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Covering 40% of the terrestrial surface, dryland ecosystems characteristically have distinct vegetation structures
that are strongly linked to their function. Existing survey approaches cannot provide sufficiently fine-resolution
data at landscape-level extents to quantify this structure appropriately. Using a small, unpiloted aerial system
(UAS) to acquire aerial photographs and processing theses using structure-from-motion (SfM) photogrammetry,
three-dimensional models were produced describing the vegetation structure of semi-arid ecosystems at seven
sites across a grass–to shrub transition zone. This approach yielded ultra-fine (b1 cm2) spatial resolution canopy
height models over landscape-levels (10 ha), which resolved individual grass tussocks just a few cm3 in volume.
Canopy height cumulative distributions for each site illustrated ecologically-significant differences in ecosystem
structure. Strong coefficients of determination (r2 from 0.64 to 0.95) supported prediction of above-ground bio-
mass from canopy volume. Canopy volumes, above-ground biomass and carbon stocks were shown to be sensi-
tive to spatial changes in the structure of vegetation communities. The grain of data produced and sensitivity of
this approach is invaluable to capture even subtle differences in the structure (and therefore function) of these
heterogeneous ecosystems subject to rapid environmental change. The results demonstrate how products
from inexpensive UAS coupled with SfM photogrammetry can produce ultra-fine grain biophysical data prod-
ucts, which have the potential to revolutionise scientific understanding of ecology in ecosystemswith either spa-
tially or temporally discontinuous canopy cover.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Covering 40% of the terrestrial area, dryland ecosystems provide eco-
system services (principally food, but alsowater and biofuel) that direct-
ly support 2.4 billion people (Adeel et al., 2005). These services depend
on the vegetation structure of the ecosystems, which is often highly var-
iable through both time and space (Krofcheck et al., 2014; Scott et al.,
2016). For example, encroachment of woody shrub vegetation into for-
mer grasslands is widely considered to be amechanism of land degrada-
tion (Schlesinger et al., 1990; Adeel et al., 2005; Turnbull et al., 2008), and
recent work suggests fluctuations in dryland biomass explain much of
the interannual variability and long-term trend in the global terrestrial
carbon sink (Poulter et al., 2014; Ahlström et al., 2015). Consequently,
knowledge of the changing biophysical structure of dryland vegetation
and resulting provision of ecosystem services is necessary for the resil-
ient management of these dynamic landscapes (Adeel et al., 2005;
Huang et al., 2009). Such knowledge may also constrain uncertainty
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surrounding predictions of drylands as major carbon sinks (Poulter et
al., 2014; Ahlström et al., 2015; Murray-Tortarolo et al., 2016).

Remote sensing with multispectral imaging has been widely
employed to survey vegetation over large extents (e.g. Zhang et al.,
2003; White et al., 2009). However, functional inference can be limited
by the information content of 2D image data (Krofcheck et al., 2014;
Lisein et al., 2013); for example, spectral signatures often have only lim-
ited correlation with above-ground biomass (AGB) (Roderick et al.,
2000; Friedel et al., 2000; Huang et al., 2007). Monitoring changes and
patterns in 3D vegetation structure can be more informative to derive
functional understanding (Huenneke et al., 2001; Dandois & Ellis,
2010; Vierling et al., 2013; Calders et al., 2015). AGB is commonly es-
timated using species-specific, allometric size/biomass regression
models, derived using observations from destructive sampling
(Huenneke et al., 2001; Allen et al., 2008; Muldavin et al., 2008).
On-the-ground monitoring programs employing species-, site-, and
year-specific scale-biomass relationships can be accurate, but are la-
bour intensive and susceptible to under-sampling in spatially het-
erogeneous ecosystems (Huenneke et al., 2001; Rango et al., 2006;
Allen et al., 2008; Muldavin et al., 2008; Nafus et al., 2009). Light de-
tection and ranging (LiDAR) is a widely employed surveying tech-
nique but has high acquisition costs, limiting the spatial and
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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temporal scales which can be examined (Vierling et al., 2008;
Browning et al., 2015; Calders et al., 2015). These limitations of mea-
surement scale are significant in dryland ecosystems because these
systems are often sparsely vegetated with large changes in vegeta-
tion structure over relatively short temporal scales, due to wildfires,
herbivory or rapid growth following infrequent rainfall events
(Friedel et al., 2000; D'Odorico & Porporato, 2006; Huang et al.,
2007). This heterogeneity and temporal dynamism contributes to
very large, scale-dependent uncertainties associated with estimates
of terrestrial carbon stocks (Huenneke et al., 2001; Hill et al.,
2013). Constraining these uncertainties requires the development
of new techniques to measure terrestrial biomass efficiently and ac-
curately at time-steps that are able to capture the dynamism (Strand
et al., 2008; Hill et al., 2013; Murray-Tortarolo et al., 2016).

Anderson and Gaston (2013) suggested that unpiloted aerial sys-
tems (UAS) would revolutionise spatial ecology. This paper presents a
novel ecological application that validates this assertion, demonstrating
themeasurement of biomass and carbon stocks in semi-arid ecosystems
subject to land degradation. Geoscientists are increasingly utilising fine
grain 3D models produced from UAS-acquired image data processed
with structure-from-motion (SfM) photogrammetry (e.g. Westoby et
al., 2012; Smith & Vericat, 2015; Woodget et al., 2015; Nouwakpo et
al., 2015; Tonkin et al., 2014); however, although understanding of
SfM photogrammetry is maturing (James & Robson, 2012, 2014;
Turner et al., 2014; Smith & Vericat, 2015; Shahbazi et al., 2015), there
have been limited applications to use this approach for characterising
the biophysical structure of vegetation. Although the potential of UAS-
acquired SfM to survey vegetation has been demonstrated for tree-
dominated ecosystems (Dandois & Ellis, 2010, 2013; Lisein et al.,
2013; Zahawi et al., 2015; Dandois et al., 2015; Puliti et al., 2015), previ-
ouswork has suggested that SfMmodelling of UAS-acquired image data
was not yet suitable for measuring the structure of small plants, such as
grasses, due to limitations with the accuracy of the derived canopy
height models (CHMs) (Zahawi et al., 2015).

Errors in SfM-derived models depend greatly on the quality of geo-
metric control constraining the reconstruction (James & Robson, 2014;
Puliti et al., 2015; Shahbazi et al., 2015), and further refinement of the
technique was needed to improve measurement accuracy of UAS–SFM
approaches to support application to ecosystems dominated by short-
sward vegetation (Lisein et al., 2013; Zahawi et al., 2015). Applications
of UAS–SfM have generally sought to acquire nadir image data, which
is often suggested to reduce distortion (e.g. Dandois & Ellis, 2010,
2013; Dandois et al., 2015; Tonkin et al., 2014; Zahawi et al., 2015).
While the acquisition of nadir image data may be necessary for particu-
lar applications, such as correcting for refraction in the production of
bathymetric maps (Woodget et al., 2015), the inclusion of convergent
(non-nadir) image networks has recently been shown to significantly
improve the reconstruction accuracy of SfM photogrammetric models
(James & Robson, 2014; Smith & Vericat, 2015; Shahbazi et al., 2015).

The objective of this studywas to develop a new technique to quan-
tify biomass and associated carbon stocks in heterogeneous and dynam-
ic short sward semi-arid rangelands. UAS-acquired aerial image data
were processed with SfM photogrammetry to yield fine-grain 3D
models of rangeland ecosystems over landscape extents. Our working
hypothesis was that by improving the design of the airborne survey to
systematically acquire convergent image data as well as constraining
ground control points (GCPs), this technique would be able to charac-
terise vegetation structure in ecosystems dominated by short-sward
vegetation and quantify biomass and associated carbon stocks.

2. Methodology

2.1. Study area

The study site was the Sevilleta National Wildlife Refuge in Central
New Mexico, USA. Seven areas of interest (AOIs) were surveyed,
containing natural vegetation communities. AOIs 1–4, and 7 were situ-
ated in the Five Points area of Mackenzie Flats (34.4°N; 106.7°W), a
Chihuahuan desert site with a semi-arid climate (mean annual precipi-
tation of 250 mm). This area has experienced long-term encroachment
of Larrea tridentata (creosotebush shrub) into formerly pristine
Bouteloua eriopoda and B. gracilis (black and blue grama) grasslands
(Fig. 1), described further in Turnbull et al. (2010a). AOIs 5 and 6 were
located in juniper savanna in the Los Piños Mountain range (34.38°N;
106.52°W), dominated by an overstory of Juniperus monosperma (one-
seed juniper) with B. eriopoda dominated understory and mean annual
precipitation of 326mm(Krofcheck et al., 2014). AOIs 1–6 are described
further in Turnbull et al. (2010a); Puttock et al. (2013, 2014) and
Cunliffe et al. (2016).

2.2. UAS flights and data acquisition

Fig. 2 presents an overview of the key methodological steps.
Image data were acquired under ‘leaf-on’ conditions in October
2014, using a 3D Robotics Y6 hexacopter equipped with a global nav-
igation satellite system (GNSS) receiver and consumer-grade digital
camera (Canon S100), controlled by ArduCopter (V3.2; http://
copter.ardupilot.com) software. This platform had a mass of ca.
2.5 kg, and cost less than $3000 USD. All flight operations were con-
ducted within visual line of sight, below a maximum altitude of
b120 m above-ground level and within a horizontal distance of
b500 m of the operator. Each part of each AOI was surveyed with
two fully automatic overflights designed using Open Source Mission
Planner (V1.3) software (http://planner.ardupilot.com/). One flight
acquired nadir image data and a second acquired convergent (~45°
from nadir) image data. The two flights followed perpendicularly-
aligned ‘lawnmower’ survey patterns at 15–20 m altitude, yielding
an effective ground sampling distance of 0.004 to 0.007 m per pixel
and an effective base-to-height ratio of approximately 0.15.

The inclusion of convergent (non-nadir) image networks is critical
to appropriately constrain estimation of both extrinsic (positon and ori-
entation) and intrinsic (lens calibration) parameters estimated during
the bundler adjustment step, which significantly influence the recon-
struction accuracy of SfM modelling (James & Robson, 2014; Smith &
Vericat, 2015; Shahbazi et al., 2015). Convergent image data affords an-
other significant advantage because creosotebush canopies frequently
grow in the form of an inverted cone (Singh, 1964; Chew & Chew,
1965; Ludwig et al., 1975; De Soyza et al., 1997; Wainwright et al.,
1999; Abrahams et al., 2003), particularly in more arid environments
such as the Chihuahuan desert (De Soyza et al., 1997). Consequently,
the oblique perspective improves the ‘visibility’ and thus characterisa-
tion of the terrain surface beneath creosotebush canopies, yielding addi-
tional ground points, which better constrain the DTM.

The camera was triggered by the autopilot according to distance
travelled, attaining 70% forward overlap and 65% sidelap, which com-
bined with the dual flights, meant every part of the AOI was captured
in ≥18 photographs. The platform flying speed was varied to ensure a
minimum interval between two consecutive images of 2.5 s. Camera
shutter speed (Tv) was faster than 1/1250th second, which was suffi-
cient to minimise motion blur at the low flying speeds possible using
multi-rotor drones. Camera ISO (Sv) was 200, aperture (Av) was f3.5
and focus was set at infinity. Flights were completed within a few
hours of solar midday to minimise shadowing, and sky conditions
were generally clear, with some image data acquired during overcast
conditions. All seven AOIs were surveyed during 11 days over one
month, though it would be straightforward to streamline data acquisi-
tion for this combination of spatial extent, spatial resolution and UAV
platform to ≤6 days under good weather conditions. Each image was
geotagged with the platform's GNSS-derived location, and 10–18
‘iron-cross’ markers were deployed across each AOI as GCPs and
geolocated using differential GNSS [Leica GS08] to a relative spatial ac-
curacy (95% confidence) of 0.015 m in x, y and z (Puttock et al., 2015).

http://copter.ardupilot.com
http://copter.ardupilot.com
http://planner.ardupilot.com


Fig. 1. Photographs of the community assemblages at eachAOI, AOI-7 (not shown) is similar to AOI-2. AOIs-1 to -4 illustrate the changed biophysical structure over a grass-shrub ecotone, from
black grama-dominated grassland to creosotebush-dominated shrubland. AOI-5 and -6 are juniper savanna. For the colour version of this figure please see the online version of this article.
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To assess DTM accuracy, at AOIs 1 to 6, DTM vertical spot height accura-
cy was assessed against n = 78–89 independent DGPS observations
(using different locally coordinated benchmarks from the GCP survey).

2.3. SfM photogrammetry processing

SfM and multi-view stereopsis modelling was undertaken on a
high performance computer (4 × 16 core AMD Opteron 6276,
512 GB 1600 MHz RAM); although the memory requirements for
SfM modelling are high, a lower specification machine can be used
if scene areas are modelled in discrete chunks. A range of computer
software tools for implementing SfM are available, but for this work
Agisoft's PhotoScan (V1.1.0) (http://www.agisoft.com/) was used be-
cause it compares favourably with other software in terms of recon-
struction detail and accuracy as well as computational efficiency
(Dandois & Ellis, 2013; Gini et al., 2013; Turner et al., 2014; Sona et al.,
2014; Remondino et al., 2014; Dandois et al., 2015). All processing
was undertaken using the highest quality settings, to maximise reten-
tion of spatial detail. More than 98.8% of the source image data were
aligned and used in the reconstruction for each AOI; alignment of the
remaining images was not possible due to insufficient identification of
tie points by the image feature descriptor algorithms, and unaligned im-
ages were not used in the subsequent modelling.

Direct georeferencing of the image data substantially improves the
image alignment process by allowing intelligent comparisons between
only nearby images (Agisoft, 2014). This increases computational effi-
ciency, which also enables searching for higher numbers of tie-points
and consequently improves the likelihood of successful image align-
ment (Turner et al., 2014), particularly in texturally complex vegetated
scenes (Lisein et al., 2013; Puttock et al., 2015). SfM reconstruction geo-
metric accuracy was optimised through full photogrammetric bundle
adjustment, using both direct georeferencing of image data and GCPs
in order to refine estimation of the extrinsic and intrinsic parameters
of all images. Error termswere specified for both directly georeferenced
camera positions (±15 m) and GCPs (±0.015 m). Dense point clouds
were produced using multi-view stereopsis to estimate points with
both spatial (x, y, z) and spectral (red, green, blue) attributes. Mild-
depth filtering was used to reduce erroneous points the dense point
cloud while retain points associated with small features of interest
such as vegetation elements (Puliti et al., 2015). The seven resultant
point clouds each comprised 41–415million points. Point cloud render-
ings were produced using the open source software CloudCompare
(V2.6.1) (http://www.danielgm.net/cc/).

2.4. DSM, DTM and CHM generation

Digital Surface Model (DSMs) were obtained by applying 10 mm x,y
grids to the dense point clouds; the highest point in each cell was iden-
tified and interpolated linearly (Delaunay triangulation) to a triangular
irregular network, which was then sampled regularly at 10 mm spatial
resolution. To produce Digital TerrainModels (DTMs) from point clouds
it was necessary to identify a subset of points representing ground
returns and interpolate between these ground points to produce a con-
tinuous surface. The dense point clouds were classified as ground or
non-ground, using the two-step classifier implemented in PhotoScan.
Firstly, a regular x,y grid of a prescribed spatial resolution (‘cell size’) is
applied to the point cloud, the lowest point in each cell is identified
and classified as an initial ground point, and these initial ground points
are interpolated linearly to produce an approximate initial terrain
model. Secondly, all remaining unclassified points are evaluated, and
added to the ground class if they meet both of two conditions: (i)
They lie below a threshold maximum distance above the initial terrain
surface, and (ii) the difference in angle between the closest ground
point and the initial terrain surface and the closest initial ground point

http://www.agisoft.com
http://www.danielgm.net/cc/


Fig. 2. Workflow outline.
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and the point under evaluation is less than a threshold maximum angle
(Agisoft, 2014, 2015). This treatment works well for classifying ground
points in point clouds with spatially variable density, compromising be-
tween accuracy and topographic detail. The cell size parameter is con-
tingent on the minimum density of true ground returns, and must
allow every cell to contain at least one ground point.

Maximumdistance andmaximumangle dependon the degree of to-
pographic variationwithin each cell; maximumdistance represents the
maximumpermittedmaximumvariation in Zwithin any cell and thus is
contingent upon the topography and cell size, maximum angle should
approximate the maximum gradient of the ground within the AOI. An
iterative process was used to identify optimum parameter values to fil-
ter non-ground (vegetation) points while maximising retention of to-
pographic detail; these values are optimised for the proportions of the
vegetation structure in these ecosystems and are reported in Table 1.

Again 10 mm x,y grids were applied to the point clouds and in each
cell the highest ground point was interpolated (as above); the resultant
surface was then regularly sampled at 10 mm spatial resolution. CHMs
were derived by subtracting DTMs from DSMs in a GIS (ESRI's ArcMap
V10.2.2).Minor errors in DTMandDSM generation resulted in physical-
ly impossible negative canopy heights in 0.2% of cells, and negative
values were corrected to zero (Dandois & Ellis, 2013). No further
smoothing of the CHMs was undertaken.

2.5. Structural classification

The surface cover of each 10 mm cell in the CHM was classified
structurally. Modelled canopy heights were used to differentiate
bare ground from vegetated cells, with b0.015 m taken to represent
bare surfaces, and ≥0.015 m to represent vegetated areas. The accu-
racy of the bare versus vegetated classification was assessed using vi-
sual photo interpretation at 1000 random locations across AOI-7.
Vegetated cells were further apportioned between a grass vegetation
class and a woody (either shrub or juniper) vegetation class, using a
threshold canopy height of 0.2 m to differentiate between grasses
(b0.2 m) and woody plants (N0.2 m). While such height-based dis-
tinction between plant functional types is a simplification, as the
boundary is fuzzy, such approximation is physically reasonable and
appropriate in ecosystems where the botanical composition is dom-
inated by differently sized species (Féret & Asner, 2012; Hellesen &
Matikainen, 2013). Selection of the 0.2 m threshold was also in-
formed by the natural break in the slope of the canopy height fre-
quency distribution for grass-dominated AOI 1 (depicted in Fig. 7).

2.6. Biomass estimation from CHMs

Commonly measured plant dimensional attributes such as plant
height or canopy area are usually non-linearly related to AGB,which ne-
cessitates the identification andmeasurement of individual plants prior
to estimation of AGB (e.g. Ludwig et al., 1975; Gholz, 1980; Smith &
Brand, 1983; Cleary et al., 2008; Lufafa et al., 2009; Ansley et al., 2012;
Mirik et al., 2013). However, for all three vegetation classes considered
herein, canopy volume is linearly related to AGB, with an intercept at
zero. This linear relationship is fundamental to this approach, as it obvi-
ates the need to identify discrete individual plants prior to measuring
the volume associated with that class and thus circumvents challenges
such as differentiating between neighbouring plants with coalesced
canopies, a common occurrence in natural ecosystems (Neufeld et al.,
1988; De Soyza et al., 1997). Canopy volume was calculated from
CHM, using a foliar canopy approach. For each vegetation class (grass,
and shrub or juniper) the volume beneath the ultra-high spatial resolu-
tion CHM was summed (Huenneke et al., 2001; Allen et al., 2008;
Muldavin et al., 2008; Ladwig et al., 2012).

Foliar canopy approaches to estimating canopy volume are sensitive
to subtle differences in plant biophysical structure which do not influ-
ence overall plant dimensions (such as maximum height or canopy
area); this is particularly important in semi-arid rangeland community
assemblages (Neufeld et al., 1988; De Soyza et al., 1997; Rango et al.,
2006, 2009). AGB was modelled from canopy volume, using linear re-
gression models developed from published datasets with strong coeffi-
cients of determination (P b 0.001; r2 N 0.64) and intercepts constrained
through the origin, as plants with a canopy volume of zero have no AGB
(Muldavin et al., 2008; Ansley et al., 2012). For the grass and shrub clas-
ses, volume-AGB data were used from destructive harvesting at the
Sevilleta Long Term Ecological Research site between 1999 and 2014
(Moore, 2015). This yielded relationships of AGB [g] = 1053 ±
19.6 × Volume [m3] (r2 = 0.68, n = 1383, ABG between 1 g to 160 g)
for B. eriopoda and AGB [g] = 1453 ± 72.1 × Volume [m3] (r2 = 0.64,
n = 228, ABG between 1 g to 380 g) for L. tridentata.

There has been limited whole-tree destructive sampling of juniper
and where destructive sampling has been undertaken measured attri-
butes rarely include foliar or canopy volume. To the best of our knowl-
edge, there are no published data on the relationship between canopy



Table 1
AOI descriptions.

Parameter

AOI

1 2 3 4 5 6 7

Vegetation community Grass-dominated
(Bouteloua eriopoda)

Grass-Shrub
(B. eriopoda and
Larrea tridentata)

Shrub-Grass
(L. tridentata
and B. eriopoda)

Shrub-dominated
(L. tridentata)

Shrub-Grass
(B. eriopoda,
Pinus edulis,
and Juniperus
monosperma)

Grass-Shrub
(B. eriopoda,
Pinus edulis,
and Juniperus
monosperma)

Grass-Shrub
(B. eriopoda and
Larrea tridentata)

Source Images 135 149 121 253 159 216 2518
% used in reconstruction 99.3 100.0 100.0 100.0 98.7 100.0 98.8
Average GSD [m] 0.004 0.005 0.006 0.004 0.006 0.004 0.007
Coverage [m2] 4259 4552 7520 4875 10,328 3467 68,222

Parameter sets employed for classification of ground points
Cell size [m] 0.4 0.4 0.4 0.4 3.0 3.0 0.9
Maximum distance [m] 0.05 0.05 0.05 0.05 0.03 0.03 0.06
Maximum angle [°] 3 3 3 3 1 1 3
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volume andAGB for J. monosperma. In the absence of species-specific in-
formation, volume-biomass regression models were compared for
other species of the Juniperus genus with similar growth forms. Ansley
et al. (2012) reported a relationship of AGB [g]= 23,360+ 2350 × Vol-
Volume [m3] (r2 = 0.95, n = 40, ABG ranged from 9 kg to 688 kg) for
Juniperus pinchotii (redberry juniper). Miller et al. (1981) published
size and biomass data for Juniperus osteosperma (Utah Juniper), the can-
opies of which commonly exhibit apical dominance; for equivalence
with canopy volumes as modelled by UAS–SfM products, canopy vol-
ume was calculated as a domed cylinder

V ¼
π a b c

4

� �

2
þ

4
3
π A B

B
2

� �

2
ð1Þ

where V= volume [m3], A= radius of the longest canopy axis [m], B=
radius of the perpendicular canopy axis [m], and C = height [m]
Fig. 3.Meta-analysis of root:shoot ratios reported for black grama (and similar semi-arid) grass
to appropriately represent relative differences between root: shoot ratios above and below un
error (Green) N standard deviation (Black) N range (Purple). Values assumed in modelling stu
this article.
(adapted from Cleary et al. (2008); Ansley et al. (2012)). This yielded
a relationship of AGB [g] = 2149.25 × Volume [m3] (r2 = 0.954,
P b 0.000001, n= 33, AGB between 12 kg to 956 kg) for J. osteosperma.
The similarity in slopes between the regression models for these two
species offers some support for the transfer of the derived relationship
between Juniperus species with similar growth forms, such as J.
monosperma, in order to explore the potential of this approach. Recon-
ciling these two models, a coefficient of 2250 was used for the Juniper
vegetation class.

More powerful predictive models can be developed if volume-bio-
mass relationships are calibrated to the site, year and even phenological
stage of dominant plants (Mannetje, 2000; Huenneke et al., 2001; Allen
et al., 2008; Muldavin et al., 2008), but the combined relationships are
considered to be more transferable spatially and temporally, and were
considered appropriate for the present study.

Below-ground biomass (BGB) was inferred from AGB, using
root:shoot ratios for each vegetation class derived from meta-analysis
es, creosotebush shrubs and juniper trees. Note that logarithmic scales are necessary in (a)
ity (Cunliffe et al., 2013). Where reported, errors are presented in preference of standard
dies are not plotted. For the colour version of this figure please see the online version of
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of published literature,with credence assessed according to sample size,
methodological rigour (treatment of leafmatter and fine roots, etc.) and
similarity of environmental context to the study site (Fig. 3). Although
AGB is a good predictor of BGB for juniper (Krämer et al., 1996; Rozas
et al., 2009), again, no published information could be found describing
root:shoot ratios for J. monosperma; so as above, similar species in the
Juniperus genus were considered. This yielded root: shoot ratios of
2 ± 0.6 for the semiarid grass class (Sims et al., 1978; Schlesinger &
Pilmanis, 1998; Mata-González et al., 2002; Corkidi et al., 2002; Peters,
2002; Mokany et al., 2006), 0.45 ± 0.2 for the creosotebush shrub
class (Singh, 1964; Chew & Chew, 1965; Barbour, 1973; Wallace et al.,
1974; Ludwig et al., 1975; Ludwig, 1977; Allen et al., 2008), and 1 ±
0.5 for the juniper vegetation class (Miller et al., 1990; Krämer et al.,
1996; Nowak et al., 1999; Gentine et al., 2015).

Biomass-carbon conversion coefficients were 0.45±0.03 for grasses
(Lieth, 1975; Puttock, 2013), 0.48± 0.03 for shrubs (Schlesinger, 1997;
Puttock, 2013), and 0.50±0.03 for juniper (Norris et al., 2001; Pregitzer
et al., 2002; Strand et al., 2008; Huang et al., 2009; Puttock, 2013). Al-
though biomass-carbon coefficients are likely to differ slightly between
AGB and BGB (e.g. Fig. 4), insufficient empirical evidence was available
to contain these differences so the same coefficients were applied to
both AGB and BGB.

2.7. Treatment of uncertainty

Four main sources of error contribute to the cumulative uncertainty
in summary metrics. (i) Minimal empirical information is currently
available to constrain error in SfM-derived canopy height models (al-
though see Dandois et al., 2015), but underestimation of canopy volume
ismore likely so a conservative asymmetric error of−5%/+20%was es-
timated. (ii) Allometric volume-AGB conversion error was estimated as
the 99% confidence interval of the regression error. (iii) Prediction of
BGB from AGB is likely to be one of the largest sources of overall uncer-
tainty in total carbon stock estimation because of plasticity in root:shoot
Fig. 4.Meta-analysis of biomass carbon coefficients reported for black grama (and similar semi-
in preference of standard error (Green) N standard deviation (Black) N range (Purple). Values as
the online version of this article.
ratios in response to soil medium, nutrient and water availability, plant
age, and reduction of AGB through herbivory, fire or frost damage
(Wallace et al., 1974; Holland et al., 1992; Goodman & Ennos, 1996,
1999; Mokany et al., 2006; Strand et al., 2008; Padilla et al., 2009;
Epron et al., 2012; Schlesinger & Bernhardt, 2013a, 2013b). Uncertainty
in root:shoot ratios associated with each vegetation class was conserva-
tively estimated, based on variance observed in meta-analysis of pub-
lished data (Fig. 3). (iv) Errors in the biomass carbon content are
usually ignored but can be significant (Lamlom & Savidge, 2003;
Thomas & Martin, 2012; Hill et al., 2013), so an estimated error of
±0.03 was specified for all three vegetation classes (Fig. 4). Estimated
errors were assumed to be independent and parametrically distributed,
and sowere propagated using the quadratic approach as the square root
of the sum of all squared errors (Taylor, 1997; Asner et al., 2012). Rela-
tive to the propagated overall uncertainty, total biomass and total car-
bon stock estimates were insensitive to differences in the proportion
of canopy volume assigned to grass versus shrub/juniper classes. This
is important, because it means that these metrics are insensitive to var-
iations in the 0.2 m canopy height threshold used to differentiate
grasses from the two woody plant classes.

3. Results

Point-clouds derived using SfM processing of UAS-acquired image
data produced photorealistic representations of 3D biotic structure
across a range of scales, from grass tussocks 20mmhigh to trees several
meters high (Fig. 5). All the DSMs and DTMs were free of noticeable
doming effects indicative of systematic geometric error in the SfM re-
construction (James & Robson, 2014; Remondino et al., 2014). Compar-
ison between the SfM-derived DTMs and independent DGPS-derived
observations of spot heights indicated no meaningful differences
(Table 2). The residuals generally have SDs of less than 0.031 m (five
of the six AOIs had SD b0.016 m), indicating internal consistency
which translates as good relative accuracy. Mean absolute error (MAE)
arid) grasses, creosotebush shrubs and juniper trees.Where reported, errors are presented
sumed inmodelling studies are not plotted. For the colour version of this figure please see



Fig. 5. Renderings of the point clouds representing individual plants: (a) black grama grass (Bouteloua eriopoda) (~72,000 points from AOI-2), (b) creosotebush shrub (Larrea tridentata)
(~250,000 points from AOI-3), (c) and (d) Juniper trees (Juniperus monosperma) (~640,000 points and ~713,000 points from AOI-6). Accompanying photographs of each plant individual
were taken from slightly different viewpoints to the point cloud renderings. For the colour version of this figure please see the online version of this article.
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ranges between −0.077 m and +0.084 m for the six AOIs, this is not
significantly greater than the absolute error associated with the bench-
marks, indicating no evidence of meaningful error in absolute terms.

Modelled canopy heights were consistent with field observations,
and structural classification of surface cover between bare and
Table 2
DTM accuracy assessment.

Parameter AOI

1 2 3 4 5 6 7

n 83 78 78 79 83 87 NA
Mean absolute
error

0.048 0.084 −0.042 −0.016 −0.011 −0.077 NA

(±SD) [m] 0.016 0.015 0.015 0.011 0.014 0.031 NA
combined vegetated classeswas excellent in comparisonwith photo-in-
terpretation at 1000 points (overall accuracy N90%, kappa coefficient
0.79) (Table 3). The kappa value of 0.79 implies that the classification
Error matrix for surface cover classification.

Predictions from
canopy height

Reference observations (orthomosaic)

Bare Vegetated Row total Commission
accuracy

Bare 600 64 664 90.4%
Vegetated 32 304 336 90.5%
Column total 632 368 1000
Omission
accuracy

94.9% 82.6%

Overall accuracy: 90.04% Kappa coefficient: 0.79



Fig. 6. Three scales of AOI-7 are displayed: landscape (~68,000 m2), patch (~250 m2) and plant (~10 m2). The columns are (i) orthomosaic photograph, (ii) scalar CHM, and (iii) surface
cover classified according to modelled canopy height. Magnification increases down through the rows, with the extent each zoommap indicated on the preceding map. For the colour
version of this figure please see the online version of this article.

Fig. 7. Canopy height cumulative distribution functions for AOI-1 to AOI-4, across the
ecotone from grass-dominated to shrub-dominated vegetation communities.
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process avoided 79% of the errors that a completely random classifica-
tion would generate (Congalton, 1991), and can be considered to indi-
cate excellent classifier performance (Landis & Koch, 1977). CHM-
inferred classifications of vegetation class (grass versus shrub or juni-
per) usually agreed with surface cover depicted in the orthomosaic im-
ages. An example of the fine grain orthomosaics and digital maps of
CHM and surface cover are shown for AOI-7 (Fig. 6). The northern
area of AOI-7 was burnt by wildfire on 4th August 2009, five years
prior to the present survey (Fig. 6a) and the lasting spatial changes in
vegetation pattern can be seen clearly.

The canopyheight cumulative distribution functions illustrate sever-
al functionally significant differences in ecosystem structure across the
ecotone from grass-dominated (AOI-1) to shrub-dominated (AOI-4)
vegetation communities (Fig. 7). Across the grass-shrub transition, the
proportion of bare surface cover increased from 52% to 89%. Themedian
canopy height of vegetated cells increased from0.06m, through 0.07m,
0.09m to 0.11m, for AOI-1–4, respectively. Therewas a natural break in
the canopy heights at ca. 0.2 m in the grass-dominated AOI-1, which



Fig. 8. (a) Measured canopy volumes, (b) total biomass, (c) inferred above-ground biomass (AGB) and below-ground biomass (BGB) for each vegetation class, and estimated (d) above-
ground and (e) total vegetation carbon stocks. For the colour version of this figure please see the online version of this article.
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correspondswith the typical heights of grass vegetation in these ecosys-
tems. Canopy volume in the juniper-dominated AOIs was an order of
magnitude higher than the grass- and shrub-dominated AOIs. Although
biomass density did vary between the three vegetation classes, with Ju-
niper (2.25 kgm3) greater than Creosotebush (1.45 kgm3) greater than
Grass (1.05 kgm3), trends in AGB across the AOIs reflect those observed
in canopy volume (Fig. 8c).

Fig. 8 further exemplifies the information available using this quan-
titative surveying approach. Across the grass-shrub ecotone grass cano-
py volume steadily declined; the concomitant increase in shrub volume
was less smooth, due to the presence of much larger shrubs in AOI-3
than AOI-4 (Fig. 8a). BGB was dominated by the grass vegetation in
the Mackenzie Flats and Juniper vegetation at the Los Piños Mountains,
and is subject to higher levels of relative uncertainty due to error in
root:shoot ratios. Similar biomass-carbon coefficients between vegeta-
tion classes mean that the relative carbon stocks associated with AGB
and the total biomass paralleled AGB and total biomass, respectively
(Fig. 8d and c).

4. Discussion

4.1. Discussion of methodology

Dandois et al. were the first to demonstrate the capacity of UAS-ac-
quired SfM to characterise vegetation structure at low cost (Dandois &
Ellis, 2010, 2013).Work to date has focused on application in forest eco-
systems (Dandois & Ellis, 2010, 2013; Lisein et al., 2013; Dandois et al.,
2015; Zahawi et al., 2015; Puliti et al., 2015), and indicated that SfM
modelling of aerial image data was not yet able to resolve smaller veg-
etation, such as grasses, due to limitations in the precision of SfM
modelling approaches as previously implemented (Zahawi et al.,
2015). This study demonstrates that, with appropriate source data, it
is possible to constrain SfM modelling in order to overcome this scale
limitation.

In order to better constrain SfM modelling and thus reduce error in
the resultant information products, this study systematically acquired
convergent (non-nadir) image data, in addition to nadir image data
and high-precision GCPs (James & Robson, 2014; Smith & Vericat,
2015; Shahbazi et al., 2015). This approach yielded high-precision
models, but necessitated multiple overflights of the study areas, dou-
bling field survey effort and also increasing the subsequent computa-
tional effort. We hypothesise that there may be an optimum
acquisition angle which provides sufficiently convergent image data to
adequately constrain SfM modelling, while being sufficiently close to
nadir to alleviate the need for additional acquisition of nadir images to
ensure sufficient similarity between adjacent images for successful fea-
ture matching. Optimal image acquisition angles will be influenced by
the nature of the canopy structure; i.e., the perspective required to ob-
tain multiple images of the ground surface through small gaps in high
canopies will require near-nadir view angles and high levels of overlap.
Furthermore, there are some suggestions that both feature matching
and multi-view stereopsis is hindered if view angles exceed 20°
(Lowe, 2004; Dandois et al., 2015), although such a limitation is likely
to be sensitive to scene structure and complexity. We speculate that
an optimum acquisition angle for the biotic structures found in the
rangeland ecosystems studied herein may be around 15–25°; although,
robustly testing this hypothesis will require a large, multifactorial ex-
periment (e.g. Dandois et al., 2015).

It is constructive to reflect on the use of maximum point eleva-
tions within each x,y cell, as our approach diverges somewhat from
the approaches adopted in similar UAS–SfM studies. It is often advo-
cated to use the elevation of a particular percentile within a cell to
obtain more representative measurements of canopy height which
are less sensitive to possible high outlier points (colloquially de-
scribed as ‘flyers’) (Jung et al., 2012; Dandois & Ellis, 2013; Zahawi
et al., 2015). These percentile approaches are sensible when
characterising large plants at spatial resolutions of N1 m2, when
many points exist within a cell (Dandois & Ellis, 2013; Zahawi et
al., 2015). Our use of ultra-fine, cm2 x,y spatial resolution offers an al-
ternative approach to averaging canopy heights across an AOI, as this
similarly restricts the influence of possible outlier points on esti-
mates of overall canopy volume.We suggest that an ultra-fine spatial
resolution better utilises the information content in the millions of
point observations comprising each point cloud, while affording
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greater sensitivity to fine-scale spatio-temporal differences in vege-
tation biophysical structure which are critically important in grass-
shrub ecosystems where plants are low and have a small footprint.
Furthermore, our height maxima approach is also consistent with
the approaches developed for on-the-ground monitoring of canopy
volumes and inferred biomass and associated carbon stocks in
these ecosystems (e.g. Huenneke et al., 2001; Allen et al., 2008).

Although the natural colour attributes of SfM-derived point clouds
facilitate visual interpretation, this passive remote sensing technology
has very limited penetration through vegetation canopies which re-
stricts the number of ground points beneath vegetation canopies
(Dandois & Ellis, 2010; Lisein et al., 2013; Dandois et al., 2015). Conse-
quently, UAS-acquired SfM alone may be most usefully applied in eco-
systems with spatially or temporally discontinuous vegetation cover,
as is common in dryland ecosystems. Alternatively, hybrid approaches
have been proposed combining SfM-derived DSMs with DTMs derived
from other survey techniques, such as LiDAR (Dandois & Ellis, 2013;
Lisein et al., 2013; Dandois et al., 2015; Puliti et al., 2015) or GNSS obser-
vations (Zahawi et al., 2015). Such hybrid approaches are promising, al-
though themeasurement-scale of CHMs derived using such approaches
is limited by the co-registration accuracy of SfM-derived DSMswith the
DTMs.
4.2. Biological information content of CHMs

There was good agreement between modelled canopy heights
versus our expert knowledge of the vegetation structure derived
from many site visits and also subsequent photointerpretation of
the ultra-fine spatial resolution orthomosaics. Classification of sur-
face cover between bare and combined vegetated classes on the
basis of modelled canopy height exhibited excellent discriminatory
accuracy (Overall accuracy 90%, Kappa 0.79) (after Landis & Koch,
1977), indicating that the extent of vegetated cells was well
characterised on the basis of modelled canopy heights. Thus our
study findings indicate that modelled canopy heights are accurate, at
least around the height threshold used to differentiate bare ground
from vegetated cells. The b10% errors in the bare versus vegetated clas-
sification were predominantly due to incorrect assignment of sparsely
vegetated domains to the bare class, overestimating bare cover; this
error had little impact on the utility of the bare/vegetated surface
cover digital maps. Sparsely vegetated cells are relatively insignificant
in terms of several key ecosystem functions, such as their contribution
to AGB and grazing potential, modification of raindrop kinetic energy
and subsequent particle detachment, or impedance of overland flow
(Parsons et al., 1990; Abrahams et al., 1994; Wainwright et al., 1999,
2000). Fires play an important role in many dryland ecosystems
(Drewa & Havstad, 2001; Burg et al., 2015). While the enduring effect
of historic fire can be faintly observed in the orthophoto through re-
duced vegetation cover, delineation of the burn extent is much more
apparent in the CHM and derived surface cover maps (Fig. 6a). Spatial
differences in vegetation structure across the burn boundary differ be-
tween the orthomosaic and the CHM-derivatives due to the similarity
of spectral signatures between mature and immature vegetation re-
growth, in contrast to dissimilarities in biophysical structure (Huang
et al., 2007). The spatial differences in vegetation structure are function-
ally significant, for example in terms of carbon storage and biomass
available for livestock forage, and illustrate a key limitation of reliance
on 2D image data to monitor biotic structure (Huang et al., 2007). The
patch scale (Fig. 6b) depicts the ecological frontier between unburnt
and burnt areas. The spatial patterns of surface cover portrayed at
these patch scales aremajor controls on the distribution and erosion-in-
duced redistribution of ecosystem resources in semiarid landscapes, in-
cluding water, soil and associated chemicals which influence the
provision of ecosystem services (Turnbull et al., 2010b; Stewart et al.,
2014; Cunliffe et al., 2016).
The plant-scale panels depict a L. tridentata individual, illustrating
correspondence between the orthomosaic and surface cover classifica-
tion (Fig. 6c). Fig. 6c exemplifies how CHM-derived classifications are
robust against variable illumination (shadowing) which can be prob-
lematic for spectral classification approaches (Popescu et al., 2003;
Puttock, 2013), particularly in fine resolution image data (Adeline et
al., 2013). The ‘patchy’ shrub canopy shows detail resolved by the
ultra-fine spatial resolution which is not resolved in coarser-scale sur-
veys, for example using large-footprint airborne LiDAR. Spatially-dis-
tributed, fine grain data describing AGB are invaluable for evaluating
numerical models used to test hypotheses regarding complex ecosys-
tem dynamics over a wide variety of spatial and temporal scales (e.g.
Stewart et al., 2014; Poulter et al., 2014; Ahlström et al., 2015).

The canopy height distribution functions illustrated in Fig. 7 are bio-
logically more informative than simpler summary metrics such as aver-
age canopy height, elucidating functionally-significant differences in
community-level ecosystem structure across the ecotone from grass-
to shrub-dominated vegetation communities. The spatial patterns ob-
served in canopy height distributions across this grass-shrub are consis-
tent with existing understanding of changes in biophysical structure
across this ecotone derived from 2D remote sensing (Turnbull et al.,
2010a; Puttock et al., 2013). Critically, because of the spatially contigu-
ous nature of this surveying technique, these cumulative distribution
functions summarise upwards of 42 million cells over spatial extents
of N4000m2, though these extents could easily be increased. Such aver-
aging of large numbers of remotely sensed observations is believed to
improve accuracy and sensitivity when measuring community-level
traits over large extents (Gobakken & Næsset, 2004; Huang et al.,
2009; Puliti et al., 2015). This quantitative approach is sensitive to subtle
spatial or temporal differences in biotic structure, yet can rapidly survey
relatively large (several ha) spatial extents (Anderson & Gaston, 2013).
It can therefore be used to quantify comparatively subtle changes in
vegetation structure with small effect sizes, for example in response to
herbivory, fire or rainfall, which in turn will support experiments to ad-
vancemechanistic understanding of vegetation dynamics at landscape-
levels (Friedel et al., 2000). The canopy height cumulative distribution
functions illustrate an increase in bare surface cover from 52% to 89%,
which is associated with decreased infiltration and increased runoff
generation during infrequent but intense rainfall events (Turnbull et
al., 2010b; Puttock et al., 2013, 2014).

4.3. Further reflections on UAS–SfM estimation of ecosystem structure

Collecting appropriate reference data with which to evaluate UAS
SfM-derived CHMs is extremely challenging (Lisein et al., 2013;
Dandois et al., 2015; Puliti et al., 2015), and this problem is compounded
by difficulties obtaining spatially referenced canopy height observations
commensurate with very fine grain CHMs. Previous applications of UAS
SfM-derived CHMs have concentrated on silviculture and have typically
considered dominant canopy heights for CHM evaluation, using field
observations of the averagemaximum height of dominant plants within
plots (Dandois & Ellis, 2010, 2013; Lisein et al., 2013; Zahawi et al., 2015;
Puliti et al., 2015; Dandois et al., 2015). Metrics of dominant canopy
height are however less appropriate in rangeland ecosystems (Lisein
et al., 2013), due to the complexity of the shrub canopy architecture
and the important contribution of low stature plants to ecosystem
AGB (Fig. 8).

Field measurements of grass sward height are multifarious
(Mannetje, 2000), but what is measured poorly represents what SfM
captures. For example, the highest extremities of grass plants are gener-
ally too small and mobile to be represented in UAS SfM- and LiDAR-de-
rived canopy height models, while drop-disk approaches commonly
alter sward height through compression as well as covering a much
larger extent than the centimetre grain size of the CHMs employed
herein (Friedel et al., 2000; Mannetje, 2000). Field measurement of
shrub canopies is no less problematic, as shrubs such as creosotebush
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are characterised by complex canopy architecture (Wardley et al., 1987;
Neufeld et al., 1988;Wilson, 1995; De Soyza et al., 1997) (Figures Figs. 1
and 5). Consequently, foliar volume is frequently a more accurate pre-
dictor of AGB than maximum plant height (Neufeld et al., 1988; De
Soyza et al., 1997; Huenneke et al., 2001; Rango et al., 2006, 2009;
Allen et al., 2008; Muldavin et al., 2008; Ladwig et al., 2012). Plant ex-
tremities are often underrepresented in photogrammetric reconstruc-
tions (Dandois & Ellis, 2010, 2013; Lisein et al., 2013; Gillan et al.,
2014; Zahawi et al., 2015; Dandois et al., 2015), aswell as LiDAR surveys
(Lefsky et al., 2002; Glenn et al., 2011;Mitchell et al., 2011; Sankey et al.,
2013; Li et al., 2015).

Even when the average height is well represented SfM-derived
CHMs will often underestimate maximum canopy height of individual
plants (Dandois et al., 2015). Therefore, we suggest that the maximum
height of individual plants is not the best metric for evaluating CHM
quality, particularly in rangeland ecosystems. To address these impor-
tant considerations, this study used spatially distributed canopy heights
to characterise ecosystem structure, with a conservatively estimated
asymmetric error term of−5%+ 20% for themodelled canopy heights.
Critically, these uncertainties do notmask themain vegetation patterns,
and do not prohibit meaningful estimates of biomass in these ecosys-
tems. More work is needed to refine validation of this approach in
rangeland environmental contexts, which should includemore destruc-
tive sampling of individual plants whose canopy volume has first been
measured using UAS SfM under field conditions. It is also pertinent to
exercise caution when evaluating estimates of AGB obtained from UAS
SfM CHMs against estimates of AGB derived from other forms of allom-
etry (e.g. AGB estimated from breast height diameter), as both forms of
allometry have uncertainties which should be explicitly considered
(Puliti et al., 2015).

Critically for biomass estimation, in this study foliar volumewas lin-
early related to AGB and had an intercept of zero for all three plant func-
tional types. Consequently, in this study it was not necessary to employ
object-based classification approaches to isolate individual plants, in
contrast to when measured plant attributes are non-linearly related to
AGB (e.g. Ludwig et al., 1975; Gholz, 1980; Smith & Brand, 1983;
Northup et al., 2005; Cleary et al., 2008; Lufafa et al., 2009; Ansley et
al., 2012; Mirik et al., 2013; Sankey et al., 2013). Avoiding the require-
ment of identifying individual plants is valuable in structurally complex
natural ecosystems where the canopies of neighbouring plants com-
monly coalesce, confounding distinction between individuals (e.g.
Ffolliott & Gottfried, 2002; Strand et al., 2008). Furthermore, this ap-
proach can be applied across a very wide range of plant sizes (spanning
three orders of magnitude), alleviating the need to exclude biomass as-
sociated with smaller plants from carbon accounting (Strand et al.,
2008; Asner et al., 2012; Sankey et al., 2013).

Our estimates of AGB in ecosystems dominated by the three species
considered herein are consistentwith themagnitudes of biomass stocks
reported for similar ecosystems (e.g. Barbour et al., 1977; Sankey et al.,
2013). Note that the biomass density is likely to vary to some extent
with phenological state (Huenneke et al., 2001; Yao et al., 2006; Allen
et al., 2008; Muldavin et al., 2008); consequently, care should be taken
to evaluate the temporal stability of the relationship between canopy
volume and AGB if this approach is employed to characterise AGB of
an ecosystem during different phenological states.

4.4. Future applications of UAS–SfM in rangelands

UAS-acquired SfM has substantial potential to revolutionise the
study of ecosystem dynamics (sensu Anderson & Gaston, 2013). Be-
cause ultra-fine grain CHMs have not previously been widely avail-
able there has been limited research on their validation or
utilisation. Herein, we answer the call for new techniques to mea-
sure above-ground biomass (Hill et al., 2013) and demonstrate
how an emerging technology can fulfil the need for scale-appropri-
ate (fine-resolution and large spatial extent) measurements. Such
quantitative descriptions of plant architecture at centimetre scales are
essential to elucidate the dynamics of ecosystems subject to significant
environmental change (Getzin et al., 2014; Stewart et al., 2014; Poulter
et al., 2014; Ahlström et al., 2015). Foliar volume measurements from
UAS-acquired SfM are of comparable measurement-scale to data ob-
tained from on-the-ground surveying (Huenneke et al., 2001; Yao et
al., 2006; Allen et al., 2008; Muldavin et al., 2008), facilitating both val-
idation and integration of ecosystem knowledge derived from these
two complementary approaches. Although direct estimation of AGB
on the basis of foliar volume is a well-established technique in on-the-
ground monitoring of rangeland vegetation dynamics (Huenneke et
al., 2001; Herrick et al., 2005; Allen et al., 2008), foliar volumemeasured
using remote sensed fine grain CHMs has not been widely used to di-
rectly predict AGB. Because high-precision, fine grain CHMs directly ac-
count for some variation in growth form between plant individuals, we
believe these approaches are likely to be more accurate and sensitive
predictors of AGB than simpler metrics such as maximum plant height
or canopy area.

Fine-grain CHMs could be applied to advance understanding of veg-
etation self-organization in 3D, progressing beyond the insights sup-
ported by 2D approaches. For example, although most plant species
exhibit no orientation relative to azimuth (Kimes, 1984; Falster and
Westoby, 2003; McNeil et al., 2016), creosotebush branches and cano-
pies are often orientated to face the southeast (Neufeld et al., 1988;
Whitford et al., 1995). Creosotebush orientation is hypothesised to opti-
mise water use efficiency by maximising interception of insolation ear-
lier in the daywhen air temperatures are lower, as air temperatures rise
during each day, stomatal closure to reduce transpiration losses limits
gas exchange and thus photosynthesis (Neufeld et al., 1988; Whitford
et al., 1995). UAS–SfM could be used to efficiently characterise
creosotebush canopies, for example across the climatic range of this
species, and could further elucidate the controls on orientation in vege-
tation canopies.

UAS-acquired SfMapproaches can beused to survey extents diamet-
rically equivalent to coarse-grain, satellite-derived, globally-available
products describing vegetation structure, at least at the scale of several
ha (Dandois & Ellis, 2013; Browning et al., 2015). Therefore, fine grain,
spatially distributed datasets quantifying spatiotemporal variations in
AGB could be used to facilitate scaling studies to understand the accura-
cy and sensitivity of globally-available information products used for
biomass estimation in drylands globally, such as the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) (Zhang & Kondragunta,
2006;Muukkonen&Heiskanen, 2007; Baccini et al., 2008) or vegetation
optical depth (VOD) (Owe et al., 2001; Liu et al., 2013a, 2013b;
Murray-Tortarolo et al., 2016). For example, MODIS pixels cover an
area ~20,000 times greater than that observed by cameras typically
installed on eddy covarianceflux towers, hindering comparisons of veg-
etation phenology observed at these measurement scales (Balzarolo et
al., 2016). Hierarchal modelling approaches (e.g. Wilson et al., 2011)
are particularly promising for such upscaling efforts. High quality
datasets describing spatial and temporal changes in AGB are also need-
ed to critically evaluate the performance of dynamic vegetation models
(Chave et al., 2004), particularly in dryland regions (Poulter et al., 2014;
Ahlström et al., 2015). Such dynamic vegetation models are an impor-
tant component of the Earth System Models used to simulate global
scale phenomenon and investigate possible future states of the Earth
System, and improving the empirical foundation of these models is es-
sential to improve understanding of the role of dryland ecosystems in
both long term trends and interannual variability in the global land car-
bon sink (Poulter et al., 2014; Ahlström et al., 2015). High-quality
datasets describing temporal vegetation dynamics in grass and shrub
dominated rangeland ecosystems are particularly required, because re-
cent studies have highlighted significant disagreements between cur-
rent dynamic vegetation model predictions and the limited empirical
observations, indicating the need for further model refinement
(Murray-Tortarolo et al., 2016).
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5. Conclusion

This study demonstrated how ecosystem biotic structure can be effi-
ciently characterised at cm scales using SfMphotogrammetry to process
aerial photographs captured from a lightweight UAS costing less than
$3000 USD. Thewell-constrained SfM reconstructions resolved individ-
ual plants just a few cm3 in volume over areas of 10 ha, a level of detail
hitherto unobtainable using the UAS-acquired SfM approach. Canopy
volumes derived from the CHMs can be used to infer above-ground bio-
mass, and subsequently belowground biomass and associated carbon
stocks. Using this UAS-acquired SfM approach, ultra-fine grain CHMs
can be obtained at much lower cost than comparable LiDAR datasets.
The measurements are sensitive to subtle spatio-temporal changes in
biophysical structure, as demonstrated by the survey over the recently
burned area and could easily be acquired at daily timesteps over extents
of ~1–5 ha. Compared to on-the-ground surveys, this coverage yields
more spatially-representative assessments of ecosystem state, facilitat-
ing the extraction of subtle signals that elucidate significant controls on
biophysical and ecohydrological processes. The technique has the po-
tential to revolutionise monitoring of biophysical structure over land-
scape-levels in ecosystems with spatio-temporally discontinuous
canopy covers. Such data could reduce uncertainty in biomass invento-
ries, and allow previously unfeasible experiments on process interac-
tions in a range of environmental contexts. For example, the capacity
to survey areas diametrically equivalent to coarse-grain information
products such as MODIS at spatial resolutions comparable to on-the-
ground monitoring would facilitate upscaling studies, the impact of dif-
ferent intensities of herbivory on AGB under various environmental
conditions could be quantified, and vegetation responses to precipita-
tion inputs in water-limited ecosystems could be characterised at land-
scape-levels on very short timesteps. The inexpensive approach
presented herein is highly complementary to existing approaches for
monitoring biophysical structure, and represents an appreciable ad-
vance in the tools available to ecologists.
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