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Recent advances in Cellular Automata (CA) represent a new, computationally efficient method 

of simulating flooding in urban areas.  A number of recent publications in this field have shown 

that CAs can be much more computationally efficient than methods that use standard shallow 

water equations (Saint Venant/Navier-Stokes equations). CAs operate using local state-

transition rules that determine the progression of the flow from one cell in the grid to another 

cell, and in a number of publications the Manning’s Formula is used as a simplified local state 

transition rule.  Through the distributed interactions of the CA, computationally simplified 

urban flooding can be simulated, although these methods are limited by the approximation 

represented by the Manning’s formula.  

An alternative approach is to learn the state transition rule using an artificial intelligence 

approach. One such approach is Genetic Programming (GP) that has the potential to be used to 

optimise state transition rules to maximise accuracy and minimise computation time.  In this 

paper we present some preliminary findings on the use of genetic programming (GP) for 

deriving these rules automatically.  The experimentation compares GP-derived rules with 

human created solutions based on the Manning’s formula and findings indicate that the GP 

rules can improve on these approaches. 

 

INTRODUCTION  

 

Flood modelling is a key method for such techniques as hazard mapping, uncertainty analysis, 

climate change scenarios, and catchment enhancement design such that potential damage can be 

averted.  Unfortunately such models can be very computationally expensive, and with large (or 

very high resolution) catchments, the demand for computationally efficient methods is great. 

These standard methods are typically based on a form of grid/mesh covering the target area 

where each grid cell contains a terrain elevation level and a water level among other data. 

Typical physically-based flood models solve Shallow Water Equations (SWEs), which are 

computationally expensive, and recent literature shows efforts to find more computationally 

efficient methods often by attempting to reduce the complexity of terms within the SWEs [1]. 

Examples of the flood modelling approach include the JFLOW model [2], Urban inundation 

Model (UIM) [3], and the diffusion version of LISFLOOD-FP [4]. Other models use the full 

SWEs but focus on the use of multi resolution grids or irregular mesh grids and rely on highly 

optimised code to achieve high performance, like InfoWorks ICM [5] and Mike 21 [6] [7]. 



These last two models are commercial software packages, and the code applied in the 

optimisation techniques are not in the public domain. 

An alternative to these approaches that has recently been proposed is the use of cellular 

automata in this domain.  Cellular Automata, initially developed in the 1950s [8] represent a 

computationally efficient method, which consist of a lattice of cells , whereby  a state-transition 

rule using only local neighbour states is used to calculate the state change in the automaton.  

From a flood modelling perspective, the state of the cell represents the water depth in each cell, 

and the state transition rules calculate the amount of flow between cells given the water and 

terrain levels of itself and its neighbouring cells from the previous time step in the simulation. 

The other major factors used within each given grid cell for the calculation of the next water 

level are the Manning’s terrain roughness factor, and the cell size in metres. The objective is to 

use such local interactions, which are simple to process, and yet are capable of creating far 

more complex emergent behaviours, as has been shown in many other application areas 

including: John. H Conway’s famous ‘Game of Life’ [8], simulating forest fire [9], and 

chemical reaction-diffusion [10], to name but a few. The main driver for using the CA approach 

is to improve computational efficiency whilst maintaining or perhaps slightly improving on the 

accuracy of the standard SWEs. 

Work by Dottori & Todini [11], demonstrates how an open channel flow rate formula 

(Manning’s formula) may be used as a good approximation of the local transition rule, within 

limitations of the cell size and time step. Both Dottori & Todini [11] and Hunter, et al. [1] 

describe a checkerboard pattern in execution when either the cell size is too small, or time step 

is too large when oscillations can occur.  Other results have supported this finding and a number 

of different state-transition rules have been proposed that deliver improved accuracy and 

stability in a cellular automaton simulation.  Clearly the state-transition rule is a key component 

of the cellular approach and should be the focus of experimentation to improve CA 

performance.  Manning’s formula has proved effective but its instability makes it difficult to 

use in all circumstances. The underlying reason for this is that the Manning’s formula is based 

on the flow of an open channel (e.g. a river), and using it in both 2D of cells which represent 

small basins (the area covered by the cell), and fails to capture all the dynamics including 

momentum and energy conservation.  

The literature demonstrates a number of techniques for limiting either flows rates, or 

conversely time step taken, in order to avoid the limits of Manning’s formula as the 

approximation of the local state transition rule. All these approaches view this local rule as 

static, and attempt to work around its flaws and limitations whereas an alternative approach is 

to view the state transition rule as a possible candidate for change and update. In particular this 

paper addresses the question of whether the rules can be learned from simulation data by using 

artificial intelligence techniques. In this work we investigate the possibility of using an 

evolutionary computing technique, called Genetic Programming (GP) Koza [12] and Banshaf, 

et al. [13] to create new state transition rule for CA modelling flood inundations. In the field of 

both computer science and hydrology a wide variety of projects use evolutionary/genetic 

algorithms, in order to perform optimisation. GP extends these powerful search and 

optimisation algorithms, from a fixed number of decision parameter to the creation and 

optimisation of an entire computer program (or mathematical function) of variable size and 

shape. This technique has been used on simple symbolic regression tasks by White, et al. [14], 

where often thousands of training points are required, for a spread of decision variables values, 

in order to establish a mean fitness. Since the state transition rule of a CA is instantiated for 

multiple cells, and then for multiple iterations/time steps, this represents an ideal candidate for 



the training of GP. We use the output on a simple training terrain of the Urban Inundation 

Model [3], with a simple inflow hydrograph, as the target for the combined Genetic 

Programming Cellular Automaton (GPCA) system. I.e. it is the global emergent behaviour 

which is trained upon, in order to try and learn the underlying local state transition rule. 

This paper assesses the capability of the GP to derive accurate and fast transition rules that 

can compete with Manning’s formula in flood modelling.  Although computationally complex 

to train, once GP-derived formula are created, these should generalise to other flood modelling 

examples outside of the training set. In the following experimentation we perform two main 

batches of tests, the first where the GPCA system has a minimum hydraulic slope explicitly 

preprogrammed (i.e. the GP does not need learn this); secondly we also attempt to learn the 

Manning’s formula and the minimum hydraulic slope.  

 

METHOD 

 

Cellular Automata System 

The change of each cell state is based upon the current cell state and its neighbouring cells 

states, from the previous iteration. For the purposes of this paper the Von Neumann 

neighbourhood is employed (Shown in Figure 1). 

 

 

 

 

 

Figure 1. The Von Neuman Neighbourhood. 

 

The state transition rule is broken down in to the four possible pairs of cells within each 

neighbourhood. For each pairing of cells, if the neighbouring cells water level is lower (i.e. only 

for possible outflows from the main cell), then the given GP individual is used to calculate the 

amount of water outflow. Once this is performed for each pairing of cells within each 

neighbourhood, then outflows will have been written for every cell pairing with a water level 

difference; this is done to avoid excessive processing of each pair of cells twice (i.e. in each 

direction) (Shown in Figure 2, stage 1). Once all inter-cell fluxes are calculated then, each cell 

subtracts the outflows to its neighbouring cells from its current water level, and adds any 

inflows from neighbouring cells (Shown in Figure 2, stage 2). Through the combination of 

applying the given function in all four directions for each cell, in each iteration, each cell 

calculates a new water level for the next iteration.  Readers are directed to (Wolfram, 1984) for 

a detailed description of the cellular automaton approach used here. 
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Figure 2. Two stages to each CA iteration; Stage 1 for every cell pairing with a water level 

difference a flow is calculate. Stage 2 each cell updates its new water depth by means of 

subtracting outflow and adds any inflows. 

 

Genetic Programming System 

 

Genetic programming is based on work by Koza [12], which evolves solutions as tree structures 

rather than the more common linear chromosome seen in genetic algorithms.  Nodes on the tree 

are separated into two groups, functions and terminals. Functional node operations include the 

simple mathematical function plus, minus, protected division (whereby division by zero returns 

zero), multiplication, and a heavily protected power function. Logic operators include equality, 

greater than, less than, and a triple branched if-statement (first branch conditional, second if 

true, third if false). Each GP tree has available to it the following terminals (as these are 

different for each cell pairing): the water level and depth, and terrain level for both the main and 

neighbouring cell; also the cell size, terrain roughness factor, and time step (totaling 9 variable 

values). Generated GP trees also have available constant integer value from 0 to 10 inclusive. 

The GP algorithm works in a similar way to other evolutionary algorithms, with the 

generation of a random initial population of potential individuals, which are then evaluated 

against a given target to obtain an error value for each. In the case of the GPCA system, a 

simple CA simulation is run for each GP individual; where the GP instantiated between each 

cell pairing, at each time step (as described in the CA method section), and the error value is 

calculated between target simulation of each GPCA simulation. The population of GP 

individuals is sorted by its fitness level (1/error), and the top proportion of individuals is copied 

directly into the next generation (known as elitism). In order to fill the rest of the new 

population, individuals are selected from the old population (given the selection schema, e.g. 

fitness proportion roulette, or tournament). Once an individual is selected, it has a small chance 

of going straight through to the new population unchanged, and a small chance of being 

mutated slightly before copying to the new population, and finally the greatest chance of being 

crossed-over with another selected individual. During both cross-over and mutation, a minimum 

depth is placed upon tree growth, as unbounded GP is prone to ‘bloat’ [13]. 

Mutation operators allow for the change of one node to a different operation, variable or 

constant term, or the insertion or removal of a given node. It is also possible to grow a new sub-

tree to a given minimum depth. The most powerful operator in GP is the cross-over, which 

given two parent GP trees, selects at random a node and its sub-tree and transplants it with 

another random node and sub-tree in the other parent. Both operators are restricted by the 

minimum global depth of the GP trees. 

Stage 1 

Outflow 

Stage 2 



Genetically Programed Cellular Automata System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Genetically Programmed Cellular Automata system overview. 

 

EXPERIMENTAL SET-UP 

 

Training is conducted upon a small hypothetical terrain case (20x30 cells), which has a slight 

slope in both dimensions, as well as a pond and crest area two-thirds along the longest 

dimension. A uniform hydrograph is used as inflow for all cells in the first hour of the 

simulation, of 20mm/hr. A uniform roughness factor of 0.01 is applied to all cells, which start 

dry, and the simulation is run for 4 hours to allow water level to rise and fall at the key points in 

the terrain. The border condition reflects inwards for each border cell, apart from a single out 

flow cell at the lowest corner of the slopes, from which 10mm is subtracted from the external 

border cell.  This simulation has been run in UIM [3] to produce a target water depth for the 

grid second of the simulation, which is recorded to disk. Cell sizes of 50m, 25m and 2m are 

processed as potential targets. 

The GPCA system generates a random initial population, with the following parameters 

(show in table 1); which were discovered to be reasonably effective from limited testing. A 

static 1 second time step is used for each CA iteration, and processed for 240 minutes of 

simulation time at cell sizes of 50m and 25m. The RMSE of each cell in each time step is 

compared against the target simulation.  

If the minimum water depth of 0.001 is not met then no out flow is processed; also if 

outflows exceed the main cells current water depth, they are normalised by this amount; finally 

a cell may not accept more inflow than water depth is present of all of its neighbouring cells. 
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Table 1. Genetic Programming Parameters 

 

Initial GP tree depth 3 

Growth type Full 

Maximum depth 10 

Mutation chance 0.1 

Cross-over chance 0.9 

Population size 100 

Generations 100 -1,000 

Selection Type Tournament (size 10) 

 

The Manning’s Formula 

In order to verify the system and to provide a human benchmark for the GPCA system, a GP 

tree has been manually configured, using the Manning’s formula to calculate the flow rate; 

which is then simplified with the discharge and water depth change formula (Shown in Figure 

4). Finally a minimum slope is used to smooth out the simulation, which also minimises the 

small error compared to the UIM simulation. 

 

 
 

Figure 4. Human programmed GP tree, derived from the combing the Manning’s, discharge 

and water depth change formula, and finally a minimum hydraulic slope which is highlighted. 

 

RESULTS 

The minimum hydraulic slope has proved difficult to discover by the GP during initial training 

runs (shown in figure 5). It is thought that this is due to fact that this occurs infrequently during 

the simulation, and because the outflow so abruptly drops off; thus not following the general 

pattern of the rest of the simulated cells, from which the GPCA system is learning. 

Experimentation has been conducted with the highlighted minimum slope sub tree, both 

explicitly pre-programmed, and without; which demonstrates this (shown in figure 5). None of 

the GP individuals managed to exceed the fitness of the Manning’s formula (Figure 4), when 

learning both the Manning’s formula section and the minimum hydraulic slope (implicit). 

However a number of GP individuals did manage to produce smooth simulations beyond that of 

the Manning’s formula with only a small disagreement with the target. It is noted that the target 

in this paper [3], is known to use the Manning’s formula, a minimum slope, and other formula 

such as a critical flow rate. It may be possible with larger amounts of training data, or even real-

world data, to train CA rules more which follow the pattern of multiple formulas with only 

minor disagreement with the global pattern. 

 



 
 

Figure 5. Mean fittest individuals of 10 GP populations, with the minimum slope both 

explicitly pre-programmed, and without; also shown is the fitness of the Manning’s formula 

(shown in figure 4). 

 

Figure 6, demonstrates a clear difference in performance of the GP where those with the 

minimum hydraulic slope explicitly pre-programmed perform significantly better. Also shown 

is a GPCA run which has managed to exceed to fitness of the human derived GP tree (Shown in 

Figure 4).  

 
 

Figure 6. Ponding point in training simulation water depths, for UIM, Manning’s (Figure 4), 

and fittest GP (Figure 5); for 50m and 25m simulations. 

 

DISCUSSION  

 

Figure 6 shows how a simulation run with the GP can produce stable results even after the 

training period of the simulation of 240 minutes. With expanded training it should be possible 

to create even more generalist rules; where current training may take in the order of hours to 

days to complete, once trained, a simulation is processed in seconds. Where the above 



experiments are conducted with a static time step of one second, it may be possible to both 

create rules which are faster than current rules, and are capable of operating where the use of 

the Manning’s formula alone begins to break down. Experiments have been conducted with a 

2m cell size, and one second time step, where the Manning’s formula breaks down; whereas the 

GPCA system is capable of producing rules which produce smooth simulations with only minor 

disagreement with the target, and which takes approximately an order of magnitude longer to 

process. 
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