the amplitude profile in individual elements.
Indeed, unlike the first and second modes, the amplitude of the
third and fourth modes is localized near the disk ends (edges)
that lie along the applied field. This diminishes the effect of
the demagnetization by the static magnetic charges formed
at the ends (edges) orthogonal to the applied field, whereas
the dynamical magnetic charges at the ends that lie along the
applied field lead to the positive frequency dispersion.

Set 3 consists of the modes originating from the s1 and s2
modes of a single element: s1-2BA, s1-2BA2DE, s1-U, s2-U,
s1-DE, s2-BA modes. Set 4 consists of the modes originating
from the s3 mode of a single element. The frequency variation
of the different modes within the sets can be interpreted using
the same considerations as in the case of sets 1 and 2.

V. MICROMAGNETIC SIMULATIONS WITH PBC AND A
SPATIALLY NONUNIFORM EXCITATION FIELD:

INVESTIGATION OF THE DISPERSION STRUCTURE
OF QUASI-INFINITE ARRAYS

As we have seen, collective modes with nonzero k vectors
of arrays of magnetic nanoelements with suppressed boundary
effects have a reduced coupling to uniform pulsed fields.
So, to excite and then study such modes in micromagnetic
simulations with PBCs (in which the internal magnetic field
correctly corresponds to infinite arrays), we should use
spatially nonuniform excitation fields instead. The smallest
and largest possible finite “collective” wavelengths of modes
with nonzero k vectors that could be excited in simulations
with PBCs are equal to twice the period of the primary array
(which corresponds to the k vector exactly at the edge of
the Brillouin zone) and to the size of the primary array,
respectively. So, by properly choosing the dimensions of the
primary array and the spatial profile of the excitation field, one
can access collective modes of any wavelength and therefore
any k vector within the Brillouin zone of the corresponding
quasi-infinite array. We illustrate this approach using the same
simple square array of disk-shaped nanoelements. We then
compare results of such micromagnetic simulations with the
results of the DMM calculations, which have already been suc-
cessfully used to investigate band diagrams in large arrays of
nanoelements.56

In the present case of a quasi-infinite array with a simple
square lattice, to obtain the frequencies of the collective modes
at the bottom (zero k vector) and boundaries of the Brillouin
zone from simulations with PBCs, it is sufficient to consider
a 2 × 2 primary cell excited by a spatially nonuniform pulsed
field. Figure 6 shows on a logarithmic scale the mode spectra
of an isolated 2 × 2 array with (blue solid lines) and without
(red dashed line) application of PBCs. The simulations with
PBCs are repeated for different spatial profiles of the pulsed
field, as schematically represented above each line: only the
black-colored area is subjected to a uniform (in this area)
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FIG. 6. (Color online) The mode spectra are shown on logarith-
mic scale for an isolated 2 × 2 array (red dashed line) and for the
same array simulated with application of PBCs (blue solid lines).
The spatial configuration of the pulsed magnetic field used in the
simulations is schematically shown above each line so that the area of
the array subjected to a uniform pulsed field is marked by black color.
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pulsed field. One can see that the selective application of a
pulsed field to only one disk in the primary array in simulations
with PBCs leads to a splitting of the dominant spectral peaks.
At the same time, the application of the uniform field to
central region along the different orthogonal directions leads
to excitation of additional collective modes as compared to the
same array excited by a globally uniform pulsed field. Below,
we will identify the mode character and collective k vectors
by analyzing the spatial profiles of the modes.

Figure 7 shows the mode profiles (top) and phase (bottom)
of spin wave corresponding to dominant peaks of the spectra
shown in Fig. 6. The spectrum and spatial character of
modes in an isolated 2 × 2 array shown on Fig. 7(a) are
qualitatively similar to those described above for an isolated
3 × 3 array. So, we concentrate on modes with nonzero k

vectors in quasi-infinite arrays in the following discussion. In
the simulations with the pulsed field applied to only one disk
in the primary cell [Fig. 7(b)], the F mode of a single disk splits
into the BA, uniform, mixed BA-like, DE-like (mixed BA-DE),
and DE modes of the quasi-infinite array. The first, third, and
fourth modes (listed in the order of increasing frequency)
correspond to spin waves with their k vector exactly at the
edges of the Brillouin zone along different directions in the
reciprocal space. The second mode corresponds to the k vector
at the bottom of the Brillouin zone. The calculated splitting of
the F mode of a single element as a result of interaction within
the array enables us to analyze the magnonic dispersion along
different directions in the reciprocal space. So, we observe

the expected negative and positive dispersions for the BA-like
and DE-like spin-wave modes, respectively. Furthermore, due
to the mentioned fact that the dynamic coupling is stronger
in the direction perpendicular to the bias field as compared
to that in the parallel direction, we observe that the splitting
(and therefore the width of the allowed band) is two times
greater for DE-like spin waves than for BA-like ones, i.e., 1.06
GHz against 0.53 GHz. The effect of this anisotropic coupling
also manifests itself in that the mixed BA-DE mode shows a
positive dispersion. The second set of the modes originates
from the splitting of the s1 mode of a single element. The
modes correspond to the BA-like, uniform, and DE-like spin
waves of the quasi-infinite array. The splitting and therefore
the width of the magnonic bands are substantially smaller (0.43
and 0.36 GHz) than in the case of the F mode. The third set
consists of just one mode originating from the s2 mode of a
single element, and the last peak originates from the s3 one of
a single element. In both of the latter cases, the splitting of the
modes is below the resolution of the simulations, set by the
used value of the damping constant and the duration of each
simulation.

To excite in quasi-infinite square array the collective modes
with other spatial symmetries within individual elements [e.g.,
such as those shown in panels (2)–(4) of Fig. 5], we applied the
pulsed field to the middle region of the primary array along
different orthogonal directions, as shown above the curves
on Figs. 7(c) and 7(d). In the case shown in Fig. 7(c), we
observe excitation of BA-like collective modes originating
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FIG. 7. (Color online) The mode profiles (top) and phase (bottom) of spin-wave modes in (a) an isolated 2 × 2 array and (b)–(d) quasi-infinite
arrays with a 2 × 2 primary array. The spatial configuration of the pulsed field used in the simulations is schematically shown in the right top
corners of each panel, with the area of the array uniformly excited by the pulsed field marked by black color. The bias magnetic field is applied
vertically in the plane of the figure.
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FIG. 8. (Color online) The spectra of spin-wave excitations are
shown on the logarithmic scale for an isolated 3 × 3 array (red dashed
line) and the same array as the primary cell in the simulations with
PBCs (blue solid lines). The spatial configuration of the pulsed field
is schematically shown above each line, with the area of the array to
which the uniform pulsed field is applied marked by black color.

from the antisymmetric mode of a single element (the second
dominant peak from the left). In the case shown in Fig. 7(d), we
observe excitation of the DE-like collective modes originating
from the orthogonally oriented (relative to the applied field)
antisymmetric mode of a single element (the second dominant
peak from the left). In both cases, the k vectors correspond to
the Brillouin zone boundaries.

To calculate frequencies of the collective excitations in
semi-infinite arrays with the wavelength greater than two
periods of the array (i.e., with the k vector within rather
than at the edges of the Brillouin zone), we need to consider
primary arrays larger than the 2 × 2 array discussed so far.
We will demonstrate the calculation considering a 3 × 3 array
in the primary cell in micromagnetic simulation with PBCs
and a spatially nonuniform pulsed field. So, Fig. 8 shows on
a logarithmic scale the spectra of spin-wave excitations in an
isolated 3 × 3 array (red dashed line) and the same array in
the primary cell of a semi-infinite array (blue solid lines).

FIG. 10. (Color online) The magnonic band diagram calculated
using the DMM is shown for two bands corresponding to mode sets 1
and 2 shown in Fig. 7(b). The frequency of the modes obtained from
the micromagnetic simulations are shown by black dots. The inset
shows the corresponding Brillouin zone and the direction of the bias
magnetic field.

Again, the spatial configuration of the pulsed magnetic field
is schematically shown above each line. The corresponding
mode profiles are shown in Fig. 9. To excite BA-like and
DE-like modes, we applied an excitation pulse to the top and
bottom rows and to the left and right columns of the primary
array, respectively. As expected, we observe splitting of the
corresponding modes of a single element into BA-like (with
the wavelength of three periods of the semi-infinite array)
and uniform modes, in the former case, and into uniform and
DE-like modes, in the latter case.

Let us compare the spectra obtained from the results of
the micromagnetic simulations with PBCs with the magnonic
band diagram calculated for an infinite square array of
magnetic nanodisks of the same geometry using the DMM
approach. So, Fig. 10 presents two magnonic bands calculated
by the DMM that correspond to mode sets 1 and 2 shown
in Fig. 7(b). The frequencies of the modes obtained from the
micromagnetic simulations are shown in Fig. 10 by black dots.
The inset shows the corresponding directions in the reciprocal
space within the first Brillouin zone. Table I compares the
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FIG. 9. (Color online) The spatial profiles of the amplitude (top) and phase (bottom) of spin-wave modes in a quasi-infinite array are shown
as calculated from simulations with a 3 × 3 primary array with PBCs. The spatial configuration of the pulsed field is schematically shown
above each line, with the area of the array to which the uniform pulsed field is applied marked by black color. The bias magnetic field is applied
vertically in the plane of the figure.
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TABLE I. The frequencies calculated for the symmetry points within the first Brillouin zone comparing the DMM and micromagnetic
simulations (Nmag).

� X M Y

DMM Nmag DMM Nmag DMM Nmag DMM Nmag

First band 15.3 GHz 15.4 GHz 16.4 GHz 16.5 GHz 15.6 GHz 15.7 GHz 14.8 GHz 14.9 GHz
Second band 29.1 GHz 29.1 GHz 28.9 GHz 29.5 GHz 28.9 GHz – 28.5 GHz 28.7 GHz

frequency values obtained by the two approaches. It is evident
that both methods produce nearly perfect agreement, with a
less than 0.1-GHz deviation for the first of the bands. For
the second band, the DMM and micromagnetic simulations
yield the same frequencies at � and close frequency values
at M and Y , within 0.6- and 0.2-GHz deviation, respectively,
corresponding to 2 and 0.07% of the average frequency values,
respectively.

VI. DISCUSSION

Let us briefly discuss the obtained results in view of using
micromagnetic simulations to analyze data produced by dif-
ferent experimental techniques. The TRSKM technique12,14,34

acquires data in the time and real-space domains, which is
the same as results produced by micromagnetic simulations.
In both cases, the time-resolved data are converted into the
frequency domain using Fourier analysis. The TRSKM data
are therefore most naturally suited for comparison with and
interpretation by micromagnetic simulations. The formation of
collective magnonic modes in arrays of interacting magnetic
elements often manifests itself via splitting of the resonance
modes of an isolated magnetic element serving as the building
block of the array.12,14 The simulations presented in this paper
demonstrate that the splitting becomes observable due to the
presence of boundaries of the finite-sized arrays modeled with
open boundary conditions. This is consistent with the finite size
of the arrays measured in Refs. 12 and 14. Furthermore, our
simulations suggest that the splitting could not be observed
if the micromagnetic simulations in Refs. 12 and 14 were
performed with PBCs. However, it is also clear that it would
be quite difficult if at all possible to achieve quantitative
agreement between the TRSKM data and simulations in
terms of the splitting and absolute values of the collective
mode frequencies, unless the size of the array in simulations
matched that in the experiment, suggesting the origin of the
quantitative discrepancies observed in Ref. 57. The arrays
studied in Refs. 12 and 14 measured 4 × 4 μm2, while the
constituent elements were down to 40 × 80 nm2 in size.
Unfortunately, the computational power required for modeling
of such samples is still beyond that currently available to
micromagnetic simulations.

In contrast to the TRSKM technique, the BLS measure-
ments are usually performed on much larger arrays. Moreover,
the sensitivity of the BLS measurements to thermally excited
spin waves means that the formation of collective modes can
be observed in arrays of any size and structure, provided that
the interaction between the constituent elements is strong
enough. Under such circumstances, the proposed combined
use of the PBCs and the nonuniform excitation would be

particularly appropriate, for example, in the case of the results
similar to those reported in Refs. 35 and 36. An experimental
verification of the method is however beyond the scope of this
report. Overall, the DMM approach combined with the Bloch
theorem27 appears most appropriate and computationally
efficient if the aim is to reproduce the dispersion of collective
spin waves in infinite arrays. Yet, in the case of finite-sized
arrays, the DMM faces the same limitations in terms of
computing power as those outlined in the preceding para-
graph for micromagnetic simulations performed in the time
domain.

VII. CONCLUSIONS

In summary, we have studied the influence of the presence
of lateral boundaries on the spectrum and profiles of collec-
tive spin-wave excitations in finite-sized arrays of magnetic
elements. We have compared the spectra and spatial profiles
of spin-wave modes in isolated arrays of nanoelements and
in the same arrays as building blocks of quasi-infinite arrays
formed within a macrogeometry approach in micromagnetic
simulations. We have shown that, in contrast to the isolated
arrays, the collective excitations with nonzero k vectors do
not couple to spatially uniform excitation fields in arrays with
boundary effects suppressed by the macrogeometry so that
only uniform collective spin-wave modes (with the collective
k vector equal to zero) can be excited. However, the collective
excitations with finite collective k vectors could be excited
in simulations with a spatially nonuniform excitation field.
Finally, we have demonstrated that the structure of magnonic
dispersion curves for quasi-infinite arrays along different
directions in the reciprocal space and in different allowed
bands could be investigated using simulations for small arrays
of just a few nanoelements with application of PBCs. The
PBCs have been widely used in micromagnetic simulations
for arrays of antidots and in rare occasions for arrays of
nanoelements. However, the latter simulations have only been
performed with spatially uniform excitation fields, limiting the
results to uniform collective spin waves. Our results obtained
using time domain micromagnetic simulations are in perfect
agreement with those obtained using the DMM approach for
infinite arrays of nanoelements.
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