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Abstract 30 

A major weakness among loading models for pedestrians walking on flexible structures proposed in 31 

recent years is the various uncorroborated assumptions made in their development. This applies to spatio-32 

temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this 33 

problem, a framework for the determination of localised pedestrian forces on full-scale structures is 34 

presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad 35 

of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, 36 

allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a 37 

single point inertial measurement from an AHRS is derived and shown to perform well against 38 

benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not 39 

take any predefined form nor does it require any extrapolations as to the timing and amplitude of 40 

pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a 41 

structure, an algorithm for tracking the point of application of pedestrian force is developed based on data 42 

from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is 43 

conducted on a real footbridge for validation purposes. A remarkably good match between the measured 44 

and simulated bridge response is found, indeed confirming applicability of the proposed framework. 45 

Keywords: loading from walking pedestrians, force location tracking, human-structure interaction, 46 

wireless sensor network, vibration serviceability of structures, pedestrian dead reckoning. 47 
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1 Introduction 48 

Modelling the behaviour of lightweight structures due to the presence of active human occupants is a 49 

major challenge in the structural engineering community. The complexity arises owing to the highly 50 

adaptive nature of human behaviour and the potential of lightweight structures for dynamic response due 51 

to footfall loads, known as ground reaction forces (GRFs). Both of these conditions can lead to human-52 

structure interaction phenomena and emergent crowd behaviour, which might influence dynamic 53 

structural stability. Human-structure interaction refers to a feedback loop in which the energy is 54 

transferred between two dynamical systems – a human and a structure. Emergent crowd behaviour refers 55 

to the ability of a crowd to exhibit complex behaviours, resulting from simple local interactions between 56 

crowd members. Because of this complexity, the behaviour of an individual pedestrian must be first 57 

understood in order to build a reliable crowd-structure system model, including any relationships between 58 

the components of the system. 59 

1.1 Background  60 

Significant progress on this topic has been made in recent years by looking for inspiration in other fields 61 

of science, traditionally seen as unrelated to structural engineering. Physics-based, biomechanically-62 

inspired modelling of pedestrian loading has revealed plausible mechanisms of pedestrian-structure 63 

interaction [1–5], some already supported by direct empirical evidence from laboratory investigations [6–64 

8] and indirect evidence from measurements and modelling studies on full-scale structures [2]. Further 65 

progress is being made by turning attention to and drawing from achievements in the field of cognitive 66 

science. It is becoming evident that, in order to capture natural pedestrian behaviour, the experimental 67 

conditions during laboratory trials must closely resemble real life experience [8,9]. However, while this 68 

approach can help to understand adaptations in pedestrian gait invoked by the presence of structural 69 

motion, it does not provide any information about the behaviour of a pedestrian in a crowd. Resolution of 70 

this issue has been long overdue in the field of research concerned with the dynamic stability of 71 

structures. 72 

Although increasingly sophisticated mathematical models of pedestrian-structure interaction and crowd 73 

dynamics appear regularly in scientific literature [10–12], most of them suffer from lack of hard evidence 74 

to support their main assumptions. This is particularly true for numerous models of synchronisation of 75 

walking pedestrians to structural motion or to each other, which are the most often purported mechanisms 76 

responsible for the build-up of large amplitude structural vibrations. This problem has persisted due to 77 

lack of suitable technology allowing pedestrians’ and structural behaviour to be measured simultaneously 78 

in situ [13]. As a result, loading models are usually derived and extrapolated to real life structures based 79 

on laboratory test data, most often collected while walking on a rigid surface in an environment offering 80 
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incongruent sensory information and preventing a test subject to freely adjust their gait. These limitations 81 

can be argued to be the root cause of instability of the London Millennium Footbridge [14]. 82 

To address the abovementioned limitations of current modelling approaches a few attempts have been 83 

made in recent years to develop a suitable framework for capturing pedestrian behaviour in situ. Two 84 

main technology trajectories are being explored – optical motion capture systems (MCS) and wireless 85 

inertial measurement units or monitors. These monitors, when using a fusion algorithm to compute global 86 

orientation (i.e. relative to the direction of gravity and Earth’s magnetic field) from a triad of 87 

accelerometers, gyroscopes and magnetometers along with motion data, are referred to as Attitude and 88 

Heading Reference Systems (AHRS), and a single monitor is an AHRS. An optical MCS, managed by a 89 

dedicated data processing unit, consists of cameras tracking coordinates of markers. 90 

1.2 Recent advances in in-situ measurement of pedestrian forces 91 

The applicability of wireless AHRS for characterisating pedestrian walking forces was studied by Van 92 

Nimmen et al. [15]. In their modelling framework acceleration data from an inertial monitor attached at 93 

pedestrian waist level were used to obtain information on timing of footsteps. Subsequently, the loading 94 

model proposed by Li et al. [16] was fitted for the duration of each single step. This model relies on  95 

summing five Fourier components representative of mean pacing frequency and its higher harmonics, 96 

with amplitudes scaled in proportion to the walker body mass. Although the approach (i.e. attempting in-97 

situ measurement of pedestrian forces on a real structure) is an advance on earlier work in the area, some 98 

limitations remain. For example, assigning a simple load shape function based on Fourier decomposition, 99 

even if implemented when footstep onset is not periodic, introduces certain artificial repeatability and 100 

neglects genuine time and amplitude variability present in force patterns, some of which can be associated 101 

with human-structure interaction. Some concerns were acknowledged by the authors of [15] during a 102 

discussion of findings from a series of controlled loading tests where up to six pedestrians walked on a 103 

full-scale footbridge. It was noted that, for the single record of vertical response presented, when the 104 

reconstructed force from four pedestrians (calculated using the proposed load modelling framework) was 105 

applied to a numerical model of the bridge, the vertical response levels were three times those measured. 106 

While there was some uncertainty about the modal characteristics of the footbridge used for the test, the 107 

main source of discrepancy was assigned to human behaviour and shortcomings of the adopted loading 108 

model [16]. Another possible source of simulation error is that walker position was inferred using an 109 

assumed constant walking velocity, calculated from bridge length and test duration. Accurately knowing 110 

the position of the walker is important as the modal force estimation requires the instantaneous amplitude 111 

of pedestrian loading to be modulated by the localised mode shape amplitude. 112 

More recently recommendations have been made by Dang & Živanović [17] as to a marker model for 113 

reconstructing pedestrian vertical force using an inverse dynamics procedure [18] based on data collected 114 
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from an optical MCS in laboratory conditions. In short, this procedure relies on division of the human 115 

body into a number of interconnected segments of known length and position. The mass and position of 116 

the centre of mass is then determined for each segment based on anthropometric data, allowing the 117 

motion of the centre of mass (CoM) of the whole body to be calculated, from which the force is obtained 118 

in line with Newton’s second law of motion. Dang & Živanović [17] found that, for stamping on a spot 119 

on a force plate, a model consisting of 19 markers was able to yield an absolute error in the amplitude of 120 

the component of force at the fundamental stamping frequency, against the directly measured force, of up 121 

to 15% in 90% of the trials. Additional tests were conducted during which a subject walked on a treadmill 122 

placed at the midspan of a flexible bridge. The absolute error in the average peak-per-cycle bridge 123 

response acceleration reconstructed based on the model, against the measured response, was up to 20% in 124 

92% of the trials. 125 

There are several practical drawbacks in using an optical MCS for measuring pedestrian kinematic data 126 

outdoors for pedestrian force reconstruction. Covering the volume of interest, e.g. the whole length of a 127 

footbridge, requires many cameras, at considerable economic and time cost [19,20]. Marker occlusion 128 

from fellow occupants of the structure and features of the environment is also a problem since, for 129 

optimal performance, all markers need to remain visible to at least two cameras at all times. Lighting 130 

conditions are a major problem, especially cloud cover alternating with strong sunlight, and operation of 131 

systems using active infrared light can be seriously compromised by fictitious data resulting from infrared 132 

components of solar radiation. Because of these limitations and due to growth in technology for personal 133 

instrumentation, for field work, a system using AHRS is advantageous. 134 

1.3 The scope of this study 135 

The goal of this study is to develop a framework for determining the localised vertical component of GRF 136 

on a structure in-situ while avoiding any rebuttable presumptions of the pedestrian behaviour. This could 137 

provide the means to calibrate both deterministic and stochastic models of GRFs of individuals and 138 

crowds along with structural response, and to investigate the interaction phenomena pertaining to the 139 

crowd-structure system, which could be critical for dynamic structural stability. Wireless AHRS were 140 

chosen due to practical advantages in system deployment, compact size and ease of use in the field.  141 

The rest of the paper is organised as follows. Section 2 presents a study conducted to corroborate a 142 

pedestrian vertical force model based on a single point inertial measurement acquired with an AHRS. A 143 

pedestrian dead reckoning algorithm used to reconstruct the instantaneous position of pedestrian’s foot 144 

based on data from a foot-mounted AHRS is then described in section 3. Another algorithm is proposed 145 

in section 3, which allows origin of the GRF vector (oGRF) to be located. Section 4 is concerned with a 146 

controlled pedestrian loading test performed on a 109 m long cable stayed footbridge to gather data 147 

allowing the proposed modelling framework to be validated. A study aiming at verifying the response 148 
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obtained using the proposed framework against the measured responses is presented in section 5. 149 

Concluding remarks are presented in section 6. 150 

2 Pedestrian loading model based on a single point inertial measurement 151 

The first step in formulating the proposed framework was to evaluate whether a single point inertial 152 

measurement could be used to reproduce pedestrian vertical force in enough detail for it to be suitable for 153 

use in structural loading models. With this aim in mind, a dedicated experimental campaign was 154 

conducted during which test subjects instrumented with AHRS and also monitored with an optical MCS 155 

performed walking tests on an instrumented treadmill located in the Light Structures Laboratory of the 156 

University of Sheffield, UK. The data obtained from the treadmill were used to benchmark the loading 157 

model. The study was approved by the University of Sheffield Research Ethics Committee. 158 

2.1 Overview of the experiments 159 

Six subjects (S1-S6), all healthy British male adults in their early twenties, participated in the study. Their 160 

basic anthropometric data are given in Table 1. All subjects had prior experience with walking on a 161 

motorised treadmill, all signed an informed consent form and all completed a physical activity readiness 162 

questionnaire. 163 

Table 1 Basic data for all experimental subjects for tests conducted on an instrumented treadmill. 164 

Subject ID S1 S2 S3 S4 S5 S6 

Mass pm  [kg] 90 75 81 60 93 64 

Height h  [m] 1.83 1.80 1.90 1.79 1.88 1.74 
Age [years] 21 22 21 22 21 21 

 165 

Each subject wore gym-type shoes and tight-fitting gym clothes allowing AHRS to be placed at four 166 

specific locations on their body, namely seventh cervical vertebra (neck), sternum, navel and fifth lumbar 167 

vertebra (lower back), as can be seen in Figure 1. At least 8 minutes of habituation to the experience of 168 

walking on the treadmill in the laboratory environment was given to each subject. Each subject then 169 

participated in six walking tests in which the imposed speed of treadmill belts was typically between 0.6 170 

and 1.4 ms-1. The choice of the speed was determined by first allowing the subject to establish a 171 

comfortable speed, and then varying the speed in approximately 10% increments, such that there was one 172 

speed faster than comfortable and four speeds slower. While speeds faster than 1.4 ms-1 have been 173 

observed among pedestrians walking on real structures [21], this upper speed limit was imposed for 174 

experimental protocol to comply with the requirements of the University of Sheffield Research Ethics 175 

Committee, to prevent tests subjects from discomfort. Each test lasted for approximately three minutes, 176 

which, after discarding periods associated with gait and instrumentation initiation and termination stages, 177 
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allowed approximately two minutes of data to be obtained for further processing. To prevent bias due to 178 

subject’s predictive behaviour and account for the change of behaviour with time e.g. due to fatigue, the 179 

order of tests was randomised. 180 

   

Figure 1 (a) OpalTM AHRS monitors attached at the sternum (S) and navel (N) levels (b) OpalTM AHRS 181 

attached at the fifth lumbar vertebra (lower back; LB) and seventh cervical vertebra (neck; 182 

C7). (c) A subject during a walking test on a split-belt instrumented treadmill. 183 

2.2 Instrumentation 184 

Three independent instrumentation systems were deployed during the experiments – an ADAL3D-F split-185 

belt instrumented treadmill [22], wireless APDM OpalTM monitors [23] and Codamotion optical MCS 186 

[24]. The analyses presented in this section are based on data from the former two systems only and their 187 

relevant specifications are given in more detail. The MCS mainly functioned as a data acquisition system, 188 

simultaneously recording force data from the treadmill and triggers generated by the wireless system in 189 

the form of sharp voltage spikes, allowing the beginning and end points of their signals to be identified 190 

within treadmill data. 191 

2.2.1 Instrumented treadmill 192 

The vertical forces exerted by a pedestrian on the walking surface were measured directly by the 193 

ADAL3D-F which incorporates a force plate under each of the two parallel treadmill belts. Built 194 

specifically for clinical gait analysis, the treadmill is stiff enough not to cause pollution of the measured 195 

signals with errors due to resonance and flexure. The data from the treadmill calibrated to engineering 196 

units of force were acquired via proprietary software at a rate of 1 kHz. 197 

2.2.2 Wireless AHRS 198 

Six APDM OpalTM AHRS and a wireless access point allowed real-time wireless data streaming and 199 

communication with a host computer. Each AHRS (or monitor), based on Micro-Electro-Mechanical 200 
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System (MEMS) technology, incorporates triaxial magnetometer sensing orientation against the direction 201 

of a magnetic field, triaxial accelerometer, and a triaxial gyroscope sensing rate of change of rotation, and 202 

a temperature sensor. In order to recover motion in three-dimensional space, the sensors axes form a right 203 

handed triad. AHRS resources are managed by a microcontroller and wireless communication is achieved 204 

with a radio module. In the laboratory treadmill tests monitor data were streamed wirelessly to a host 205 

computer, although each monitor also contains on-board flash memory allowing direct logging, a feature 206 

used during tests on a full-scale structure reported in section 5. OpalTM monitors are different from 207 

inertial measurement units which provide data on translational and rotational movements only. This is 208 

because OpalsTM incorporate a magnetometer, which allows their orientation to be determined relative to 209 

the Earth’s gravity and magnetic field [25]. 210 

Proprietary software of APDM (Motion Studio, version 1.0.0.2015) was used for system calibration and 211 

data retrieval. All monitor data were sampled at 128 Hz and, since the force amplitude for the chosen 212 

conditions was not expected to exceed twice body weight, accelerometer operational ranges were set to 2 213 

g. 214 

2.3 Data processing 215 

The main goals of data processing were to derive a pedestrian vertical loading model based on AHRS 216 

data and to benchmark this model against the vertical component of pedestrian GRF measured from the 217 

treadmill. This section describes procedures adopted in order to realise these goals and establishes quality 218 

indicators for evaluation of the proposed pedestrian loading model. 219 

2.3.1 Treadmill data 220 

After correcting for the drift associated with piezoelectric effect exploited by the force transducers, 221 

calibrated treadmill data were aligned with AHRS data using triggers recorded by the wireless system 222 

(see section 2.2). All data were set to a common sampling rate of 128 Hz. A delay-compensated 223 

antialiasing finite impulse response low-pass filter was used in down-sampling data from the treadmill. 224 

Exemplar calibrated force traces from the right and left leg corrected for drift are shown in Figure 2. All 225 

data are unfiltered and for S2 walking at 1.28 ms-1. Take-off (TO) and touch-down (TD) events at which 226 

the foot loses and regains contact with the ground, respectively, were detected in the drift-corrected data. 227 

This was necessary because reliable estimates of pedestrian force amplitudes in spectral calculations 228 

require that the analysed record should contain an integer number of pedestrian walking cycles. A force 229 

threshold of 10 N was chosen for these analyses. An exemplar application of this threshold for detection 230 

of TD (circles) and TO (dots) is shown in Figure 2, for S2 walking at 1.28 ms-1. 231 
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Figure 2 Exemplar body weight-normalised vertical pedestrian force from treadmill for right and left leg 232 

(RL and LL, respectively). Also denoted on the plot are touch-down (TD) and take-off (TO) 233 

events for both legs. 234 

2.3.2 AHRS data used in the pedestrian vertical loading model 235 

An underlying assumption in deriving a loading model based on a single point inertial measurement is 236 

that the recorded motion of the monitor represents the motion of the CoM of the whole body. A similar 237 

approach, albeit based on MCS data, was previously used in an attempt to reconstruct the lateral 238 

component of pedestrian force on laterally-oscillating ground [26], and human jumping forces [27]. The 239 

pedestrian force can be obtained directly by applying Newton’s second law of motion: 240 

 

   

F t( ) = mpg
static force
!

+ mpaM t( )
dynamic force
"#$ %$

  (1) 241 

where pm  is the pedestrian mass, g  is gravitational acceleration and Ma  is the acceleration measured by 242 

a monitor. This assumption is substantiated for acceleration data from a monitor attached at waist level 243 

since, although not directly linked to any anatomical body landmarks, the CoM excursions in walking can 244 

be expected to fluctuate around the superior aperture of the pelvis [28]. However this cannot be assumed 245 

to be true for other monitor locations. Nevertheless, performance of this simple loading model was tested 246 

on data from monitors attached at four different locations on the subject’s body: the fifth lumbar vertebra 247 

(lower back), navel, sternum and the seventh cervical vertebra (C7; neck), which are shown in Figure 1. 248 

Elastic straps were used to secure all monitors except when placed on C7 where the monitor was secured 249 

with medical-grade double-sided tape. The locations as well as the loading models that use monitors at 250 

these locations are referred to here as LB, N, S and C7, respectively. 251 

For the loading model to be applicable it must provide the pedestrian force in a reference frame 252 

meaningful from the structural standpoint, yet each monitor senses acceleration in its local (i.e. monitor) 253 

coordinate system (LCS). Despite the most careful monitor placement, its orientation is bound to change 254 

while walking, hence alignment of one monitor axis with the vertical direction in world (i.e. Earth) 255 

coordinate system (WCS) cannot be guaranteed and must be resolved from LCS data. For each data set 256 
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associated with a single time stamp, each monitor encodes a four-dimensional complex number, known as 257 

quaternion, representing monitor orientation against a magnetic North, West and vertical-up Earth 258 

reference frame. The data in LCS were transformed to WCS using quaternion algebra [29]. 259 

2.3.3 Evaluating the pedestrian vertical loading model 260 

For structural vibration serviceability, the most important component of pedestrian vertical force is at the 261 

fundamental walking frequency, hence evaluation of the pedestrian loading model presented in this paper 262 

mostly focuses on this force component. The evaluation of the data from the loading models is carried out 263 

in sections 2.4 and 2.5 while the theory behind the evaluation process is briefly described below. 264 

The proposed loading model assumes that monitor data represent motion of the CoM (see section 2.3.2) 265 

hence the force reconstructed with Eq. (1) is the total pedestrian force. The corresponding total pedestrian 266 

force from the treadmill was obtained by summing the force signals from both treadmill force plates (see 267 

Figure 2), and the amplitude of the force component of interest was extracted from the Fourier magnitude 268 

of force obtained using the procedure outlined in section 2.3.1. 269 

In order to assess temporal congruence of the model with data obtained directly from the treadmill, 270 

Fourier semblance was calculated [30]: 271 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 0.5 0.52 2 2 2

T M T M
T M

T T M M

f f f f
S f

f f f f

ℜ ℜ +ℑ ℑ
=
⎡ ⎤ ⎡ ⎤ℜ +ℑ × ℜ +ℑ⎣ ⎦ ⎣ ⎦

  (2) 272 

where f  is the frequency, 
,T MS  is the semblance between the force from the treadmill (denoted by 273 

subscript T ) and the force reconstructed based on OpalTM acceleration data (denoted by subscript M ), 274 

and ℜ  and ℑ  denote the real and imaginary part of the complex Fourier coefficient. This approach is 275 

more intuitive than simply stating phase difference in an angular scale since, similarly to the Pearson’s 276 

correlation coefficient, Eq. (2) returns values from –1 to +1, where –1 and +1 imply perfect out-of-phase 277 

and in phase correlation, respectively, and 0 implies lack of correlation. 278 

Performance of the loading model derived from Eq. (1) was assessed in statistical terms by estimating 279 

empirical cumulative distribution functions. Absolute percentage error value in the amplitude of 280 

pedestrian vertical force component at the fundamental walking frequency reconstructed based on 281 

OpalsTM acceleration data, FΔ , was used as a quality indicator. It was calculated according to: 282 

 
  
ΔF =

FT − FM

FT

×100%   (3) 283 
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where TF  and MF  are the amplitudes of Fourier force components at the fundamental walking frequency 284 

obtained from data from the treadmill and OpalTM monitor, respectively. 285 

2.4 Results and discussion 286 

Results from analysis of data collected from the experimental campaign are reported in this section. The 287 

data presented in section 2.4.1 relate to S2 (  mp = 75 kg  and 1.8mh = ) walking at 1.28 ms-1. The choice 288 

of this particular dataset was dictated by several factors. First, the walking velocity is close to the average 289 

walking velocity measured on some footbridges (1.3 ms-1) [21]. Second, the subject’s mass and height are 290 

close to the average values for the male English population aged 16-24 (74.8 kg and 1.776 m) [31]. 291 

Nevertheless, the relationships discovered in the data apply for all participants of the campaign. 292 

2.4.1 Amplitude and timing 293 

Exemplar truncated time histories of body-weight normalised vertical force measured directly by the 294 

treadmill and reconstructed based on Eq. (1) are presented in Figure 3. Footbridge vibration serviceability 295 

assessments rarely consider more than the first or second harmonics of pacing rate. However, to allow a 296 

more detailed comparison between the forces measured by the treadmill and the forces predicted by the 297 

loading model, a two-way second-order Butterworth low-pass filter with cut-off frequency 8 Hz was 298 

applied to all the data. Part (a) of Figure 3 shows the force calculated from a monitor attached at the lower 299 

back (LB) and navel (N), whereas part (b) shows the force calculated from a monitor attached at the 300 

sternum (S) and neck (C7). 301 

  302 
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Figure 3 Truncated time histories of pedestrian total vertical walking force from direct measurement 303 

(treadmill) and reconstructed based on acceleration acquired by monitors placed at (a) LB 304 

and N and (b) S and C7. 305 

Visual inspection reveals that the patterns of variation of the reconstructed forces (calculated from the 306 

monitor data) resemble the characteristics of the force obtained from the treadmill, both in amplitude and 307 

shape. A remarkably good match can be seen for model C7 and the worst match for model N. Variability 308 

in the force amplitude is particularly pronounced for model S, indicating the presence of considerable 309 

energy at higher frequency components. 310 

Single-sided power-preserving FFT magnitudes of data in Figure 3, relieved of the static (0 Hz) force 311 

component and taken over a longer interval, are presented in Figure 4. It can be seen in Figure 4 (a) & (b) 312 

that the proposed loading model can capture (at least qualitatively) all components of pedestrian vertical 313 

force, including those at 0.5p pnf f± , where pf  is the pacing frequency and n  is a positive integer, which 314 

are most likely associated with gait laterality [9]. Good agreement between the directly measured force 315 

and the force reconstructed from the model around pf  is visible in Figure 4 (c) & (d). The spread of 316 

energy into neighbouring force components is caused by adaptations in gait pattern throughout the test. In 317 

most of the cases the accuracy of the loading model degrades for higher harmonics, most strongly for 318 

model S. In contrast, Fourier amplitudes of force from model C7 give a remarkably good match with the 319 

amplitudes of force measured directly on the treadmill, up to the fourth harmonic. 320 
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Figure 4 Single-sided power-preserving magnitude of FFT of body-weight normalised vertical force  321 

from direct measurement (treadmill) and reconstructed based on data from monitors placed 322 

at (a) LB and N and (b) S and C7. The amplitudes of force components around the 323 

fundamental walking frequency are shown in more detail in (c) and (d).  324 

The overestimation of energy at higher frequencies is associated with noise in the kinematic data. This 325 

noise can arise due to soft tissue artefacts, slippage of the straps attaching monitors to subjects’ bodies or 326 

interference of the monitor with underlying clothing. Better signal-to-noise ratio might explain why 327 

model C7, based on acceleration from a monitor attached directly to the skin with double-sided tape at the 328 

level of the seventh cervical vertebra, consistently outperformed other models. 329 

The results of the analysis of data in Figure 4 for temporal similarity are presented in Figure 5. Reliable 330 

estimates of Fourier semblance are available for the components of force carrying significant spectral 331 
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energy. The most important of these components are at pnf , where n  is a positive integer. The 332 

corresponding values of Fourier semblance are denoted by dots in Figure 5. 333 

 

 
Figure 5 Fourier semblance between the force from direct measurement and reconstructed based on data 334 

from monitors placed at (a) LB, (b) N, (c) S and (d) C7. Black dots denote the values 335 

corresponding to the component of force at the fundamental walking frequency and its 336 

harmonics.  337 

In all cases time correlation in the component of force at the walking frequency obtained from the model 338 

and the treadmill is almost perfect, but can diminish for higher harmonics. The best temporal congruence 339 

can be seen for models S and C7. The aggregated measures of time correlation for the component of force 340 

at the fundamental walking frequency, for all of the conducted tests from a model associated with each 341 

monitor location, are given in Table 2. 342 

Table 2 Mean Fourier semblance and phase difference for the component of force at the fundamental 343 

walking frequency based on data reconstructed with the model and measured directly on the 344 

treadmill. Values of standard deviation are given in brackets. 345 

Model LB N S C7 
Fourier semblance [n/a] 0.986 (0.024) 0.977 (0.028) 0.973 (0.032) 0.987 (0.022) 
Phase difference [rad] -0.022 (0.170) 0.161 (0.144) 0.182 (0.151) 0.076 (0.149) 

 346 
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The time correlation between the models and the treadmill data is generally strong, with mean Fourier 347 

semblance above 0.97 and mean standard deviation up to 0.032. Directionality of this relationship is 348 

indicated by the sign of mean phase difference. Model LB tends to lag data from the treadmill, but the 349 

opposite is observed for all other models. Standard deviation of phase difference is generally similar. 350 

2.4.2 The influence of walking velocity 351 

The influence of walking velocity on the error in the predicted amplitude of the component of force at the 352 

walking frequency is shown in Figure 6. Each plot contains data from all subjects (denoted by different 353 

symbols) from all of the conducted tests, from a model associated with one monitor location. Since the 354 

data in each plot show distinct ranges containing their minima and maxima, a best fit second order 355 

polynomial is denoted on each plot as a black curve to show the data trend. To show significance of data 356 

scatter, 90% pointwise confidence bounds for a new observation are denoted in grey. 357 

Models N and S most often overestimate the measured force and their patterns of variation of the error are 358 

similar, with the best fit curve in Figure 6 (b) for model N being almost linear within the range of the 359 

presented data. Therefore this model can be used to obtain conservative estimates of pedestrian force in 360 

vicinity of the fundamental walking frequency. Model N, for which the spread of data around the fit is 361 

less than for model S, yields an average absolute error of 11%. Taking all the above into account it is 362 

conceivable that model N, simply corrected for the offset by subtracting a constant, could be used to 363 

obtain reasonable estimates of pedestrian force for different walking velocities. Model LB performs well 364 

for normal walking speeds (i.e. above 1.2 ms-1) yielding an average absolute error of 8% and maximum 365 

error of 15%. However, it suffers from increasing inaccuracies with decreasing walking speeds, both in 366 

terms of the mean error and its variability. A considerable dispersion of data for model LB might be 367 

associated with flexing back extensor (erector spinae) and surrounding muscles during the gait cycle. The 368 

strength of this effect is likely to be influenced by physiological composition of the tissue underlying the 369 

monitor and attaching straps.   370 

The best agreement with the directly measured force is found for model C7, yielding average absolute 371 

error of 7.7% . However, Figure 6 (d) shows that the data from that model also lend themselves to a 372 

curvilinear fit. The reliability of the pedestrian loading models derived from Eq. (1) is further discussed in 373 

section 2.5. 374 
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Figure 6 Percentage error in Fourier force amplitude at fundamental walking frequency against walking 375 

velocity, for all subjects and tests, for data from (a) LB, (b) N, (c) S and (d) C7. The best fit 376 

second order polynomial is also denoted on each plot as a black curve to show trends in the 377 

data, together with 90% pointwise confidence bounds denoted as grey curves. 378 

Subject-dependent trends can be identified in the data, for example, all data for S1, S3 and S4 lie below 379 

the fit in Figure 6 (a), while all data for the other subjects lie above that fit. Interestingly, similar subject-380 

dependant trends in the error of force amplitude can be observed in data reported in [17]. Since this effect 381 

appears to be systematic, it is most likely caused by different body mass distribution of test subjects and 382 

inaccuracies in monitor (or marker) placement. This can distort the estimated motion of the CoM 383 

representing overall body dynamics, used for reconstructing pedestrian vertical force in both studies. 384 

2.4.3 The influence of pacing frequency 385 

It is well known that pacing frequency and walking velocity have a strong correlation [32] so it is no 386 

surprise that plots of error in fundamental Fourier amplitude component of vertical force against the 387 

pacing frequency (Figure 7) show patterns resembling those errors plotted against walking speed (Figure 388 

6). Furthermore, as in Figure 6, subject-dependent trends are visible in Figure 7. 389 
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Figure 7 The percentage error in Fourier force amplitude at the pacing frequency against that frequency, 390 

for all subjects and tests, for data from monitors placed at (a) LB, (b) N, (c) S and (d) C7. 391 

2.5  Reliability of the pedestrian loading model 392 

Rather than fitting a certain distribution to data and analytically evaluating confidence levels, reliability 393 

of the loading models was assessed by inspecting the empirical (non-parametric) cumulative distribution 394 

functions. Error in amplitude of the reconstructed force component at the fundamental walking frequency 395 

was used as a quality indicator (see section 2.3.3). The same methodology was adopted in [17]. The 396 

results of this assessment are presented in Figure 8.  397 

Model C7 captures pedestrian loading relatively well, being able to achieve an absolute error below 15% 398 

at 90% probability of occurrence. Conversely, diminishing gradient of the cumulative distribution 399 

function for model LB indicates multiple outliers in the data, which correspond to lower walking speeds. 400 

Consequently, the overall performance of this model is relatively poor. Models N and S yield absolute 401 

errors below 18% and 23%, respectively, at 90% probability of occurrence. Note that a fixed treadmill 402 

was used in validating the models, but it is assumed with supporting evidence [33], that a compliant 403 

structure does not significantly affect this validation. 404 
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Figure 8 Empirical cumulative distribution functions for absolute percentage error value in the amplitude 405 

of pedestrian vertical force component at the pacing frequency, reconstructed based on data 406 

from LB, N, S and C7. The values of the error corresponding to 90% probability of 407 

occurrence are indicated via grey lines. 408 

Considering the simplicity of the proposed model and the consistency in the relationships discovered in 409 

the experimental data, it can be concluded that pedestrian vertical force model based on a single point 410 

inertial measurement can capture the characteristics of walking forces with a quantified good accuracy. 411 

To obtain the most reliable estimates of pedestrian vertical force at different walking speeds, model C7 is 412 

recommended. Considering the results reported in [26] and [27], it can be concluded that model C7 is the 413 

best for monitoring human body kinetics for a range of activities. For walking at a comfortable speed 414 

(above 1.2 ms-1) model LB can also be used, if only the components of force at and around the first 415 

harmonic are considered. Model N could be used directly to obtain conservative estimates of pedestrian 416 

force around the fundamental walking frequency. Alternatively, it could be modified by introducing a 417 

constant offset to better represent real forces. Note that the speeds imposed during the tests ranged from 418 

slow to comfortable, but the performance of the models for fast speeds (above 1.4 ms-1) was not tested. 419 

The data trends in Figure 6 suggest that the errors could increase with speed, but this would require 420 

further tests for clarification. 421 

3 Pedestrian force location tracking 422 

Recommendations regarding the pedestrian force model based on a single point AHRS measurement 423 

were given in the previous section. However, in order to estimate correctly the influence of each 424 

pedestrian on bridge dynamics the location of the origin of the GRF vector (oGRF) needs to be 425 

established. Knowledge of pedestrians locations on a structure is also needed for analysing pedestrian-426 

structure interaction, since the perceived vibration amplitudes depend on the local amplitude of the 427 

considered mode shape. The same information is required for analysing interactions between pedestrians, 428 

since the behavior of each pedestrian might be affected by the behavior of their neighbours. Therefore a 429 

detailed description of pedestrian force location tracking is given in this section. This work is timely as 430 

this issue has not been previously addressed in the context of research on human-induced vibration of 431 
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structures. Furthermore, previous attempts at tracking pedestrian location from video footage [34-37] 432 

failed to accomplish this over long distances travelled by the pedestrians. Consequently assumptions of 433 

instantaneous pedestrian location are commonly made in response simulations, with the oGRF taken as 434 

equivalent to that position. The most common assumption is that of a linear relationship between mean 435 

values of walking velocity, v , step frequency, pf  , and step length, d : 436 

 pv f d=   (4) 437 

which neglects step-to-step variability. This can introduce inaccuracies in modal force estimation and 438 

cause discrepancies between the modelled and measured dynamic response. To alleviate this problem an 439 

algorithm for tracking the pedestrian’s foot location based on data from AHRS and dead reckoning is 440 

presented in sections 3.1 and 3.2. A novel algorithm is proposed in section 3.3 which allows oGRF to be 441 

estimated from the same data, based on some simple assumptions. 442 

3.1 Pedestrian tracking algorithm (dead reckoning) 443 

Pedestrian dead reckoning (PDR) is a generic term describing relative (i.e. to a known reference) 444 

navigation techniques used to determine the position and orientation of a walker [38]. The input data for 445 

PDR usually comes from MEMS-based monitors attached to human body. Different methods of 446 

implementation of PDR are discussed elsewhere, e.g. [38]. The PDR algorithm used in this study was 447 

previously adopted in [39] and in principle relies on double integration of acceleration data from a 448 

monitor attached to a foot. The obtained translational motion is combined with orientation estimates from 449 

AHRS gyroscopes and magnetometers that allow the direction of heading to be determined. The 450 

arrangement of the AHRS used for PDR is shown in Figure 9 together with its LCS. 451 

 452 

 

Figure 9 AHRS attached to a foot, used for PDR. Three axes of LCS are denoted in white. 453 

It is well known that numerical integration of noisy acceleration signals introduces drift. To reduce this 454 

effect the PDR algorithm exploits the bipedal nature of human gait. The gait cycle comprises two 455 
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distinctive periods in which the leg is either in contact with the ground (i.e. stance phase) or swinging (i.e. 456 

swing phase). During stance phase the foot rolls from the heel to the toes, but there is a period during 457 

which it can be considered stationary. Identifying these periods allows zero-velocity updates (ZUPTs) to 458 

be applied which greatly improve the accuracy of estimates of translational foot motion [40].  459 

The ZUPT starts with threshold detection in the acceleration magnitude:  460 

 2 2 2
X,LCS Y,LCS Z,LCSa a a a= + +   (5) 461 

below which the foot can be considered stationary, where the acceleration magnitude is previously 462 

relieved of the component due to gravitational acceleration. Although, in general, zero acceleration is not 463 

a sufficient condition for detecting zero velocity periods, it is reasonable to assume this relationship to 464 

hold for foot motion in walking. This can be understood from Figure 10 (a), containing raw acceleration 465 

output in LCS of a foot monitor (see Figure 9) collected during a walking trial. The regions of constant 466 

(i.e. near zero) velocity are where the curves are flat and, after subtracting gravitational components, 467 

converge. This differs from a non-stationary period in foot motion, dominated by a leg swing, when the 468 

rate of change of acceleration is relatively high. Figure 10 (b) shows the corresponding acceleration 469 

magnitude data obtained with Eq. (5), treated with two-way second-order Butterworth low-pass filter with 470 

cut-off frequency 4.5 Hz. The beginnings and end of the identified non-stationary periods of foot motion, 471 

based on the threshold of 0.8 ms-2, are denoted by circles and dots, respectively. 472 

  
Figure 10 (a) Raw acceleration signals in LCS measured during a walking trial. (b) Implementation of the 473 

threshold detection on acceleration magnitude data. Start and end of each non-stationary 474 

period in foot motion are marked by circle then dot. 475 

The raw monitor acceleration data in LCS are resolved to WCS with help of quaternions, then each 476 

acceleration signal is numerically integrated using the finite difference (mid-point) method and the values 477 

of velocity during the stationary period in foot motion are reset to zero. For each identified non-stationary 478 

period of foot motion a linear trend is next subtracted from the calculated velocity vector. This trend is 479 

constructed between a pair of data points in that vector corresponding to consecutive instances at which 480 
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the foot motion is initiated and terminated, as can be seen in Figure 10 (b). Note these points are not 481 

equivalent to instances of stance phase and swing phase termination. Exemplar results of application of 482 

ZUPTs are presented in Figure 11. The orientations of monitors in WCS are expressed relative to a North, 483 

West and vertical global reference frame and a velocity for each direction is calculated and presented in 484 

the plots from the top to the bottom, respectively. The drift in the velocity signals is visible in Figure 11 485 

(a) containing data obtained by single integration of recorded acceleration signals. Figure 11 (b) shows 486 

the same data but obtained after applying ZUPTs. The difference between data in Figure 11 (a) and (b) is 487 

caused by errors accumulated due to drift after approximately 30 seconds of walking.  488 

  
Figure 11 Correction of drift in velocity signals using ZUPT. (a) Velocity signals obtained by integration 489 

of acceleration data. (b) Velocity signals corrected for drift. For (a) and (b) the two top plots 490 

correspond to North and West horizontal directions in WCS while the bottom plot 491 

corresponds to the vertical direction. 492 

Having performed ZUPTs, the velocity signals are integrated once more to obtain foot displacement in 493 

WCS. An exemplar outcome of this procedure is presented in Figure 12. The data come from a test during 494 

which a subject was asked to walk between two lines drawn 30 m apart. The top plot shows the horizontal 495 

displacement of the instrumented foot relative to North and West. The subject was heading South-East in 496 

a fairly straight line. The middle plot shows vertical foot motion against the magnitude of horizontal 497 

displacement obtained by taking a square root of the sum of squares of data in the top plot, referred to as 498 

the distance travelled. The subject descended by approximately 0.35 m, corresponding to the average 499 

downward slope of the walking surface slope of 0.6 degrees. The bottom plot shows the magnitude of 500 

horizontal displacement against time. The distance of 30 m travelled by the walker is recovered with very 501 

good accuracy. The tangent to the average slope of the signal represents the walking velocity, which is 502 
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approximately 1.5 ms-1. The wavelike pattern of the signal composed of flat and inclined parts is a 503 

resultant of periods in which the foot is in contact with the ground and swinging, respectively. 504 

 
Figure 12 Exemplar translational data of foot motion obtained with PDR. 505 

3.2 PDR calibration and heuristic drift correction 506 

Section 3.1 mentioned the importance to PDR of calibrating the acceleration magnitude threshold below 507 

which the foot can be considered stationary. The difficulty arises since the obtained acceleration 508 

amplitudes are affected by variations in monitor placement (in repeated deployment), the type of footwear 509 

worn, difference in foot motion patterns between individuals, etc. Therefore, rather than assigning one 510 

value and assuming its universal applicability, the threshold needs to be adjusted separately for each 511 

individual. In the case of a footbridge, having a clear direction of travel (including any gradient), walking 512 

a fixed distance provides a means to calibrate the threshold. 513 

The algorithm only accounts for the lower harmonic components of motion because data from the 514 

monitored foot are low-pass filtered during PDR. Nevertheless, this feature does not compromise  515 

capability to capture real pedestrian behaviour since the spatio-temporal variability of motion patterns is 516 

preserved. Another important feature of the algorithm is that the direction of travel of the uninstrumented 517 

foot is implicitly assumed to be consistent with the longitudinal axis of the bridge. This is because it is the 518 

magnitude of horizontal foot displacement (e.g. shown at the bottom plot in Figure 12) which is used for  519 

determining pedestrian location on the bridge. Any deviation of a pedestrian from a perfect straight, e.g. 520 

due to veering (see [9] for discussion of this), could reasonably be taken as random so as to increase 521 
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actual distance travelled approximately evenly along the path. In this case a simple correction can be 522 

applied using the known straight line distance. 523 

3.3 Determination of the origin of ground reaction force vector (oGRF) 524 

Determining the precise location of oGRF typically requires either a force plate, appropriately arranged 525 

instrumented treadmill, instrumented insoles, pressure mats or shoes instrumented with force cells. Only 526 

the latter two methods offer capabilities of identifying oGRF in normal overground walking over long 527 

distances. However, even data collected using the latter two methods, if used alone, are not fit for purpose 528 

since the obtained oGRF is expressed relative to the position of the foot, whose coordinates relative to the 529 

structure are unknown. Therefore in this study, to keep the instrumentation simple, a novel algorithm for 530 

the determination of approximate (i.e. pseudo) location of oGRF was developed in which output of PDR 531 

is used as an input. 532 

As with PDR, the main idea behind the oGRF identification algorithm derives from the bipedal nature of 533 

human gait. During a single support phase, oGRF is located within the boundaries of the foot in contact 534 

with the ground. During a double support, when body weight shifts to the contralateral (i.e. stepping) leg, 535 

oGRF travels to the location of the foot of that stepping leg. 536 

Algorithm implementation requires information on the motion of both feet. Putting one monitor on each 537 

foot would satisfy this requirement, however, this would require three monitors per pedestrian, i.e. one to 538 

estimate the force and one monitor on each foot (the tasks described in sections 3.3.1 and 3.3.2 can then 539 

be skipped). In the situation where the number of monitors is limited, one-third reduction in 540 

instrumentation can be achieved by instrumenting one foot only, thus allowing larger pedestrian groups to 541 

be studied. To that end, a three-stage method allowing the motion of the uninstrumented foot to be 542 

synthesised is presented and its performance is analysed. The first stage (section 3.3.1) determines 543 

positions and locations where the uninstrumented foot can be considered stationary (i.e. flat on the 544 

ground) and the second stage (section 3.3.2) determines trajectories of the uninstrumented foot during 545 

non-stationary periods. To ensure smooth transition between stationary and nonstationary periods, section 546 

3.3.3 stitches the patterns together to produce a smooth continuous motion pattern (trajectory). The 547 

reconstruction process was checked using data obtained with both feet instrumented with AHRS, by 548 

reconstructing the motion of one foot based on data from the other foot and yielded satisfactory results. 549 

Once the information on the motion of both feet is available, double support phases of gait can be 550 

identified, allowing oGRF tracking in time and space (section 3.3.4).  551 

3.3.1 Stationary periods in uninstrumented foot motion 552 

Positions where the uninstrumented foot is stationary are effectively estimated by assuming they are 553 

equidistant between successive stationary locations of the instrumented foot obtained by PDR, as 554 
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indicated in Figure 13 (a). The black curve in Figure 13 (a) shows the distance travelled by the 555 

instrumented foot, taken as the magnitude of horizontal foot displacement obtained with PDR (see section 556 

3.2), plotted with respect to time.  557 

  

Figure 13 (a) Reconstruction of stationary periods in the uninstrumented foot motion. The measured 558 

position of the instrumented foot is denoted by a black curve. The segments AB, CD and EF 559 

are the identified plateaus in instrumented foot data. The segments ab and cd denoted in grey 560 

are the reconstructed plateaus for the uninstrumented foot. Formulae for spatial location ( S ) 561 

and duration (T ) of those segments are given on the plot. For all data, circles and dots mark 562 

the beginnings and ends of plateaus, respectively. The grey curve describes the motion of the 563 

uninstrumented foot during non-stationary period. (b) Exemplar performance of fitting Eq. 564 

(6) for non-stationary periods of the instrumented foot motion.  565 

The plateaus evident in the plot, denoted by segments AB, CD and EF with circles and dots marking their 566 

beginnings and ends, respectively, are when the instrumented foot is stationary. The midpoints between 567 

the plateaus are then identified, which split the distance travelled during a step into two equal lengths. For 568 

example, the midpoint in distance travelled during a step in which the foot moved from AB to CD is 569 

denoted by ab. The modulus of the difference between the ordinates (distance) of two consecutive 570 

midpoints (e.g. ab to cd) is assumed to be the distance travelled by the uninstrumented foot during a step. 571 

Durations of plateaus for uninstrumented foot are taken as the average of the durations of the two plateaus 572 

immediately surrounding the associated midpoints for the instrumented foot. The plateaus corresponding 573 

to the uninstrumented foot are assumed to occur at times such that abscissas (timing) of their midpoints 574 

fall at the corresponding abscissas of midpoints of the non-stationary periods of instrumented foot data. 575 

The equations describing the location of midpoints ( S ) and their durations (T ) are given in Figure 13. 576 
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3.3.2 Non-stationary periods in uninstrumented foot motion 577 

Reconstruction of the non-stationary period of the uninstrumented foot motion (e.g. segment bc in Figure 578 

13 (a)) is based on finding a suitable fit ( )k t  to the trajectory of the non-stationary period of the 579 

instrumented foot motion (e.g. segments BC and DE in Figure 13 (a)). A suitable form for ( )k t  is the 580 

sum of two sinusoidal components: 581 

 ( ) ( ) ( )1 2 3 1 2 3

P1 P2

sin sink t t tα α α β β β= + + +   (6) 582 

where 1 2 3 1 2 3,  ,  ,  ,   and α α α β β β  are coefficients to be determined. The parts of the function 583 

characterised by slow and fast oscillation, referred to as P1 and P2 respectively, reflect the horizontal 584 

progression of the foot and its swinging motion. This can be seen in Figure 13 (b) presenting fitted data 585 

for non-stationary periods of the instrumented foot for a subject with 81kgpm =  and 1.83mh =  walking 586 

the distance of 30 m at variable speed, i.e. purposely increasing and decreasing their velocity to provide a 587 

test of the algorithm. For the record of which a truncated time history is shown in Figure 13 (a), the 588 

goodness of fit statistics expressed in terms of the average adjusted R-square and standard error, based on 589 

fitting to 72 steps collected during a single trial, are 0.999 and 0.005 m, respectively. Similar goodness of 590 

fit statistics were obtained for all other analysed data regardless of the speed of travel of the walker and 591 

their pacing frequency.  592 

Having shown that the function in Eq. (6) provides a good estimation of the motion of the instrumented 593 

foot, the next step is to apply this to reconstruct corresponding non-stationary period of uninstrumented 594 

foot motion. To this end the coefficients of P1 and P2 (i.e. 1 2 3 1 2 3,  ,  ,  ,   and α α α β β β ) need to be known a 595 

priori. Therefore tests were conducted in which seven people walked a known distance at different speeds 596 

with AHRS monitors attached to their feet. The dependence of the coefficients of Eq. (6) on the duration 597 

of and distance travelled during non-stationary periods in foot motion was investigated. An example is 598 

presented in Figure 14, showing data from a single test during which a subject was asked to walk with a 599 

variable speed over the distance of 150 m. The best second-order polynomial surface fits to the data are 600 

denoted in grey. The amplitude 1β  and angular frequencies 2α  & 2β  show a strong dependence on 601 

duration and distance with adjusted R-square values typically above 0.92 and standard errors for these 602 

coefficients below 0.06, 0.005 rad/s and 0.15 rad/s, respectively. Figure 14 shows lower accuracy for 603 

fitting amplitude 1α  and invariance of phase angle 3α  & 3β . The low variability of these coefficients 604 

relative to the range of phase angle indicates that their mean values can be taken as applicable generally 605 

for the tested subject. This observation is substantiated by data in Figure 13 (b) showing that the patterns 606 

of evolution of two sinusoidal components of Eq. (6) (P1 and P2) are similar for all fits, although the 607 

duration and distance travelled might vary. 608 
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Figure 14 Exemplar coefficients of the fit described by Eq. (6) based on data from one foot derived for a 609 

subject with 81kgpm =  and 1.83mh =  walking the distance of 150 m at variable speed. 610 

The best polynomial surface fit is shown for each coefficient. 611 

Analyses of data collected during a series of tests have shown that the coefficients of Eq. (6) should be 612 

calibrated for each subject separately because of inter-subject variability of foot motion pattern and 613 

monitor placement (see section 3.2). However, reconstruction of a foot motion pattern based on 614 

coefficients drawn from polynomial fits, even if derived separately for each subject, is prone to 615 

inaccuracies as the mutual dependence of these coefficients is unlikely to be captured perfectly. 616 

Therefore, two additional steps implemented in the algorithm to correct for this effect are described in the 617 

next section. 618 

3.3.3 Stitching together time histories for stationary and non-stationary trajectory components 619 

for uninstrumented foot 620 

Now having identified constructed time history components corresponding to moving and stationary 621 

uninstrumented foot, two minor additional steps (which a busy reader could skip) are needed to arrive at a 622 

kinematically correct complete time history of uninstrumented foot motion. The first step adjusts the 623 

shape at the ends of a trajectory component for the foot moving, so as to ensure smooth landing at zero 624 

velocity. The second step uniformly scales (in distance axis) the trajectory to correct for small 625 

discontinuities in position resulting from the first step. 626 
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Figure 15 (a) Motion patterns measured on instrumented foot (black curves) and reconstructed for 627 

uninstrumented foot (grey curves). (b) The first derivative of the reconstructed pattern of 628 

uninstrumented foot motion in (a). Black dots marking local minima in (b) correspond to 629 

points of inflection in uninstrumented foot data in (a). Grey circles and dots in (a) and (b) 630 

mark the beginnings and ends of the plateaus representing stationary periods in foot motion. 631 

Black circles in (a) correspond to the local maximum in reconstructed foot motion. Black 632 

lines on zoomed-in subplots in (a) represent linearised ends in the reconstructed motion 633 

pattern. (c) Comparison of measured and reconstructed of foot motion. 634 

The nature of the fitted function for the moving foot trajectory does not guarantee monotonic increase 635 

where it meets the (level) plateau representing the stationary foot. Points of inflection in the reconstructed 636 

(moving) foot trajectory are identified via local minima in the first derivative (velocity, which should be 637 

zero). Figure 15 is an example where the points of inflection of the reconstructed (grey) curve in Figure 638 

15 (a) are identified by black dots at 0.37 seconds and 1.24 seconds via the first derivative (velocity) 639 

shown in Figure 15(b). Zooming on Figure 15 (a) shows the fitted trajectory to have a turning point just 640 

before the point of inflection at 1.24 seconds. After this point (marked as a black dot) the fit suggests that 641 

the foot moves backward. To correct for this, the reconstructed foot motion pattern is simply linearised at 642 

the ends. This is performed for the range of data from the most inward points defined either by points of 643 

inflection or, if they exist (such as on the plot in Figure 15 (a)), local minimum or maximum outwards 644 

such that the ends are flat (black lines in the insets of Figure 15 (a)).  645 

The inserts in Figure 15 (a) show that the ends of the corrected patterns (black lines) are displaced with 646 

respect to the (stationary) plateaus (grey lines). Therefore in the second step the distance travelled  during 647 

the reconstructed motion pattern is scaled up or down, stretching or compressing motion pattern in space 648 

(rather than time), after which the pattern is realigned between the corresponding plateaus. 649 
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The accuracy of the described procedures can be inspected in Figure 15 (c). To create this figure an 650 

experiment was conducted where monitors were placed on both feet of the pedestrian. The solid black 651 

curve shows the measured foot motion (in this case the right foot) and the dashed black curve shows the 652 

measured contralateral (left) foot motion. The solid grey curve shows the reconstructed motion of the 653 

right foot based on the observed motion of the contralateral (left) foot and the approach presented in 654 

sections 3.3.1 – 3.3.3. Figure 15 (c) shows that, broadly speaking, there is a good match between the 655 

measured foot motion and the reconstructed foot motion. The Pearson’s linear correlation coefficient, 656 

calculated after detrending each signal with its linear fit, is 0.97. The lowest values of this coefficient (but 657 

still above 0.95) were obtained for tests in which the subjects were asked to walk with variable speed, i.e. 658 

deliberately increasing and decreasing their velocity. 659 

3.3.4 Determination of the double support phase of gait and oGRF 660 

The next step in the proposed algorithm determinaes double support phases of gait within the analysed 661 

data. Since this information cannot be obtained directly using AHRS, a suitable method was developed 662 

using the data from the treadmill experiments to establish a relationship between the walking frequency 663 

and duration of double support phase of gait. Stride durations, taken between two consecutive TOs of the 664 

same leg, were quantified after discarding the range of data associated with gait inception and termination 665 

stages. The durations of two double-support phases of gait occurring within each of those strides were 666 

then calculated. The relationship between the percentage duration of double support phase, expressed in 667 

relation to stride duration, and pacing frequency is presented in Figure 16. The data are based on averages 668 

from strides marked by TOs of right and left legs. 669 

 
Figure 16 Percentage duration of double support phase of gait, expressed in relation to stride duration, 670 

against pacing frequency. The trend in data described by Eq. (7) is shown as a black curve.  671 

As in the case of the percentage error in Fourier force amplitude corresponding to the pacing frequency 672 

presented in Figures 6 and 7, subject specific trends can be seen in data in Figure 16. In order to show the 673 

average trend in all data for all subjects, a fit based on power law relationship was calculated: 674 

 2.5710.015 0.366DS pT f= − +   (7) 675 
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where DST  is expressed as a percentage of stride duration. 676 

It is reasonable to assume that the double support phase of gait occurs periodically when the two feet are 677 

the furthest apart. After identifying these points in foot motion data, stride durations corresponding to 678 

these points are established by taking the period between the ends of two plateaus in instrumented foot 679 

motion containing considered double-supports. A reciprocal of stride duration is assumed to be equal to 680 

the instantaneous stride frequency, which is half the pacing rate. Having established the instantaneous 681 

pacing rate, the duration of the double support phase of gait is calculated from Eq. (7). Double supports 682 

are assumed to occur symmetrically around the identified points where the feet are the furthest distance 683 

apart. Exemplar performance of the proposed algorithm for determining oGRF is presented in Figure 17. 684 

The regions corresponding to double support phase of gait are shaded in grey and the evolution of the 685 

location of oGRF is shown as a thick black curve. The curvature of foot motion patterns during double 686 

support periods is associated with progression of a foot during roll-over. 687 

 

Figure 17 Exemplar performance of the proposed algorithm for the determination of the origin of ground 688 

reaction force vector. 689 

The performance of the proposed pedestrian force location tracking method will be further discussed in 690 

section 5, reporting results of a study performed to show the applicability of the proposed framework. The 691 

experimental campaign used to gather data on pedestrian and bridge behavior is described next. 692 

4 In-situ testing on a full-scale structure 693 

Controlled pedestrian loading tests were performed on Baker Bridge (BB) in Exeter, UK. BB was 694 

constructed in 2008 and is located close to the Sandy Park Stadium (50°42'38.6"N 3°28'13.3"W) which is 695 

the home ground of the Exeter Chiefs rugby team. The bridge (see Figure 18) crosses a dual carriageway 696 

and has total length approximately 108.6 m with main span (South end) and back span (North end) having 697 

approximate lengths of 71.285 m and 37.36 m, respectively. The 42 m high steel A-frame tower supports 698 

the ladder deck via six pairs of cable stays with another pair of cable stays anchored at the North 699 
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abutment. The deck has two continuous longitudinal steel main beams pinned at the North abutment, 700 

resting on a tower crossbeam via pad bearings and having a sliding expansion joint at the South abutment. 701 

 

Figure 18 (a) Elevation and (b) cross-section through the tower of Baker Bridge. (c) The true plan on 702 

deck together with instrumentation layout. The roving and reference OpalTM monitors are 703 

denoted by empty and filled squares, respectively. (d) A cross-section through the deck. 704 

BB deck is at least 10 m above the ground throughout most of its span and has a downward North-to-705 

South slope of approximately 2.79 degrees, causing 5.3 m difference in the footway levels at the ends of 706 

the bridge. The footway is a 3 m wide concrete slab enclosed by 1.4 m high steel parapets. An estimated 707 

total 49 tonnes of steel and 98 tonnes of concrete were used in the deck construction. 708 

A dedicated modal testing campaign conducted to obtain modal properties of the empty bridge is 709 

described in the next section. 710 

4.1 Modal testing 711 

Two instrumentation systems were deployed in order to determine BB modal parameters i.e. natural 712 

frequencies, damping ratios and mode shapes. These were a set of six OpalTM monitors and an array of 713 

conventional wired Honeywell QA quartz-flex low noise servo-accelerometers used to cross-check the 714 

more noisy data from the OpalTM AHRS monitors. One QA (see Figure 18 (c)) was set horizontally to 715 

check for coupled cross-axes modes. The ambient vibration testing performed with AHRS used a standard 716 
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method of allocating reference and roving accelerometers. The method is the same as used on Humber 717 

Bridge [41], and provided the definitive set of BB mode shapes, shown in Figure 19. 718 

Parameter estimates obtained from ambient testing are known to exhibit significant variance [42], so 719 

specific and more reliable parameter values appropriate to the level of response due to a pedestrian were 720 

obtained by further measurements using a force plate and an instrumented hammer. The force plate was 721 

used to record vertical forces during short sequences of up to eight jumps prompted by a metronome set 722 

to a bridge natural frequency estimated in the ambient tests. The free decay of response to jumping was 723 

used to extract accurate damping and frequency values via curve fitting to exponentially decaying 724 

sinusoids [43].  725 

Additionally, single degree of freedom circle fitting to the frequency response function of acceleration to 726 

force derived from jumping tests was used to estimate modal masses, using hammer testing to cross-727 

check values. Modal mass values are based on mode shapes having maximum vertical mode shape 728 

ordinate set to unity, and are applicable for loads applied at any point of the deck for modes 1-4 and along 729 

the walkway edge for mode 5. 730 

The modal parameter values appropriate for response calculations are given in Table 3.  The inherent 731 

damping ratios for all the presented modes are relatively low [44]. 732 

 
Figure 19 The first five lowest identified mode shapes of Baker Bridge. North and South ends of the 733 

bridge are denoted by N and S, respectively. 734 

Table 3 Modal properties of Baker Bridge for the first four lowest vertical modes and the first torsional 735 

mode. 736 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Frequency, nf  [Hz] 0.94 1.61 2.00 2.24 2.84 
Modal mass, nM  
[tonne] 

55 68.4 57.2 57.3 40 

Damping ratio, nζ  [%] 0.16 0.19 0.32 0.37 0.22 

 737 
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Mode 2 and 3 frequencies correspond to pacing rates which can be expected in the case of relaxed 738 

walking e.g. for a crowd on a match day, and the case of normal walking, respectively. Therefore, the 739 

controlled pedestrian loading tests focused on the behaviour of BB at frequencies of these two modes. 740 

4.2 Controlled pedestrian loading tests 741 

To assess the loading model introduced in section 2 and the algorithm for the pedestrian force location 742 

tracking introduced in section 3, a series of tests with a single walker was performed on BB. Monitors 743 

were attached at the sternum, navel, lower back, C7 and one foot. The test subject (a 34 years old male, 744 

81kgpm =  and 1.83mh = ) was asked to walk to the rhythm of a metronome set to 1.6 or 2 beats per 745 

second, corresponding to the frequencies of mode 2 and 3, respectively (see Table 3). Each test started 746 

from the subject standing still at a line marked 1 m behind the bridge end (i.e. outside of the boundary of 747 

the deck). The subject was asked to terminate gait 1 m behind the other end of the bridge, at a marked 748 

line. This allowed the duration of and the distance travelled (110.6 m) during a test to be easily identified 749 

in the AHRS data. Two tests were performed at each metronome rate in which the pedestrian walked 750 

either from North to South or from South to North across the bridge. This was to investigate if the slope 751 

of the bridge has any effect on the results. The response of the bridge to the walker was measured by the 752 

monitor placed at the location denoted in Figure 19 (c) by a star. The results of the controlled pedestrian 753 

loading tests are reported in the next section, comparing the measured bridge response and the  response 754 

simulated using the proposed framework. 755 

5 A study comparing measured and simulated bridge response 756 

Having introduced the procedures leading to reconstruction of pedestrian force (section 2) and its 757 

instantaneous location (section 3), this section examines how successful these procedures are at 758 

simulating footbridge response. A modal model of BB is built using information from section 4.1, to 759 

which pedestrian force is applied. The location of this force is taken either as moving at a constant speed 760 

along the bridge or equal to oGRF (see section 3.3). 761 

The flowchart in Figure 20 presents a graphical summary of the proposed framework. The last and 762 

standard step, represented in the lower right of the figure, is calculating bridge response to moving and 763 

mode-shape modulated pedestrian force. The following equation of motion can be written for each mode: 764 

 ( ) ( ) ( ) ( ) ( )2
,

1

12 ,
N

n n n i i i n i
in

X t X t X t F t x x
M

ζ ω ω φ
=

+ + = ∑   (8) 765 

where X  is the modal displacement, nζ  is the damping ratio, nω  is the natural frequency, nM  is the 766 

modal mass, iF  is the force amplitude of the thi −  pedestrian, N  is the total number of pedestrians on 767 
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the bridge, 
,i nφ  is the amplitude of the n - th  mode shape at thi −  pedestrian location, ix  is the thi −  768 

pedestrian location, and dots over symbols represent relative differentiation with respect to time t . 769 

 

Figure 20 A flowchart showing the proposed framework for the determination of localised pedestrian 770 

forces on full-scale structures using attitude and heading reference systems. 771 

5.1 Response of the bridge to a single pedestrian 772 

In this section the measured response of the bridge subjected to loading from a single walking pedestrian 773 

is compared to the response predicted by the proposed framework. The simulated and measured vertical 774 

responses in mode 2 and mode 3 for the pedestrian walking at 1.6 Hz (chosen to directly excite mode 2) 775 

and at 2 Hz (chosen to directly excite mode 3), respectively, are shown in Figures 21 and 22. For each 776 

mode, the measured response was band pass filtered with two-way fourth-order Butterworth low-pass 777 

filter with cut-off frequencies 0.1 Hznf ± . The data in Figures 21 and 22 (a) are from tests in which the 778 

pedestrian was walking from the North to the South end of the bridge, and in Figures 21 and 22 (b) from 779 

tests in which the pedestrian was walking from the South to the North end of the bridge. The lengths of 780 

signals presented in Figures 21 and 22 correspond to the duration of the respective tests. All simulated 781 

data presented in Figures 21 and 22 are based on force reconstructed from monitors attached at C7.  782 
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Figure 21 Simulated and measured response of Baker Bridge in mode 2 ( 1.61 Hznf = , 0.19 %nζ = , 783 

368.4 10  kgnM = × ), for a pedestrian walking at 1.6 Hz (a) from the North to the South end 784 

of the bridge, and (b) from the South to the North end of the bridge. 785 

The maximum measured acceleration amplitudes in Figures 21 and 22 are just below 0.03 ms-2 and 0.2 786 

ms-2, respectively. The maximum acceleration amplitudes at the antinodes of mode 2 and mode 3 are 0.05 787 

ms-2 and 0.37 ms-2, respectively. This shows that the bridge can exhibit lively behavior (i.e. large 788 

amplitude response) under the action of walking pedestrians but its response is acceptable according to 789 

the guidance at the time of construction [45]. 790 

Figure 21 shows that the simulated response amplitudes for mode 2 generally underestimate the measured 791 

response. A converse relationship can be seen for mode 3 in Figure 22. However, the patterns of 792 

evolution of the amplitude of simulated response generally follow the measured data well. The maximum 793 

response amplitudes in mode 2 are approximately an order of magnitude lower than in mode 3. 794 
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Figure 22 Simulated and measured response of Baker Bridge in mode 3 ( 2Hznf = , 0.32 %nζ = , 795 

357.2 10  kgnM = × ), for a pedestrian walking at 2 Hz (a) from the North to the South end of 796 

the bridge, and (b) from the South to the North end of the bridge. 797 

A detailed comparison between the measured and simulated results based on force reconstructed using 798 

AHRS data from different body landmarks is presented in Table 4. Three performance indices are given: 799 

percentage difference in maximum acceleration amplitude relative to the measured data, average RMS 800 

error in the envelope of acceleration amplitude and Pearson’s linear correlation coefficient. The last two 801 

indices were calculated after discarding the first 10 s of the signal due to the effect of initial conditions. 802 

Normal and italic font styles denote the results obtained by assuming a constant walking speed and using 803 

the algorithm for tracking oGRF, respectively. For brevity, the tests with the subject’s pacing rate 804 

corresponding closely to mode 2 & 3 frequencies are referred to as T1, T2 & T3 and T4, respectively. The 805 

direction of travel was from the North to the South end of the bridge for T1 and T3 (i.e. downhill 806 

walking) and from the South to the North end of the bridge for T2 and T4 (i.e. uphill walking). The 807 

average walking speeds during T1, T2, T3 and T4 were, respectively, 1.13 ms-1, 1.2 ms-1, 1.64 ms-1 and 808 

1.61 ms-1. 809 

 810 

 811 
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Table 4 Performance indeces for simulated response of BB for walking tests with a single pedestrian. The 812 

results are representative of the pedestrian loading reconstruction procedure based on data 813 

from AHRS attached at LB, N, S and C7. Normal and italic font styles denote the results 814 

obtained by assuming a constant speed of the walker and using the algorithm for tracking 815 

oGRF, respectively. 816 

 T1 mode 2  
North → South 

T2 mode 2 
South → North 

T3 mode 3 
North → South 

T4 mode 3 
South → North 

Performance indices LB N S C7 LB N S C7 LB N S C7 LB N S C7 
Difference in maximum 
acceleration amplitude [%] 

-46.2 
-59.5 

-22.8 
-32.8 

-36.1 
-47.7 

-29.9 
-41.6 

-40.4 
-58.1 

-24.0 
-39.3 

-13.7 
-27.4 

-25.7 
-41.1 

2.3 
-14.9 

11.7 
-4.1 

12.8 
-2.9 

8.7 
-7.6 

10.0 
-8.1 

10.5 
-7.5 

23.6 
8.2 

13.9 
-3.4 

Average envelope RMS  
error [ms-2] 

0.0064 
0.0076 

0.0045 
0.0059 

0.0057 
0.0069 

0.0052 
0.0065 

0.0024 
0.0075 

0.0037 
0.0057 

0.0057 
0.0044 

0.0039 
0.0059 

0.0106 
0.0212 

0.0158 
0.0130 

0.0170 
0.0131 

0.0127 
0.0156 

0.0064 
0.0036 

0.0070 
0.0035 

0.0143 
0.0061 

0.0083 
0.0030 

Pearson’s linear  
correlation coefficient 

0.943 
0.938 

0.990 
0.985 

0.972 
0.964 

0.962 
0.955 

0.966 
0.953 

0.978 
0.972 

0.975 
0.967 

0.965 
0.953 

0.990 
0.988 

0.941 
0.937 

0.989 
0.988 

0.973 
0.971 

0.986 
0.989 

0.968 
0.974 

0.984 
0.987 

0.979 
0.984 

 817 

A strong linear correlation between the measured and simulated response of the bridge has been found for 818 

all cases, with positive values of Pearson’s linear correlation coefficients in Table 4 indicating in-phase 819 

relationships. Figures 21 and 22 indeed show that the peaks in the measured response and the response 820 

simulated based on data from C7, occurring at the intervals equal to reciprocal of the modal frequencies, 821 

are aligned in time reasonably well. 822 

5.1.1 Results for T1 and T2 (mode 2) 823 

Examination of differences in maximum acceleration amplitude in Table 4 shows that the simulated data 824 

generally underestimate the maximum acceleration amplitudes for T1 and T2. This is the most 825 

pronounced for LB, which agrees with the results in Figures 6 and 7 (a) showing that the largest error in 826 

the amplitude of the Fourier component of force for 1.6 Hzpf =  and 11.13;1.2  msv −∈  can be expected 827 

from a model based on data collected from this body landmark. However, while the negative difference in 828 

maximum acceleration amplitude is consistent with data presented in section 2 for LB, a positive 829 

difference would be more likely for N and S. Interestingly, the simulation results obtained using oGRF 830 

are less accurate than those obtained assuming a constant walker speed. The average absolute difference 831 

in maximum acceleration amplitude relative to the measured data for all models using oGRF is 832 

approximately 43%, compared with 30% obtained from models assuming a constant walker speed. The 833 

best accuracy in terms of the maximum response amplitude for T1 and T2 is found for N and S, 834 

respectively, which underestimate the measured response by 22.8% and 13.7%. The maximum average 835 

RMS envelope error for T1 and T2 is 0.008 ms-2 for LB. This value stands at 26% relative to the 836 

maximum acceleration amplitudes for T1 and T2, respectively, measured at 0.029 ms-2 in both tests. 837 
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5.1.2 Results for T3 and T4 (mode 3) 838 

Better performance of the framework is evidenced for T3 and T4. All models assuming a constant walker 839 

speed tend to overestimate maximum acceleration amplitudes, which seems to be consistent with data in 840 

Figures 6 and 7. The least and greatest differences for both T3 and T4 are found for LB and S, 841 

respectively. The simulation results obtained using oGRF improve the match with the maximum 842 

measured response, except for LB in case of T3, most often changing sign of the difference, i.e. resulting 843 

in underestimated vibration amplitudes. The average absolute difference relative to the measured data for 844 

all models using oGRF is approximately 7%, compared with 12% obtained for models assuming a 845 

constant walker speed. Best accuracy in terms of the maximum response amplitude for T3 and T4 based 846 

on results obtained using oGRF is found for S and C7, respectively, which underestimate the measured 847 

response by 2.9% and 3.4%. The maximum average RMS envelope error for T3 and T4 is, respectively, 848 

0.021 ms-2 for LB and 0.006 ms-2 for S. These values stand at 11.34% and 4.21% relative to the maximum 849 

acceleration amplitudes for T1 and T2, respectively, measured at 0.187 ms-2 and 0.145 ms-2. 850 

5.2 Discussion 851 

Test results demonstrate the feasibility of the proposed methodology. A satisfactory agreement between 852 

simulated and measured responses has been found for all the force models (LB, N, S, C7) and both the 853 

force localisation procedures (constant velocity & oGRF). A Pearson’s linear correlation coefficient  854 

higher than 0.94 was found in all cases, corresponding to a coefficient of determination (R2) higher than 855 

88%. The magnitudes of error in maximum acceleration amplitude for all tests in mode 2 and 3, 856 

averaging over all models with both methods of localisation of point of application of force, were found 857 

at 36.6% and 9.4%, respectively. The simulated responses might be affected by several error sources, 858 

such as uncertainties with the experimental dynamic model, unconsidered exogenous excitation sources, 859 

effects of human-structure interactions, errors in the reconstruction of magnitude and locations of GRF. 860 

These effects can cumulate or compensate each other. Broadly speaking, the results of simulations for 861 

mode 2 (T1 & T2) are worse than the results of simulations for mode 3 (T3 & T4). Mode 2 parameters 862 

were the more difficult to estimate experimentally, which might contribute to errors in the simulated 863 

responses for that mode. Nevertheless, the magnitudes of the estimated errors are remarkably good 864 

compared with the results of similar tests available in literature.  865 

Previous work by Van Nimmen et al. [15] has found that pedestrian force models capturing the effect of 866 

variability in timing of the onset of pedestrian footsteps (see section 1.2) outperform loading models 867 

based on an assumption of perfect periodicity. However, even with this allowance, the maximum 868 

simulated acceleration amplitude of the tested footbridge in the first vertical mode has been shown to 869 

overestimate the measured response twofold (equating to 200% error; cf. Figure 18 (b) in [15]). However, 870 

when comparing the results of this paper with those of [15] certain factors must be borne in mind. For 871 
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example, differences in experimental conditions, i.e. properties of the tested bridges and experimental 872 

protocols – in particular excitation of the first vertical mode at 2.99 Hz by the second harmonic of force 873 

from four pedestrians in [14], and modelling, i.e. FEM in [15] and equivalent modal model herein. 874 

Previous work by Dang and Živanović [17] has found that the percentage difference in the average peak 875 

per cycle acceleration value of the structural response simulated based on force reconstructed from 19 876 

MCS markers model, relative to the measured value, was within ±20% at 92% confidence level. 877 

However, the movement of a load along the structure was not considered therein since the pedestrian was 878 

walking on a treadmill placed at the midspan of a composite bridge. 879 

It is reported in [46] that walking over a surface with negative gradient results in reduction in step length, 880 

which is consistent with data presented in Figure 21. This effect is not visible in Figure 22, presenting 881 

data from tests in which the subject walked with pacing frequency of 2 Hz. It seems this effect is 882 

particularly strong for pacing frequencies lower than those preferred for normal walking. Nevertheless, 883 

considering data in Table 4, the slope of the walking surface does not seem to have a clear influence on 884 

the results. 885 

The main advancement of the current loading model is that the pedestrian force is obtained directly from 886 

the motion of a single AHRS attached to a pedestrian. Although the force reconstruction gives better 887 

results than any other model presented so far, errors in the amplitude of force can still be expected. 888 

Nevertheless, it has been shown in section 2.4.1 that the temporal congruence of the reconstructed and 889 

directly measured force is very good. Indeed, this might be the reason the proposed loading model 890 

performs so well. The main source of discrepancy in simulated response amplitudes in [15] was assigned 891 

to human-structure interaction, in particular additional damping from walking pedestrians unaccounted 892 

for in the adopted loading model of [16]. It was shown that better accuracy of the simulated response 893 

amplitudes could be obtained by increasing damping ratio of the considered vertical mode from 0.19% to 894 

0.8%, which corresponds to 0.15% increase in damping ratio per pedestrian. Less accurate results were 895 

obtained by running the simulations based on this assumption for all tests in the current study presented in 896 

section 5.1. Considering relatively low measured damping of mode 2 and 3 (see Table 3) there is some 897 

indirect evidence that, if the effect of additional damping is persistent, it is captured by the loading model. 898 

However, further work is necessary to gain confidence in this feature of the model. 899 

Applying the oGRF reconstruction algorithm on average improved the magnitude of error in maximum 900 

amplitude of response for tests at mode 3 by 140% (see section 5.1.2), but detrimental results were obtain 901 

for mode 2, for which the magnitude of error increased by 43% (see section 5.1.1). Taking into account 902 

the results in Table 4 it may appear this step of the framework does not significantly (or in an obvious 903 

way) affect the results for the tests presented herein, but certain aspects of the experimental campaign 904 

need to be borne in mind in this assessment. Specifically, the pacing frequency of the pedestrian was 905 

enforced with a metronome providing strong stimulus for gait rhythmicity. This in turn can cause the 906 
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pedestrian velocity to be fairly constant, reducing the natural step-to-step variability in gate parameters 907 

captured by oGRF, which in turn reduces the difference between the results obtained by the two 908 

algorithms. Furthermore, because BB is relatively long and the considered mode shapes are of relatively 909 

low order (i.e. have few nodal points), the rate of change of the amplitude of modal force due to changing 910 

pedestrian location is generally slow and has relatively little influence on the response. For this reason it 911 

is expected that that the proposed procedure for reconstructing oGRF could bring considerable 912 

improvements of accuracy of the simulated response for shorter bridges. 913 

When simulating the response of the bridge, the importance of accurate location tracking increases when 914 

oGRF is near a node. This is because the mode shape amplitude is almost null (near the node) but the rate 915 

of change of the modal amplitude is high. Therefore, in this region, small differences in location of the 916 

force can cause relatively high differences in the response calculated, i.e. the more nodal points the 917 

pedestrian crosses the more likely oGRF will give superior results. Another possible reason for the 918 

superior performance of the framework in mode 3 can be seen by examining modes 2 and 3 in Figure 19. 919 

The amplitude of mode shape 2 for the Northern section changes relatively slowly going from North to 920 

South, whereas the amplitude of mode shape 3 changes relatively quickly for the full length of the bridge. 921 

Both of the above are potential reasons for the better performance of the framework for mode 3 tests 922 

compared to mode 2 tests. 923 

The same effect can be expected for tests in which pedestrian speed varies due to effects other than 924 

natural step-to-step variability, e.g. for walking in a crowd in which pedestrian gait patterns might be 925 

affected by close proximity of others, thus the assumption of linear progression of point of application of 926 

force is no longer substantiated. Another benefit of using the algorithm for reconstructing oGRF is when 927 

studying the behavior of individual pedestrians within a crowd of walkers. This is because the knowledge 928 

of pedestrian location relative to the location of other pedestrians and the mode shape is prerequisite for 929 

unveiling potential interaction mechanisms between different elements of crowd-structure system. 930 

There are a number of limitations in the application/execution of the proposed framework, which need to 931 

be pointed out. More advanced PDR algorithms than used in this study are currently available [38]. For 932 

example, some of these algorithms account for drift in magnetometer readings associated with 933 

interference from magnetic fields other than that of the Earth (e.g. conducting wires or ferromagnetic 934 

materials used in construction), which can reduce heading errors. Other algorithms make better allowance 935 

of rolling motion of the foot during transition from stance to swing phase of gait in recognition of 936 

stationary periods in foot motion. It is expected the accuracy of the results obtained with (approximate) 937 

oGRF could be improved by using these algorithms. Nevertheless, it has been shown in this study, for the 938 

first time in the field of research concerned with the dynamic stability of structures, that a set of two 939 

AHRS can be used to obtain reliable data on pedestrian force and point of application of that force in situ.  940 
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6 Conclusions 941 

The ambition of this study is to contribute to the development of a new class of pedestrian loading 942 

models, calibrated based on data representative of real pedestrian behaviour on full-scale structures.  In 943 

order to accomplish this goal, a framework for the determination of localised pedestrian forces has been 944 

developed which uses wireless altitude and heading reference systems (AHRS). Importantly, in contrast 945 

to other models of structural loading on full-scale structures, the current framework does not require any 946 

extrapolations as to the temporal characteristics and amplitudes of pedestrian force. The framework relies 947 

on two main tasks: 948 

• identification of pedestrian vertical loading from a single point inertial measurement taken from a 949 

suitable body landmark; 950 

• determination of the point of application of pedestrian force based on data from a monitor 951 

attached to one foot. 952 

To formulate the pedestrian vertical load model a dedicated experimental campaign was conducted during 953 

which six subjects walked on an instrumented treadmill at six speeds ranging from slow to normal, while 954 

instrumented with AHRS attached at the sternum, navel, lower back and seventh cervical vertebra. It has 955 

been shown that the force model built based on data from seventh cervical vertebra was able to yield an 956 

absolute error in the amplitude of the component of force at the pacing frequency of less than 15% at 90% 957 

confidence level. This is better than any other loading model presented so far. Furthermore, very good 958 

temporal congruence of the data reconstructed from the model with the benchmark data from the 959 

instrumented treadmill has been found, giving some confidence in applicability of the model for analysis 960 

of interactions in crowd-structure system. 961 

An algorithm for the determining the origin of ground reaction force vector has been developed which 962 

utilises pedestrian dead reckoning and accounts for the bipedal nature of human gait. A single AHRS 963 

attached to one foot has been shown to be enough to accomplish this task for pedestrians walking on a 964 

footbridge which has one dominant direction of travel. 965 

To validate the proposed modelling framework a dedicated experimental campaign was conducted on a 966 

full scale outdoor footbridge during which a pedestrian walked at frequencies of two vertical modes. 967 

Remarkably good match between the measured and simulated response of the bridge was found for both 968 

modes, accounting for the effect of the slope of the walking surface.  969 

The developed framework allows the information of the behaviour of all components of crowd-structure 970 

system to be gathered thus allowing any emergent phenomena to be identified. Specifically, human-to-971 

structure and human-to-human interactions are the core mechanisms assumed in many models of crowd 972 

behaviour and the associated structural loading to contribute to structural instability. These mechanisms 973 
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have so far escaped rigorous empirical verification. The developed framework could facilitate this 974 

process. 975 
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Nomenclature 1097 

AHRS – altitude and heading reference system 1098 

BB – Baker Bridge 1099 

C7 – seventh cervical vertebra 1100 

FEM – finite element model 1101 

GRF – ground reaction force 1102 

LB – lower back 1103 

LCS – local coordinate system 1104 

MCS – motion capture system 1105 

N – navel 1106 

oGRF – origin of the ground reaction force vector 1107 

PDR – pedestrian dead reckoning 1108 

QA – Honeywell accelerometer 1109 

S – sternum  1110 

TD – touch-down of the foot with the ground 1111 

TO – take-off of the foot from the ground 1112 

WCS – world coordinate system 1113 

ZUPT – zero velocity update 1114 


