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Immune system maintenance and upregulation is costly. Sexual selection

intensity, which increases male investment into reproductive traits, is

expected to create trade-offs with immune function. We assayed phenoloxi-

dase (PO) and lytic activity of individuals from populations of the Indian

meal moth, Plodia interpunctella, which had been evolving under different

intensities of sexual selection. We found significant divergence among popu-

lations, with males from female-biased populations having lower PO activity

than males from balanced sex ratio or male-biased populations. There was

no divergence in anti-bacterial lytic activity. Our data suggest that it is the

increased male mating demands in female-biased populations that trades-

off against immunity, and not the increased investment in sperm transfer

per mating that characterizes male-biased populations.
1. Introduction
The interplay between investment into reproduction and immunity is central to

our understanding of sexual selection [1]. The maintenance and upregulation of

immune function is costly, and resource limitation requires that it is traded-off

against investment into both pre- and post-copulatory reproductive traits [2].

While there is a growing body of evidence for phenotypic trade-offs between

immunity and post-copulatory reproductive traits, evolutionary changes in

immunity in response to selection for varying reproductive investment is less

well documented [3,4].

Experimental evolution studies have documented rapid evolutionary changes

in male reproductive investment in response to increased sexual selection [5–7].

With increasing female mating frequency, the concomitant increase in observed

male reproductive investment, such as testes size, is typically attributed to the

effect of selection via sperm competition [6,7]. Yet, at a population level, under

an equal sex ratio (ESR), increases in female mating frequency should be tightly

associated with increases in male mating frequency [8]. Thus, the elevated male

investment observed when female mating rate increases could potentially be

driven by sperm competition to produce more sperm per ejaculate, or by the

demand for more ejaculates. Separating out these two mechanisms is difficult

(for a review, see Vahed & Parker [8]). Experimental evolution studies that manip-

ulate adult sex-ratio bias can simultaneously alter the intensity of sexual selection

and male mating rates. Observation of the nature of immune function resource

trade-offs with these two traits can provide insight into the selection pressure

promoting increased male reproductive investment.

We used an experimental evolution approach to explore genetic trade-offs

between investment in reproduction and immune function in the polygamous

Indian meal moth, Plodia interpunctella. Males exhibit phenotypic [9] and gen-

etic changes in reproductive investment in response to increased sperm

competition. Using experimental evolution lines, Ingleby et al. [10] documented

evolutionary responses to variation in the adult sex ratio. Because of the sex
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Figure 1. Least square mean (+ s.e.) phenoloxidase activity (Vmax) among
populations of Plodia interpunctella evolving under varying adult sex ratios.
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bias, in male-biased lines, female mating frequency was

higher, with sperm competition promoting increased sperm

investment per mating by males in these populations. Yet,

in female-biased lines, with no sperm competition, males

mated more frequently. Thus, these populations allow dissec-

tion of the selection pressures promoting trade-offs between

immunity and alternative mechanisms of increased male

investment. Using these same populations, we explored

differences in immune investment for both males and

females. We measured two components of invertebrate

immune function: the ability to lyse and kill pathogens

in vitro (lytic activity) and haemolymph concentrations of

the enzyme phenoloxidase (PO), which underlies the cascade

that results in encapsulation of foreign bodies and correlates

with an organism’s ability to resist pathogens and parasites

[11,12]. Our data show that these populations have diverged

in male investment into immunity, but that this divergence is

more likely to be driven by the costs of multiple mating for

males in female-biased populations than the costs of

increased sperm transfer in response to sperm competition

in male-biased populations.
2. Material and methods
(a) Experimental evolution
Moths were reared at the University of Exeter, Cornwall, UK, on

a diet of bran, yeast, honey and glycerol, and were maintained at

288C with a 16 L : 8 D cycle. Three adult sex-ratio treatments, each

with three replicates, were established from the wild-caught

stock population. The female-biased (1 : 3 male : females), equal

(1 : 1 male : female) and male-biased (3 : 1 males : female) sex-

ratio treatments were maintained at 120 adults at each generation

for approximately 80 generations (see Ingleby et al. [10]). Impor-

tantly, sex-ratio bias was only enforced at the adult stage, and

larvae were reared under identical conditions. This design pro-

vided a common garden environment to test for genetic

changes in immune function. Only two of the three equal

sex-ratio lines could be assayed.

(b) Immune assays
Fifth-instar wandering larvae (a distinct developmental stage)

were haphazardly selected and weighed from each of the eight

replicates (testes are visible through the cuticle). To account for

potential variation in immune traits due to development time,

we noted the days elapsed from population establishment to

sampling. Haemolymph was drawn from decapitated larvae

for lytic assays (2 ml) and PO assays (2 ml haemolymph: 20 ml

ice-cold PBS) and frozen at 2808C.

PO was measured using established protocols [13] for 20 males

and females in each replicate (except in one female-biased repli-

cate, males ¼ 18, females ¼ 19). For each sample, 10 ml of

haemolymph was added to a 96-well plate with 100 ml of 5 mM

dopamine hydrochloride (Sigma–Aldrich H8502) in duplicate.

The plate was incubated for 5 min and the absorbance measured at

492 nm every minute for 20 min (at 288C) using a M5 SpectraMax

microplate reader (Molecular Devices, Sunnyvale, CA).

A lytic zone assay was used to determine the anti-bacterial

response for 16 males and females in each replicate to the bacter-

ium Arthrobacter globiformis (ATCC reference no. 8010). Agar

plates were made with 5 ml of 1 per cent nutrient agar containing

a 1.25 per cent final concentration of overnight culture (modified

from Haine et al. [14]). For each sample, 1 ml of haemolymph was

pipetted in replicate onto the plate. The plates were incubated at

288C for 48 h. The zone cleared was calculated as the average of
two measurements of the zone’s diameter, taken at two points

perpendicular to each other.

(c) Statistics
Data were analysed using linear mixed-effect models fit by

REML (JMP v. 9, 2000). Replicate was nested within mating-

bias treatment as a random effect. Non-significant interactions

were removed from final models. Sex-specific standardized

weights were calculated to account for inherent sex-differences

in weight. Values of 0 for lytic (n ¼ 1) and PO (n ¼ 3) raw data

were excluded from analysis.

Data deposited in the Dryad repository: doi.org/10.5061/

dryad.bs385.
3. Results
(a) Lytic activity
Lytic activity was not affected by adult sex ratio (F2,249 ¼ 0.09,

p ¼ 0.92), or the sex (F1,249 ¼ 0.06, p ¼ 0.80), or the develop-

mental durations of the population (F1,249 ¼ 0.23, p ¼ 0.64).

Lytic activity, however, was lower for heavier individuals

(F1,249 ¼ 4.07, b ¼ 20.12+ 0.06, p ¼ 0.046). A non-significant

interaction between mating bias and sex was removed from

the model (F2,247 ¼ 0.04, p ¼ 0.96).

(b) Phenoloxidase activity
PO was affected bysex-ratio treatment: individuals from female-

biased populations had lower PO (F2,308 ¼ 8.91, p ¼ 0.03;

figure 1). PO was lower in females (F1,308 ¼ 4.16, p ¼ 0.04) and

in faster developing populations (F1,308 ¼ 27.31, b ¼ 0.09+
0.02, p ¼ 0.003), while the relationship between PO and

weight was not significant (F1,308 ¼ 3.12, b ¼ 20.09+0.04,

p ¼ 0.08). A non-significant interaction between mating bias

and sex was removed from the model (F2,306 ¼ 0.04, p ¼ 0.96).
4. Discussion
We found that males and females evolving under a female-

biased adult sex ratio evolved to invest less in a key component

of the innate immune system, PO. Two previous studies of

evolutionary trade-offs between male reproductive investment

and immunity found negative relationships between sexual

selection intensity and immunity [3,4]. We observed the

opposite pattern: individuals from male-biased populations

in which sperm competition has selected for the transfer of
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greater numbers of sperm [6], had an immune function com-

parable to populations evolving under an even sex ratio

where selection from sperm competition was weaker. In the

female-biased lines, males mate three times more frequently

than males in the male-biased lines [10]. Thus, although

males in the male-biased treatments transfer more sperm per

mating, male sperm expenditure is greater in female-biased

lines. Consistent with phenotypic studies in other species [2],

the greater sperm investment by males in the female-biased

lines comes at a cost to investment in immunity, specifically

PO. Thus, it is not the intensity of selection from sperm compe-

tition that drives an evolutionary reduction in male immune

investment, but rather selection for increased male mating

demands. Surprisingly, the divergence observed in mating

traits between ESR and male-biased lines was not reflected in

PO. ESR males mate approximately twice as frequently as

male-biased lines, but transfer significantly fewer sperm,

potentially creating a comparable male reproductive effort.

A quantitative analysis of total reproductive expenditure, that

includes testes size, sperm per ejaculate and spermatophore

mass, is needed to elucidate these relationships.

How female immunological responses should change in

response to variation in sexual selection is less clear. All

things being equal, sexual dimorphism in immunity is pre-

dicted to increase with sexual selection intensity [15].

However, studies of the genetic architecture of immunity

demonstrate positive genetic correlations between the sexes

in measures of immunity [16], even when populations are

subject to increased sexual selection intensity [4]. Such

studies point to intralocus sexual conflict, with neither sex

maintaining optimal immunity [16]. Intralocus sexual conflict

and genetic correlations have been demonstrated in multiple

fitness traits in P. interpunctella [17]. Our data show that the

degree of sexual dimorphism in immune function did not

diverge in response to selection, a result predicted by the gen-

etic constraint model. In general, females had lower PO than

males, consistent with previous work in this species [18], but

in contradiction to classic models predicting stronger female

immunity [19]. Such models are based on the traditional
dichotomy between low male and high female reproductive

investment. However, like all Lepidoptera, male P. interpunctella
make a substantial reproductive investment at each mating—

approximately 4 per cent of the male’s body mass [20]. It may

be that the magnitude of male investment in ejaculate pro-

visions transferred to females is sufficient to alter the relative

immune costs of reproduction incurred by males and females.

While selection on male mating frequency is the most parsimo-

nious explanation for the immunological changes observed,

it should be noted that sex ratio manipulation may also affect

other unmeasured traits, such as female physiology and

behaviour, which may also affect female immune investment.

Only one component of the immune system traded-off

against reproductive investment. Why PO is more labile

than lytic activity in this species is not clear. PO can change

plastically in this species in response to a range of factors,

including larval density and diet [13]. Potentially, maintain-

ing PO levels is also more costly; there is experimental

evidence for the costs of selection for high PO levels in

other species [21], while PO is a condition-dependent trait

in P. interpunctella [13]. It is also unclear why PO, but not

lytic, activity varies according to the developmental duration

of each replicate, but this may be due to the time available for

the acquisition of nutritional resources.

In conclusion, using immune function trade-offs, we

show that it is male mating rate, and not sperm competition,

that is the likely selection pressure for the evolution of

decreased immune investment in this species. We demon-

strate the importance of considering species-specific costs of

ejaculate transfer when making predictions using traditional

models of resource trade-offs. We also highlight the impor-

tance of considering female immune responses to sexual

selection on males, as this phenomenon has the potential to

reveal genetic constraints that might shape the architecture

of immune system evolution.

The study was supported by the Australian Research Council (K.B.M.
and L.W.S.) and a Royal Society Wolfson Research Merit Award
(N.W.). We thank Sheridan Willis and Michelle Hares for assistance.
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reduction in testes size and competitive fertilization
success in response to the experimental removal of
sexual selection in dung beetles. Evolution 62,
2580 – 2591. (doi:10.1111/j.1558-5646.2008.
00479.x)

7. Hosken DJ, Ward PI. 2001 Experimental evidence for
testis size evolution via sperm competition. Ecol.
Lett. 4, 10 – 13. (doi:10.1046/j.1461-0248.2001.
00198.x)

8. Vahed K, Parker DJ. 2012 The evolution of large
testes: sperm competition or male mating rate?
Ethology 118, 107 – 117. (doi:10.1111/j.1439-0310.
2011.01991.x)

9. Gage MJG. 1995 Continuous variation in
reproductive strategy as an adaptive response to
population-density in the moth Plodia
interpunctella. Proc. R. Soc. Lond. B 261, 25 – 30.
(doi:10.1098/rspb.1995.0112)
10. Ingleby FC, Lewis Z, Wedell N. 2010 Level of
sperm competition promotes evolution of male
ejaculate allocation patterns in a moth. Anim.
Behav. 80, 37 – 43. (doi:10.1016/j.anbehav.
2010.03.022)

11. Wilson K, Cotter SC, Reeson AF, Pell JK. 2001
Melanism and disease resistance in insects. Ecol.
Lett. 4, 637 – 649. (doi:10.1046/j.1461-0248.2001.
00279.x)

12. Rantala MJ, Roff DA. 2007 Inbreeding and
extreme outbreeding cause sex differences in
immune defence and life history traits in
Epirrita autumnata. Heredity 98, 329 – 336.
(doi:10.1038/sj.hdy.6800945)

13. Triggs A, Knell RJ. 2012 Interactions between
environmental variables determine immunity in the
Indian meal moth Plodia interpunctella. J. Anim.
Ecol. 81, 386 – 394. (doi:10.1111/j.1365-2656.2011.
01920.x)

http://dx.doi.org/10.1126/science.7123238
http://dx.doi.org/10.1016/j.tree.2006.09.012
http://dx.doi.org/10.1016/j.tree.2006.09.012
http://dx.doi.org/10.1016/S0960-9822(01)00211-1
http://dx.doi.org/10.1111/j.1558-5646.2007.00286.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00286.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00894.x
http://dx.doi.org/10.1111/j.1558-5646.2008.00479.x
http://dx.doi.org/10.1111/j.1558-5646.2008.00479.x
http://dx.doi.org/10.1046/j.1461-0248.2001.00198.x
http://dx.doi.org/10.1046/j.1461-0248.2001.00198.x
http://dx.doi.org/10.1111/j.1439-0310.2011.01991.x
http://dx.doi.org/10.1111/j.1439-0310.2011.01991.x
http://dx.doi.org/10.1098/rspb.1995.0112
http://dx.doi.org/10.1016/j.anbehav.2010.03.022
http://dx.doi.org/10.1016/j.anbehav.2010.03.022
http://dx.doi.org/10.1046/j.1461-0248.2001.00279.x
http://dx.doi.org/10.1046/j.1461-0248.2001.00279.x
http://dx.doi.org/10.1038/sj.hdy.6800945
http://dx.doi.org/10.1111/j.1365-2656.2011.01920.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01920.x


rsbl.royalsocietypublishing.org

4
14. Haine ER, Pollitt LC, Moret Y, Siva-Jothy MT, Rolff J.
2008 Temporal patterns in immune responses to a
range of microbial insults (Tenebrio molitor).
J. Insect Physiol. 54, 1090 – 1097. (doi:10.1016/j.
jinsphys.2008.04.013)

15. Zuk M, McKean KA. 1996 Sex differences in parasite
infections: patterns and processes. Int. J. Parasitol.
26, 1009 – 1023. (doi:10.1016/S0020-7519(96)
80001-4)

16. Rolff J, Armitage SAO, Coltman DW. 2005 Genetic
constraints and sexual dimorphism in immune
defense. Evolution 59, 1844 – 1850. (doi:10.1554/
04-747.1)

17. Lewis Z, Wedell N, Hunt J. 2011 Evidence
for strong intralocus sexual conflict in the
Indian meal moth, Plodia interpunctella. Evolution
65, 2085 – 2097. (doi:10.1111/j.1558-5646.2011.
01267.x)

18. Triggs AM, Knell RJ. 2012 Parental diet has strong
transgenerational effects on offspring immunity.
Funct. Ecol. 26, 1409 – 1417. (doi:10.1111/j.1365-
2435.2012.02051.x)
19. Rolff J. 2002 Bateman’s principle and immunity.
Proc. R. Soc. Lond. B 269, 867 – 872. (doi:10.1098/
rspb.2002.1959)

20. Greenfield MD. 1982 The question of paternal
investment in Lepidoptera—male-contributed
proteins in Plodia interpunctella. Int. J. Invertebr.
Reprod. 5, 323 – 330. (doi:10.1080/01651269.1982.
10553485)

21. Schwarzenbach GA, Ward PI. 2006 Responses to
selection on phenoloxidase activity in yellow dung flies.
Evolution 60, 1612 – 1621. (doi:10.1554/06-090.1)
B
iol
Lett
9:20130262

http://dx.doi.org/10.1016/j.jinsphys.2008.04.013
http://dx.doi.org/10.1016/j.jinsphys.2008.04.013
http://dx.doi.org/10.1016/S0020-7519(96)80001-4
http://dx.doi.org/10.1016/S0020-7519(96)80001-4
http://dx.doi.org/10.1554/04-747.1
http://dx.doi.org/10.1554/04-747.1
http://dx.doi.org/10.1111/j.1558-5646.2011.01267.x
http://dx.doi.org/10.1111/j.1558-5646.2011.01267.x
http://dx.doi.org/10.1111/j.1365-2435.2012.02051.x
http://dx.doi.org/10.1111/j.1365-2435.2012.02051.x
http://dx.doi.org/10.1098/rspb.2002.1959
http://dx.doi.org/10.1098/rspb.2002.1959
http://dx.doi.org/10.1080/01651269.1982.10553485
http://dx.doi.org/10.1080/01651269.1982.10553485
http://dx.doi.org/10.1554/06-090.1

	Experimental evolution reveals trade-offs between mating and immunity
	Introduction
	Material and methods
	Experimental evolution
	Immune assays
	Statistics

	Results
	Lytic activity
	Phenoloxidase activity

	Discussion
	The study was supported by the Australian Research Council (K.B.M. and L.W.S.) and a Royal Society Wolfson Research Merit Award (N.W.). We thank Sheridan Willis and Michelle Hares for assistance.
	References


