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Beyond von-Neumann Computing with Nanoscale 
Phase-Change Memory Devices
 Historically, the application of phase-change materials and devices has been 
limited to the provision of non-volatile memories. Recently, however, the 
potential has been demonstrated for using phase-change devices as the basis 
for new forms of brain-like computing, by exploiting their multilevel resist-
ance capability to provide electronic mimics of biological synapses. Here, 
a different and previously under-explored property that is also intrinsic to 
phase-change materials and devices, namely accumulation, is exploited to 
demonstrate that nanometer-scale electronic phase-change devices can also 
provide a powerful form of arithmetic computing. Complicated arithmetic 
operations are carried out, including parallel factorization and fractional divi-
sion, using simple nanoscale phase-change cells that process and store data 
simultaneously and at the same physical location, promising a most effi cient 
and effective means for implementing beyond von-Neumann computing. 
This same accumulation property can be used to provide a particularly simple 
form phase-change integrate-and-fi re “neuron”, which, by combining both 
phase-change synapse and neuron electronic mimics, potentially opens up a 
route to the realization of all-phase-change neuromorphic processing. 
  1. Introduction 

 Electronic systems and devices have revolutionized almost every 
aspect of our daily life, impacting on all sectors of society. This 
revolution has been brought about by the seemingly inexorable 
improvement in the performance, and the reduction in cost, of 
silicon-based CMOS (complementary metal oxide silicon) tech-
nologies, in particular CMOS-based microprocessors, memo-
ries and logic. The progress of CMOS technology over the past 
twenty years has been driven by an aggressive downscaling of 
minimum feature sizes. However, as pointed out in the 2011 
ITRS (International Technology Roadmap for Semiconductors) 
Roadmap the continued scaling of CMOS is problematic and 
there is a pressing need for new device concepts, in particular 
for a “new beyond-CMOS information processing technology” 
in which “a nonbinary data representation may be required.” [  1  ]  
In this work we show that phase-change electronic materials 
and devices have the potential to meet such pressing needs. In 
wileyonlinelibrary.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

 DOI: 10.1002/adfm.201202383 

  Prof. C. D. Wright, P. Hosseini, J. A. Vazquez Diosdado
College of Engineering
Mathematics and Physical Sciences
University of Exeter
Exeter EX4 4QF, UK
 E-mail:  david.wright@exeter.ac.uk    
particular we show that electronic phase-
change devices are capable of performing 
complicated non-binary arithmetic 
processing and computation, including 
for example fast parallel factorization and 
fractional division. Furthermore, such 
computation is carried out simultane-
ously with storage, at the same physical 
location, of the computed result, leading 
to a particularly simple and effective form 
of non-von-Neumann computing. The 
classical von-Neumann architecture, [  2  ]  
which physically separates processing and 
memory operations, is limited in so much 
as the processor cannot execute a program 
faster than instructions and data can be 
fetched from, and returned to, memory, 
leading to the well-known von-Neumann 
bottleneck. [  3  ]  While scientists and engi-
neers have been successful in reducing 
the impact of this bottleneck (by for 
example increasing use of cache memory 
and, more recently, multicore architec-
tures), it has long been realized that a computer architecture 
in which processing and storage are carried out simultaneously 
and at the same physical location could offer very signifi cant 
performance (speed and power) benefi ts. Thus, much effort 
has recently been expended in searching for materials, devices 
and systems capable of providing alternative computing para-
digms, including memristor, e.g., [  4–7  ]  neuromophic, e.g., [  8  ,  9  ]  and 
connectionist, e.g., [  10–12  ]  type approaches. Phase-change based 
systems, as we show here, also offer an attractive route to an 
alternative computing architecture. 

 Reversible switching in various types of disordered semi-
conductors that subsequently became known as phase-change 
materials was fi rst reported by Ovshinsky in the 1960s. [  13  ]  Of 
course many materials exist in an amorphous as well as a crys-
talline phase; however, only a very small subset have all the 
properties necessary (e.g., large electrical or optical contrast 
between phases; fast crystallization at programming tempera-
tures but stability against spontaneous crystallization for many 
years at ambient temperature; rapid amorphization capability) 
to be considered as technological phase-change materials. 
Indeed, it is only very recently that a detailed understanding has 
been achieved of what makes a true phase-change material, and 
why some seemingly similar materials display technologically 
useful phase-change behavior but others do not, thus allowing 
the recent development of a set of design rules for what consti-
tutes a phase-change material. [  14  ]  One of the most extensively 
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     Figure  1 .     a) Schematic of the PCM mushroom-type cell used for simulation of the phase-change 
base-10 accumulator response. b) The resistance of the PCM cell in (a) after the application 
of each of 10 input pulses with each input pulse having an amplitude of 1.085 V and being 
of 60 ns duration. This is the basic accumulator response, in this case operating in base-10. 
c) Shows the simulated structure of the active region after the fi rst, fi fth, ninth and tenth pulses 
(i.e., state-1, state-5, state-9 and state-10): dark blue regions are amorphous while crystallites 
are shown in various colors (and the brown region surrounding the dome is also crystalline).  
studied phase-change materials, and the one that we use in this 
work, is the ternary alloy Ge 2 Sb 2 Te 5  which has been used for 
optical disk memories, [  15  ]  scanning-probe based storage, [  16–18  ]  
the fabrication of synaptic mimics [  19–21  ]  and, perhaps its most 
widely known recent application, the development of binary 
non-volatile electrical phase-change memories (PCMs). [  22–26  ]  
For binary storage, a PCM cell is switched between amorphous 
and crystalline phases (and back again) using single pulses. 
A relatively high amplitude and short duration (RESET) pulse 
is used to form the amorphous phase, a lower amplitude and 
longer duration (SET) pulse to form the crystalline phase. In 
the amorphous phase the cell exhibits a high resistance (typi-
cally 100s k Ω  to M Ω ), while in the crystalline state the cell has 
a low resistance (typically 10s k Ω ). To confi gure a phase-change 
device as an arithmetic computer, we tailor the input pulse 
amplitude and/or duration such that the SET state is reached 
from the RESET state not with a single pulse (as for normal 
binary memory operation) but with a pre-determined number 
of pulses, thus providing a form of phase-change accumulator. 
Unlike the accumulators to be found in conventional processor 
architectures however, the phase-change accumulator is non-
volatile, works directly in high-order bases, is capable of car-
rying out both basic (e.g., addition, subtraction, multiplication, 
division) and advanced (e.g., factorization, fractional division) 
arithmetic operations, can function as a simple neuronal mimic 
and can provide a form of rudimentary non-volatile logic. 

 The idea of using phase-change materials for arithmetic 
computation was originally suggested by Ovshinsky, [  27  ,  28  ]  and 
we ourselves recently demonstrated in the optical domain and 
on the (tens of) micrometer length-scale the execution of basic 
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, WeinhAdv. Funct. Mater. 2013, 23, 2248–2254
arithmetic operations. [  29  ]  Here we show that 
this arithmetic capability is also available in 
the electrical domain and, importantly, on 
the nanoscale. Furthermore, as well dem-
onstrating addition, subtraction, multiplica-
tion and division with single electrical phase 
change cells of the 100 nm size scale, we also 
demonstrate explicitly the potential of nano-
scale phase-change accumulators to i) work 
directly in a range of arbitrary bases (we dem-
onstrate systems working from base-2 up to 
as high as base-512), ii) perform complex 
arithmetic operations, such as parallel factori-
zation and fractional division, iii) process and 
store data simultaneously and at the same 
physical location, iv) implement a form of 
sequential multi-input logic, and v) provide 
a simple and effi cient form of integrate-and-
fi re neuronal mimic. 

   2. Results and Discussion 

 The basic mechanism for implementing 
a phase-change accumulator is shown in 
 Figure    1   using a conventional mushroom-
type PCM cell. In this instance we have 
implemented (in simulation) a base-10 accu-
mulator by choosing (or designing) the input 
excitation amplitude and duration such that 10 input pulses are 
required to convert the cell from the RESET state to the SET 
state. Each pulse applied was identical, with an amplitude of 
1.085 V and a duration of 60 ns (by comparison a single pulse 
of 1.5 V and 60 ns duration completely switches the cell for 
normal binary operation, see Supporting Information). The cell 
accumulates energy from each input pulse, eventually acquiring 
enough energy to transform the active region from the fully 
amorphous starting phase to the crystalline phase. Also in 
Figure  1  we show the state of the active region of the mush-
room cell for various cell states. It can be seen that in state-1 
(i.e., after receipt of 1st input pulse) one or two crystal nuclei 
have formed in the amorphous dome, but they have little if 
any effect on the cell’s resistance. After the input of fi ve pulses 
(state-5) a few more nuclei have formed and some are begin-
ning to grow, with further growth clearly evident by state-9, but 
not enough to signifi cantly decrease the cell resistance. Between 
state-9 and state-10 however there is a large decrease in resist-
ance, and by state-10 the amorphous dome is almost fully re-
crystallized and the resistance is well below our chosen decision 
level of 300 k Ω . It can be seen from Figure  1  that there exists 
a high resistance plateau region. Here states (corresponding to 
the input of pulses 1 to 7 in this case) lie below the percola-
tion threshold (for conduction, see ref.  [  30  ] ), thus having sub-
stantially the same resistance values; nevertheless these states 
remain distinct since it takes different amounts of energy (i.e., 
different number of subsequent excitation pulses) to transform 
each different state in the plateau region to the SET state (or to 
a resistance below the decision level). Thus, we are not storing 
information in different resistance levels and are not using the 
2249wileyonlinelibrary.comeim
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     Figure  2 .     a) Schematic of the phase-change ‘pseudo-cells’ and method of contacting the 
top electrode using a CAFM (conducting diamond) tip. b) Experimental  I – V  curve showing 
a threshold switching voltage (from amorphous to crystalline) of approximately 3.7 V. c) The 
number of ( ≈ 100 ns) pulses needed to switch a cell from high-resistance to low-resistance as 
a function of pulse amplitude.  
same scheme as proposed for multi-level PCM memories [  31–34  ]  
or for phase-change based synaptic-like functionality. [  19–21  ]  
Indeed, a perfect accumulator would have only two-levels 
of resistance, one above the decision level for all states from 
state-0 to state-( n -1) of a base- n  system, and one below the deci-
sion level for state-n. This distinction between the accumulation 
regime of phase-change devices and the multi-level regime is 
sometimes overlooked and the two are often confl ated, but they 
are different modes of operation and it is the former, accumula-
tion, that here bestows on phase-change cells their capability for 
arithmetic computing. We should also point out that, unlike in 
multi-level phase-change memory applications, arithmetic com-
puting via accumulation should not require special methods to 
combat resistance drift. Indeed, if the low-resistance end-point 
state of the accumulator is the SET state, then this is essentially 
stable against resistance drift [  33  ,  34  ]  whereas all other pre-end-
point states will over time drift upwards in resistance, actually 
increasing the decision window between resistances above and 
below the decision level.  

 It is easy to see that the system of Figure  1  provides a base-10 
accumulator response using a single phase-change cell - each 
successive input pulse transforms the phase-change cell sequen-
tially from state 1 to 9 (state 0 being the fully RESET state), and 
upon receipt of pulse 10 the cell switches into the low-resist-
ance state, informing us by a simple resistance measurement 
(to detect when the resistance is below the decision level) that 
the count from 0 to 9 is complete. It should also be stressed 
that this process is non-volatile; if the power is removed from 
the phase-change system it will remain in its existing state, and 
processing can recommence from where it left off when power 
is re-supplied. Further details of the models used to produce the 
results of Figure  1  and crystallization patterns for all states-0 to 
wileyonlinelibrary.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Wein
state-10 are given in the Supporting Informa-
tion. Once we have designed an accumulator 
response of the form shown in Figure  1 , we 
can carry out a remarkable range of arith-
metic computations in a most effi cient (in 
terms of the number of cells required), fast 
(PCM cells have recently [  35  ]  been switched 
in 500 ps) and straightforward manner (as 
we demonstrate experimentally below). Fur-
thermore, the phase-change accumulator 
cell both calculates (processes) and stores 
the result of such computations simultane-
ously in the same cell, potentially providing 
a powerful form of beyond von-Neumann 
computing. 

 We experimentally implemented phase-
change accumulators working in various 
bases using the pseudo-device structure 
shown in  Figure    2  a. Here the top electrode 
is a lithographically defi ned Pt/Ti pad con-
tacted by the tip of a conductive atomic force 
microscope (C-AFM), and the active layer 
is Ge 2 Sb 2 Te 5 . The amorphous carbon (a-C) 
layers in the device are electrically conduc-
tive sp2-rich material and allow for tailoring 
of the electrical and thermal properties of the 
stack while at the same time providing envi-
ronmental protection of the Ge 2 Sb 2 Te 5 , such a-C layers having 
been used successfully in previous investigations of phase-
change scanning probe storage. [  16–18  ,  36  ]   

 A static  I – V  curve for our pseudo-devices, as measured by 
the C-AFM, is shown in Figure  2 b (further details of our experi-
mental procedures are given in the Supporting Information). 
In this case the top electrode was positive, but note that the 
 I – V  curve is essentially polarity independent in phase-change 
systems [  6  ]  since phase-change materials undergo unipolar 
switching, unlike many bipolar switching memristive materials 
and devices. [  5–9  ]  It can be seen that the threshold voltage for 
this particular confi guration is around 3.7 V. When we apply 
input pulses with an amplitude greater than this threshold (and 
typical pulse durations of approximately a hundred nanosec-
onds), then the cell switches into the SET state with a single 
pulse as in normal binary memory operation. However, if we 
reduce the input pulse amplitude (while keeping the duration 
constant), then the number of pulses required to reach the 
SET state increases, as shown Figure  2 c. By appropriate choice 
of the input pulse amplitude (and duration - here we used a 
full-width-half-maximum (FWHM) pulse width of  ≈ 100 ns, see 
Figure S2 in the Supporting Information) we can thus tailor the 
number of pulses required for complete switching (note that for 
sensing, i.e., reading, the resistance of a device a voltage is used 
that is far below the threshold, typically  ≤ 1 V, so avoiding any 
read-induced changes in resistance). In  Figure    3  a for example 
we show a case for which 10 pulses are required to reach the 
low resistance state, yielding a base-10 accumulator suitable for 
performing arithmetic directly in base-10 using a single phase-
change cell. In Figure  3 b we show accumulator responses suit-
able for working in a variety of different bases, specifi cally in 
this case base-2, base-4 and base-6. Experimentally we have 
heim Adv. Funct. Mater. 2013, 23, 2248–2254
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     Figure  3 .     a) Experimental implementation of a base-10 accumulator. The resistance of the phase-change cell remains high after the input of each of 
nine pulses, but after the 10th pulse the resistance of the cell is at or near the SET resistance, so falling below a chosen decision level (here 300 k Ω ). 
b) Experimental implementation of base-6, base-4, and base-2 accumulators in which the low resistance state is reached after, respectively, six, four, 
and two input pulses. Note that all lines shown are guides for the eye only.  
been able to demonstrate accumulators working up to as high 
as base-512 (Figure S3 Supporting Information), although 
lower-order accumulators provided more controllable, reli-
able and repeatable results with our C-AFM based approach 
(we would expect superior controllability with real PCM-type 
devices). It will be noticed that the responses of Figure  3  show 
a more gradual change of resistance (with pulse number) than 
evidenced for the PCM cell results of Figure  1 . This most likely 
refl ects a more gradual change in crystallization in the experi-
mental case, resulting from the differences in the structure of 
our pseudo-devices from those of real PCM cells (specifi cally 
the PCM cell has a physically-confi ned active (Ge 2 Sb 2 Te 5 ) region 
and a bespoke TiN heater-electrode, whereas our pseudo-devices 
have a continuous Ge 2 Sb 2 Te 5  layer and no heater electrode). 
Nonetheless, it can be seen from Figure  3  that the detection 
window (i.e., difference in resistance between states above and 
below the decision level) for our pseudo-devices is easily high 
enough for practical use, being typically around 100 k Ω  or so.  

 We now demonstrate addition, directly in base-10 using the 
accumulator response of Figure  3 a. For example, to perform 
the sum (1 10  + 3 10 ) we started with the cell of Figure  3 a in the 
amorphous (RESET) state and applied (3.12 V, 100 ns FWHM) 
pulses equal in number to the fi rst addend (one pulse in this 
case), thus leaving the phase-change accumulator in state-1 (as 
shown in Figure  3 a). We then applied (identical) pulses equal 
in number to the second addend (three further pulses in this 
case), causing the base-10 accumulator to move on to state-4. 
The phase-change cell thus carried out the addition (1 10  + 3 10 ) 
and simultaneously stored the result, since the cell resides in 
state-4. To access the result of the sum we applied identical 
input pulses until the cell reached its low-resistance state (i.e., 
state-10), with the complement (to the base) of the number 
of pulses needed revealing the result; six pulses were needed 
in this case, so the answer to (1 10  + 3 10 ) is, as expected, 4 10 . 
Should the result of an addition exceed 9 10 , then the base-10 
accumulator is reset, a carry forward recorded, and the process 
continued until the required number of pulses have been 
inputted to the accumulator (for example (7 10  + 6 10 ) would lead 
to the cell being reset once, so a carry forward of one, with the 
accumulator left in state-3). As already mentioned, this ability 
© 2013 WILEY-VCH Verlag GmAdv. Funct. Mater. 2013, 23, 2248–2254
to work directly in high-order bases with a single phase-change 
cell is exceedingly effi cient; by comparison a conventional 
binary 3-bit full adder requires fi ve AND, fi ve XOR and two OR 
gates, i.e., around 100 CMOS transistors, to perform the equiv-
alent of the addition of two base-8 numbers. We should also 
mention that phase-change devices have the potential for excel-
lent scalability, down to the single-nanometer scale, [  36–38  ]  so that 
a phase-change based approach to computing could potentially 
offer very signifi cant savings in terms of chip area as compared 
to conventional CMOS implementations. 

 We now demonstrate experimentally a simple and reliable 
way to perform electronic subtraction using nanoscale phase-
change accumulator cells. Here we choose to work in base-6 
(demonstrating the fl exibility of the phase-change arithmetic 
computing approach), so that input pulse amplitude and dura-
tion is tuned to yield base-6 accumulator responses of the form 
shown in Figure  3 b. To perform subtraction we use two cells 
(both working as base-6 accumulators) and the fact that the dif-
ference between two numbers is the same when a common 
number is added to each of the numbers in the subtraction. 
Specifi cally here we performed the subtraction (3 6   − 1 6 ), using 
the following steps: i) fi rst we inputted pulses equal in number 
to the minuend (3) to Cell A; ii) then we inputted pulses equal 
in number to subtrahend (1) to Cell B; iii) next we applied fur-
ther pulses to Cell A until the resistance of Cell A fell below 
the decision level (three pulses were needed here, see Figure  4 ); 
iv) fi nally we inputted to Cell B an identical number of pulses 
to that needed in stage (iii) (i.e., three pulses). At the end of this 
process the result of the subtraction is stored in the fi nal state of 
Cell B; here Cell B was in state-4. To access the result we count 
the number of additional (identical) pulses we need to apply to 
Cell B until its resistance falls below the decision level; here two 
pulses were necessary (see  Figure    4  ), yielding the correct result. 
Thus, we have experimentally carried out the base-6 subtraction 
(3 6   −  1 6 )  =  2 6 , using two base-6 phase-change accumulators and 
re-casting the subtraction as (3 6   −  1 6 )  =  (3 6   +  3 6 )  −  (1 6   +  3 6 ). Note 
that if we swopped the roles of Cells A and B in the above sub-
traction method, re-casting the subtraction as (3 6   +  5 6 )  −  (1 6   +  5 6 ), 
the fi nal result would be stored in Cell A and accessed as the 
complement to the base of the number of pulses needed to take 
2251wileyonlinelibrary.combH & Co. KGaA, Weinheim
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     Figure  4 .     a) Experimental implementation of subtraction using the two-cell method and working directly in base-6. Here we perform the computation 
of (3 6   −  1 6 )  =  2 6 , using two base-6 phase-change accumulators (Cell A and Cell B) and re-casting the subtraction as (3 6   −  1 6 )  =  (3 6   +  3 6 )  −  (1 6   +  3 6 ), 
with the result being stored in Cell B. In (b) we use a single-cell division algorithm to fi nd if the numbers 2 and 4 are factors of the number 6. Cell A is 
confi gured as a base-2 accumulator while Cell B as a base-4; six pulses are input to each cell (re-setting each time the decision level is crossed) and a 
cell whose end point is below the decision level has its base as a factor. Here 2 is a factor of 6 since Cell A ends up in the low-resistance state, but 4 is 
not a factor of 6 since the end-point for Cell B is a high-resistance state. Note that all lines shown are guides for the eye only.  

     Figure  5 .     A simple phase-change integrate-and-fi re neuron circuit that 
exploits the accumulation properties of a single phase-change cell to pro-
vide an effi cient neuronal mimic.  
Cell A below the decision level; this provides algorithmic con-
sistency with the addition method described earlier, which may 
be useful in practical systems.  

 Note that since multiplication can be implemented by 
sequential-addition, and division by sequential-subtraction, it 
is clear that we can also carry out multiplication and division, 
directly in high-order bases, using nanoscale phase-change 
accumulators. Indeed, it is possible to carry out division directly 
using a single phase-change accumulator rather than by a 
two-cell sequential subtraction approach. In this alternative, 
single-cell division ‘algorithm’ we use the divisor to defi ne the 
threshold, rather than the base, inputting to the accumulator 
pulses equal in number to the dividend, re-setting each time 
the threshold is passed to reveal the quotient, with the reminder 
stored in the cell end-state (see ref. [29] for details). While such 
an approach to division is attractive in terms of effi ciency, with 
only a single cell being needed and division being performed 
directly rather than by successive subtractions, the necessity to 
re-confi gure the accumulator (in terms of the number of pulses 
required to switch the cell) for each divisor encountered is not 
attractive for general computation. However, this method of 
division is well suited to parallel factorization. In Figure  4 b, 
for example, we show the process for parallel factorization 
of the number 6 (here, for demonstration purposes, we limit 
ourselves to fi nding if 2 and 4 are factors of 6). To do this we 
used two cells operating in parallel: Cell A was set-up so that 
it switched after two pulses were inputted, i.e., it operated as 
a base-2 accumulator, while Cell B was set-up as a base-4 accu-
mulator. Next we inputted to each cell pulses equal in number 
to the number to be factored (6 in this case), resetting a cell (or 
in our case, since, as previously shown, re-amorphization in the 
C-AFM environment is diffi cult, [  16–18  ]  we moved to a new cell) 
should it cross the decision threshold. Once this process has 
been completed, any cell whose end point is below the decision 
level has its base as a factor. Here, as shown in Figure  4 b, after 
the inputting of 6 pulses to both cells the end-point of Cell A 
was below the decision level, so 2 is a factor of 6, whereas the 
end-point of Cell B was above the decision level, so 4 is not a 
2 wileyonlinelibrary.com © 2013 WILEY-VCH Verlag G
factor of 6. Note that in our C-AFM system it was not possible 
to apply pulses in parallel to multiple cells (since we only have 
one tip), however, fast parallel operation would be feasible with 
real PCM-type devices. 

 The natural accumulation process inherent to phase-change 
materials and devices and that we have used above to perform 
arithmetic computations, can also be used to provide a particu-
larly simple form of integrate-and-fi re neuronal mimic. For 
example, the phase-change cell in the neuron circuit of  Figure    5   
accumulates excitations from incoming pulses and fi res (i.e., 
switches to a low resistance state), causing the comparator to 
switch, only after the receipt of a certain number of pulses. If 
the mushroom-type PCM cell and input pulses of Figure  1  were 
used, the series resistance  R  S  (in Figure  5 ) chosen to be around 
half the PCM RESET resistance (here  R  RESET   ≈  750 k Ω , so let 
 R  S   ≈  375 k Ω ), and a reference voltage ( V  REF ) chosen for the 
comparator of  V  READ /2, then for the fi rst 9 pulses the read input 
to the comparator would be below  V  REF , but would rise above 
the reference with the 10th pulse, causing the comparator to 
switch and (via a pulse circuit) generate an output spike (note 
mbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2013, 23, 2248–2254
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that  V  READ  could be applied separately to the excitation pulses, 
or more practicably could be incorporated into such pulses by 
using a simple DC offset, as shown in the fi gure). The number 
of pulses needed to make the phase-change neuron fi re can of 
course be readily adjusted by changing the pulse amplitude 
and/or duration used. The circuit of Figure  5  is considerably 
simpler than conventional CMOS neurons that can require, 
depending on their complexity, around 8 to 20 CMOS transis-
tors to implement. [  39–42  ]  (although some of these transistors, 
typically four or fi ve, [  43  ]  are used to implement comparator-type 
amplifi ers, which are also used in our design of Figure  5 ). The 
fact that phase-change cells have also recently been shown to 
be capable, by using the multi-level resistance regime, of emu-
lating a synaptic-like response [  19–21  ]  means that it may well be 
possible to design and build systems in which both neuronal 
and synaptic-like responses are provided by phase-change 
devices (operating respectively in the accumulation and multi-
level resistance regimes).  

 Accumulation might also be used to provide a form of serial 
non-volatile logic, since accumulator responses, such as those 
shown in Figure  3 , also perform a serial AND (or NAND) func-
tion. For example a base-2 accumulator provides a 2-input serial 
AND operation, a base-4 accumulator a 4-input AND etc. Such 
phase-change logic has the advantage of being non-volatile, 
but the requirement to enter data serially, to reset the cell after 
each logic operation and to have a separate read cycle means 
that such devices would not be logic gates in the classical sense. 
Nonetheless, their simplicity and effi ciency of implementation 
may be attractive for certain specialized applications. Interest-
ingly we note that 13-input AND/NAND gates are commonly 
available from many semiconductor manufacturers (see e.g., 
ref.  [  44  ] ) and typically need over 50 CMOS transistors to imple-
ment. A 13-input serial phase-change AND/NAND could how-
ever be realized with a single nanoscale phase-change cell, 
using the base-13 accumulator response shown in Figure S3 
(Supporting Information). 

 So far we have considered only integer arithmetic. However, 
phase-change based computing with multi-digit numbers is 
readily implemented by using separate phase-change cells to 
represent powers of the base. For example, in base-10 eight 
phase-change cells could represent the integers 0 to 99999999 
or the fi xed point the number 0 to 9999.9999. Arithmetic com-
putations using such multi-digit and fi xed point numbers would 
be implemented using the above algorithms on a digit by digit 
basis. The use of multi-digit numbers would also allow us to 
perform full fractional division using the simple and practicable 
two-cell subtraction method described above. For example, sup-
pose we wish to compute the division 9 10 ÷2 10 ; we use two cells 
(A & B) both operating as base-10 accumulators and re-cast the 
division as the successive subtraction, re-setting both cells each 
time a subtraction has been completed. The number of resets 
reveals the quotient, while the remainder will be stored in the 
end-state of Cell B (as the number of pulses needed to take Cell 
B from its end-state resistance to a resistance below the deci-
sion level). Thus for 9 10 ÷2 10  this two-cell successive subtraction 
algorithm yields the expected result of 4 remainder 1. Now, to 
attain a full fractional result we simply ‘move’ the remainder up 
to a cell representing the next higher power of the base, thus 
our remainder 1 becomes 10, and repeat the two-cell successive 
© 2013 WILEY-VCH Verlag GAdv. Funct. Mater. 2013, 23, 2248–2254
subtraction process. Thus, we perform 10 10 ÷2 10  by successive 
subtraction of 10-2, yielding the result 5 and so revealing that 
9 10 ÷2 10   =  4.5. 

 Finally, in this section, we would like to point out that much 
of the related control hardware needed to implement a practi-
cable arithmetic unit capable of implementing the above arith-
metic processes in a self-contained way can also be provided by 
phase-change devices. For example, we showed above that the 
complement of a number was often required (e.g., to access the 
results of additions and multiplications). Such a complement 
could be generated and stored in a phase-change cell by a form 
of offset copying from the cell containing the number whose 
complement is desired. For example, to generate and store the 
complement of the (base-10) number 3 contained in a partic-
ular phase-change cell, we utilise a second cell initially in the 
reset state; we then apply input pulses to the fi rst cell until it 
reaches the SET state, while also applying the same number of 
pulses to the second complement cell. To transform the fi rst 
cell to the SET state requires 7 pulses, hence the number 7, the 
base-10 complement of 3, is generated and stored in the second 
complement cell in this example. Negative numbers could be 
handled by the equivalent of a sign-bit, for example by using 
the SET/RESET state of a sign-cell to represent positive and 
negative numbers (or vice-versa). 

   3. Conclusions 

 In summary, we have shown that the accumulation regime of 
nanoscale phase-change memory type devices can be used to 
perform not only the full range of arithmetic operations (addi-
tion, subtraction, multiplication, division), but also carry out 
complicated non-binary processing and computation, including 
parallel factorization and fractional division. Such arithmetic 
computation is carried in a non-von-Neumann architecture in 
which processing and non-volatile storage are carried out simul-
taneously by the same nanoscale phase-change cell. Further-
more, computations can be carried out directly in high-order 
bases, such as base-10. Thus phase-change accumulator-based 
arithmetic computing has the potential to be extremely effi cient 
when compared to conventional CMOS-based arithmetic proc-
essors. The same accumulation property that endows an arith-
metic capability can also be used to provide a simple form of 
non-volatile logic and to implement a simple and effi cient form 
of nanoscale phase-change neuron. Thus, phase-change devices 
potentially offer a range of functionality that goes beyond 
simple binary memory to encompass new forms of phase-
change based computing. 

   4. Experimental Section 
 Phase-change pseudo-devices comprising e-beam lithographed top 
electrodes fabricated on top of a continuous 10 nm thin fi lm of Ge 2 Sb 2 Te 5  
(GST) sandwiched between two conductive sp-2 rich a-C layers, were 
used, as shown in Figure  2 a (and in Figure S1a of the Supporting 
Information). The lower a-C layer was prepared to be highly conducting 
( σ   ≥  10 2   Ω   − 1 m  − 1 ) and in combination with a Ti layer provides the bottom 
electrode. The top a-C layer provided environmental protection for the 
GST and was also conducting, but less so than the bottom a-C layer 
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(  σ    ≈  50  Ω   − 1 m  − 1 ). The basic Ti/a-C/GST/a-C structure was similar to that 
used successfully in several studies to demonstrate scanning probe-
based storage using phase-change materials [16–18  ]  and was prepared by 
DC/RF magnetron sputtering. Note that as a consequence of additional 
series resistances caused by the inclusion of the a-C layers, the 
resistance difference between amorphous (RESET) and crystalline (SET) 
states in the pseudo-devices was substantially smaller than that seen in 
commercial PCM devices. On top of the Ti/a-C/GST/a-C structure an 
array of evenly distributed, 15-nm-thick Pt dots were fabricated using 
standard e-beam (NanoBeam nB3 system) lithographic patterning and 
metal sputtering. A 5-nm Ti layer was used as an adhesion layer between 
Pt dots and the a-C capping layer and the resulting 20-nm-thick Pt/Ti 
combination gave an excellent Ohmic contact. The Pt/Ti dots served as 
a fi xed top electrode and were typically 100 nm in size (diameter). The 
Pt/Ti electrodes were contacted using a conductive-diamond AFM tip 
(Bruker AFM probes) using a Bruker Innova SPM system with C-AFM 
capability. The conductive-diamond tips were durable and had a very 
high-current carrying capacity (unlike metal-coated C-AFM tips). 

 Further details of all experimental methods (and of the theoretical 
and computational model used for the simulation results of Figure  1 ) 
are given in the Supporting Information. 

   Supporting Information 
 Supporting Information is available from the Wiley Online Library or 
from the author. 
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