# An Improved Ant Colony Optimisation Algorithm for Type-I Parallel Two-Sided Assembly Line Balancing Problem 

Conference Paper • April 2013

## CITATIONS

3

4 authors, including:


Ibrahim Kucukkoc
University of Exeter
22 PUBLICATIONS 94 CITATIONS
SEE PROFILE

## READS

44

Edward C Keedwell
University of Exeter
99 PUBLICATIONS 743 CITATIONS
SEE PROFILE

YOR18 Conference
University of Exeter, Peter Chalk Centre 9-11 April 2013

# An Improved ACO Algorithm for Type-I Parallel Two-Sided Assembly Line Balancing Problem 

Ibrahim Kucukkoc ${ }^{1 a}$, David Z. Zhang¹, Edward Keedwell¹, Alireza Pakgohar ${ }^{1}$

\{I.Kucukkoc, D.Z.Zhang, E.C.Keedwell, A.Pakgohar\} @exeter.ac.uk
${ }^{\text {a }}$ Balikesir University, Department of Industrial Engineering, Cagis Campus, Balikesir, Turkey
${ }^{\text {a i.kucukkoc@balikesir.edu.tr }}$
${ }^{1}$ University of Exeter, CEMPS, Harrison Building, EX44QF, Exeter, UK

## Outline

- Introduction
- Problem Description (PTALBP-I)
- Proposed Method (Improved Ant Colony Optimisation Algorithm)
- An Illustrative Example
- Discussion
- Conclusions and Future Research


## Introduction

Assembly lines are mostly used flow oriented production systems in mass production environment, and it has been over five decades since researchers first discussed the most basic version of Assembly Line Balancing Problem, which is Simple Assembly Line Balancing Problem (SALBP) (Yaman, 2008; Wei and Chao, 2011).


Figure 1. A view from GM automobile factory which shows assembly line workers attach tires to GM vehicles
(http://bentley.umich.edu/research/ guides/automotive/workers.php ).

## Introduction



$$
\text { Cycle Time }=\frac{\text { Planning Period }}{\text { Production Quantity }}
$$



Figure 2. Illustration of an assembly line (adapted from: Kara et al., 2010)

## Introduction

Problem types

| Cycle Time (C) |  |
| :---: | :---: |
| Given | Minimise |
| ALBP-F | ALBP-2 |
| ALBP-1 | ALBP-E |

Four types of line balancing problems are defined by using different objectives (adapted from Scholl and Becker 2006):
ALBP-1 minimises the number $(m)$ of stations given the cycle time ( $c$ ),
ALBP-2 minimises $c$ given $m$,
ALBP-E maximises the line efficiency $E$,
ALBP-F seeks for a feasible solution given $m$ and $c$.

## Introduction

- Two-sided assembly lines are usually utilised to produce standardised high-volume large-sized products such as trucks and buses. However, there are only a few researchers who address this problem.

Figure 3. Two workers one on each side of the line (http://www.npr.org/blogs/thetwo-way/2011/02/14/133750236/gm-to-pay-hourly-workers-more-than-4-000-each-in-bonuses)


Ibrahim Kucukkoc, David Z. Zhang, Edward Keedwell, Alireza Pakgohar

## Introduction

| 3 | 1,4 | 5 | 2 | 6 | 7,8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8$ | $20$ | 初 | $80$ | $80$ | $88$ | $96$ | $28$ |
| 13 |  | 11,14 | 12 | 15 | 16 | 17 | 18 |
| station 1 | station 2 | station 3 | station 4 | station 5 | station 6 | station 7 | station 8 |


| 3 | 1,4 | 5,6 | 8 | 2,7 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $9$ | $\begin{aligned} & 96 \\ & 6(6 \end{aligned}$ | $96$ | $a$ | $9$ | $9$ | as |
| 13 | 11,14,15 |  | 12,16 |  | 17 | 18 |
| station 1 | station 2 | station 3 | station 4 | station 5 | station 6 | station 7 |

Figure 7. Two different solutions ( $a$ and b) with split and normal workplaces (Scholl and
(a)
(b) Boysen, 2009).
line 1

- may cause more worker and equipment cost
PROVIDES
- shortening assembly line
- more flexibility
- split workplaces


## BUT

- 

$\qquad$

## Literature Review

- Simple ALB problem was defined by Helgeson et al. (1954), and modelled mathematically by Salveson (1955).
- Since then, line balancing has been of continuing interest to academia and industry with the development of manufacturing systems (Ghosh and Gagnon, 1989).


## Literature Review

| Research | Method / Solution Approach | Main Object. (min) | Additional constraints/features |
| :---: | :---: | :---: | :---: |
| Suer (1998) | 3-phase heuristic with IP and MILP model | Number of lines and workstations | Dynamic number of lines |
| Gokcen et al. (2006) | Heuristic procedures and a mathematical programming model | Number of workstations | Fixed number of lines |
| Benzer et al. (2007) | A network model | Number of workstations | Fixed number of lines |
| Lusa (2008) | Survey |  |  |
| Baykasoglu et al. (2009) | Ant colony optimisation | Number of workstations | Fixed number of lines |
| Cercioglu et al. (2009) | Simulated annealing based approach | Number of workstations | Fixed number of lines |
| Ozcan et al. (2009) | Tabu search algorithm | Number of workstations | Fixed number of lines, workload balance between workstations |
| Scholl and Boysen (2009) | Binary linear programme and Salome based exact solution procedure | Number of workstations and operators | Product-line assignment considered |
| Kara et al. (2010) | Two goal programming approaches | Number of workstations, cycle time, and task loads of workstations | Three conflicting goals |
| Ozcan et al. (2010a) | Simulated annealing algorithm | Number of workstations, workload variance between workstations | Mixed-models and model sequencing considered |
| Ozcan et al. (2010b) | Tabu search algorithm | Number of workstations | Two-sided PALBP |
| Kucukkoc et al. (2013) | Ant Colony Optimisation | Number of workstations and line length | Two-sided PALBP |

## Introduction

- Kucukkoc at al. (2013) proposed first Ant Colony Optimisation (ACO) algorithm to solve parallel two-sided assembly line balancing problem (PTALBP). They employed two type of pheromone release strategy:
- Between task-last assigned task,
- Between task-qzone in which task is assigned.

- However, they did not consider any heuristic algorithm to select tasks.
- In this study, the ant colony optimisation algorithm developed by Kucukkoc et al. (2013) is improved by employing a heuristic rule to search solution space more effectively.


## Literature Review

- The conclusion that can be drawn from this literature review is that, parallel twosided assembly line balancing problem is a new research domain.
- Although there are many studies on different types of line balancing problems, the studies on parallel two-sided assembly line balancing problem are very scarce.


## Problem Description

- The parallel two-sided assembly line balancing problem is, balancing more than one two-sided assembly line which are constructed in parallel by considering some constraints such as precedence relationships, capacity constraints, positional constraints, and zoning constraints.
- Parallel two-sided assembly line balancing problem (PTALBP) is a new research domain first described by Ozcan et al. (2010b).
- Parallel two-sided assembly lines carry many advantages of both parallel assembly lines and two-sided assembly lines.


## Problem Description



|  | L | qzone $=1$ | qzone $=(q-1) * n+1$ |
| :---: | :---: | :---: | :---: |
| Line I | - |  |  |
|  | R | qzone $=2$ | $q$ zone $=(q-1) * n+2$ |
|  | L | qzone $=3$ | qzone $=(q-1) * n+3$ |
| Line II | $\underline{\underline{\underline{1}}}$ |  |  |
|  | R | $q z o n e=4$ | $q z o n e=(q-1) * n+4$ |
|  |  | queиe 1 | queuen |

PTALBP is...

Advantages

- shortening assembly line
- more flexibility
- split workplaces

Timeline

$\square$
: Idle time

Figure 4: An illustration of parallel two-sided assembly lines

- Ozcan et al (2010b)
(Kucukkoc et al., 2013)


## Problem Description



Figure 5: Main structure of parallel two-sided assembly lines
(Kucukkoc et al., 2013)

## Problem Description

- Minimise:
- total number of workstations
- total line length by considering predefined constraints.

$$
\min \left(\sum_{k=1}^{S} z_{k}+\varepsilon \max _{k=1, \ldots, S}\left\{q_{k}\right\}\right)
$$

where $\max \left\{q_{k}\right\}$ demonstrates total line length, $z_{k}$ is a binary variable and $\varepsilon$ is a user defined weighting factor;

$$
z_{k}=\left\{\begin{array}{cc}
1 & \text { if station } k \text { is utilised } \\
0 & \text { otherwise }
\end{array}\right.
$$

## Problem Description

- The assumptions/constraints considered in the study are as follows (Ozcan et al., 2010b; Kucukkoc et al., 2013):
- Only one model $(m)$ is assembled on each particular line ( $h$ ). So, the total number of the lines equals to total number of the models $(H=M)$,
- Task times are known and deterministic,
- Each task must be assigned to exactly one workstation,
- Cycle time is larger than total workload of any workstation,
- Each product model has its own set of tasks and precedence relationships,
- A task can only be started if all of its predecessor tasks have been assigned and completed,
- Tasks can be assigned only a predetermined side of the line (left - L, right - R, or either E),


## Proposed Method (ACO Algorithm)

- PTALBP problems are NP-Hard type of problems
- ACO algorithm (Dorigo et al., 1996) has been used to solve various kind of NP-Hard problems in a reasonable time (Zhang et al., 2007).
- First ACO to solve line balancing problem were implemented by McMullen and Tarasewich (2003).
- First and only ACO approach to solve PTALBP problem was developed by Kucukkoc et al. (2013) recently.
- However they did benefit from any heuristic algorithm for local search.


## Proposed Method (ACO Algorithm)

- In the current research, we integrated Positional Weight Method (PWM), which is proposed by Helgeson and Birnie (1961), in order to help the convergence of the algorithm.
- In PWM, positional weights of tasks are calculated for each task. Positional weight of a task is defined as "time of the longest path from the beginning of the operation through the remainder of the network (Ponnambalam et al., 1999).


## Proposed Method (ACO Algorithm)

- Calculation of Positional Weights




## Proposed Method (ACO Algorithm)

- The probability of selection task $i$ for ant $k$ in qzone $z$ while in $t^{t h}$ tour is:

$$
p_{i z}^{k}(t)=\frac{\left[\tau_{i z}(t)\right]^{\alpha}\left[\eta_{i}(t)\right]^{\beta}}{\sum_{y \in Z_{i}^{k}}\left[\tau_{i y}(t)\right]^{\alpha}\left[\eta_{i}(t)\right]^{\beta}}
$$

- The amount of virtual pheromone between task - qzone is represented with $\tau_{i z}(t)$.
- The heuristic information of task $i$ that comes from Positional Weight Method is represented by $\eta_{i}(t)$.


## Proposed Method (ACO Algorithm)

- The pheromone update rule used in this research is:

$$
\begin{aligned}
& \tau_{i z}(t+1)=(1-\rho) \tau_{i z}(t)+\Delta \tau_{i z}(t) \\
& \Delta \tau_{i z}(t)=\frac{\mu}{\text { Objective Function Value }}
\end{aligned}
$$

where $\mu$ is a user defined value between 40-100.
$\alpha$ and $\beta$ values, and other parameters are selected after a set of preliminary experiments.

| Parameter | Value |
| :--- | :---: |
| $\alpha$ | 0.1 |
| $\beta$ | 0.3 |
| $\rho$ | 0.1 |
| Initial pheromone level | 15 |
| Number of ants in each colony | 10 |
| Total number of colonies | 10 |
| Significance of line length $(\varepsilon)$ | 0.5 |
| User defined value $(\mu)$ | $40-100$ |

## Proposed Method (ACO Algorithm)

Select the first line
Start from left side of the line
While there are unassigned tasks
Determine available tasks (in terms of precedence, capacity, and other constraints)
Select an available task using pheromone trail and heuristic information
Assign selected task into the current workstation
Increase station workload as task time
If $s t(k)>s t(\underline{k})$ then
Change side (left or right)
End if
If both sides do not have enough capacity to assign available tasks then

Select other line
Start from left side of the line

## End if



End while
Pseudo Code of building a balancing solution (Kucukkoc et al. 2013)

Ibrahim Kucukkoc, David Z. Zhang, Edward Keedwell, Alireza Pakgohar

## An Illustrative Example

- For this aim, the problem (P16) of Lee et al. (2001) is selected and adapted by changing task time of task 16 from 4 to 3.


Figure 9. Precedence relationship diagram for illustrative example (adapted from Lee et al., 2001)

- Two same product models that have same precedence relationships and same task times are assembled on two parallel two-sided lines (one on each line).


## An Illustrative Example

- In the precedence relationship diagrams, task times are given in nodes while preferred operation directions (sides) are shown over nodes.
- Cycle time is assumed as 16 time units for this problem.

Assignable Tasks
Left Side $\quad 1,2,3,4,6,7,8,11,12,13,14,15,16$
Line I
Assignable task lists are shown on parallel two sided assembly lines

|  | Assignable Tasks |  |
| :--- | :--- | :---: |
| Line I | Left Side $1,2,3,4,6,7,8,11,12,13,14,15,16$ <br> Right Side $1,2,4,5,7,8,9,10,11,13,14,15,16$ <br> Line II Left Side $1,2,3,4,6,7,8,11,12,13,14,15,16$ <br> Right Side $1,2,4,5,7,8,9,10,11,13,14,15,16$,$l$ |  |

Figure 10. Assignable tasks are shown on the lines

## An Illustrative Example



Figure 11. Obtained best solution for illustrated example

- 11 workstations
- 1 merged workstation

$$
\text { Balance Delay }=\frac{11 \times 16-163}{11 \times 16}=0.073
$$

## Discussion

- Theoretical minimum number of workstations for illustrated example is 11 workstations (Ozcan et al., 2010b). So, optimal solution is found by the proposed algorithm for given problem.
- Computed balance delay for given example is $7.5 \%$. So, it means lines are balanced quite efficiently.
- Two workstations are merged in queue 2 and built one workstation. Thus, the operator assigned to merged workstation first completes his/her job on left side of Line II and then completes his/her job on right side of Line I.



## Discussion

- A heuristic algorithm is integrated with ACO algorithm to search solution space more effectively in current research.
- The heuristic algorithm used in this research provides some kind of information for tasks about workload of their successors, and helps the algorithm to assign tasks that play critical role as early as possible. So that, idle times are trying to be minimised.
- More experiments could be processed on medium-large sized problems to assess the efficiency of the algorithm.


## Conclusions and Future Research Directions

- The main purpose of this research is:
- to improve the ACO algorithm, which is proposed by Kucukkoc et al. (2013) to solve PTALBP, to increase the capability of current method,
- show how more than one two-sided assembly line, which is constructed in parallel, is balanced together using an ant colony optimisation based approach.
- There is only one published work on ACO algorithm for any type of Parallel TwoSided Assembly Line Balancing Problem.
- The algorithm uses task-qzone (Kucukkoc et al., 2013) based pheromone trails and heuristic information (PWM) to build solutions.


## Conclusions and Future Research Directions

- To assess the performance of the algorithm, a set of large-sized benchmark problems can be solved with the proposed approach and obtained results can be compared with existing tabu search algorithm in the literature.
- Additionally, some additional constraints can also be considered for future researches; such as positive and negative zoning constraints, synchronous tasks constraints, and positional constraints.


## Acknowledgment

The first author wishes to thank the Balikesir University and University of Exeter for their financial supports.

## References

- BARTHOLDI, J. J. 1993. Balancing 2-Sided Assembly Lines - a Case-Study. International Journal of Production Research, 31, 2447-2461.
- BAYKASOGLU, A., OZBAKIR, L., GORKEMLI, L. \& GORKEMLI, B. 2009. Balancing Parallel Assembly Lines via Ant Colony Optimization. CIE: 2009 International Conference on Computers and Industrial Engineering, Vols 1-3, 506-511.
- BENZER, R., GOKCEN, H., CETINYOKUS, T. \& CERCIOGLU, H. 2007. A network model for parallel line balancing Problem. Mathematical Problems in Engineering, doi:10.1155/2007/10106.
- CERCIOGLU, H., OZCAN, U., GOKCEN, H. \& TOKLU, B. 2009. A Simulated Annealing Approach for Parallel Assembly Line Balancing Problem. Journal of the Faculty of Engineering and Architecture of Gazi University, 24, 331-341.
- CHUTIMA, P. \& CHIMKLAI, P. 2012. Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge. Computers \& Industrial Engineering, 62, 39-55.
- DORIGO, M., MANIEZZO, V. \& COLORNI, A. 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 26, 29-41.
- GHOSH, S. \& GAGNON, R. J. 1989. A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. International Journal of Production Research, 27, 637-670.
- GOKCEN, H., AGPAK, K. \& BENZER, R. 2006. Balancing of parallel assembly lines. International Journal of Production Economics, 103, 600-609.
- HELGESON, W.B., SALVESON, M.E. \& Smith, W.W. 1954. How to Balance an Assembly Line, in Management Report, No.7, Carr Press.
- HELGESON W.P., \& BIRNIE D.P. 1961. "Assembly line balancing using the ranked positional weight technique", Journal of Industrial Engineering, 12(6), pp. 394-398, 1961.
- KARA, Y., GOKCEN, H. \& ATASAGUN, Y. 2010. Balancing parallel assembly lines with precise and fuzzy goals. International Journal of Production Research, 48, 1685-1703.
- KUCUKKOC, I. and YAMAN, R., 2013. A new hybrid genetic algorithm to solve more realistic mixed-model assembly line balancing problem. International Journal of Logistics Systems and Management, 14 (4), (in press).


## References

- KUCUKKOC, I., ZHANG, D.Z., KEEDWELL, E., 2013. Balancing Parallel Two-Sided Assembly Lines with Ant Colony Optimisation Algorithm, AISB Symposium - Nature Inspired Computation and Applications, University of Exeter, April 3-5.
- LEE, T. O., KIM, Y. \& KIM, Y. K. 2001. Two-sided assembly line balancing to maximize work relatedness and slackness. Computers \& Industrial Engineering, 40, 273-292.
- LUSA, A. 2008. A survey of the literature on the multiple or parallel assembly line balancing problem. European Journal of Industrial Engineering, 2, 50-72.
- MCMULLEN, P. R. \& TARASEWICH, P. 2003. Using ant techniques to solve the assembly line balancing problem. IIE Transactions, 35, 605-617.
- OZBAKIR, L., BAYKASOGLU, A., GORKEMLI, B. \& GORKEMLI, L. 2011. Multiple-colony ant algorithm for parallel assembly line balancing problem. Applied Soft Computing, 11, 3186-3198.
- OZCAN, U., CERCIOGLU, H., GOKCEN, H. \& TOKLU, B. 2009. A Tabu Search Algorithm for the Parallel Assembly Line Balancing Problem. Gazi University Journal of Science, 22, 313-323.
- Ozcan, U., Gokcen, H. and Toklu, B., 2010. Balancing parallel two-sided assembly lines. International Journal of Production Research, 48 (16), 4767-4784.
- OZCAN, U., CERCIOGLU, H., GOKCEN, H. \& TOKLU, B. 2010a. Balancing and sequencing of parallel mixed-model assembly lines. International Journal of Production Research, 48, 5089-5113.
- OZCAN, U., GOKCEN, H. \& TOKLU, B. 2010b. Balancing parallel two-sided assembly lines. International Journal of Production Research, 48, 4767-4784.
- PONNAMBALAM, S.G., ARAVINDAN, P., AND NAIDU, G.M., (1999) "A comparative evaluation of assembly line balancing heuristics", International Journal of Advanced Manufacturing Technology, 15, No 8, pp577-586.
- SALVESON, M.E., (1955) "The assembly line balancing problem", Journal of Industrial Engineering, 6, No 3, pp18-25.
- SCHOLL, A. \& BECKER, C. 2006. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168, 666-693.
- SCHOLL, A. \& BOYSEN, N. 2009. Designing parallel assembly lines with split workplaces: Model and optimization procedure. International Journal of Production Economics, 119, 90-100.


## References

- SIMARIA, A. S. \& VILARINHO, P. M. 2009. 2-ANTBAL: An ant colony optimisation algorithm for balancing two-sided assembly lines. Computers \& Industrial Engineering, 56, 489-506.
- SUER, G. A. 1998. Designing parallel assembly lines. Computers \& Industrial Engineering, 35, 467-470.
- WEI, N.C. and CHAO, I.M., (2011) "A solution procedure for type E simple assembly line balancing problem", Computers \& Industrial Engineering, 61, No 3, pp824-830.
- YAMAN, R. 2008. An assembly line design and construction for a small manufacturing company. Assembly Automation, 28, 163-172.
- YAGMAHAN, B. 2011. Mixed-model assembly line balancing using a multi-objective ant colony optimization approach. Expert Systems with Applications, 38, 12453-12461.
- ZHANG, Z. Q., CHENG, W. M., TANG, L. S. \& ZHONG, B. 2007. Ant algorithm with summation rules for assembly line balancing problem. Proceedings of 14th International Conference on Management Science \& Engineering, Vols 1-3, 369-374.
- http://bentley.umich.edu/research/guides/automotive/workers.php
- http://www.npr.org/blogs/thetwo-way/2011/02/14/133750236/gm-to-pay-hourly-workers-more-than-4-000-each-in-bonuses
- http://wwwme.nchu.edu.tw/~CIM/courses/Flexible\ Manufacturing\ Systems/Microsoft\ Word\ -\ Chapter8FASSEMBLY\ SYSTEMS\ AND\ LINE\ BALANCING.pdf


## Thanks for your attention.

## Any Questions Please?

