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Abstract 57 

In Arabidopsis thaliana, changes in metabolism and gene expression drive 58 

increased drought tolerance and initiate diverse drought avoidance and 59 

escape responses. To address regulatory processes that link these 60 

responses, we set out to identify genes that govern early responses to 61 

drought. To do this, a high-resolution time series transcriptomics dataset was 62 

produced, coupled with detailed physiological and metabolic analyses of 63 

plants subjected to a slow transition from well-watered to drought conditions. 64 

A total of 1815 drought-responsive differentially expressed genes were 65 

identified. The early changes in gene expression coincided with a drop in 66 

carbon assimilation, and only in the late stages with an increase in foliar 67 

abscisic acid content. To identify gene regulatory networks (GRNs) mediating 68 

the transition between the early and late stages of drought, we used Bayesian 69 

network modelling of differentially expressed transcription factor (TF) genes. 70 

This approach identified AGAMOUS-LIKE22 as key hub gene in a TF GRN. It 71 

has previously been shown that AGL22 is involved in the transition from 72 

vegetative state to flowering but here we show that AGL22 expression 73 

influences steady state photosynthetic rates and lifetime water use. This 74 

suggests that AGL22 uniquely regulates a transcriptional network during 75 

drought stress, linking changes in primary metabolism and the initiation of 76 

stress responses.   77 
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INTRODUCTION  78 

Water limitation in agriculture is poised to intensify in the coming decades due 79 

to urbanisation, industrialisation, depletion of aquifers and increasingly erratic 80 

rainfall patterns exacerbated by climate change (Easterling et al., 2000; 81 

Christensen et al., 2007; Seager et al., 2007; Famiglietti and Rodell, 2013). 82 

Reduced water availability leads to drought stress, which is a major constraint 83 

on the physiology, growth, development and productivity of plants (Boyer, 84 

1970; 1982; Verelst et al., 2013; Skirycz et al., 2010; Lobell et al., 2011; Lobell 85 

and Field, 2007; Schlenker and Roberts, 2009). Therefore, understanding the 86 

mechanisms of drought response in plants is essential for the improvement of 87 

plant performance under water-limiting conditions and has been the subject of 88 

many investigations over the years (Nakashima et al., 2009; Shinozaki and 89 

Yamaguchi-Shinozaki, 1997; 2007; Chaves et al., 2009; Pinheiro and Chaves, 90 

2011). Water deficit responses are complex and require stress sensing and 91 

signalling to adjust plant growth, maintain water status through 92 

osmoregulation, prevent water loss through decreases in stomatal 93 

conductance and activate detoxification processes (Passioura, 1996; Chaves 94 

et al., 2003; Pinheiro and Chaves, 2011). An important consideration is that 95 

even a slight reduction in water availability can elicit stomatal closure and a 96 

reduction in CO2 assimilation, and in combination with the diversion of 97 

resources towards drought defence mechanisms will affect plant productivity 98 

(Chaves et al., 2003).  99 

Plants have adopted different strategies to respond to water limitation, such 100 

as drought escape through early flowering and reducing the size of plants to 101 

increase water use efficiency, or drought avoidance through enhanced soil 102 

moisture capture or reduced transpiration (Ludlow, 1989; Blum, 2005; 103 

Aguirrezabal et al., 2006; Franks, 2011). In this context, the influence of 104 

drought on plant development and growth through its effects on 105 

developmental processes such as germination, seedling growth and leaf 106 

development has been studied extensively in the past decade (Finkelstein et 107 

al., 2002; van der Weele et al., 2000; Xiong et al., 2006; Yaish et al., 2011). 108 

Optimal timing of flowering and inflorescence development are important traits 109 
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essential in determining plant yield, and these can vary greatly in response to 110 

water limitation (Ma et al., 2014, Su et al., 2013; Eckhart et al., 2004; Franke 111 

et al., 2006). 112 

At the cellular level, plants respond to drought with changes in gene 113 

expression, protein and metabolite abundances (Baerenfaller et al., 2012; 114 

Wilkins et al., 2010, Harb et al., 2010; Charlton et al., 2008), which are part of 115 

defence mechanisms and detoxification processes (Begcy et al., 2011; 116 

Ozfidan et al., 2011; Shinozaki and Yamaguchi-Shinozaki,. 2007). Recent 117 

progress in genomics, transcriptomics and bioinformatics has paved the way 118 

for dissecting drought-response mechanisms and has enabled the targeted 119 

manipulation of drought-responsive genes in plants. For example, the 120 

overexpression of a number of genes that code for transcription factors (TFs) 121 

leads to drought resistance (Tang et al., 2012; Quan et al., 2010; Chen et al., 122 

2008; Nelson et al., 2007; Sakuma et al., 2006).  123 

In many studies to identify genes important in the regulation of drought 124 

responses, the effects of water limitation at the transcriptional level have been 125 

analysed by exposing plants to severe dehydration. This involves treatments 126 

such as cutting and air drying leaves and/or roots, or induction of osmotic 127 

shock through the application of highly concentrated osmotica such as 128 

polyethylene glycol (PEG) or mannitol (Seki et al., 2002; Kreps et al., 2002; 129 

Kawaguchi et al., 2004; Kilian et al., 2007; Weston et al., 2008; Fujita et al., 130 

2009; Mizogushi et al., 2010; Deyholos, 2010; Abdeen et al., 2010). These 131 

experiments have substantially increased our knowledge of molecular 132 

responses under severe drought stress, but they do not always reflect 133 

physiological conditions experienced by drought-stressed soil-grown plants 134 

(Wilkins et al., 2010; Harb et al., 2010; Bechtold et al., 2010; 2013; Lawlor, 135 

2013; Zhang et al., 2014). Physiological responses such as stomatal 136 

conductance, photosynthetic performance and metabolic changes are usually 137 

not measured during the progression of the drought stress, and the varied 138 

nature of the stress induction treatments makes comparative analysis 139 

between experiments problematic. Slow developing soil water deficits have 140 

different physiological consequences than those induced by rapid tissue 141 
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dehydration and therefore possibly utilize different gene networks (Chaves et 142 

al., 2003; 2009; Pinheiro and Chaves, 2011).  143 

This inconsistency amongst experiments was first noted in a meta-analysis of 144 

microarray experiments comparing air drying, soil drying and mannitol 145 

treatments (Bray et al., 2004). This analysis found very few differentially 146 

expressed genes (DEGs) common to all treatments (Bray et al., 2004). 147 

Consequently, recent experiments have focussed on soil-grown plants 148 

(Wilkins et al., 2010; Harb et al., 2010; Zhang et al., 2014). From these 149 

studies, an overall integrative picture of the temporal responses to drought is 150 

emerging slowly, and it is clear that use of a single or a small number of time 151 

points and different types of experimental conditions lead to very different 152 

outcomes. One consequence of this is that very little is known about the early 153 

events in the perception of drought stress signals (Ueguchi et al., 2001; 154 

Wohlbach et al., 2008; Pinheiro and Chaves 2011).   155 

To address the above issues, we set out to gain detailed information on the 156 

processes that occur during the transition from well-watered to drought 157 

conditions, in which the intensity of the stress becomes gradually greater. We 158 

monitored the physiological and metabolic status of plants through a 159 

progressive drought experiment and mapped onto these data the temporal 160 

responses of the transcriptome. Our intention was to use the highly resolved 161 

transcriptional profiling data to construct gene regulatory networks (GRNs) 162 

using dynamic Bayesian network modelling (Beal et al., 2005; Breeze et al., 163 

2011; Penfold and Wild, 2011) with the aim of identifying regulatory genes 164 

functional during drought perception and signalling. The goal was to link early 165 

physiological and metabolic drought avoidance responses with later drought 166 

escape and/or tolerance responses (Claeys and Inze, 2013). This initially 167 

required testing of the network modelling to evaluate the capability of these 168 

approaches to identify genes important in the regulation of drought responses. 169 

This was achieved by selecting a highly connected candidate gene, 170 

AGAMOUS-LIKE22 (AGL22) from the GRNs. AGL22 has an established 171 

function in plant development (Mendez-Vigo et al., 2013, Gregis et al 2013), 172 

but in this study it was shown to play a thus far undiscovered role in the 173 
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critical early stages of the plant’s response to drought. These results 174 

demonstrated the potential value of experimental strategies that combine time 175 

series transcriptomics data with dynamic modelling as a means of identifying 176 

stress-responsive genes. 177 

 178 

RESULTS 179 

Time-series experiments were carried out analyzing physiological, metabolic 180 

and transcriptional changes in Arabidopsis to reveal the chronology of plant 181 

responses to drought stress. A progressive slow-drying experiment starting at 182 

95% relative gravimetric soil water content (rSWC) and drying down to 17% 183 

rSWC was carried out on 5-week-old Arabidopsis plants (Figure 1). To 184 

determine the severity of the stress, daily measurements of relative leaf water 185 

(RWC) content (Figure 1A) and leaf water potential were also carried out 186 

(Figure 1B). During the experiment, the average rSWC loss was 187 

approximately 10% per day, but RWC was maintained throughout the 188 

progressive drying period until the point of wilting at 17% rSWC (Figure 1A).  189 

 190 

Maximum photosynthetic capacity responds similarly in well-watered 191 

and drought-stressed plants during a progressive drought experiment 192 

Stomatal conductance (gs) and photosynthetic carbon assimilation (A) were 193 

measured daily on well-watered and drought-stressed plants through the 194 

progressive drought treatment (Figure 1C and Figure 1D). Stomatal 195 

conductance declined at ~60% rSWC (day 5; Figure 1C), which was followed 196 

by a decline in carbon assimilation at ~45% rSWC (day 7), indicating that 197 

stomatal diffusional limitations affected carbon assimilation (Figure 1D). Plant 198 

growth evaluated as rosette fresh weight and rosette area ceased at 199 

approximately 40% rSWC (Supplemental Figure 1A-C).   200 

The light and CO2-saturated maximum photosynthetic rate (Amax), maximum 201 

rate of carboxylation (VCmax) and the rate of Ribulose-1,5-bisphosphate 202 

(RuBP) regeneration (Jmax) showed no difference between well-watered and 203 

drought-stressed plants (Figure 2A). In addition, maximum- and operating-204 

efficiencies of photosystem II (Fv/Fm, Fv'/Fm' and Fq'/Fm'; Baker, 2008) 205 
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showed no change during the drought period (Figure 2B and Supplemental 206 

Figure 1D), suggesting that the overall primary metabolic capacity was 207 

maintained as drought conditions progressed. The sequential changes in 208 

photosynthetic physiology, relative water content and leaf water potential 209 

suggest that these conditions allowed us to capture the transition between 210 

early physiological changes and later stress responses. 211 

 212 

Metabolite profiling indicates the stable nature of primary metabolism 213 

during drought stress  214 

The decline in stomatal conductance and carbon assimilation led us to 215 

perform metabolite analysis to evaluate changes in primary and secondary 216 

metabolism (Figure 3). Untargeted LC-MS metabolite profiling was carried out 217 

on samples harvested at early (day 2, ~80% rSWC), mid (day 7, ~50% rSWC) 218 

and late (day 13, 17% rSWC) stages of the drought stress. This analysis 219 

showed that the majority of the metabolome was unchanged throughout most 220 

of the drought treatment, and only by the final day of drought stress (17% 221 

rSWC) distinct clustering between well-watered and drought-stressed 222 

samples emerged (Figure 3A). Leaf development was a major factor for 223 

sample separation, with days clustered more closely together than treatments 224 

(Figure 3A).  225 

Targeted metabolite analysis was carried out to determine the foliar levels of 226 

102 stress-associated compounds (Supplemental Data Set 1, Supplemental 227 

Data Set 2 and Supplemental Data Set 3), which also revealed a mainly late 228 

response for many of these stress-associated metabolites (Supplemental 229 

Data Set 1, Supplemental Data Set 2 and Supplemental Data Set 3). Often 230 

these changes were limited to the last 2-3 time points (between ~30% - 17% 231 

rSWC; Supplemental Figure 2 and Supplemental Figure 3). For example, 232 

metabolites indicative of drought stress increased only during the late stages 233 

of the dehydration period (Figure 3B and Figure 3C). There was a significant 234 

increase in ABA levels during the last 4 time points (Xiong et al 2002; Figure 235 

3B), while proline, a drought stress-responsive compatible solute in vascular 236 

plants (Sperdouli and Moustakas, 2012), accumulated to significant levels 237 
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only during the last two time points (Figure 3B). Additionally, the accumulation 238 

of secondary metabolites commonly associated with stress responses such 239 

as anthocyanins and flavonols were altered during the late stages of the 240 

drought response (Sperdouli and Moustakas, 2012; Supplemental Data Sets  241 

1 and 3; Supplemental Figure 3). Oligosaccharides/disaccharides associated 242 

with osmotic protection during drought and osmotic stresses (Galactinol and 243 

Raffinose; Taji et al., 2002) significantly accumulated during the last 4 days of 244 

the drought response (Figure 3C, Supplemental Data Set 1). In conclusion, 245 

leaf metabolism remained largely stable during the first 9 days of the 246 

experiment, while changes previously associated with drought stress (Xiong 247 

et al 2002; Taji et al 2002; Sperdouli and Moustakas, 2012), only became 248 

evident during the last 3-4 time points. 249 

 250 

Transcriptomics analysis on a single leaf identifies 1815 differentially 251 

expressed genes (DEGs) during progressive drought stress 252 

Transcriptome profiling was carried out on leaf 7 to integrate the complex 253 

physiological and metabolic responses with changes at the gene expression 254 

level. Leaf 7 was fully expanded at the time of the experiment (Supplemental 255 

Figure 1C), and was chosen because a detailed temporal transcriptome 256 

analysis of leaf development was available (Breeze et al., 2011).  Single leaf 7 257 

samples for transcriptome analysis were taken each day at the midpoint of the 258 

light period. RNA from four leaf samples per treatment and time point was 259 

hybridized on CATMA v4 arrays (Sclep et al., 2007, see Methods). An 260 

adapted MAANOVA (MicroArray ANalysis Of VAriance) method was used to 261 

analyze the data for each comparison (Wu et al., 2003; Churchill, 2004; 262 

Breeze et al., 2011; Windram et al., 2012). This generated a single 263 

normalized expression value for each gene. A Gaussian process two-sample 264 

test (GP2S; Stegle et al., 2010) was used to identify DEGs. Choosing a Bayes 265 

Factor (BF) value (likelihood of differential expression) of >6, resulted in a 266 

total of 1815 DEGs (Supplemental Data Set 4). The up-regulated group of 267 

genes showed on over-representation of GO terms related to carbohydrate 268 

biosynthesis, flavonoid and secondary metabolic processes, while down-269 
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regulated genes were enriched in protein translation, cell wall-associated 270 

processes, pigment biosynthesis and chloroplast associated processes 271 

(Supplemental Data Set 5).  272 

GO terms related to stress, dehydration and hormonal regulation, including 273 

ABA were not enriched in the complete dataset. This result suggested that the 274 

overall progressive drought experiment was not a severe dehydration stress 275 

response, as indicated by the maintenance of primary metabolic capacity 276 

(Figure 2) as well as the late responses of stress-associated metabolites 277 

(Figure 3). Leaf water potential has been used as a measure of the 278 

progression and effect of drought stress on plants (Zhang et al 2014). We 279 

estimated the cumulative number of DEGs at each time point by determining 280 

the time of first differential expression (TOFDE) for each gene (Supplemental 281 

Data Set 6, Figure 4A). In our experiment, leaf water potential correlated 282 

significantly with rSWC (Figure 4B) as well as the number of DEGs (Figure 283 

4C) and showed a weaker correlation with carbon assimilation (Figure 4D). 284 

The biggest drop in leaf water potential occurred between 40% (day 8) and 285 

~30% (day 9) rSWC, which coincided with the biggest increase in DEGs 286 

(Figure 4A and Figure 4C), potentially indicating a shift from mild to severe 287 

drought stress.  288 

To evaluate the transcriptome dataset in the context of other drought 289 

experiments, we also compared our dataset to two soil-based drought studies 290 

in Arabidopsis. The first experiment carried out by Harb et al (2010) 291 

comprised a microarray comparison of leaf samples under moderate drought 292 

stress (maintaining soil water content at 30% of field capacity) and 293 

progressive drought stress at the pre-wilting (~15% field capacity) and wilting 294 

(~10% field capacity) stages. In the progressive drought stress treatment, 295 

3005 genes responded >2- and <0.5 fold, in comparison to 441 genes for the 296 

moderate drought treatments (Supplemental Data Set 7). The second study 297 

analysed samples at a loss of 25% soil water of field capacity measured at 6-298 

hour intervals across a 24-hour period (Wilkins et al., 2010), and identified 299 

570 genes that responded across a 24-hour interval (hereafter called diel; 300 

Supplemental Data Set 7). A general overview of overlapping genes between 301 
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the different experiments showed that only 30 genes were common to all 4 302 

treatments (Figure 5A). Among the overlapping genes were known stress-303 

responsive, ABA-responsive and secondary metabolism genes, which 304 

predominantly responded during the latter half of the drought experiment 305 

(Supplemental Data Set 8). While there were common elements in all four 306 

treatments, 63% of the DEGs in our dataset were unique to the time-series 307 

(Figure 5A) and were potentially related to the adjustments to early and 308 

moderate drought stress. 309 

 310 

Slow soil drying induces a senescence response in leaf 7 311 

To assess developmental changes in leaf 7 during drought stress we 312 

compared the drought time series to an Arabidopsis leaf 7 senescence time-313 

series dataset (Breeze et al., 2011; Supplemental Data Set 7). In all, 842 314 

genes overlapped with the senescence dataset (p-hyper: 4.4E-135; Figure 315 

5B), of which 83% responded between days 8 and 13 (40% - 17% rSWC; 316 

Supplemental Data Set 9). The overlap contained genes associated with 317 

oxidation/reduction-related processes, pigment biosynthesis and primary 318 

metabolism, which were predominantly down-regulated during drought stress 319 

(Figure 5C and Figure 5D; Supplemental Data Set 10). The induction of 320 

senescence-related processes during drought stress is a known phenomenon 321 

(Munné-Bosch and Alegre, 2004), and was further confirmed by a significant 322 

overlap of genes between the published drought and senescence datasets 323 

(Supplemental Data Set 7; Supplemental Figure 4A).  324 

In addition, changes in the expression of secondary metabolism genes were 325 

observed in the drought time-series (Figure 5E), including CHALCONE 326 

SYNTHASE (CHS), FLAVONOL SYNTHASE1 (FLS1), 327 

LEUCOANTHOCYANIDIN DIOXYGENASE (LDOX1), PRODUCTION OF 328 

ANTHOCYANIN PIGMENT1 (PAP1), and ANTHOCYANINLESS 2 (ANL2; 329 

Supplemental Figure 5; Supplemental Data Set 9). This coincided with 330 

increased accumulation of flavonol and anthocyanin (from day 11; 331 

Supplemental Data Set 1, Supplemental Figure 3), and suggested that the 332 

plants had entered a severe stress phase (Vanderauwera et al., 2005). 333 
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Therefore, it was concluded that slow soil drying induces senescence in leaf 7 334 

but only at the point of severe drought stress. By contrast, early responses to 335 

soil drying (days 1-7) were mostly unique to the drought time series. 336 

Importantly for later considerations, the induction of leaf senescence in 337 

response to drought did not affect flowering time (Supplemental Figure 4B). 338 

 339 

Temporal clustering reveals co-regulated groups of genes, but does not 340 

reveal specific regulatory mechanisms 341 

The cumulative number of DEGs at each time point (Supplemental Data Set 342 

6) confirmed that major gene expression changes occurred late during the 343 

drought experiment as the number of genes that showed first differential 344 

expression at each time point was highest between days 8 - 11 (Figure 4A). 345 

336 genes responded during the first half of the experiment, while the majority 346 

of genes (1479) showed first differential expression during the latter half of the 347 

experiment. A Euclidean distance matrix of the average expression values of 348 

the four biological replicates for each dataset was generated and used in 349 

hierarchical cluster analysis. The resulting dendrogram showed that samples 350 

clustered in relation to treatments and within the drought treatment into early 351 

and late stage responses (Figure 6A). Dividing the dataset into early (days 1 352 

to 7, ~95% - 45 % rSWC) and late responses (days 8 to 13, ~40% - 17% 353 

rSWC), also revealed functional groups of genes responding at different times 354 

throughout the progressive drought. Early up-regulated genes were 355 

associated with carbohydrate and glycoside biosynthetic processes, general 356 

carbohydrate metabolic processes and inorganic cation transporter activities 357 

(Table 1). The late up-regulated genes encompassed flavonoid and 358 

secondary metabolite biosynthesis, while the late down-regulated genes were 359 

involved in translation, pigment biosynthesis, photosynthesis-related 360 

processes and oxidation/reduction processes (Table 1). To gain insight into 361 

the molecular factors underlying this temporal separation of samples, 362 

hierarchical cluster analysis of the DEGs was carried out using SplineCluster 363 

(Heard et al., 2005) on the basis of gene expression patterns in the drought 364 

stressed leaf only. Using a prior precision value of 0.01, the 1815 genes were 365 
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divided into 28 clusters (Figures 6B and Figure 7, Supplemental Data Set 11). 366 

The first 14 clusters showed an overall up-regulation and contained 1149 367 

genes, while the last 14 down-regulated clusters contained 667 genes (Figure 368 

7, Supplemental Data Set 11). The 28 clusters were hypothesised to 369 

represent groups of genes that are co-regulated during the drought 370 

experiment. To explore potential regulatory mechanisms of genes clustered in 371 

specific temporal expression profiles we analyzed each individual cluster for 372 

over- and under-representation of GO terms in the Biological Process and 373 

Molecular Function, and for over-representation of known TF binding motifs in 374 

promoters (Supplemental Data Set 12 and Supplemental Data Set 13; 375 

Supplemental Figure 6). A few clusters showed enrichment of expected GO 376 

terms in response to drought, such as flavonoid biosynthesis, photosynthesis, 377 

pigment biosynthesis and response to stress (Supplemental Data Set 12, 378 

Figure 7). Most clusters however did not show any enrichment or under-379 

representation of GO terms (Supplemental Data Set 12, Figure 7), and only 2 380 

clusters (cluster 1 and 9) contained the ABRE binding motif, known to 381 

perceive ABA-mediated drought and osmotic stress signals (Supplemental 382 

Figure 6, Supplemental Data Set 13; Kim et al., 2011).  383 

 384 

Bayesian state space modelling identifies genes that link drought 385 

responses to plant development through regulating transcriptional 386 

networks 387 

The data presented so far did not allow us to draw conclusions about specific 388 

regulatory mechanism across the whole time series, but suggested that early 389 

and late responses to a decline in soil water content are regulated differently. 390 

Large-scale transcriptional re-programming and metabolic adjustment did not 391 

play a dominant role during the early phases of the dehydration response. 392 

Nevertheless, among the 337 DEGs responding between 95% and 40% 393 

rSWC were 33 TF genes (Supplemental Data Set 14), of which 25% had a 394 

functional annotation of development (GO:0032502; Supplemental Data Set 395 

14). This suggested that a re-programming of developmental processes 396 

during drought stress may have occurred in response to the observed early 397 
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physiological changes (closure of stomata, reduction in leaf water potential). 398 

We reasoned that the expression of early TF genes must therefore play a role 399 

in orchestrating this acclimation to drought stress.  400 

Metropolis Variational Bayesian State Space Modelling (M-VBSSM; Penfold, 401 

University of Warwick, see Supplemental Methods) was initially performed on 402 

176 differentially expressed TFs in the dataset (Supplemental Data Set 14).  403 

This approach selects subsets of TFs to generate a network, which is 404 

continually updated by probabilistic replacement of TFs to generate a series 405 

of networks and provides a consensus model based on the marginal 406 

likelihood (see Supplemental Methods). From the consensus model, we could 407 

calculate the occurrence of each TF (the number of times a particular TF 408 

appeared over all models), and a count of the number of downstream 409 

connections each TF had across all models at a particular z-score, in this 410 

case indicating a 95% confidence threshold (Supplemental Data Set 15). TFs 411 

that scored well in both rankings were deemed highly connected hubs with 412 

many significant edges. The M-VBSSM consensus model indicated that 413 

developmental genes played an important role in the regulation of drought, as 414 

4 out of the top 10 highly connected TFs were associated with the regulation 415 

of plant development (Supplemental Data Set 15). In addition, two of the top 416 

10 TFs were amongst the group of early responding TFs (Supplemental Data 417 

Set 14; Supplemental Data Set 15). Whilst the consensus model was useful 418 

for the initial ranking of genes, it did not represent a causal model, instead 419 

representing a type of averaging of many different network models. For this 420 

reason we opted to model a smaller selection of genes, which was 421 

advantageous for two reasons. Firstly, the final model was smaller and 422 

sparser, and therefore more interpretable, and secondly, the resultant 423 

interactions could be interpreted causally.  424 

Therefore the top 10 “hub” TFs with the highest frequency of occurrence and 425 

90 random transcription factors were chosen for analysis with the VBSSM 426 

package (Beal et al., 2005; Supplemental Data Set 16). As part of this 427 

selection, we also chose early and late responding TFs. In total, 19 early 428 

responding TFs (days 1 – 7) were included in the model, to establish a 429 
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potential transcriptional link between early and late responses (Supplemental 430 

Data Set 16).  431 

The resultant model placed the early-responding transcription-factor gene 432 

AGL22 at the centre of a 25 TF gene network (Figure 8A). AGL22 was 433 

differentially expressed in the drought experiment beginning at day 5 434 

(Supplemental Figure 7A). Fifteen TF genes that were part of the GRN were 435 

initially analysed by qPCR to check for differential expression under drought in 436 

wild-type plants (20% rSWC). All genes were differentially expressed in line 437 

with the levels observed in the microarray experiment, except for 438 

PACLOBUTRAZOL RESISTANCE1 (PRE1), BASIC HELIX-LOOP-HELIX038 439 

(BHLH038) and AUXIN RESPONSE FACTOR1 (ARF1; Figure 8B, 440 

Supplemental Figure 7B).  441 

AGL22 is known to affect flowering time and plant development 442 

(Supplemental Figure 7C; Mendez-Vigo et al., 2013, Gregis et al., 2013); 443 

however, it was not regulated during leaf senescence (Supplemental Data Set 444 

9), suggesting that AGL22 uniquely regulated a transcriptional network during 445 

drought stress. This was further explored by performing VBSSM using the 446 

control time-series data set of the same transcription factor genes. If AGL22 447 

was a hub gene in the control time series, it would suggest a role in 448 

developmental reprogramming over the 13 day experimental period 449 

regardless of drought stress. The Bayesian modelling resulted in a number of 450 

fragmented connections of a small number of genes (Supplemental Figure 451 

8A), suggesting these genes were not part of a gene regulatory network under 452 

well-watered conditions. The highly connected genes in the drought model, 453 

AGL22 and RAP2.12 did not feature, not even as peripheral genes 454 

(Supplemental Figure 8A).  455 

Therefore, the early responding TF AGL22 was chosen for further analysis to 456 

establish how far an unbiased modelling approach can be used to identify 457 

genes capable of influencing plant drought phenotypes and downstream 458 

network connections. Two independent T-DNA insertion lines were isolated 459 

(see Methods), both of which were confirmed knockout mutants for AGL22 460 
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(Figure 8C, Supplemental Figure 8B). The mutants were subsequently 461 

analysed for their effect on the AGL22-centered network interactions after 462 

drought stress. Eight out of fifteen TF genes differentially expressed under 463 

drought conditions exhibited altered gene expression in at least one of the 464 

agl22 mutants compared to the wild type (Figure 8D). This implied that ~50% 465 

of the network connections were regulated at least partially through AGL22, 466 

but also suggested the possibility of redundancy within the network (Figure 467 

8A, D). Four late TFs (WRKY20, GIS, DREB1A and FBH3) were substantially 468 

down-regulated in both agl22 mutants after drought, suggesting that these 469 

TFs were primarily regulated through AGL22 (Figure 8D). 470 

 471 

Both agl22 mutants had early-flowering, fast-drying drought escape 472 

phenotypes  473 

It is important to note that due to the early-flowering phenotype of the agl22 474 

mutants (Supplemental Figure 7C), drought stress was begun at day 22 after 475 

sowing, when there was no visible differences in rosette leaf number 476 

(Supplemental Figure 9A, Supplemental Figure 9B and Supplemental Figure 477 

9C), but with a significant increase in rosette area (Figure 9A).  478 

We observed an increased drying rate in both agl22 mutants, suggesting 479 

increased water use (Figure 9B). To determine if this was due to 480 

developmental or metabolic changes we performed light response curve 481 

measurements of photosynthesis at specific times throughout the drying 482 

period (Supplemental Figure 9D). Due to the small leaf and rosette size, light 483 

curves were measured in whole plant chambers at 90%, 74% and 25% rSWC 484 

(see Methods). The increased water loss was primarily driven by a greater 485 

rosette area (Figure 9A), despite a significant reduction in stomatal 486 

conductance (Figure 9C). Accordingly, light saturated carbon assimilation 487 

(Asat) was significantly reduced throughout the drying period already under 488 

well-watered conditions (Figure 9D), leading to a significant reduction in total 489 

aboveground biomass (Supplemental Figure 10A). Flowering time remained 490 

constant between well-watered and drought treatments in both agl22 mutants, 491 
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indicating that drought stress conditions did not affect flowering time in the 492 

agl22 mutants (Figure 9E). 493 

 494 

Discussion 495 

Chronology of the drought response suggests early adjustments in 496 

stomatal conductance and carbon assimilation are followed by changes 497 

in ABA and transcriptional reprogramming 498 

Responses to drought are complex and depend on the type and strength of 499 

the drought stress imposed (Harb et al., 2010; Wilkins et al., 2010; Zhang et 500 

al., 2014). The slow steady drought experiment carried out in this study 501 

allowed us to investigate the full range of temporal physiological, 502 

transcriptional and metabolic responses in a single fully expanded 503 

Arabidopsis leaf.  Additionally, by measuring leaf water potential (Figure 1B) 504 

and RWC (Figure 1A) we were able to monitor the progression and degree of 505 

drought stress in relation to the physiological, transcriptome and metabolome 506 

changes. The decline in carbon assimilation at ~45% rSWC was primarily 507 

driven by reduced stomatal conductance limiting CO2 diffusion. There were no 508 

underlying metabolic constraints, as photosynthetic capacity was unaffected 509 

by the drought treatment (Figure 2, Supplemental Figure 1D), and metabolite 510 

profiles remained unchanged throughout the majority of the drying period 511 

(Figure 3A, Supplemental Figure 2 and Supplemental Figure 3), suggesting 512 

that Arabidopsis thaliana Col-0 is a drought-tolerant ecotype.  513 

Stomatal limitation as the primary factor in reducing photosynthesis under 514 

mild drought conditions has been observed in other studies; however, severe 515 

dehydration stress is believed to lead to metabolic constraints, associated 516 

with RuBP availability (Flexas and Medrano, 2002). We did not observe a 517 

reduction in the maximum capacity for carbon assimilation (Amax), rubisco 518 

carboxylation (VCmax) and RuBP regeneration (Jmax; Figure 2A). In addition 519 

maximum and operating efficiencies of PSII photochemistry (Figure 2B), 520 

photochemical- and non-photochemical quenching (Supplemental Figure 1D) 521 

were maintained throughout the drying period despite a decline in carbon 522 

assimilation (Figures 1D), indicating very little stress on photosystem II. This 523 



 

18 | P a g e  

 

suggested that an alternative electron sink, most likely photorespiration 524 

(reviewed by Chaves et al., 2003; Lawson et al., 2014), must have been 525 

operating under drought stress, and increased gene expression in the 526 

photorespiratory pathway supports this notion (Figure 5C).  527 

In general, two distinct phases in response to progressive soil drying could be 528 

discerned (Figure 6 and Figure 7). Early responses were predominantly 529 

adjustments to stomatal conductance leading to restricted CO2 diffusion for 530 

photosynthetic carbon assimilation (Boyer 1970; Passioura 1996; Figure 1C) 531 

with some associated transcriptional changes accounting for 17 % of the 1815 532 

DEGs (Supplemental Data Sets 1-12, Table 1). By contrast, late responses 533 

(from 40% rSWC) encompassed hormonal (ABA), transcriptional and major 534 

metabolic changes associated with senescence (Supplemental Data Sets 1-535 

12; Table 1). These later responses corresponded with the many different 536 

phenological and physiological changes observed in other studies, including 537 

impaired photosynthesis, increased solute accumulation and growth arrest 538 

(Boyer 1970; Passioura 1996). At the cellular level, soluble sugars, 539 

oligosaccharides, antioxidants and proline accumulation are known to 540 

enhance the tolerance to drought stress by acting as osmolytes or as ROS 541 

scavengers, especially hydroxyl radicals (Cuin and Shabala, 2007; Smirnoff 542 

and Cumbes, 1989). The accumulation of these compounds during the latter 543 

stages of the drought period (Figure 3B and Figure 3C), together with the 544 

increase in secondary metabolites, such as flavonoids (Supplemental Data 545 

Set 1, Supplemental Figure 3 and Supplemental Figure 4), suggests a role in 546 

the defence against severe drought stress (Page et al 2012, Fini et al., 2011, 547 

Tattini et al., 2004; Harb et al., 2010; Lei et al., 2006, Xiao et al., 2007, Xu et 548 

al., 2008). In conclusion, this time series covers all phases during a 549 

progressive drought stress, and therefore provides the opportunity to study 550 

different stages of stress responses in greater detail than has been previously 551 

possible (Supplemental Figure 10B). 552 

 553 

Transcriptional regulation of drought-stress responses 554 
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At the gene expression level, a slowly developing soil water deficit is different 555 

from rapid tissue dehydration. From the study here and in comparison with 556 

two other drought experiments (Harb et al 2010, Wilkins et al 2010), it is clear 557 

that different genes respond depending on the nature of the drought stress 558 

applied (Figure 5A). Only few genes overlapped, with the majority of genes, 559 

responding in the final 4 days of the experiment (Supplemental Data Set 8).  560 

Previous studies have often focused on the identification of genes coding for 561 

transcription factor classes responding to terminal or severe drought stress, 562 

including BASIC LEUCINE ZIPPER (bZIPs, e.g. ABA responsive element 563 

binding protein/ABRE binding factor), AP2/EREBP (e.g. DREB/CBF), NAC 564 

transcription factors (NAM, ATAF1-2, CUPSHAPED COTYLEDON2), CCAAT-565 

binding (e.g. NUCLEAR FACTOR Y), and ZINC-FINGER (e.g. C2H2 zinc 566 

finger protein) families (Licausi et al., 2010; Jensen et al., 2013; Li et al., 567 

2008; Karaba et al., 2007; Bartels and Sunkar, 2005; Umezawa et al., 2004). 568 

The majority of TF genes in our study also responded relatively late in the 569 

drought period (from 40% rSWC), especially those associated with ABA, 570 

dehydration and oxidative stress responses (Supplemental Data Set 14). 571 

Similar classes of TF genes have also been shown to respond to drought 572 

stress in Medicago truncatula where 8% of the responding genes coding for 573 

TFs responded late throughout the drying period (Zhang et al., 2014). By 574 

contrast, among the early-responding TF genes (95% - 45% rSWC; 575 

Supplemental Data Set 14), ~25% were linked to plant development, 576 

indicating that early physiological changes may influence lifetime traits before 577 

the initiation of acute stress defence and senescence responses, highlighting 578 

the balancing act between the need to grow and to induce effective stress 579 

tolerance mechanisms (Claeys and Inze, 2013).   580 

 581 

Dynamic Bayesian network modelling identifies genes that regulate 582 

plant development 583 

Analysis of promoter binding sites (Supplemental Data Set 13, Supplemental 584 

Figure 6), however, did not indicate specific regulatory networks or 585 

mechanisms during the early events. We therefore assessed the use of a 586 
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high-throughput gene expression approach coupled with dynamic Bayesian 587 

network modelling to identify genes associated with the regulation of early 588 

drought responses. To make sense of large high-throughput datasets, 589 

network inference algorithms were developed, which are capable of 590 

establishing regulatory interactions among genes (Bansal et al., 2007). A 591 

number of different inference algorithms were used to successfully reconstruct 592 

known gene regulatory networks to validate these approaches (Cantone et al., 593 

2009; Penfold and Wild, 2011). VBSSM is such an algorithm developed 594 

specifically for highly resolved temporal gene expression datasets, with the 595 

aim of identifying genes that are the key regulators in a given system (Beal et 596 

al., 2005). A recent comparison of modelling algorithms used to infer GRNs 597 

has shown that VBSSM is competitive with network reconstructions based on 598 

experimental data (Penfold and Wild, 2011; Windram et al., 2014; Penfold and 599 

Buchanan-Wollaston, 2014). Due to the limited number of experimental 600 

observations compared to the much greater number of differentially 601 

expressed genes, the system is inherently underdetermined (Penfold and 602 

Buchanan-Wollaston, 2014), and previous experience suggested that for 603 

these kinds of datasets VBSSM can model around 100 genes (Breeze et al., 604 

2011). This type of approach, however, can introduce a bias during the 605 

process of gene selection, while the M-VBSSM approach (see Methods) 606 

generally avoids this gene selection bias (see Supplemental Methods). We 607 

therefore opted to use both M-VBSSM and VBSSM to identify key drought-608 

regulatory genes and drought phenotypes associated with those genes. 609 

The initial emergence of several development-associated transcription factors 610 

from the M-VBSSM approach (Supplemental Data Set 15) and the 611 

subsequent selection of developmental and non-developmental TFs for 612 

VBSSM (Supplemental Data Set 16) confirmed the flowering time regulator 613 

AGL22 as a hub gene in the drought response. Importantly, we did not 614 

observe any involvement of AGL22 in leaf senescence (Supplemental Data 615 

Set 9; Supplemental Figure 8A), suggesting that the gene plays a unique role 616 

in drought-stress responses.  617 
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The connection between flowering time and drought in Arabidopsis has been 618 

established independently in a number of studies, in which carbon isotope 619 

discrimination (Farquhar et al., 1982; 1989) QTLs co-located with known 620 

developmental/ flowering time loci (Hausmann et al., 2005; Masle et al., 2005; 621 

Juenger et al., 2005; McKay et al., 2008). The identification of a flowering time 622 

gene, and subsequent verification of its influence on plant water use, 623 

photosynthesis and phenology (discussed below), suggests that this type of 624 

dynamic modelling can provide an important means of discovering genes that 625 

will produce phenotypes associated with lifetime water use and plant 626 

development. However, unlike QTL mapping, VBSSM also managed to 627 

establish some valid network interactions from time-series transcriptomics 628 

data, potentially allowing for a temporal reconstruction of events and 629 

biological processes occurring during progressive drought stress.  630 

 631 

A flowering time gene influences water use and photosynthesis under 632 

well-watered and drought-stress conditions  633 

Both agl22 mutants exhibited elevated water loss and rapid development 634 

already under non-stress conditions (Figure 9A, Figure 9B). This could imply a 635 

trade-off between drought-avoidance and -escape in environments where 636 

drought shortens the growing season (Franks, 2011). Selecting for early 637 

flowering may be beneficial for plant survival but not necessarily for achieving 638 

high biomass (Supplemental Figure 10A), which suggests that drought 639 

survival and the ability to maintain biomass under sustained water-limiting 640 

conditions depend on different mechanisms (Skirycz et al., 2011).  641 

The agl22 mutants exhibited 36% and 46% reductions in the steady state 642 

light- saturated photosynthetic rate under well-watered conditions (Figure 9D), 643 

which appeared to be partly associated with reduced stomatal conductance 644 

(Figure 9C). However, during drought stress the photosynthetic rate in both 645 

agl22 mutants was reduced by only 11% and 13%, suggesting that both agl22 646 

mutants were able to maintain substantial photosynthetic rates (Figure 9D). 647 

This is supported by the fact that agl22 mutants also maintained rosette 648 

growth throughout the drying period in comparison to wild-type plants (Figure 649 



 

22 | P a g e  

 

9A), and although total aboveground biomass was significantly reduced in 650 

both mutant alleles (Supplemental Figure 10A), biomass distribution shifted 651 

from vegetative growth to reproductive growth (Supplemental Figure 10C). 652 

The complex links between plant growth, primary metabolism and flowering 653 

time in Arabidopsis are highlighted in a recent paper where increased plant 654 

growth was positively associated with early-flowering phenotypes (El-Lithy et 655 

al 2010), which may explain the larger rosette area observed prior to flowering 656 

in 30-day-old agl22 mutant plants compared to wild type (Figure 9A; 657 

Supplemental Figure 9B). In addition, starch/carbohydrate status and 658 

metabolite levels have been linked to rosette growth (Meyer et al 2007; 659 

Sulpice et al 2009), as well as development and flowering time (Zhou et al., 660 

1998; Moore et al., 2003; Funck et al., 2012). Both photosynthesis and 661 

flowering are regulated by the light environment and are clearly linked via the 662 

carbohydrate status (Zhou et al 1998; Moore et al 2003; Funck et al 2012), 663 

connecting primary metabolism with plant growth and development. However 664 

little is known about the link between photosynthetic performance and 665 

flowering time especially in flowering time mutants, and at this point it is 666 

unclear why the agl22 mutants exhibited a substantial reduction in 667 

photosynthesis already under well-watered conditions.  668 

Furthermore, the observations regarding AGL22 reinforces that water use in 669 

relation to overall plant productivity requires a balance of developmental and 670 

physiological processes to successfully complete a lifecycle in the prevailing 671 

climatic conditions. AGL22 was identified from moderately drought-stressed 672 

plants, which also suggests that not all drought–responsive genes may work 673 

in all water deficit scenarios. This may especially be the case for those genes 674 

that have been selected under terminal or severe drought conditions (Hu et 675 

al., 2006; Nelson et al., 2007; Xiao et al., 2009). It is important to note that 676 

none of the TF genes selected as key regulators of the drought response in 677 

earlier studies (Hu et al., 2006; Nelson et al., 2007; Xiao et al., 2009) was a 678 

hub in the TF GRN (Figure 8A), although many of these TF genes were 679 

differentially expressed during drought stress (Supplemental Data Set 14). 680 

This is supported by the notion that many genes identified with a role in stress 681 
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tolerance under severe stress conditions seem to have little effect on plant 682 

growth in mild drought conditions (Skirycz et al., 2011).  683 

Interestingly, two targets of AGL22, DREB1A and FBH3 (Figure 8D), have 684 

previously been shown to be involved in the regulation of abiotic stress 685 

responses. Over-expression of DREB1A leads to drought, salt and freezing 686 

tolerance (Kasuga et al., 1999; 2004), while FBH3 has been shown to 687 

regulate stomatal opening (Takahashi et al., 2013) and functions in ABA 688 

signalling in response to osmotic stress (Yoshida et al., 2015). Both genes 689 

were late-responding targets with few network connections (Figure 8A, and 690 

Supplemental Data Set 15). The model therefore may allow us to predict the 691 

role of AGL22 during drought stress and provide a potential link between 692 

mild/moderate and severe drought responses. 693 

This study demonstrates that network inference incorporating highly resolved 694 

time-series transcriptomics data is able to predict TF networks and identify 695 

genes with regulatory importance during drought stress. Moreover, by 696 

focusing on the transition from early physiological changes to drought stress 697 

responses we were able to identify AGL22 as a gene associated with lifetime 698 

water use. Consequently, VBSSM as a gene discovery tool promotes the 699 

selection of unknown, yet highly connected genes for further phenotypic 700 

evaluation.  701 

 702 

METHODS 703 

Plant material, plant growth and drought stress 704 

Arabidopsis thaliana plants (Col-0, agl22-3 [SALK_141674], and agl22-4 705 

[SAIL_583_C08]) were obtained from the European Arabidopsis Stock 706 

Centre, and were grown under a 8:16-h light:dark cycle at 23°C, 60% relative 707 

humidity, and light intensity of 150 µmol m-2 s-1, using a mixture of cold  and 708 

warm white fluorescent tubes. Arabidopsis seed was stratified for 3 d in 0.1% 709 

agarose at 4°C before individual seeds were sown onto a soil mix (Scotts 710 

Levingtons F2+S compost : fine grade vermiculite in a ratio of 6:1). For the 711 

drought time-course experiment, pots (7cm x 7cm x 9 cm) were filled with the 712 
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same amount of soil mix. Control pots, to determine 100% and 0% soil water 713 

content, were set up at the same time. Plants were transferred into individual 714 

pots 2 weeks after the sowing date and were kept well watered until the 715 

beginning of the drying episode at 5 weeks after sowing. Half the plants were 716 

maintained under well-watered conditions, while for the remaining half, water 717 

was withdrawn and pot weight was determined daily. Relative soil water 718 

content was calculated for each day and pots were left to dry until 17% rSWC 719 

was reached. Five-week-old plants were saturated in water to reach 95% 720 

rSWC, and watering was stopped in the treatment plants until ~17% rSWC 721 

was reached. The control plants were maintained under well-watered 722 

conditions at ~95% rSWC. Due to the early-flowering phenotype of both agl22 723 

mutant alleles, drought experiments were carried out on 22-day-old plants to 724 

ensure the experiments were carried out at similar rosette developmental 725 

stages and prior to the onset of flowering, as indicated in Supplemental Figure 726 

9B and C. The drying rate was determined as the slope of the decline in 727 

relative soil water content, measured daily throughout the drying period. 728 

 729 

RNA extractions, labelling, microarray hybridisation and analysis  730 

Total RNA was extracted, labeled, and hybridized to CATMA v4 arrays (Sclep 731 

et al., 2007) as previously described (Breeze et al., 2011; Windram et al., 732 

2012). The experimental design for the drought time-series hybridization is 733 

shown in Supplemental Figure 11.  734 

Arrays were hybridized and washed as described in (Windram et al 2012). 735 

Arrays were scanned on a 428 Affymetrix scanner at wavelengths of 532 nm 736 

for Cy3 and 635 nm for Cy5. Cy3 and Cy5 scans for each slide were 737 

combined and processed in ImaGene version 8.0 (BioDiscovery) to extract 738 

raw intensity and background corrected data values for each spot on the 739 

array. The data have been deposited in Gene Expression Omnibus under the 740 

accession number GSE65046. URL for review: 741 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cfgvmssmnbylpsr&acc=742 

GSE65046 743 
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An adaptation of the MAANOVA package (Wu et al., 2003) was used to 744 

analyze the extracted microarray data as described by Breeze et al. (2011) 745 

and Windram et al. (2012), using a mixed-model analysis. The MAANOVA 746 

fitted model considered dye and array slide as random variables, and time 747 

point, treatment and biological replicate as fixed variables. The model allowed 748 

assessment of the main effect of treatment, the main effect of time point, the 749 

interaction between these factors, and the nested effect of biological replicate. 750 

Predicted means were calculated for each gene in each of the 112 751 

combinations of treatment, time point and biological replicate, and for each of 752 

the 28 combinations of treatment and time point, averaged across biological 753 

replicates.  754 

 755 

Differential gene expression analysis 756 

Genes were ranked based on their Gaussian process two-sample (GP2S) 757 

Bayes Factor DE score, a cutoff of ≥5 gave 2496 differentially expressed 758 

genes. Genes identified in the F-Test as being differentially expressed that 759 

were not in the GP2S list of 2496 genes were added manually. The 760 

expression profiles of the genes ranked 1800-3150 were then plotted and 761 

assigned visually as DE or not. This resulted in a false positive rate of 23.3% 762 

for this group, and a final cutoff of 6 for the GP2S was chosen, duplicates 763 

were removed, and a list of 1934 differentially expressed genes was 764 

produced. Removal of probes and genes with no annotation in TAIR9 left a list 765 

of 1815 unique differentially expressed genes. The time at which genes first 766 

became differentially expressed (TOFDE) was subsequently determined using 767 

the GP2S time-local method (Stegle et al., 2010). 768 

 769 

Promoter Analysis 770 

Publically available position-specific scoring matrices (PSSMs) were collected 771 

from the PLACE and JASPAR databases (Higo et al., 1999, Sandelin et al 772 

2004). PSSMs were clustered by similarity, and a representative of each 773 

cluster was chosen for screening. Promoter regions corresponding to 200 bp 774 

upstream of the transcription start site were retrieved from the Ensembl Plants 775 
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sequence database (release 50). For any given PSSM and promoter, we 776 

scanned the sequence and computed a matrix similarity score (Kel et al., 777 

2003) at each position on both strands. P values for each score were 778 

computed from a score distribution obtained by applying the PSSM to 779 

randomly generated sequences. We took the top k non-overlapping hits and 780 

performed the binomial test (pbinom function in R Stats package) for the 781 

occurrence of k sites with observed p-values within a sequence of length 200 782 

bp. The parameter k is optimized within the range 1 to 5 for minimum binomial 783 

P-value to allow detection of binding sites without a fixed threshold per 784 

binding site.  To determine the presence or absence of a PSSM in a promoter, 785 

in each case the promoters were sorted by binomial p-value, and we applied a 786 

cutoff to select the top 2000. For each PSSM, its frequency in promoters of 787 

each cluster was compared with its occurrence in all promoters in the 788 

genome. Motif enrichment was calculated using the hypergeometric 789 

distribution (see statistical analysis). For motif enrichment analyses p-values ≤ 790 

1e-5 were considered significant, to allow for multiple testing.  791 

 792 

Reverse transcription (RT-PCR) and quantitative real time PCR (qPCR) 793 

Leaves were harvested and frozen in liquid nitrogen. Total RNA was extracted 794 

from a pool of 3 plants using Tri-reagent (SIGMA, Aldrich, UK) according to 795 

the manufacturer’s instructions. A minimum of five replicates of whole plants 796 

from separate experiments was carried out for mutant analysis and drought 797 

treatments. cDNA synthesis for quantitative real time PCR (qPCR) and 798 

reverse transcriptase PCR (RT-PCR), 1 µg total RNA was treated with 799 

RNase-free DNase (Ambion) according to manufacturer’s instructions and 800 

reverse transcribed as previously described (Ball et al., 2004). qPCR-PCR 801 

was performed using a SYBR green fluorescence based assay as described 802 

previously (Bechtold et al., 2010; 2013). Gene-specific cDNA amounts were 803 

calculated from threshold cycle (Ct) values and expressed relative to controls 804 

and normalized with respect to ACTIN and CYCLOPHILIN cDNA according to 805 

Gruber et al. (2001). RT-PCR was carried out to amplify the full-length AGL22 806 
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gene on both agl22 mutant alleles. The primers used for qPCR and RT-PCR 807 

are given in Supplemental Table 1. 808 

 809 

Physiological measurements 810 

(i) Relative water content  811 

Whole rosettes of 5 plants were harvested each day throughout the drying 812 

period. The relative water content (RWC) of the leaf was calculated using the 813 

formula: rLWC (%) = (FW-DW)/ (SW-DW) x 100, where FW is the actual 814 

rosette weight at the day of harvest, SW is the fully saturated rosette weight, 815 

and DW is the dry weight of the rosette.  816 

 817 

(ii) Leaf water potential 818 

The leaf water potential was measured via the Scholander pressure bomb 819 

technique (Scholander et al., 1964) using a Plant Moisture System 820 

SKPM1400 (Skye Instruments Ltd, Powys, UK). Leaf water potential was 821 

measured daily throughout the drying period on both control and drought-822 

stressed plants according to the manufacturer's instructions.  823 

 824 

(iii) Plant development and biomass measurements 825 

Arabidopsis development was assessed using the scale developed by Boyes 826 

et al. (2001). Once the final flower had opened, watering was ceased and 827 

plants were bagged and left to dry out before harvesting. At harvesting, 828 

rosettes, stalks and seeds were separated. The seed weight, dry weight of 829 

rosettes and stalks/pods were determined (Bechtold et al., 2010). At least 10 830 

plants per line and watering regime were measured. 831 

 832 

Photosynthesis measurements 833 

(i) Photosynthetic rate (snapshot measurements) 834 

Instantaneous measurements of net CO2 uptake rate (A) and stomatal 835 

conductance to water (gs) were made on leaf 7, using an open gas exchange 836 

system (PP Systems, Amesbury, MA, USA).  Leaves were placed in the 837 

cuvette at ambient CO2 concentration (Ca) of 400 µmol mol-1, leaf temperature 838 
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was maintained at 22 ± 2 °C and vapour pressure deficit was ca. 1 kPa and 839 

irradiance was set to growth conditions (150 µmol m-2 s-1).  A reading was 840 

recorded every 3 minutes when the IRGA conditions had stabilized (ca. 1.5 841 

min), but before the leaf had a response to the new environment (Parsons et 842 

al., 1997).   843 

 844 

(ii) A/Ci curves (maximum photosynthetic rates) 845 

Five weeks after emergence, (A) and (gs) was measured on leaf 7, using an 846 

infrared gas exchange system (PP Systems, Amesbury, MA, USA). The 847 

response of A to changes in the intercellular CO2 concentration (ci) was 848 

measured under a saturating photon flux density (PFD), provided by a 849 

combination of red and white LEDs (PP Systems, Amesbury, MA, USA). In 850 

addition, the response of A to changes in PFD from saturating to sub-851 

saturating levels was measured using the same light source at the current 852 

atmospheric CO2 concentration (390 µmol mol-1). All gas analysis was made 853 

at a leaf temperature of 20 (±1) °C and a vapour pressure deficit of 1 (± 0.2) 854 

KPa. Plants were sampled between 1 and 4 hours after the beginning of the 855 

photoperiod. For each leaf, steady state rates of A and gs at current 856 

atmospheric [CO2] were recorded at the beginning of each measurement. The 857 

A/ci parameters, VCmax (maximum RubP-saturated rate of carboxylation in 858 

vivo), Amax (light and CO2 saturated rate of carbon assimilation in vivo) and 859 

Jmax (maximum in vivo rate of electron transport contributing to RuBP 860 

regeneration) were calculated by fitting equations described in (Farquhar et 861 

al., 1980) with subsequent modifications described in (McMurtrie and Wang, 862 

1993).   863 

 864 

(iii) Chlorophyll fluorescence imaging 865 

Plants were analysed at various stages of the progressive drought stress 866 

using the dark (Fv/Fm)- and light (Fv'/Fm', Fq'/Fm' and Fq'/Fv')-adapted 867 

chlorophyll a fluorescence parameters, using a chlorophyll fluorescence 868 

imaging instrument (Fluorimager, Technologica, Colchester UK; Barbagallo et 869 

al., 2003). 870 
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 871 

(iv) Light response curves using whole plant chambers 872 

A/Q response curves were measured using whole-plant gas exchange system 873 

developed at the University of Essex, with a heliospectra LED light source 874 

(Heliospectra AB, Göteborg, Sweden). Input air was maintained at a relative 875 

humidity of 50-60%, air temperature of 22°C, and CO2 concentration of 400 876 

mmol mol-1, matching that of the growth conditions. Plants were initially 877 

stabilized for 30 minutes at saturating irradiance 800 µmol m-2 s-1, after which 878 

PPFD was reduced in 9 steps (Supplemental Figure 9D), with assimilation (A) 879 

and stomatal conductance (gs) being recorded at each new PPFD level.  880 

 881 

Metabolite and hormone analysis 882 

During the experimental period, 2 leaves per plant were harvested every day, 883 

in total 6 plants per treatment. Samples were frozen in liquid nitrogen, freeze 884 

dried overnight and stored at room temperature in darkness until extraction.  885 

Primary metabolites were extracted from frozen tissue with chloroform-886 

methanol as described in Lunn et al. (2006). T6P, other phosphorylated 887 

intermediates and organic acids were measured by high performance anion-888 

exchange chromatography coupled to tandem mass spectrometry as 889 

described in Lunn et al. (2006). Trehalose was measured enzymatically with 890 

fluorometric detection as described in Carillo et al. (2013). 891 

For sugars, amino acids, hormones and secondary metabolites, freeze dried 892 

leaf powder (10 mg) was extracted in 0.8 mL methanol containing 1% acetic 893 

acid.  After centrifugation (10 min at 16 100 g, 4 °C), the samples were filtered 894 

through a 0.2 µm PVDF syringe filter (Chromacol). For non-targeted LC-QToF 895 

MS metabolite profiling 5 µL extract was injected onto a Zorbax StableBond 896 

C18 1.8 mm, 2.1 x 100 mm (QTOF) reversed-phase analytical column 897 

(Agilent Technologies). Chromatography and MS conditions are described by 898 

Page et al (2012). Peaks were extracted and aligned using XCMS (Smith et 899 

al., 2006) and statistical analysis and data visualisation were carried out with 900 

MetaboAnalyst 2.0 (Xia et al., 2012).  For LC–MS/MS analysis of hormones, 901 

10 mg freeze-dried leaf powder was extracted in 0.8 mL 10% methanol + 1% 902 



 

30 | P a g e  

 

acetic acid containing deuterated standards (Forcat et al., 2008). Secondary 903 

metabolites and hormones were analysed with an Agilent 6420B triple 904 

quadrupole (QQQ) mass spectrometer (Agilent Technologies, Palo Alto, CA, 905 

USA) coupled to a 1200 series Rapid Resolution HPLC system. 2 µL, of 906 

sample extract was loaded onto a Zorbax Eclipse Plus C18 3.5 mm, 2.1 x 150 907 

mm for amino acids, sugars and hormones, respectively. The following 908 

gradient was used: 0 min – 0% B; 1 min – 0% B; 5 min – 20% B; 20 min – 909 

100% B; 25 min – 100% B; 27 min – 0% B; 7 min post-time. QQQ source 910 

conditions were as follows: gas temperature 350 °C, drying gas flow rate 9 L 911 

min-1, nebulizer pressure 35 psig, capillary voltage 4 kV. The polarity, 912 

fragmentor voltage and collision energies were optimized for each compound. 913 

The MRMs used for compound identification are shown in Supplemental Data 914 

Set 17, and data are reported as peak areas. Flavonoid identification was 915 

based on previous MS/MS identification of flavonoids in Arabidopsis (Tohge et 916 

al., 2005; Stobiecki et al., 2006). For sugar and polyol analysis, 5 µL sample 917 

extract was loaded onto an XBridgeTM amide HILIC column (particle size 3.5 918 

µm, 2.1 mm ID x 150 mm, Waters, UK) with a constant flow rate of 0.3 mL 919 

min-1 and a column temperature of 35oC for the duration. Mobile phases 920 

comprised of water:acetonitrile with 0.1% ammonia (mobile phase A was 90% 921 

acetonitrile, and B was 10% acetonitrile with 5 mM ammonium formate). 922 

Sugars (5 µL) were separated using the following gradient: 0-17 min, 0-54% 923 

B; 17-19 min, 54% B; 19-20 min, 54-0% B, with a 10 min re-equilibration time.  924 

The QQQ was operated in negative ion mode.  ESI source conditions were 925 

gas temperature 350°C, drying gas flow rate 9 L min-1, nebuliser pressure 35 926 

psig, and capillary voltage 4 kV.  Data were acquired in selected ion 927 

monitoring (SIM) mode with a dwell time of 50 msec. The fragmentor voltage 928 

was 50 V for all sugars. The sugars were quantified by reference to standards 929 

(Supplemental Data Set 17). Amino acids were separated with a ZIC-HILIC 930 

column (150 x 2.1 cm, 3.5 µm particle size; Merck SeQuant, Sweden).  931 

Sample (2 µl) was injected into the column with a flow rate of 0.25 mL min-1. 932 

Mobile phases comprised of water: acetonitrile with 0.1% formic acid (mobile 933 

phase A was 95% acetonitrile and B was 5% acetonitrile with 5 mM 934 
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ammonium acetate). Compounds were separated using the following 935 

gradient: 0-10 min, 5-50% B, 10-15 min, 50-90% B, 15-20 min, 90% B, 20-25 936 

min, 90-5% B, with an 11 min re-equilibration time.  The QQQ was operated in 937 

positive ion mode and ESI source conditions were gas temperature 350°C, 938 

drying gas flow rate 9 L min-1, nebuliser pressure 35 psig, and capillary 939 

voltage 4 kV.  Data were acquired in multiple reaction monitoring (MRM) 940 

mode with a dwell time of 50 msec.  Amino acids were quantified by MRM 941 

(Supplemental Data Set 17) and data are reported as peak areas 942 

(Supplemental Data Set 18).     943 

 944 

Analysis of publicly available microarray datasets 945 

Publicly available microarray datasets from different experiments in which 946 

Arabidopsis was subjected to drought and senescence (Wilkins et al., 2010; 947 

Harb et al., 2010; Breeze et al 2011) were located in supplementary files of 948 

already published papers, and were compared with the drought timeseries 949 

datasets using VENNY (Oliveros, 2007). Hypergeometric distributions were 950 

calculated for different overlaps using the phyper function in R version 3.0.2. 951 

A cutoff of -p(log) of 5 was chosen as highly a significant overlap between two 952 

or more datasets.  953 

 954 

Analysis of Gene Ontology (GO)  955 

GO annotation analysis was performed using Database for Annotation, 956 

Visualization and Integrated Discovery v6.7 (DAVID; Huang et al., 2008), 957 

BINGO (Maere et al., 2005) and Agrigo (Du et al., 2010) with the 958 

GO_Biological_Process category, as described by Ashburner et al. (2000). 959 

Overrepresented GO_Biological_Process and GO_Molecular_Function 960 

categories were identified using a hypergeometric test with a significance 961 

threshold of 0.05 after Benjamini-Hochberg correction (Benjamini and 962 

Hochberg, 1995) or Bonferroni correction (Holm, 1979) with the whole 963 

annotated genome as the reference set. 964 

 965 

Variational State Space Modelling (VBSSM) and Metropolis - VBSSM  966 
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Significant numbers of genes can be differentially expressed (DE) in response 967 

to environmental stress, which, given the limited number of experimental 968 

measurements, means that network models are often unidentifiable (see e.g., 969 

Penfold and Buchanan-Wollaston, 2014; Windram et al., 2014 and references 970 

therein). Furthermore, the interpretation of large, densely connected networks 971 

can often be difficult, and any hypothesis we extract from them can therefore 972 

be ambiguous. One solution is to select a more limited number of genes to 973 

model, either based upon prior knowledge, heuristic approaches or random 974 

selection. The reduced number of genes means network inference 975 

approaches can be applied such as the Variational Bayesian State Space 976 

modeling (VBSSM) of Beal et al. (2005). Within the VBSSM the expression of 977 

the genes can be written in the form: 978 ∝ + ,  979 

where the term +  captures all information about how gene j regulates 980 

gene i. Rather than infer a point estimate for each interaction +  Beal 981 

et al. (2005) infers a posterior distribution, and use standard Z-statistics to 982 

assess the statistical significance. The pre-selection of genes described 983 

above may, however, result in some bias. Here we chose to additionally build 984 

a network model around a particular gene of interest, using random selection 985 

via a Metropolis algorithm. At each step in the Metropolis algorithm a 986 

Bayesian state space model is fitted to the time-series gene expression 987 

profiles for the selected genes, and the marginal likelihood or “model 988 

evidence” used as the selection criteria. In this way we can infer small 989 

network models around each gene that we are interested in (for full details 990 

see Supplemental Methods, Supplemental Figure 12).  991 

For the drought data, a total of 176 transcription factors were differentially 992 

expressed (Supplemental Data Set 14). We therefore use the Metropolis 993 

model selection to systematically build a network of 88 genes around each of 994 

the 176 genes in turn. Within the Metropolis selection each of the 176 network 995 

models were run for 2000 iterations in the MCMC chain, by which point the 996 

Marginal Likelihood was seen to be plateau and the algorithm was terminated. 997 
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The 176 networks at step 2000 were then combined to create a meta-998 

network, which was used to compile summary statistics; such as the number 999 

of times a particular gene was found in each of those 176 network models, or 1000 

the number of downstream connections a particular gene had over those 176 1001 

models. Ranked lists of genes can be found in Supplemental Data Set 13. Of 1002 

the top 10 genes with the highest number of downstream connections, 4 were 1003 

annotated as being developmental in nature, suggesting a link between 1004 

drought response and developmental programs. A selection of 99 random 1005 

differentially expressed transcription factors including the top 10 highly 1006 

connected genes were selected from the larger pool of 176 TFs that were DE 1007 

during the drought stress (Supplemental Data Set 16). Both the control and 1008 

drought time series for these genes were normalised to have zero-mean and 1009 

unit variance and subsequently modelled using the VBSSM of Beal et al. 1010 

(2005) using a z-score of 1.65 to select the control and drought-specific 1011 

networks, and a final VBSSM model (Beal et al., 2005) was fitted to the gene 1012 

expression for AGL22. 1013 

 1014 

Statistical analysis 1015 

Statistical analyses were performed using SPSS version 19.0 (Chicago, IL, 1016 

USA; http://www.spss.com/). Parameter differences between wild type and 1017 

agl22 mutants were determined using one-way analysis of variance (ANOVA) 1018 

with appropriate post-hoc analysis. TukeyHSD test was used if variances of 1019 

means were homogenous, and Games Howell test, if variances were not 1020 

homogenous. The standard error of the calculated ratios of fold differences for 1021 

metabolite and gene expression data, errors of individual means were 1022 

combined "in quadrature" as the final ratio was a combination of the error of 1023 

the two different means of the control and drought stress samples. 1024 

Correlations were estimated among drying rate and flowering time as the 1025 

standard Pearson product-moment correlation between the genotype means. 1026 

Hypergeometric distributions were analysed using the phyper function in the R 1027 

stats package. Generally, p-values ≤ 1e-5 were considered significant, to 1028 

allow for multiple testing. The metabolite data were analysed by between 1029 
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subjects 2-way ANOVA for time series data and probability values with false 1030 

discovery rate multiple testing correction are tabulated. For secondary 1031 

compounds, amino acids and sugars, compounds not detected in >50% of 1032 

samples were discarded and remaining missing data imputed using KNN (see 1033 

Supplemental Data Set 3). Abundance data were normalised to total signal in 1034 

each sample, log2 transformed, mean-centred and divided by standard 1035 

deviation of each variable using Metabolonalyst 3.0 (Xia et al., 2015).  1036 

 1037 

Accession numbers 1038 

Sequence data from this article can be found in the Gene Expression 1039 

Omnibus data libraries under accession number GSE65046 1040 

 1041 

Supplemental Data 1042 

The following materials are available in the online version of this article 1043 

Supplemental Figure 1:  Plant growth and chlorophyll fluorescence during 1044 

progressive drought stress. 1045 

Supplemental Figure 2:  Targeted metabolite analyses of secondary 1046 

metabolites (except flavonoids), sugars and amino acids.  1047 

Supplemental Figure 3: Targeted metabolite analyses of flavonoids and 1048 

anthocyanins. 1049 

Supplemental Figure 4: The effect of drought stress on plant development. 1050 

Supplemental Figure 5: Temporal expression patterns of five selected 1051 

flavonol biosynthesis genes.  1052 

Supplemental Figure 6: Analysis of TF binding sites.  1053 

Supplemental Figure 7: Gene expression of selected drought responsive 1054 

genes and growth analysis of agl22 mutants.  1055 

Supplemental Figure 8: Validation of the knockout phenotype in agl22 1056 

insertion mutants and the specific role of AGL22 during drought stress. 1057 
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 1058 

Supplemental Figure 9: Growth and photosynthetic phenotype of Col-0 and 1059 

agl22 mutants during drought stress  1060 

Supplemental Figure 10: Biomass production in agl22 mutants compared to 1061 

wild type and timeline of events. 1062 

Supplemental Figure 11: Schematic overview of array hybridizations across 1063 

the 13 time points and two different treatments. 1064 

Supplemental Figure 12: Validation of the M-VBSSM approach 1065 

Supplemental Table 1: Primers for qPCR, mutant screen and RT-PCR 1066 

analyses 1067 

Supplemental Methods: Model Comparison via a Metropolis Search 1068 

Supplemental Data Set 1: LC-MS of sugars and LC-MS/MS analysis of 1069 

secondary metabolites and amino acids  1070 

Supplemental Data Set 2: LC-MS/MS analysis of sugar phosphates, other 1071 

phosphorylated compounds, and organic acids. 1072 

Supplemental Data Set 3:  ANOVA of metabolites 1073 

Supplemental Data Set 4: List of differentially expressed genes  1074 

Supplemental Data Set 5: Functional categorisation of 1815 DEG 1075 

Supplemental Data Set 6: Time of first differential expression 1076 

Supplemental Data Set 7: Differentially expressed genes from publicly 1077 

available drought and senescence datasets 1078 

Supplemental Data Set 8: Comparison with published drought datasets 1079 

Supplemental Data Set 9: Comparison with a published senescence dataset 1080 

Supplemental Data Set 10: Gene ontology analysis of genes overlapping in 1081 

the drought and senescence time series. 1082 

Supplemental Data Set 11: Hierarchical Clustering divides the 1815 genes 1083 

into 28 Clusters 1084 
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Supplemental Data Set 12: Gene ontology analysis; over- and under-1085 

representation of Biological Process (BP) and Molecular Function (MF) of 1086 

individual clusters  1087 

Supplemental Data Set 13: Analysis of TF binding sites 1088 

Supplemental Data Set 14: Differentially expressed transcription regulators 1089 

divided into transcription factor families 1090 

Supplemental Data Set 15: Output of the TF Metropolis VBSSM (M-VBSSM) 1091 

Supplemental Data Set 16: Selected TFs for VBSSM modelling  1092 

Supplemental Data Set 17: MRMs used for compound identification  1093 

Supplemental Data Set 18: Output from xcms alignment of peaks from LC-1094 

QToF metabolite profiling 1095 
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Figure legends: 1755 

Figure 1: Plant responses during a progressive drought experiment.  A - 1756 
relative water (RWC, open triangles) and relative soil water (rSWC, closed 1757 
triangles) content during a 13 day drying period. The data represent the mean 1758 
(n = 6; ± s.e.m.); B - leaf water potential in well-watered (open circles) and 1759 
drought-stressed (closed circles) plants during a 13-day drying period. The 1760 
data represent the mean (n= 5; ± s.e.m.); C - stomatal conductance of well-1761 
watered (open circles) and drought-stressed (closed circles) plants, measured 1762 
at the prevailing growth conditions (see Methods). The data represent the 1763 
mean (n= 6; ± s.e.m.), and D - carbon assimilation of well-watered (open 1764 
circles) and drought-stressed (closed circles) plants, measured at the 1765 
prevailing growth conditions (see Methods). The data represent the mean (n= 1766 
6; ± s.e.m.).  1767 
 1768 

Figure 2: Potential photosynthesis in response to drought. A - A/Ci 1769 
curves were performed under saturating light conditions of 1000 µmol m-2 s-1 1770 
at six selected time points throughout the drying period, and potential 1771 
photosynthesis was calculated including: light and [CO2]-saturated net CO2 1772 
assimilation (Amax); maximum rate of RubP regeneration (Jmax), and maximum 1773 
rate of carboxylation (Vc,max), and B - maximum and operating quantum 1774 
efficiencies of photosystem II  (Fv/Fm, Fq’/Fm’ and Fv'/Fm'). The data 1775 
represent the mean (n= 3; ± s.e.m.).  1776 
 1777 

Figure 3: Metabolite levels during progressive drought. A - LC-ESI-QToF 1778 
MS metabolite profiling of Arabidopsis leaves under well-watered (W) and 1779 
progressive soil drought (D) conditions. Leaf extracts were analysed in 1780 
negative and positive ionisation modes. The heat maps show the normalised 1781 
abundances of all detected chemical features. Samples and chemical features 1782 
were clustered using a Pearson distance measure and the Ward clustering 1783 
algorithm (see Supplemental Data Set 18); B – relative concentrations of ABA 1784 
(black bars) and proline (grey bars), and C - relative concentrations of 1785 
galactinol (black bars) and raffinose (grey bars). The data represent the mean 1786 
of the ratio (n=4; ± s.e.m; * p < 0.05, or ** p < 0.01).   1787 
 1788 
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Figure 4: The relationship between stress severity and differential gene 1789 
expression. A – number of genes for which the first differential expression 1790 
was observed at each time point, indicating a late transcriptional response; B 1791 
– correlation between leaf water potential and rSWC; C – correlation between 1792 
leaf water potential and number of differentially expressed genes, and D – 1793 
correlation between carbon assimilation and leaf water potential. Line 1794 
represents the linear regression, r2 and p values are given.  1795 
 1796 

Figure 5: Comparative meta-analysis with publicly available datasets, 1797 
and MapMan analysis of primary and secondary metabolism pathways. 1798 
A - Comparative meta-analysis of the 1815 DEGs with publicly available 1799 
drought datasets. The Venn diagram shows the overlap of time series DEGs 1800 
with those responsive to moderate (mDr; Harb et al., 2010) or progressive 1801 
drought (pDr; Harb et al., 2010), and a moderate drought at different times of 1802 
day (diel, Wilkins et al., 2010); B - Comparative meta-analysis of the 1815 1803 
DEGs with a publicly available leaf 7 senescence time-series dataset (Breeze 1804 
et al., 2011). The Venn diagram shows the overlap of drought - and 1805 
senescence DEGs; C - overview of antioxidant, photosynthesis and 1806 
photorespiration-related gene expression at two different time points (95% 1807 
rSWC and 17% rSWC); D – overview of oxidation/reduction-related gene 1808 
expression at two different time points (95% rSWC and 17% rSWC), and E – 1809 
overview of secondary metabolism-related gene expression at two different 1810 
time points (95% rSWC and 17% rSWC). All MapMan diagrams show gene 1811 
expression data in leaf 7, where blue indicates increased and yellow indicates 1812 
decreased gene expression according to the scale. Each square represents a 1813 
single gene within the pathways.  1814 
 1815 

Figure 6: Temporal clustering of 1815 differentially expressed genes. A - 1816 
Dendrogram of the hierarchical clustering using a Euclidian distance divides 1817 
the dataset into early and late responses for both the control (white circles) 1818 
and drought (grey circles) samples, and B - heat map of the SplineCluster 1819 
analysis of the 1815 DEGs on differentially expressed genes (drought 1820 
samples only) across the time series using normalised and averaged data 1821 
(Supplemental Data Set 11). The heat map demonstrates expression profiles 1822 
for genes in each cluster with red representing high expression and green 1823 
representing low expression.  1824 
 1825 

Figure 7: Descriptions of the 28 clusters derived from SplineCluster.  1826 
The blue line indicates the mean expression profile for each of the 28 clusters. 1827 
Individual genes present in each cluster are available in Supplemental Data 1828 
Set 11.  The red line indicates the switch from early (95% - 45% rSW; days 1-1829 
7) to late (40% - 17% rSWC; days 8 - 13). Selected enriched GO terms (see 1830 
Supplemental Data Set 12) are indicated on each cluster.  1831 
 1832 

Figure 8: Constructing and evaluating a transcription factor regulatory 1833 
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network. A - gene regulatory network generated using VBSSM with the 1834 
drought time-series data (threshold z-score = 1.65). The nodes highlighted in 1835 
red were up-regulated during drought stress including the central hub gene, 1836 
AGL22. Nodes highlighted in green were genes down regulated during 1837 
drought stress. Blue nodes signify genes that were not regulated by AGL22 as 1838 
predicted from the model (see panel D). All red, green and blue nodes were 1839 
selected for evaluation after drought stress; B - relative gene expression of 1840 
selected genes under drought conditions (17% rSWC). Gene expression was 1841 
analysed by qPCR. The numbers are expressed as fold changes of drought 1842 
over control (n=5 ± s.e.m). Significance of the fold changes are indicated by 1843 
either * p < 0.05, or ** p < 0.01. For gene and primer list see Supplemental 1844 
Data Set 16 and Supplemental Table 1; C - relative expression levels of 1845 
AGL22 in two knockout lines, agl22-3 and agl22-4, compared to wild-type 1846 
determined by qPCR. Significance of the fold changes are indicated ** p < 1847 
0.01, and D – relative gene expression profiles of 16 genes predicted to be 1848 
regulated by AGL22 under drought stress in agl22-3 (black bars) and agl22-4 1849 
(grey bars) compared to wild type. The data represent the mean (n =7; ± 1850 
s.e.m.), significance of the fold changes are indicated by either * p < 0.05 , or 1851 
** p < 0.01. Stars located centrally indicate both mutants are significantly 1852 
different to wild type, while stars located over one mutant indicate significance 1853 
for the specific mutant.  1854 
 1855 

Figure 9: Stress and plant growth phenotypes of agl22 mutants. Due to 1856 
the early-flowering phenotype of both agl22 mutant alleles, drought stress was 1857 
begun at 22-days after sowing. A - rosette area (cm2) of Col-0 (light grey), 1858 
agl22-3 (black) and agl22-4 (dark grey) plants at different soil water contents 1859 
(n=5). The * indicates significant difference compared to wild type at p < 0.05; 1860 
B - rate of water loss in agl22-3 and agl22-4 plants compared to wild type 1861 
averaged over 13 days water withdrawal (n = 10). The * indicates significant 1862 
difference compared to wild-type at p <0.05;  C - stomatal conductance (Gs) 1863 
at different soil water contents in Co-0 (light grey), agl22-3 (black) and agl22-4 1864 
(dark grey), (n=5). The * indicates significant difference compared to wild-type 1865 
at p < 0.05; D – light saturated carbon assimilation (Asat) at different soil 1866 
water contents in Col-0 (light grey), agl22-3 (black) and agl22-4 (dark grey; 1867 
n=5). The * indicates significant difference compared to wild type at p < 0.05, 1868 
and E - days to flowering in well-watered (light grey) and drought-stressed 1869 
(black) plants (n=10). Plants were grown under short day conditions as 1870 
described in the Methods section. At 5 weeks, plants were subjected to 1871 
progressive drought stress. When 17% rSWC was reached, plants were re-1872 
watered and flowering time was recorded as days after sowing. Control plants 1873 
were maintained well watered. The * indicates significant difference compared 1874 
to wild type at p < 0.05.   1875 
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Table 1: Functional categorisation of early (95- 45% rSWC) and late (40% - 1876 
17% rSWC) responsive genes. P-value, adjusted using the Benajmini-1877 
Hochberg method (Benjamini and Hochberg, 1995). Category - indicates the 1878 
timing and direction of change in gene expression across the time series. Fold 1879 
- indicates the fold enrichment.  1880 
Category GO term  Biological Process/ Molecular 

Function 
Fold P-value 

early up-
regulated 

GO:0034637 cellular carbohydrate biosynthetic 
process 

6.9 0.003 

early up-
regulated 

GO:0006812 cation transport 4.3 0.014 

early up-
regulated 

GO:0044262 cellular carbohydrate metabolic 
process 

3.7 0.018 

early up-
regulated 

GO:0022890 inorganic cation transmembrane 
transporter activity 

5.1 0.0432 

late up-
regulated 

GO:0009812 flavonoid metabolic process 7.1 1.74E-05 

late up-
regulated 

GO:0009813 flavonoid biosynthetic process 7.1 5.82E-05 

late up-
regulated 

GO:0019748 secondary metabolic process 2.3 0.004 

late up-
regulated 

GO:0009699 phenylpropanoid biosynthetic 
process 

3.8 0.006 

late up-
regulated 

GO:0016051 carbohydrate biosynthetic process 2.7 0.011 

late up-
regulated 

GO:0006519 cellular amino acid and derivative 
metabolic process 

2 0.011 

late up-
regulated 

GO:0019438 aromatic compound biosynthetic 
process

2.9 0.021 

late up-
regulated 

GO:0042398 cellular amino acid derivative 
biosynthetic process 

2.9 0.044 

late down-
regulated 

GO:0006412 translation 2.1 4.96E-05 

late down-
regulated 

GO:0015995 chlorophyll biosynthetic process 11.4 6.50E-04 

late down-
regulated 

GO:0044085 cellular component biogenesis 2.4 0.002 

late down-
regulated 

GO:0042254 ribosome biogenesis 3.6 0.003 

late down-
regulated 

GO:0006334 nucleosome assembly 6.9 0.003 

late down-
regulated 

GO:0015979 photosynthesis 3.9 0.011 

late down-
regulated 

GO:0033014 tetrapyrrole biosynthetic process 7.7 0.014 

late down-
regulated 

GO:0055114 oxidation reduction 1.8 0.02 
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