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Time-resolved scanning Kerr microscopy has been used to directly observe magnetostatically

coupled transverse domain walls (TDWs) in a pair of closely spaced, curved nanowires (NWs). Kerr

images of the precessional response of the magnetic domain to either side of the TDW revealed the

TDW as a minimum in the Kerr signal in the region of closest NW separation. When the TDWs were

ejected from the NW pair, the minimum in the Kerr signal was no longer observed. By imaging this

transition, the static de-coupling field was estimated to be in the range from 38 to 48 Oe in good

agreement with a simple micromagnetic model. This work provides a novel technique by which DC

and microwave assisted decoupling fields of TDWs may be explored in NW pairs of different width,

separation, and curvature. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865211]

The static and dynamic dipolar interactions are perhaps

the most obvious mechanisms by which to couple the mag-

netic behaviour of two individual nanomagnets when their

separation is similar to their size. Coupled magnetic systems

are interesting from both fundamental and technological per-

spectives1,2 since the static magnetic configurations and

associated resonances can be continuously tuned using a

magnetic field.3 In contrast to a nanomagnet, the magnetiza-

tion of a transverse domain wall (TDW) in a planar nanowire

(NW) is only confined across the NW width, but free to

move along the NW length. Therefore, coupled TDWs are a

relatively simple (1D) system in which the static and

dynamic dipolar coupling can be studied.4,5 In this work, we

use time-resolved scanning Kerr microscopy6 (TRSKM) to

directly observe magnetostatically coupled TDWs and esti-

mate their static de-coupling field. Measurement of the static

de-coupling field of coupled TDWs is important for the de-

velopment of domain wall logic,7 and race track memory

devices.8

Pairs of curved NWs of different width, separation, and

radius of curvature were fabricated along the center of a

Ti/Au(200 nm) coplanar stripline (CPS) of length L¼ 16 mm

with 63 lm wide tracks separated by 5 lm. Electron-beam

lithography was used to fabricate the NW pairs from a ther-

mally evaporated Ni80Fe20 (10 nm) film on a Si substrate.

Here, we report measurements on a pair of 300 nm wide

NWs with 1.5 lm radius of curvature and inner edge-to-edge

separation of 30 nm.

TRSKM was used to study the dynamic response of the

NW pair, Figure 1(a). A Ti:Sapphire oscillator was used to

generate �100 fs laser pulses with 800 nm wavelength at a

repetition rate of 80 MHz. The laser pulses were synchron-

ised with the pulsed output waveform of an impulse genera-

tor. The pulsed waveform was amplitude modulated at a

frequency of �3.1 kHz before passing through the CPS. The

resulting time-varying (and modulated) magnetic field was

used to excite magnetization dynamics within the NWs. The

out-of-plane component of the dynamic magnetization was

detected at normal incidence using the polar Kerr effect. The

laser pulses were expanded (�5), re-collimated, linearly

polarized, and then focused to a diffraction limited spot of

�500 nm diameter using a �60 microscope objective. The

polar Kerr rotation UK was detected using a polarizing bal-

anced photodiode bridge detector.9 A lock-in amplifier was

used to recover the modulated Kerr signal at 3.1 kHz. TR

traces were acquired by fixing the position of the laser spot

on the NW sample and recording the Kerr rotation as a func-

tion of time by scanning a 4 ns optical delay. TR images

were acquired by fixing the time delay and scanning the sam-

ple beneath the laser spot using a piezo-electric stage. A

large (�2 kOe) in-plane reset magnetic field HR was applied

to the NW sample using a quadrupole electromagnet.

TDWs were formed in the NWs by applying HR in the

y-direction, Figure 1(b).10 As HR is reduced to remanence,

micromagnetic simulations11 show that the magnetization in

each NW relaxes towards opposite x-directions to form two

domains with a TDW at the center of each NW. In Figure

1(b), the magnetizations in the domains of the upper NW are

tail-to-tail (TT), while those of the lower NW are head-to-

head (HH).4 Since the TDWs form at the closest point of

separation, this will now be referred to as the TDW interac-

tion region. The TDWs can be ejected from the NW pair by

applying HR in the x-direction, Figure 1(c).10 When the field
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is reduced to remanence, the magnetization relaxes to form a

single domain, where the magnetization follows the curva-

ture of the NWs. TR images acquired at a maximum of the

polar Kerr precession signal are shown for the NW pair with

and without TDWs in Figures 2(a) and 2(b), respectively. It

was not possible to couple to the TDW resonance12 using an

out-of-plane pulsed magnetic field. However, by imaging the

precessional response within the domains, the TDWs can be

detected. The Kerr image in Figure 2(a) reveals a small

reduction of the Kerr signal in the interaction region, while

in Figure 2(b), the Kerr signal appears to be more uniform,

and perhaps slightly enhanced in the interaction region. The

enhanced signal is due to the magneto-optical contribution

from both NWs in the interaction region.12 This effect also

occurs when the TDWs are present in the NWs, and leads to

a smaller reduction in the Kerr signal than might be expected

from micromagnetic simulations (inset). The difference in

Kerr signal is clearly seen in horizontal contrast profiles

extracted from a 250 nm wide section taken through the cen-

ter of the interaction region. In Figure 2(a), the contrast pro-

file shows a clear reduction in the black contrast at the

expected location of the TDWs (indicated by arrow), while

no such reduction is observed in Figure 2(b) indicating the

absence of the TDWs. The inset simulated images of the out-

of-plane component of the dynamic magnetization show that

the TDWs lead to a complicated response that cannot be spa-

tially resolved experimentally. In the interaction region, the

precession frequency will vary due to the continuously

changing magnetization and internal field resulting in a net

reduction in the out-of-plane component of the dynamic

magnetization, as observed experimentally in the Kerr

images.

When TDWs are present in the interaction region, a

stray magnetic field is generated by uncompensated mag-

netic dipoles at the inner edges of the NWs. Since the HH

and TT TDWs have opposite net magnetostatic charge, the

magnetic potential is attractive, and the TDWs are magneto-

statically coupled.4 Here, we estimate the static de-coupling

field of the TDWs using TRSKM. Figure 3(a) shows TR sig-

nals acquired from the interaction region of the NW pair

shown in Figures 2(a) and 2(b). A TR signal acquired from

the left-most end of the upper NW in Figure 2(a) shows that

the precession has similar phase near to the ends of the NW,

while the amplitude is slightly reduced, since only a single

NW is probed. When TDWs are present (absent) in the inter-

action region, the precession frequency was 3.8 GHz

(3.56 GHz). The higher frequency, when TDWs are present,

is consistent with an increase in the demagnetizing field

since the magnetization is confined across the width of the

NW. In addition, the static dipolar field of one TDW may

contribute to the total internal field within the other TDW.

When the TDWs are ejected, the magnetization is parallel to

the length of the NW so the demagnetizing and stray field

contributions to the internal field are reduced.

In Figure 3(b), a sequence of TR Kerr images is shown.

The images were acquired at time delay s in Figure 3(a) for

which the precession signals with and without TDWs show

FIG. 1. (a) A schematic of the experimental geometry with an out-of-plane

pulsed magnetic field excitation h(t). Part of the NW sample is shown in the

SEM image inset between the CPS tracks. The simulated equilibrium states

of a NW pair are shown for perpendicular (b) and parallel (c) reset fields HR.

The red and blue color scales represent þMx and �Mx, respectively.

FIG. 2. TR Kerr images for the NW pair (a) with and (b) without TDWs.

Contrast profiles, shown below the Kerr images, are plotted on the same

grey scale in (a) and (b). The profiles were extracted from a 4� 0.25 lm2

region that was taken horizontally through the center of the interaction

region (width and position indicated by block arrows). Corresponding simu-

lated images of the out-of-plane component of the dynamic magnetization

are inset in (a) and (b).

FIG. 3. (a) TR Kerr signals acquired at remanence from the interaction

region with (black curve) and without (red curve) TDWs, and from the end

of a NW (blue curve, offset for clarity). (b) A sequence of TR Kerr images

acquired at remanence and at delay s after a magnetic field of increasing am-

plitude has been applied in the x-direction.
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temporal overlap so that it is possible to observe the transi-

tion between NWs with and without TDWs. First TDWs

were generated in the interaction region (with pulse genera-

tor switched off). HR was reduced to remanence and the ori-

entation rotated 90�. The first image in Figure 3(b) shows the

dynamic response at remanence (�3 Oe). A reduction in

Kerr signal observed slightly to the left of the interaction

region (indicated by arrow) indicates the presence of the

TDWs. The shift of this region may be due to pinning of the

TDWs at edge defects to the left of the interaction region.

Before each image, a magnetic field was applied, while

the impulse generator was switched off to avoid resonance

assisted de-coupling of the TDWs. The field strength was

increased between subsequent images, but then reduced to

remanence for the acquisition of each image. Images

acquired after applying a field of 22 Oe and 38 Oe, still show

the reduced region of Kerr intensity to the left of the interac-

tion region. Differences in the first three images may be

attributed different pinning sites of the TDWs after larger

magnetic fields have been applied.

Images acquired after a field of 48 Oe was applied, show

the TR Kerr signal to be more uniform throughout the NW

pair, with little difference observed after 85 Oe, 138 Oe, and

HR� 2 kOe (not shown) was applied, indicating that after

48 Oe, the TDWs were ejected. Therefore, the static TDW

de-coupling field is estimated to be between 38 Oe and

48 Oe.

To understand if the experimental TDW de-coupling

field was reasonable, magnetization curves (starting from

zero field) were simulated for single and pair NW configura-

tions and assume no edge roughness or thermal effects.

Figure 4 shows the averaged Mx component of the static

magnetization averaged over the simulated mesh. For the

single NW, the TDW was ejected at 15 Oe. In contrast, the

TDWs of the NW pair were ejected via a series of meta-

stable states. Initially, the TDWs are displaced as the

domains with magnetization parallel to the applied field

grow at the expense of the antiparallel domains. The TDWs

are displaced in opposite directions owing to the TT and a

HH domain structure. Up to 51 Oe, the TDWs retain their re-

manent state structure. However, as the field is increased to

60 Oe, the TDWs are stretched, but remain coupled at the

point of closest separation. Above 60 Oe, the TDWs are de-

coupled, ejected, and the magnetization in each NW forms a

single domain. Experimentally, it is unlikely that the meta-

stable states at larger values of the applied field will be real-

ized due to thermal activation of the switching process. The

experimental estimate of the TDW de-coupling field was

found to be between �60% and 80% of the zero temperature

simulated values, in agreement with previous reports.13

In summary, we have used TRSKM to directly observe

the presence of TDWs in a pair of curved NWs with HH and

TT domain structure. From TR Kerr images, the value of the

static de-coupling field was estimated to be 38 to 48 Oe in

good agreement with a simple micromagnetic model and

previous reports. While TRSKM was used to characterise the

static de-coupling field in this work, dynamic coupling and

microwave assisted de-coupling may be explored by using

an in-plane RF magnetic field to couple to the NW resonan-

ces.12 This experimental approach may prove to be a power-

ful tool for the characterisation of interacting TDWs.
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