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Principal component analysis of spectral line data: analytic formulation
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ABSTRACT
Principal component analysis is a powerful statistical system to investigate the structure and
dynamics of the molecular interstellar medium, with particular emphasis on the study of
turbulence, as revealed by spectroscopic imaging of molecular line emission. To date, the
method to retrieve the power-law index of the velocity structure function or power spectrum
has relied on an empirical calibration and testing with model turbulent velocity fields, while
lacking a firm theoretical basis. In this paper, we present an analytic formulation that reveals the
detailed mechanics of the method and confirms previous empirical calibrations of its recovery
of the scale dependence of turbulent velocity fluctuations.
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1 IN T RO D U C T I O N

Wide field, spectroscopic imaging of molecular line emission pro-
vides a vast amount of information of the gas dynamics of interstel-
lar clouds. To exploit this information, Heyer & Schloerb (1997,
hereafter HS97) introduced the application of principal component
analysis (PCA) to the position–position–velocity data cubes as a
tool to investigate the structure and dynamics of molecular clouds.
Brunt & Heyer (2002a, hereafter BH02) more rigorously defined
HS97’s method for quantifying the scale-dependence of turbulent
velocity fluctuations in molecular clouds, and HS97’s PCA formu-
lation has since undergone a number of extensions and refinements
(Brunt 2003a; Brunt et al. 2003; Heyer et al. 2008; Roman-Duval
et al. 2011). The HS97/BH02 PCA formulation is ideally suited to
the analysis of low signal-to-noise ratio data and for this reason
has been most commonly applied to wide-field survey data (Brunt
& Heyer 2002b; Heyer & Brunt 2004, 2012; Roman-Duval et al.
2011).

A significant limitation of the HS97/BH02 method to derive the
power-law index of the velocity structure function is its reliance on
an empirical calibration that establishes the relationship between
the index determined from PCA and the true index of the models
generated by numerical representations and computational simula-
tions of turbulent clouds (BH02; Brunt et al. 2003; Roman-Duval
et al. 2011). Therefore, the data analysis has lacked a firm theoretical
underpinning upon which other statistical methods are based (Scalo
1984; Kleiner & Dickman 1985; Miesch & Bally 1994; Stutzki et al.
1998; Lazarian & Pogosyan 2000).

In this paper, we present an analytic formulation of the PCA
method that validates these previous empirical calibrations. This
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is a challenging task as it requires analytical representations of a
complex physical process (turbulence) as measured by a complex
analysis method (PCA). To simplify the problem, the formulation
relies on a central assumption that the spectral line profiles in a
spectral line imaging observation of a molecular cloud can be rep-
resented as an ensemble of Gaussians of fixed dispersion, with
turbulent spatial correlations. The formulation predicts covariance
matrices, eigenvectors, eigenvalues and eigenimage structure and
enables insight into the mechanics of the PCA method that explains
several empirically observed features noted in the literature (Brunt
et al. 2003; Roman-Duval et al. 2011).

The layout of the paper is as follows. In Section 2 we provide
a brief summary of the HS97 formulation. In Section 3 we derive
covariance matrices expected from an ensemble of Gaussian line
profiles with variable centroids. Sections 4– 6, respectively, describe
the derivation of the resultant eigenvectors, eigenvalues and eigen-
images. In Section 7, we present an analytic derivation of BH02’s
calibration of the PCA method for the turbulent velocity fluctuation
spectrum. A summary is given in Section 8.

2 PR I N C I PA L C O M P O N E N T A NA LY S I S

In this section, we review the HS97 formulation of PCA applied to
spectral line imaging observations, and summarize the key empirical
findings that an analytic formulation should aim to explain.

2.1 The HS97 PCA formulation

A spectroscopic imaging observation comprises an ensemble of n
spectra each with p spectroscopic channels. We write the data cube
as T (r i , vj ) = Tij , where r i denotes the spatial coordinate of the
ith spectrum.

C© 2013 The Authors
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In the formulation of HS97, the spectrum, or line profile, at each
spatial grid point is taken to be the raw measurable quantity that
will be subjected to PCA. From the ensemble of line profiles, the
covariance matrix elements Sjk are calculated as

Sjk = S(vj , vk) = 1

n

n∑
i=1

TijTik. (1)

A set of eigenvectors, umj = um(vj), and eigenvalues, λm, is deter-
mined from the solution of the eigenvalue equation for the covari-
ance matrix,

Sjkumj = λmumj . (2)

The eigenvalue, λm, equals the amount of variance projected on to
its corresponding eigenvector, umj.

The eigenimages, Im(r i), are constructed from the projected val-
ues of the data, Tij, on to the eigenvectors, umj,

Im(r i) =
p∑

j=1

Tijumj . (3)

We refer to the coupled eigenvector and eigenimage at order m as the
mth principal component (PC). In the most basic interpretation, the
set of eigenvectors describe the velocity magnitude of line profile
differences with the position-position-velocity (ppv) volume, as
these generate varying levels of variance. Such differences arise
from gas motions such as infall, outflow, rotation, turbulent velocity
fluctuations and, of course, random noise of the observation. The
eigenimages show where these profile differences occur within the
projected position–position plane.

2.2 Empirical results

In their foundational work, HS97 suggested that, at each order m,
the coupled eigenvector (as a velocity function) and eigenimage
(as a spatial function) could be used to study the scale-dependence
of velocity fluctuations in molecular clouds. Specifically, defining
δvm and δlm as the characteristic widths of the eigenvector and
eigenimage autocorrelation functions (ACFs), respectively, HS97
found power-law relations (δvm ∝ δlαm) for a sample of molecular
clouds subjected to PCA.

HS97’s proposed method δvm was scrutinized by BH02, who
included accounting for noise and finite resolution, and fixed δvm

and δlm as the 1/e points of the eigenvector and eigenimage ACFs,
respectively. BH02 also investigated the method’s ability to recover
intrinsic three-dimensional (3D) statistical information about the
velocity field and established the first calibration of the method:
α ≈ 0.33β where β is the spectral slope of the angular integral of
the velocity power spectrum in 3D (in this representation, a Kol-
mogorov spectrum has β = 5/3 and a shock-dominated spectrum
has β = 2). Roman-Duval et al. (2011) confirmed the BH02 cal-
ibration and examined in detail the sensitivity of the calibration
to density fluctuations, using lognormal density PDFs, concluding
that the calibration was stable below a critical level of (very high)
density variability [σln (ρ/ρ0) > 2]. Brunt et al. (2003a) and Roman-
Duval et al. (2011) showed that the method is sensitive to first-order
velocity fluctuations, rather than root-mean-square velocity fluctu-
ations.

3 C OVA R I A N C E M AT R I C E S

Our analysis begins with a basic investigation of the covariance ma-
trices that result from an ensemble of Gaussian line profiles of fixed

dispersion. We initially examine the case of a single component per
line of sight, and then consider the more complex case of multiple
Gaussians. This analysis forms the basis of later derivations in the
subsequent sections.

3.1 Single Gaussian component case

We first consider the covariance matrix that would be derived from
an ensemble of Gaussian line profiles. Let all line profiles have the
same dispersion, σ 2

b , and let the distribution of centroid velocities be
drawn from a Gaussian distribution of dispersion σ 2

c around a global
mean velocity of zero. The total velocity dispersion of this ensemble
is σ 2

tot = σ 2
b + σ 2

c . Note that here, the subscript b refers generically
to ‘broadening’ of the line profile due to macroscopic turbulent
fluctuations along the line of sight, and not just to the (typically
much narrower) thermal broadening. The use of a single dispersion
σ 2

b to represent this is a simplification, as not all lines of sight
will produce exactly the same broadening, though observationally
linewidths do not vary significantly across a cloud.

The terms representing the ith spectrum, Tij and Tik, in the co-
variance matrix equation are written as:

Tij = Ti(vj ) = T0i exp

(
− (vj − vci)2

2σ 2
b

)
, (4)

Tik = Ti(vk) = T0i exp

(
− (vk − vci)2

2σ 2
b

)
, (5)

where T0i is the peak temperature, vci is the centroid velocity and
σ 2

b is the velocity dispersion of the ith line profile.
For the above model, the covariance matrix equation is

Sjk = 1

n

n∑
i=1

T 2
0i exp

(
− (vj − vci)2

2σ 2
b

)
exp

(
− (vk − vci)2

2σ 2
b

)
, (6)

where the summation is over the total number of line profiles, n.
For large enough n we can convert the normalized summation over
i to integrals over the probability distributions of peak temperature,
T0, and centroid velocity, vc, to write:

Sjk =
∫ ∞

0
dT0

∫ ∞

−∞
dvcPT (T0)Pv(vc)T 2

0

× exp

(
− (vj − vc)2

2σ 2
b

)
exp

(
− (vk − vc)2

2σ 2
b

)
, (7)

where we have assumed that T0 and vc are uncorrelated, with inde-
pendent probability distributions, PT(T0) and Pv(vc), respectively.
Assuming a Gaussian probability distribution for vc, with dispersion
σ 2

c , the integrals are easily solved to yield:

Sjk = S0 exp

(
− (v2

j + v2
k )

2σ 2
b

+ (vj + vk)2

4σ 2
b (1 + σ 2

b /2σ 2
c )

)
, (8)

where

S0 = 〈T 2
0 〉√

1 + 2σ 2
c /σ 2

b

. (9)

Equation (8) is valid for ensembles where the peak temperature of
the lines can vary with position, provided the peak temperatures are
uncorrelated with the centroid velocities. Note that the contribution
of a line profile to Sjk is proportional to T 2

0 . For consistency, this

 at U
niversity of E

xeter on June 7, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


PCA of spectral line data 119

Figure 1. Gray-scale representations of the covariance matrix, S, obtained with varying σ c/σ b. The variance along the diagonal, σ 2
|| = 2σ 2

c + σ 2
b = 19/9, is

the same for all plots. Contours are shown at 25 per cent, 50 per cent and 75 per cent of the peak of Sjk.

requires that σ 2
c be defined by:

σ 2
c =

n∑
i=1

T 2
0iv

2
ci

n∑
i=1

T 2
0i

=

n∑
i=1

W 2
0iv

2
ci

n∑
i=1

W 2
0i

, (10)

where W0i = √
2πT0iσb is the integrated intensity of the ith line

profile in the above model. Ideally, equation (7) would include a
probability distribution of σ 2

b , but the simplification of a constant
σ 2

b was necessary to make the integration tractable.
To visualize equation (8) we constructed covariance matrices

accordingly for varying σ b and σ c. (These matrices agree with
numerical realizations.) Fig. 1 shows three example covariance ma-
trices, represented as grey-scale images. In general, the matrices
will vary from a fully linearly dependent case (σ c/σ b −→ 0) to a
fully diagonal case (σ b/σ c −→ 0). In a fully diagonal matrix, each
row (column) is linearly independent.

We compute the dispersion of S along the diagonal, σ 2
|| , using:

S|| = S0 exp

(
− 2v2

j

2σ 2
b

+ (2vj )2

4σ 2
b (1 + σ 2

b /2σ 2
c )

)
= S0 exp

(
− 2v2

j

2σ 2
||

)
,

(11)

obtained by setting vk = vj in equation (4), and noting that the
distance along the diagonal is

√
2vj , to find

σ 2
|| = 2σ 2

c + σ 2
b . (12)

Similarly, we compute the dispersion of S perpendicular to the
diagonal, σ 2

⊥, using:

S⊥ = S0 exp

(
− 2v2

j

2σ 2
b

)
= S0 exp

(
− 2v2

j

2σ 2
⊥

)
, (13)

obtained by setting vk = −vj in equation (4), and noting that the
distance along the perpendicular is

√
2vj , to find:

σ 2
⊥ = σ 2

b . (14)

More generally, defining:

v|| = 1√
2

(vk + vj ), (15)

v⊥ = 1√
2

(vk − vj ), (16)

it is straightforward to show that:

S(v||, v⊥) = S0 exp

(
− v2

⊥
2σ 2

⊥

)
exp

(
− v2

||
2σ 2

||

)
, (17)

i.e. that the covariance matrix is an elliptical Gaussian, with disper-
sions σ 2

|| and σ 2
⊥ parallel and perpendicular to the diagonal, respec-

tively.
By fitting an elliptical Gaussian to the covariance matrix, σ 2

|| and
σ 2

⊥ can be measured, and we can deduce the line centroid dispersion,
σ 2

c , and profile dispersion, σ 2
b , via:

σ 2
c = 1

2
(σ 2

|| − σ 2
⊥) (18)

σ 2
b = σ 2

⊥. (19)

It is worth noting also that the total velocity dispersion, σ 2
tot, is given

by

σ 2
tot = σ 2

c + σ 2
b = 1

2
(σ 2

|| + σ 2
⊥). (20)

3.2 Multiple Gaussian component case

We now consider a more elaborate model in which the ith spec-
trum is represented by the summation of nt spectral lines, each of
dispersion σ 2

t , where we take nt to be moderately large. Let the
centroid velocities of each of these components be drawn from a
Gaussian probability distribution of dispersion σ 2

b − σ 2
t centred on

vci. Here we envision the individual narrow lines to have approxi-
mately thermal linewidths (dispersion σ 2

t ) that collectively generate
a broadened line profile (with dispersion σ 2

b ) due to macroscopic
velocity differences along the line of sight. In the limit of large nt,
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the single component model of the preceding section (i.e. a single
Gaussian line of dispersion σ 2

b and centroid vci) will be recovered.
For moderate nt, the line profiles could appear asymmetric and/or
multiply peaked, but many profiles averaged together would appear
Gaussian. The contribution of the ith spectrum to the covariance
matrix is in this case:[

nt∑
e=1

T0ie exp

(
− (vj − vcie)2

2σ 2
t

)]

×
⎡
⎣ nt∑

f =1

T0if exp

(
− (vk − vcif )2

2σ 2
t

)⎤
⎦ . (21)

The contributions for e = f:

nt∑
e=1

T 2
0ie exp

(
− (vj − vcie)2

2σ 2
t

)
exp

(
− (vk − vcie)2

2σ 2
t

)
(22)

averaged over all positions i, produce an overall contribution to Sjk

proportional to:

exp

(
− (v2

j + v2
k )

2σ 2
t

+ (vj + vk)2

4σ 2
t (1 + σ 2

t /2(σ 2
c + σ 2

b − σ 2
t ))

)
(23)

(cf. equation 8). The contribution of the cross-terms (e �= f) is more
difficult to deal with, but we note that their contribution should
recover the form of equation (8) in the limit of large nt. Therefore,
we write the approximate form of the covariance matrix in the
multiple component case as:

Sjk ≈ S0η exp

(
− (v2

j + v2
k )

2σ 2
t

+ (vj + vk)2

4σ 2
t (1 + σ 2

t /2(σ 2
c + σ 2

b − σ 2
t ))

)

+ S0(1 − η) exp

(
− (v2

j + v2
k )

2σ 2
b

+ (vj + vk)2

4σ 2
b (1 + σ 2

b /2σ 2
c )

)
,

(24)

where we expect η → 0 as nt → ∞. This covariance matrix form
contains an additional (small) contribution from resolvable fine
structure in the line profiles, with dispersion along the diagonal
of 2(σ 2

c + σ 2
b ) − σ 2

t and dispersion perpendicular to the diagonal of
σ 2

t . Qualitatively, this is a weak, strongly diagonal feature in the
covariance matrix, though this result is obtained only in the large nt

limit.

4 EI G E N V E C TO R S

In this section, we first derive the eigenvectors that result from a
covariance matrix of the form given by equation (8). Next, we derive
the ACFs of the eigenvectors and determine the autocorrelation
scale, δvm (i.e. the velocity-lag of the 1/e-point of the normalized
ACF) as a function of order m. This is a key observable in the
application of PCA to determine the turbulent energy spectrum
(HS97; BH02).

4.1 Eigenvector structure

A valid solution of the eigenvalue equation (2) requires that:∫ +∞

−∞
dvk S(vj , vk)u(vk) = λu(vj ), (25)

where u(vk) is an eigenvector, λ is its eigenvalue and we have
approximated the finite sums as integrals. We now search for a

valid solution of equation (25), using the form of equation (8), by
setting:

u(vk) = I0 exp(−cv2
k ), (26)

where I0 and c are constants. We use the single component co-
variance matrix given by equation (8); an analytic solution for the
multiple component case (equation 24) has not yet been found.

The terms in the exponent of equation (8) may be written as:

− (av2
j + av2

k − 2bvjvk), (27)

where

a = 1

2σ 2
b

− 1

4σ 2
b (1 + σ 2

b /2σ 2
c )

, (28)

and

b = 1

4σ 2
b (1 + σ 2

b /2σ 2
c )

. (29)

The exponent of the integrand in equation (25) is then:

− (av2
j + av2

k − 2bvjvk + cv2
k ), (30)

which may be regrouped as

−
[(

(a + c)1/2vk − b

(a + c)1/2
vj

)2

+
(

a − b2

(a + c)

)
v2

j

]
.

(31)

With a change of variable:

w = (a + c)1/2vk − b

(a + c)1/2
vj , (32)

we find that equation (25) is satisfied if:

a − b2

(a + c)
= c, (33)

or

c2 = a2 − b2 = 1

4

(
σ 2

b (2σ 2
c + σ 2

b )
)−1/2

. (34)

We identify the solution (equation 26) as the first eigenvector
(u1j = u1(vj)), and demonstrate the validity of this choice below.
For simplicity, we write the solution as

u1(vj ) = I01 exp

(
− v2

j

2σ 2
1

)
, (35)

where I01 is a constant, and:

σ1 =
√

1/2c = (σ 2
b (2σ 2

c + σ 2
b ))1/4 = σ

1/2
|| σ

1/2
⊥ . (36)

To deduce the forms of the higher order eigenvectors, we make
use of the orthogonality condition:∫ +∞

−∞
dvjum(vj )un(vj ) = I0mI0nδmn, (37)

where I0m and I0n are constants which depend on the choice of
normalization of the eigenvectors, and δmn is the Kronecker delta
(δmn = 1 if m = n, and δmn = 0 if m �= n).

The set of functions that are orthogonal with respect to a Gaussian
weight are the Hermite polynomials. The orthogonality condition
for Hermite polynomials is∫ ∞

−∞
dxHn(x)Hm(x) exp(−x2) = δmn2nn!

√
π. (38)

Comparing equations (37) and (38), we identify the mth order eigen-
vector as the product of the first eigenvector and the (m − 1)th order
Hermite polynomial, Hm − 1(vj/σ 1). Thus the mth order eigenvector
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PCA of spectral line data 121

Figure 2. Eigenvectors, unj = un(vj), obtained from (a) NGC 7129 12CO and (b) NGC 7538 12CO (lighter lines). Eyeball fits to the fourth eigenvector, u4,
have been made using the form given in equation (39). The heavy lines are those predicted by equation (39) with σ 1 and I01 specified.

has the form:

umj = I01√
2m−1(m − 1)!

exp

(
− v2

j

2σ 2
1

)
Hm−1

(
vj

σ1

)
, (39)

where I01 is the peak amplitude of the first eigenvector.
The eigenvectors defined by equation (39) provide a reasonably

good representation of eigenvectors obtained from spectral line
imaging observations of CO isotopes in molecular clouds. Figs 2(a)
and (b) show the first six eigenvectors obtained from PCA of 12CO
emission in the NGC 7129 molecular cloud (Brunt & Mac Low
2004) and the NGC 7538 giant molecular cloud (Heyer et al. 1998),
respectively. We have fitted (by eye) the fourth eigenvectors with
u4 from equation (39) and constructed the other eigenvectors ac-
cording to σ 1 and I01 obtained from the fit of u4. The point here
is not to evaluate the detailed applicability of equation (39) to real
observations, which contain more sources of line profile variance
than accounted for by our simple model. Line profile asymmetries,
multiplicities and other non-Gaussian features will be represented
in the covariance matrix and in turn will affect the detailed struc-
ture of the eigenvectors. Fig. 2 is presented to demonstrate that
observed eigenvectors at order m can be interpreted as the product
of a ∼Gaussian and a polynomial of order m − 1.

4.2 Eigenvector autocorrelation functions and characteristic
velocity scales

The unnormalized ACF, Cm(v), of the mth eigenvector is

Cm(v) =
∫ ∞

−∞
dv′um(v′)um(v′ − v), (40)

where um(v) at order m is given by equation (39). Writing x = v/σ 1

and y = v′/σ 1, this is then

Cm(x) = Cm(v/σ1)

= I 2
01

2m−1(m − 1)!

∫ ∞

−∞
dy exp

(−y2/2
)

× exp
(−(x − y)2/2

)
Hm−1(y)Hm−1(y − x). (41)

We make the substitution w = y − x/2 to find

Cm(x) = Cm(v/σ1)

= I 2
01

2m−1(m − 1)!

∫ ∞

−∞
dw exp(−w2)

× exp(−(x/2)2)Hm−1(w + x/2)Hm−1(w − x/2). (42)

The Hermite polynomial terms may be expanded as:

Hm−1(w + x/2) =
m−1∑
k=0

(m − 1)!

k!(m − 1 − k)!
Hk(w)xm−1−k,

Hm−1(w − x/2) =
m−1∑
k=0

(m − 1)!

k!(m − 1 − k)!
Hk(w)(−x)m−1−k. (43)

Using the orthogonality of Hermite polynomials (equation 38), this
then gives

Cm(x)

Cm(0)
= Cm(v/σ1)

Cm(0)
= exp

(−(x/2)2
)
Bm−1(x), (44)
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where

Bm−1(x)

=
m−1∑
k=0

2−(m−1−k)

(m − 1 − k)!

(m − 1)!

k!(m − 1 − k)!
(−1)m−1−kx2(m−1−k). (45)

Note that we have also written these in normalized form.
The first five normalized ACFs are:

C1(x)

C1(0)
= exp

(−(x/2)2
)

C2(x)

C2(0)
= exp

(−(x/2)2
)

(1 − x2/2)

C3(x)

C3(0)
= exp

(−(x/2)2
)

(1 − x2 + x4/8)

C4(x)

C4(0)
= exp

(−(x/2)2
)

(1 − 3x2/2 + 3x4/8 − x6/48)

C5(x)

C5(0)
= exp

(−(x/2)2
)

(1 − 2x2 + 3x4/4 − x6/12 + x8/384).

(46)

The first six ACFs are shown in Fig. 3 – cf. fig. 9 of HS97.
The velocity scale, δvm, at order m is given by the 1/e-point of the

normalized ACF, i.e. Cm(δvm/σ 1)/Cm(0) = 1/e. While it is difficult
to determine the 1/e points analytically, they may be determined
numerically. Fig. 4 shows the measured δvm/σ 1 values versus m −
1, which approximately obey a power-law relation:

δvm/σ1 ∝ (m − 1)−ξ . (47)

However, closer inspection reveals that in practice the exponent ξ

is dependent on the maximum number of recovered components.
In Fig. 5 we plot the fitted exponent, ξ , as a function of the num-
ber of recovered components. For only two recovered components,
ξ ≈ 0.38, while in the (practically unachievable) limit of a very large
number of recovered components, ξ asymptotically approaches 0.5.

Figure 4. Log–log plot of the measured values of δvm/σ 1 determined at
the 1/e points of the eigenvector ACFs versus m − 1. For reference, the
dashed line (offset) has a slope of −ξ = −0.4, appropriate for low orders m.

For a representative number of recovered components (between 3
and 20) in the calibration data of BH02, we adopt a working value
of ξ = 0.4 ± 0.02.

5 E I G E N VA L U E S

For eigenvectors given by equation (39), it is possible to deduce
the corresponding eigenvalues using equation (25). For the first two
eigenvectors, equation (25) reads:∫ +∞

−∞
dvk S(vj , vk)I01 exp

(
− v2

k

2σ 2
1

)
= λ1I01 exp

(
− v2

j

2σ 2
1

)
, (48)

Figure 3. The first six eigenvector ACFs, given by equation (44).
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Figure 5. The fitted exponent, ξ , from equation (47) as a function of the
number of recovered components from which the fit is made.

∫ +∞

−∞
dvk S(vj , vk)I01

√
2
vk

σ1
exp

(
− v2

k

2σ 2
1

)

= λ2I01

√
2
vj

σ1
exp

(
− v2

j

2σ 2
1

)
, (49)

where S(vj, vk) is given by equation (8). Making use of equations
(27–34), these can be solved to find:

λ1 =
√

π

a + c
S0, (50)

λ2 =
√

π

a + c

(
b

a + c

)
S0, (51)

which leads to

λ2

λ1
= σ 2

tot

σ 2
c

−
√(

σ 2
tot

σ 2
c

)2

− 1, (52)

or

σ 2
c

σ 2
tot

= 2(λ2/λ1)

1 + (λ2/λ1)2
. (53)

Equations (52) and (53), graphically represented in Fig. 6, show
that, in the case of no centroid variation, all the variance of the
data is contained in the first (and only) PC. The maximum value
of λ2/λ1 = 1 is found in the limit where all variance in the data
is caused by centroid variations. In general, the ratio λ2/λ1 can be
used to provide a straightforward measurement of the ratio σ 2

c /σ 2
tot.

6 E I G E N I M AG E S

The covariance matrix and eigenvectors are independent of the spa-
tial structure of the spectral line data. However, each eigenvector has
an associated spatial map, the ‘eigenimage’, formed by projection
of the data on to the eigenvector via equation (3). This can be alter-
natively viewed as the integration of the data over the velocity axis

Figure 6. Relation between σ 2
c /σ 2

tot and the ratio of the first two eigenvalues
λ2/λ1.

with the eigenvector acting as a weighting or windowing function.
For low-order eigenvectors, there is a straightforward interpretation
of this procedure and it is possible to relate the resulting eigen-
images to physical measures of the medium from which the line
profiles originate. Below, we first derive the eigenimage structures
for the two lowest order eigenvectors. Following this, we derive the
asymptotic form of the eigenimages at high order.

6.1 Eigenimage structure

The form of the eigenimages, given by equation (3), is

Im(r) = I01√
2m−1(m − 1)!

∫ ∞

−∞
dv T (r, v)

×exp

(
− v2

2σ 2
1

)
Hm−1(v/σ1), (54)

which can be interpreted as a generator of moments over the
brightness temperature, subject to an overall windowing function
I01 exp(−v2/2σ 2

1 ) = u1(v).
The first few Hermite polynomials are:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12, (55)

so the first two eigenimages are closely related to the 0th and 1st
moments – i.e. the integrals of T(v) and T(v)v, respectively – but
with the additional velocity-windowing provided by u1(v). Brunt
(2003a) and Brunt, Heyer & Mac Low (2009) have made use of
this to probe the outer scale of turbulence in molecular clouds,
since the 0th moment and 1st moment are proportional to the col-
umn density and the projected momentum, respectively (see e.g.
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Brunt & Federrath 2013, in preparation), with both subject to the
same windowing function.

Writing T (r, v) = T0(r) exp(−(v − vc(r))2/2σ 2
b ) and choosing

the convenient normalization I01 = 1, the first eigenimage, I1(r) is

I1(r) =
√

2πσbT0(r)F (vc), (56)

where

F (vc) = F
1/2
0 exp

(
− v2

c

2(σ 2
1 + σ 2

b )

)
(57)

is the integrated effect of the windowing function (with F0 =
σ 2

1 /(σ 2
1 + σ 2

b )). Note that
√

2πσbT0(r) = W0(r) is the integrated
intensity (0th moment) of the emission. The effect of F(vc) is to
attenuate the eigenimage intensity for line profiles with high |vc|.

The second eigenimage, I2(r), is

I2(r) =
√

2πσbT0(r)vc(r)
F

3/2
0√
2σ1

F (vc)

= F0√
2σ1

I1(r)vc(r), (58)

which is seen to be the 1st moment of the intensity again subject to
the integrated effect of the windowing function.

Higher order eigenimages combine higher order moments, again
with windowing by u1(v), but become increasingly difficult to in-
terpret except in a statistical way. An approximate form for higher
order eigenimages may be arrived at by making use of the following
expansion at high n:

exp

(
−x2

2

)
Hn(x) ≈ 2n

√
π

�

(
n + 1

2

)
cos

(
x
√

2n − n
π

2

)
. (59)

Inserting this expression into equation (3) yields, after some manip-
ulation:

Im(r) ≈ G(m)
√

2πσbT0(r) cos

(
vc(r)

σ1

√
2(m − 1)

)
for odd m,

Im(r) ≈ G(m)
√

2πσbT0(r) sin

(
vc(r)

σ1

√
2(m − 1)

)
for even m,

(60)

where G(m) is an unimportant (constant) m-dependent multiplica-
tive factor. While strictly only accurate at high m, these expres-
sions provide a reasonably good representation of the eigenimage
structure even at the lowest m-values (though quantitatively, the
differences are important as we discuss in the next section). Note
that for small vc/σ 1, both equations (58) and (60) give I2 ∝ T0vc.
In addition, the windowing term, Fvc , in equation (58) crudely ap-
proximates the roll-off in I2 caused by the sinusoidal behaviour in
equation (60).

The structure of the eigenimages predicted by equation (60) is as
follows. The overall amplitude (at any order m) is controlled by the
column density [

√
2πσbT0(r)], and this is modulated by a common

multiplicative factor (dependent on m) and, more importantly, a sine
or cosine factor, dependent on the centroid velocity, vc(r). There-
fore, as the order m increases, the eigenimage values cycle through
a sine or cosine variation. This provides the key to understanding
their characteristic spatial scale lengths needed for the measurement
of the turbulent velocity spectrum, as described in the next section.

7 A NA LY T I C C A L I B R AT I O N O F T H E PC A
M E T H O D F O R TH E T U R BU L E N T
VELOCI TY SPECTRUM

Our procedure here is to generate a coupled sequence of character-
istic spatial and velocity scales (δlm, δvm) at order m, for a specified
spectral index β of the 3D velocity field. The dependence of the pre-
dicted exponent α (where δvm ∝ δlαm) on the intrinsic β will then
establish the calibration (see Section 2.2).

We have already established the m-dependence of δvm in Section
4.2, where it was found that δvm ∝ (m − 1)−ξ with ξ ≈ 0.4. It
still remains to determine the corresponding sequence δlm. Here,
however, while we have a functional form for the asymptotic eigen-
image structure (equation 60) we do not have a definite expression
for the field vc(r), but instead only have a statistical knowledge of
its properties, which may be quantified via structure functions.

The pth-order structure function of a velocity field is written as:

Sp(l) = 〈|�v(l)|p〉 ∝ lζp , (61)

where �v(l) represents the ensemble of velocity fluctuations mea-
sured on spatial scale l in the field, and angle brackets denote spatial
averaging. The function ζ p describes the dependence of the scaling
exponent on the order p. Alternatively, one may write:

(Sp(l))1/p = 〈|�v(l)|p〉1/p ∝ lγp , (62)

where γ p = ζ p/p. For velocity fields produced by fBm, γ p is inde-
pendent of p (e.g. Brunt et al. 2003). For now, we will assume that
the centroid velocity field, vc(x, y), can be described by a scaling
exponent γ c (valid at all p), allowing us to write:

〈|�vc(l)/σ1|p〉1/p = (l/l1)γc , (63)

where l is the 2D spatial scale and l1 is the spatial scale correspond-
ing to a mean velocity fluctuation of σ 1.

The original calibration established by BH02 used uniform den-
sity fields (and therefore uniform column density fields) so that only
the effect of the (co)sine term in equation (60) need be inspected.
The (co)sine term leads to an oscillatory eigenimage structure with
a characteristic spatial wavelength Lm set by the condition that the
typical velocity fluctuation between points separated by a distance
Lm generates a phase difference of 2π in the argument of the (co)sine
term. That is:√

2(m − 1)〈�vc(Lm)〉/σ1 ≈ 2π. (64)

Referring to equation (60), note that because the
√

2(m − 1) factor
effectively amplifies the vc field, progressively smaller velocity fluc-
tuations are capable of inducing a 2π phase difference as the order m
increases [i.e. the typical vc fluctuation required falls proportionally
to (m − 1)−1/2]. Consequently, there is a corresponding reduction
in the characteristic spatial wavelength, governed by equation (63),
such that

Lm/l1 ≈ 〈|�vc(Lm)/σ1|〉1/γc ≈
( √

2π

(m − 1)1/2

)1/γc

, (65)

meaning that the characteristic wavelength of eigenimage structure
decreases with order m as Lm ∝ (m − 1)−1/2γc .

The characteristic spatial scale, δlm, of the mth-order eigenimage
is determined by the 1/e point of the eigenimage ACF, and it is
straightforward to show that for a (co)sinusoid:

δlm =
(

acos(1/e)

2π

)
Lm ≈ 0.19Lm. (66)
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Therefore, the m-dependence of characteristic eigenimage scales,
in the asymptotic approximation, is

δlm ∝ (m − 1)−1/2γc , (67)

where γ c is the scaling exponent of the centroid velocity field.
However, this is slightly inaccurate as the asymptotic expansions
are not strictly applicable at low-order m. We note first that,
crudely approximating the vc field as a ∼ linear gradient, the exact
equation (58) predicts a scale δl2 that is 20 per cent larger than
that predicted by equation (60). Since as the order m increases,
the asymptotic formula becomes increasingly more accurate; this
in effect means that δlm falls faster with m − 1 than equation (67)
predicts. Assuming a smooth transition from an ∼20 per cent over-
estimation at low m to accurate representation at, say, m � 10, we
estimate that the effective m-dependence of δlm is better represented
by:

δlm ∝ (m − 1)−1.1/2γc , (68)

i.e. an increase of the exponent, by a factor of 1.1 (±0.03), describing
the reduction of characteristic spatial scale as the order increases.

Combining equation (68) with the m-dependence of the charac-
teristic velocity scales (equation 47), we arrive at a calibration of
the PCA α exponent to the centroid velocity scaling exponent, γ c,
via:

δvm ∝ δlαm ∝ δl2ξγc/1.1
m , (69)

so that:

α ≈ 2ξγc/1.1, (70)

and taking the representative value ξ = 0.4 ± 0.02, as discussed in
Section 4.2, this leads to

α ≈ 0.72γc. (71)

It remains to relate γ c to the spectral index, β, of the 3D velocity
field. This is a general question (not restricted to the PCA method)
but one that has a simple answer in the uniform density conditions
assumed by BH02 in the original calibration. As explained in Brunt
& Mac Low (2004, and references therein), the following relation
holds for uniform density and optically thin conditions:

γc = β

2
. (72)

Some discussion of this equation is warranted, as the scaling expo-
nent of the velocity field in 3D (γ 3D, here assumed independent of
p, appropriate for the non-intermittent fBm fields used by BH02) is
given by

γ3D = β − 1

2
, (73)

and therefore:

γc = γ3D + 1

2
= β

2
. (74)

The increase in the exponent upon projection (by 1/2) is known as
‘projection smoothing’, and can be qualitatively understood by con-
sidering that large-scale velocity fluctuations suffer proportionally
less line-of-sight averaging than small-scale fluctuations.

Using equations (72) and (71) we arrive at the analytic calibration
of the PCA α exponent:

α ≈ 0.36β. (75)

This relation is close to, though slightly steeper than, the empirically
determined α ≈ (0.33 ± 0.04)β (BH02; Roman-Duval et al. 2011).

This is encouraging analytic support for the empirical calibration,
and the small difference in exponent (0.36 ± 0.04 versus 0.33 ±
0.04) is not too concerning, given the approximations used in the
derivations above.

In the above, we have not explicitly included the effects of opacity,
and it is worth considering how this may affect the result. Previ-
ously, it has been found empirically that opacity/saturation does not
have a drastic effect on α (Brunt et al. 2003; Roman-Duval et al.
2011). It is also observed that application of the method to 12CO
and 13CO data on the same cloud yields very similar δv(�) spec-
tra and similar values of α (e.g. Brunt 2003b; Brunt & Mac Low
2004; Brunt et al. 2009). A likely reason for this insensitivity is that
the centroid velocity field is not strongly affected by saturation if
the saturation is symmetric about line centre. Brunt & Mac Low
(2004) demonstrate directly that the centroid fields derived in their
observations from 12CO and 13CO are almost indistinguishable sta-
tistically. A secondary effect of saturation may be to move the line
profiles to a flat-topped appearance, invalidating the Gaussian form
assumed above. However, the requirement of orthogonality in the
eigenvectors essentially ensures a polynomial sequence similar to
the derived Hermite polynomials, so any deviations from our scaling
result will likely be small. However, we cannot analytically assess
this at present, and must rely on the empirical/observational results.

Finally, we comment on two other aspects of the PCA method for
which a better understanding is now available in light of the above
analysis. First, Brunt et al. (2003) found that PCA appears to operate
at first order – i.e. in the case of an intermittent field when γ 1 �= γ 2,
the PCA exponent α is better-correlated with the first-order index
γ 1. This can be now understood to be related to the ‘phase-rolling’
effect [i.e. the m-dependent amplification of velocity fluctuations to
roll the (co)sinusoid phase of the eigenimage structure] discussed
above, which is a first-order effect rather than a root-mean-square
effect. Secondly, it has been shown empirically that the recovered
PCA exponent α is not strongly affected by (column) density fluc-
tuations (BH02; Roman-Duval et al. 2011). While a full analysis
of this effect is beyond the scope of the current paper, a prelimi-
nary understanding of why this is can be arrived at by considering
the eigenimage structure given by equation (60). An eigenimage of
order m is the product of the column density (m-independent) and
the (co)sinusoid (m-dependent). The ACF of such an eigenimage is
the Fourier transform of its power spectrum, which in turn is the
square of its Fourier transform. A product in direct space transforms
to a convolution in Fourier space, so the quantity of interest [the
Fourier transform of the (co)sinusoid] is convolved with the Fourier
transform of the column density – a function that is independent of
order m. In the case of uniform column density, this function is a
delta function and the transform of the (co)sinusoid is unchanged.
As column density fluctuations become more important, a broaden-
ing of the column density transform is induced, but as long as this
remains narrow (in Fourier space) relative to the (co)sinusoid trans-
form’s Fourier-space width, no significant effect on the combined
power spectrum (and therefore ACF) will be induced. However, for
an extremely variable column density field with a broad Fourier
space extent (as examined by Roman-Duval et al. 2011) this must
eventually break down. Roman-Duval et al. (2011) determine that
a density field with a lognormal PDF with σln(ρ/ρ0) > 2 is required
for this to occur (see their fig. 5).

8 SU M M A RY

In this paper, we have derived and discussed analytic expressions
for covariance matrices, eigenvectors, eigenvalues and eigenimages
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expected from PCA of molecular cloud emission lines, in the limit
where these can be represented by a collection of Gaussian line
profiles with turbulent spatial correlations. Previous to this study,
the PCA method was based almost entirely on empirical analysis
and lacked a firm theoretical basis.

We have derived an analytic calibration of the PCA method for
measuring the spectrum of turbulent velocity fluctuations, which
agrees reasonably well with previous empirical calibrations. How-
ever, given the level of approximation in the analysis, we see the
analytic calibration more as a validation of the empirical calibra-
tion, rather than a replacement. We have also gained significant
insight into the mechanisms by which PCA operates, allowing us to
explain more esoteric aspects of the method, such as its preferential
operation at first order and its general robustness against (column)
density fluctuations.
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