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Abstract

Battery powered wireless sensors are widely used in industrial and regulatory monitoring

applications. This is primarily due to the ease of installation and the ability to monitor

areas that are difficult to access. Additionally, they can be left unattended for long periods

of time. However, there are many challenges to successful deployments of wireless sensor

networks (WSNs). In this thesis we draw attention to two major challenges. Firstly,

with a view to extending network range, modern WSNs use mesh network topologies,

where data is sent either directly or by relaying data from node-to-node en route to the

central base station. The additional load of relaying other nodes’ data is expensive in

terms of energy consumption, and depending on the routes taken some nodes may be

heavily loaded. Hence, it is crucial to locate routes that achieve energy efficiency in the

network and extend the time before the first node exhausts its battery, thus improving

the network lifetime. Secondly, WSNs operate in a dynamic radio environment. With

changing conditions, such as modified buildings or the passage of people, links may fail

and data will be lost as a consequence. Therefore in addition to finding energy efficient

routes, it is important to locate combinations of routes that are robust to the failure of

radio links.

Dealing with these challenges presents a routing optimisation problem with multiple ob-

jectives: find good routes to ensure energy efficiency, extend network lifetime and improve

robustness. This is however an NP-hard problem, and thus polynomial time algorithms to

solve this problem are unavailable. Therefore we propose hybrid evolutionary approaches

to approximate the optimal trade-offs between these objectives.

In our approach, we use novel search space pruning methods for network graphs, based

on k-shortest paths, partially and edge disjoint paths, and graph reduction to combat the

combinatorial explosion in search space size and consequently conduct rapid optimisation.

The proposed methods can successfully approximate optimal Pareto fronts. The estimated

fronts contain a wide range of robust and energy efficient routes. The fronts typically also

include solutions with a network lifetime close to the optimal lifetime if the number of

routes per nodes were unconstrained. These methods are demonstrated in a real network

deployed at the Victoria & Albert Museum, London, UK.
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Chapter 1

Introduction

Wireless sensors are autonomous devices that measure environmental parameters such

as temperature and humidity (Figure 1.1). In sensor networks, many such devices are

distributed over a wide area. Generally, these sensors report data back to a central base

station for further analyses from control or monitoring perspective. They are widely used

in remote monitoring applications due to ease of installation and the ability to monitor

areas that are difficult to access. Inevitably, such applications require these sensors to be

battery powered.

Figure 1.1 Typical wireless sensors. These
standalone devices are designed to measure
temperature and humidity. (©IMC Group
Ltd.)

In many commercial Wireless Sensor Networks

(WSNs), sensor nodes communicate directly to

the base station in an ad hoc point-to-multi-

point network topology (the direction of trans-

mission is multi-point-to-point). Despite be-

ing a simple low power solution, such systems

suffer from limited network range as all nodes

must be able to communicate directly with the

base station. Additionally, because of the strict

network structure these networks are unable to

cope with the changing conditions of the dy-

namic radio environment.

These shortcomings may be alleviated by using

mesh network topologies, where data is relayed

from node to node en route to the base station.

This topology can extend the network range as

nodes no longer need to be within direct radio

range of the base station, and communication

may be established with distant nodes as long

as neighbouring nodes of that particular node

can communicate with the base station (directly or indirectly). Furthermore, this topology

permits the use of alternative routes in case an active route ceases to function due to link
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1. Introduction

or node failure.

Alongside powering the sensors, the major drain on batteries is the reception and trans-

mission costs. In point-to-multi-point networks nodes only send their own data. Hence,

the transmission and reception costs only depend upon parameters related to single direct

links, e.g. baud rate (that is, data transmission rate) and transmission power. Therefore,

the choice of routes, and thus the design of efficient networks is limited to selecting better

baud rate and power configuration combinations, at least from an energy consumption

perspective; generally, high baud rate and low power transmissions are preferred. In mesh

networks, nodes have the additional responsibility of relaying other nodes’ data. Depend-

ing on the paths taken by different nodes in the system, some nodes may be heavily

loaded and as a consequence exhaust their batteries quickly. So it is desirable to locate

good routes that ensure energy efficiency in a mesh network.

Minimising network energy consumption is equivalent to finding routes that maximise

the average lifetime of the network [Rodoplu and Meng, 1999]. However, as Chang and

Tassiulas [2004] indicated, using minimum energy routes throughout the lifetime of the

network can be detrimental to a group of nodes that relay the most traffic. It is often

more important to optimise routes with a view to maximising the time before any node

exhausts its battery; this is the network lifetime – the time before the network first needs

intervention to change a battery.

In WSNs, in addition to energy efficiency and network lifetime, it is important that data

from the sensors are delivered reliably. Data delivery may fail for various reasons: node

failure, congestion and link failure [Paradis and Han, 2007]. Nodes may fail because of

hardware failure. In modern deployments, this is considered as a rare event due to recent

advances in WSN hardware technology. Moreover, it is considered to be a critical event

that requires immediate attention from the network administrator so that the faulty nodes

may be replaced. Additionally, congestion may occur when multiple transmissions overlap

in time, and thus corrupt the received data. This may be effectively handled by deploying

Time Division Multiple Access (TDMA), that is to divide time frames into small segments

and allocate each transmission a unique segment, in the Medium Access Control (MAC)

layer [Cionca et al., 2008]. Furthermore, Forward Error Correction (FEC) methods can be

deployed to improve link reliability in the Data Link Layer (DLL) [Jeong and Ee, 2003].

However, even if these techniques are used, unpredictable link failures due to changing

radio conditions may still occur [Cerpa et al., 2005; Zhao and Govindan, 2003]. Hence,

it is important to promote robustness against link failures of a network configuration.

Again, in this case, the robustness is dependent on the paths taken as sensors sending

data through multiple paths which share as few links as possible are likely to increase the

chances of data being received at the base station.

Optimising energy efficiency in WSNs requires selecting the routes that use least energy

links. This however may impose greater loads on some nodes that are part of the energy

efficient routes and thus relay most data. From the perspective of optimising network

lifetime, such loads should be distributed while mostly preferring energy efficient routes.

In comparison, robust routes are those which share as few links as possible without any
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regard to average or network lifetime. Hence, improving robustness is not directly related

to the other objectives and may or may not be in conflict with them. Therefore, there

are various trade-offs to consider while selecting routes with a view to optimising different

objectives simultaneously.

Many routing approaches consider single-path routing schemes, where each node has a

single path to the base station, due to their simplicity and efficient resource utilisation

[Radi et al., 2012]. However, such approaches are somewhat limited in balancing the loads

on nodes. This is because selecting one route per node and minimising the overlaps between

different routes to reduce the loads on any particular node, would require selecting some

longer energy inefficient routes. Furthermore, single-path schemes are unable to reap the

benefits of using mesh networks fully as they are not capable of using alternative paths

when node or link fails. In case of node or link failure, a single-path routing can be

re-planned or re-optimised, and the network re-configured accordingly (see for example

Rahat et al. [2014]). An alternative approach is multi-path routing schemes, where each

node uses a number of paths to send data to base station, and thus it allows receipt of

at least partial data when failure occurs. Practical resource limitations mean that only

a small number of routes (two or three) may be allowed per node. In such a scheme, a

proportion of messages is sent via each of the available routes; only one route is used for

each individual message. Apart from being fault tolerant, this scheme is energy efficient

as it allows better load balancing [Radi et al., 2012; Ganesan et al., 2001]. To use multi-

paths, it is necessary to select the routes and the associated proportion of time each route

should be used to send messages. As we show in this thesis, this time share problem may

be modelled as a linear program for optimising robustness or network lifetime, and thus

the optimal time shares for routes may be determined.

In this thesis, our goal is to provide general methods to locate a set of routes where

each node has one or more routes to the base station that approximate optimal trade-

offs between, firstly, average lifetime and network lifetime and, secondly, robustness and

network lifetime. As we discuss in chapters 3 and 4, this combinatorial multi-objective

problem is analytically intractable, and thus there are no known algorithms that will

solve this problem in polynomial time. The population based approach of evolutionary

algorithms, where many solutions can be obtained in a single run, works well for the fast

approximation of the optimal trade-off in multi-objective problems. We therefore propose

hybrid evolutionary methods which incorporate exact solutions to the time share linear

program to estimate optimal trade-offs between objectives.

1.1 Novel Contributions

The major contributions of this thesis can be summarised as the following.

• We propose a hybrid evolutionary approach to estimate the optimal set of routes

that trade-off between: energy efficiency and network lifetime, and robustness and

network lifetime.
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• We describe a novel robustness measure – the fragility – to quantify and compare

the robustness of different solutions.

• We show how to improve the efficiency of the search and combat potential combina-

torial explosion by using various novel search-space pruning methods which promote

rapid optimisation. The methods proposed in this thesis are:

k-shortest path pruning. Intuitively, shorter energy efficient paths are likely to gen-

erate overall good solutions. Therefore, we restrict the search space by choosing

only the first k-shortest paths to the base station for each node.

Max-Min Lifetime Pruning. When there are no limits on how many paths nodes may

use to send data to the base station, a linear program (LP) may be solved to

determine the optimal distribution of traffic in order to maximise the network

lifetime [Chang and Tassiulas, 2004]. The resulting distribution can be used to

reduce the graph by deleting unused edges; furthermore, applying k-shortest

paths on this reduced graph enables the evolutionary search to select solutions

with long network lifetimes.

Braided and edge-disjoint path pruning. Braided and edge-disjoint paths are known

to be highly resilient and energy efficient [Ganesan et al., 2001]. In addition

to energy efficient k-shortest paths, we use braided and edge-disjoint paths to

restrict the search space to regions likely to contain robust routes.

• We show that for a given set of routes an appropriate linear program may be solved

to determine the optimal traffic distribution, i.e. the proportion of time each route

should be used when there are multiple routes available, for network lifetime or

robustness.

• The proposed methods are illustrated on a real network deployed in the Victoria &

Albert Museum, London, UK. We show that we can successfully achieve a wide range

of solutions displaying trade-offs between objectives. In particular, we achieve solu-

tions with long network lifetimes close to the optimal lifetime that can be achieved

if there are no constraints on the number of routes per node.

1.2 Thesis Structure

The rest of the thesis is structured as follows.

Chapter 2

We present a brief overview of wireless sensor networks, k-shortest path algorithms,

and multi-objective optimisation problems. In particular, we discuss applications,

challenges, and network topologies in wireless sensor networks. We also demonstrate

k-shortest path algorithms in synthetic networks, and finally, we briefly present

multi-objective optimisation problem formulation, solution techniques and perfor-

mance metrics.
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Chapter 3

In this chapter, we describe a model of wireless sensor networks, and derive a multi-

objective problem relating to improving energy efficiency and network lifetime. We

also show how this multi-objective problem can not be solved in polynomial time,

and hence we describe a hybrid evolutionary method to solve it. We also show how

the k-shortest path algorithm and a linear program for network lifetime (devised by

Chang and Tassiulas [2004]) may be used to prune the search space while retaining

good routes to combat combinatorial explosion. We extend the single-path approach

to a constrained multi-path approach, and devise a linear program to find the optimal

time shares between the constituent single-path schemes. Finally, we show that our

hybrid approach can achieve a wide range of solutions including an estimation of the

optimal trade-off between energy efficiency and network lifetime with one solution

consisting of three paths per node achieving a lifetime within 1% of the optimal

network lifetime.

The materials presented in this chapter have been published in [Rahat et al., 2014,

2015b].

Chapter 4

In this chapter, we turn our focus to solving another problem in wireless sensor

networks: the problem of ensuring robustness in data delivery under uncertainty.

We develop a fragility measure based on the maximum expected data loss in different

routes to quantify robustness. We demonstrate the nature of this measure through a

synthetic network. As network lifetime is often seen as more important than energy

efficiency, we derive a multi-objective problem with a view to improve robustness

and network lifetime simultaneously. As before, this presents an NP-hard problem,

and again we devise a hybrid evolutionary method to solve it. In addition to using

k-shortest path pruning and max-min lifetime pruning, we use braided and edge-

disjoint path pruning to limit the search space. Here, we utilise unconstrained multi-

paths, an extension to our previous approach, to approximate the optimal routings.

We show that an appropriate linear program may be solved to determine the optimal

time shares between the routes for robustness or network lifetime. We illustrate our

method in both synthetic and real-world networks, and show that we can achieve a

network lifetime within 1% of the optimal with a range of additional non-dominated

solutions representing various levels of trade-off between robustness and network

lifetime. We also describe potential avenues of improving local performance by using

vertex enumeration within a deflationary process, and incorporating weighted sum

method in the evolutionary process.

Some of the materials presented in this chapter have been submitted for publication

in [Rahat et al., 2015a].

Chapter 5

This chapter summarises the hybrid evolutionary approach and the associated results

presented in this thesis, and draws conclusions.
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Chapter 2

Background

In this chapter, we present the background necessary to appreciate our proposed hybrid

evolutionary approaches towards routing optimisation in wireless sensor networks. We

present a generic overview of various concepts in this chapter, while the specific usages of

different techniques and associated rationale are described in relevant chapters.

2.1 Wireless Sensor Networks (WSNs)

Research in WSNs started with the initiation of the Distributed Sensor Networks (DSN)

program at the Defence Advanced Research Projects Agency (DARPA) around 1980 [Wang

and Balasingham, 2010]. Since then, this field enjoyed a lot of attention from researchers

and users, especially after recent advancements in processor and sensor technologies, which

enabled the design of compact battery powered sensors, and thus made it a viable option

for industrial remote monitoring applications.

2.1.1 Applications

Originally motivated from military applications, advances in low-cost sensor technology

and communication networks have inspired many applications in different areas, which can

be grouped in two major categories: monitoring and tracking [Chong and Kumar, 2003;

Yick et al., 2008; Wang and Balasingham, 2010]. The generic monitoring applications are:

environmental monitoring, location monitoring, process automation, etc.; while tracking

applications mainly incorporate object, animal, vehicle or human tracking.

In contrast, Kulkarni et al. [2011] suggested a distinction among applications based on

data management; they are:

Periodic Reporting

In periodic reporting, data is collected from sensor nodes at a predefined regular

intervals, and thus it is particularly suitable for industrial monitoring, for example
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in the pharmaceuticals, food or the heritage sectors, where it is essential to monitor

environmental parameters continuously. In such a strategy, the expected data traffic

and volume are known, which in turn helps in detecting faults and overall network

management. Nonetheless, this requires constant energy drain in batteries due to

regular transmissions.

Event Detection

In case of event detection applications, data is scrutinised locally at the sensor units

and only reported when monitored parameters indicate the data is useful, i.e. an

event of interest has occurred. This strategy is, for example, useful for security

applications where a breach of perimeter is of concern. Infrequent transmissions

also result in less energy consumption. However, the data traffic and volume can be

sporadic and unpredictable.

Database-like Storage

Sensors in database-like storage networks store all data locally at the sensor units.

The base station is responsible for querying and retrieving interesting data from a

sensor. This strategy lends itself to long term data collection applications, where the

data analysis is done off-line, perhaps to discover trends and patterns, for example

in habitat monitoring of ducks [Madden et al., 2005]. In this case, sensors expend

more energy in processing queries and storing data than in communication. Hence,

the challenge is to efficiently store and process data.

In this thesis, we model WSNs and associated multi-objective problems based on static

(fixed location) monitoring networks with sensors reporting data to the base station at

fixed intervals, just as seen in museums where upto a few hundreds of sensors are usually

deployed to monitor the surrounding environment of artefacts. Nonetheless, the techniques

discussed here may easily be adapted for other applications.

2.1.2 Challenges in Sensor Network Design

Designing WSN protocols presents several difficult issues in the form of data processing,

communication and sensor management [Chong and Kumar, 2003]. Essentially, this con-

stitutes dealing with the ad hoc nature of WSN deployments, changes in sensor node loca-

tions, changes in topology or node connectivity, limited resources at nodes, etc. [Kulkarni

et al., 2011; Gungor and Hancke, 2009]. The most significant challenges are posed by the

limited resources at a sensor and the dynamic radio environment; a brief account of these

is given below.

Resource Limitation

Wireless sensors are usually battery powered standalone devices with a limited

energy source, computational processing power and storage facility [Gungor and

Hancke, 2009]. Additionally, the replacement of batteries may not be straightfor-

ward, especially if the sensor is placed at a location that is difficult to access [Kulkarni

et al., 2011]. Apart from measuring the environmental parameters, the major tasks
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carried out by a sensor are: transmission and reception of data, storage of sensed

data and routing information, micro-controller operation, and maintaining an on-

board display. These tasks make demands on the energy and memory usages of

sensors, and thus it is crucial to manage these resources through appropriate rout-

ing and communication protocols in order to ensure overall efficiency and longevity

of the network.

Dynamic Radio Environment

WSNs are usually deployed in a dynamic radio environment – links between nodes

may fail as the underlying radio environment changes due to physical infrastructure

changes, passage of people, and radio interference from other sources or multi-path

propagation of the same signal. These factors effectively corrupt data such that it

is unrecoverable, especially for low power transmissions, and this generally prompts

a repeat transmission from sensor nodes. As the change in these factors is often

unpredictable, the link quality is expected to vary over time and space [Cerpa et al.,

2005; Baccour et al., 2012].

To combat such adversities a range of techniques is used. For instance, Direct Se-

quence Spread Spectrum (DSSS) or Frequency Hopping Spread Spectrum (FHSS)

techniques may be used to split the frequency spectrum and send data at different

frequencies with a view to avoid collisions, especially in the presence of multiple

radio sources on the same frequency band [Kohno et al., 1995; Chien et al., 2001;

Akyildiz et al., 2002; Chehri et al., 2006]. Additionally, to access the communication

medium with a view to avoiding congestion or collision, Time Division Multiple Ac-

cess (TDMA) methods may be used for splitting transmission times and specifying

unique time slot for each transmission [Cionca et al., 2008; Ye et al., 2004]. Alterna-

tively, to efficiently recover corrupted data, encoding and decoding techniques, also

known as Forward Error Correction (FEC) methods, such as convolutional coding or

turbo coding, may be applied on data packets [Jeong and Ee, 2003; Schmidt et al.,

2009; Berrou et al., 1993].

However, despite such efforts links may behave unpredictably [Cerpa et al., 2005;

Zhao and Govindan, 2003]. Therefore, devising routes that each node should take to

send data to the base station must be done considering the dynamic nature of the

radio environment, and ensuring that data from the sensors reaches the base station

under uncertainty, that is improving robustness, is of paramount importance.

2.1.3 Network Standards

Network standards describe the required topology and communication protocols for facil-

itating interoperability within sensor nodes. In case of WSNs, they are developed with a

view to aid low power operation. Several standards are in place from different standardisa-

tion organisations. The Institute of Electrical and Electronics Engineers (IEEE), Internet

Engineering Task Force (IETF), International Society for Automation (ISA) and HART

communication foundation are among the leading regulatory organisations [Yick et al.,
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Figure 2.1 Illustration of a point-to-multi-point network topology. Sensor nodes (green circles)
have direct links to the base station (blue square). Some nodes (red circles) may be outside the
range of the base station, and thus they are disconnected from the network.

2008; Wang and Balasingham, 2010]. In this section, we discuss the common network

topologies and relevant protocols used in practice.

Point-to-Multi-Point Network Topology

Point-to-multi-point topology is an ad hoc network topology that is common in WSNs.

Generally, in these networks, all sensors operate in the same frequency band and the

sensors send their data directly to a central node at a predefined rate. To facilitate the

operation, this topology requires pre-configured routes, node specific IDs and security

details [Young, 2008].

Often the fundamental protocol used is IEEE 802.15.4, which has been designed by the

IEEE 802 organisation for Low-Rate Wireless Personal Area Networks (LRWPAN). It

defines the physical layer and the data-link layer, and uses simple point-to-multi-point

topology [Adams, 2006]. It emphasises low power, low complexity and low implementation

costs, making it suitable for short range and energy efficient applications. Nonetheless,

the detailed operation of this network topology largely depends on the manufacturers.

In many instances, the manufacturers extend IEEE 802.15.4 to incorporate application

specific ad hoc requirements.

In Figure 2.1, a simple point-to-multi-point network is shown. Here, nodes send only their

own data, and thus it is a very low power solution. However, as nodes are required to be

within direct range of the base station, often additional base stations or repeaters (nodes

that relay received radio signals, often at a higher power than received signals) are required

to establish full connectivity. Furthermore, if a link fails, no data can be retrieved from

the affected node until the link is restored. To deal with such shortcomings, mesh network

topologies have become popular in recent years.
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Figure 2.2 Illustration of a mesh network topology with all possible links. Sensor nodes (green
circles) are linked to the neighbouring nodes or the base station (blue square). If a link to a
neighbour fails, nodes may select another link to send data through a different neighbour provided
that the neighbour has a route to the base station.

Mesh Network Topology

In a mesh network topology data is relayed from node to node en route to the base station.

This topology extends the network range that can be covered by using multi-hops, that

is multiple node-to-node relays. In addition, it provides an opportunity to use alternative

routes in case links in existing routes fail, and thus provides an avenue to deal with

a dynamic radio environment. However, this imposes a higher power and processing

overhead at each node that relays other nodes’ data, and therefore it is necessary to

deploy an appropriate routing strategy to manage this additional demand and ensure

energy efficiency.

Depending on where the routing decision is made, routing approaches in mesh networks

can be divided into two groups: centralised and distributed [Kulkarni et al., 2011]. In cen-

tralised systems, routing information is calculated at the base station, and these routes are

broadcast to the nodes for subsequent use. In contrast, in distributed networks nodes are

responsible for calculating routes based on locally available information, e.g. link strengths

to contiguous nodes. This additional responsibility imposes higher overhead from both en-

ergy consumption and memory (as it is necessary to save local connectivity information)

perspectives in distributed systems. Also, as decisions are made locally, it may not be

possible to achieve a globally optimal solution without sharing some information across

the network (see for example Madan and Lall [2006]), and inevitably this imposes further

transmission costs at nodes. Therefore centralised systems are often preferred for very low

power sensor networks.

Common commercial high-level mesh network communication protocols are: ZigBee and

WirelessHART [Yick et al., 2008; Wang and Balasingham, 2010]. Both these protocols

use IEEE 802.15.4 as the basis for inter-node communication, and extend mesh network
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concepts. ZigBee uses special repeater nodes (also known as routers) that not only re-

transmit all received signals, but also can work as a bridge between clusters of nodes

and the base station. The use of such special nodes makes ZigBee a hybrid mesh network

system. On the contrary, WirelessHART adopts a more generic mesh networking principle

with only sensor nodes and the base station. It also deploys AES 128-block cipher for

transmission security, and TDMA with time synchronisation to minimise collision and

congestion. Clearly, this protocol has been designed with communication reliability in

mind.

In this thesis, we consider a generic mesh network topology where nodes periodically (e.g.

once every minute) send the measured data to the base station, potentially by relaying a

message through one or more nodes via one or more routes. Such data reporting periods

are repeated throughout the network lifetime: the time before any node exhausts its

battery. This scenario is most common in industrial applications, especially for constant

monitoring of locations [Kulkarni et al., 2011].

As we work with very low power sensor nodes, we use a centralised approach towards

making routing decisions. At an initial mapping phase, the connectivity among nodes is

discovered by pinging neighbouring nodes. This connectivity information is used to gen-

erate a complete network graph. The network graph is then used for routing optimisation

purposes, which is the focus of this thesis. A solution in the context of routing optimisation

is a set of routes where each node has one or more routes to the base station. As we opti-

mise multiple objectives simultaneously, we end up with a range of solutions representing

the trade-off between objectives; the novelty of this work is in devising general methods to

approximate optimal trade-offs between objectives. It is then the network administrator’s

responsibility to select a suitable solution from the trade-off solutions. This solution is

then broadcast to the nodes for subsequent use.

2.2 k-Shortest Path Algorithms

In this thesis we are interested in finding a set of routes where each node has one or more

routes to send data to the base station with a view to estimate the optimal trade-offs

between objectives. There may be many possible routes from a node to the base station.

Hence, a set of routes is constructed by selecting one or more routes for each node from the

collection of all possibilities, and thus each unique set of routes is a specific combination

of routes. Therefore, finding sets of routes that optimally trade-off between objectives is

considered as a combinatorial optimisation problem where different combinations have a

particular quality on each objective.

In this combinatorial optimisation problem, the space to be searched for optimal sets of

routes, that is the search space, grows rapidly. This is because the number of possible

combinations of routes to choose from increases exponentially as the number of nodes

grows. In other words, this problem is susceptible to combinatorial explosion. Therefore,

to solve the optimisation problem quickly, we limit the search space by retaining sensible
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vi vj vB

wij

Figure 2.3 Route Si = 〈vi, vj , . . . , vB〉 from vi via vj to the base station vB . wij is the cost (e.g.
distance) between vi and vj .

routes. Sensible routes in this context may incorporate routes that are short, energy

efficient and reliable. This is based on the intuition that shorter paths are likely to be

energy efficient and relatively reliable, because shorter paths require fewer transmissions.

Hence data can be transmitted with lower overall energy expense, and fewer transmissions

also result in higher cumulative probability of successful data transmission depending on

the individual edge failure probabilities. A strategy for finding sensible routes is to focus

on the k-shortest paths between each node and the base station. We discuss appropriate

cost functions defining the length of each route in chapter 3. In this section, we discuss

the k-shortest path problem and state-of-the-art algorithms to solve it.

The shortest path problem is a well known combinatorial optimisation problem. The goal

of this problem is to find the route with the minimum distance between a source node and

the base station with some predefined cost parameters (distances) at the edges. There

are many effective algorithms for solving this problem, for instance, Dijkstra’s algorithm

[Dijkstra, 1959], Bellman-Ford algorithm [Bellman, 1958], A∗ search algorithm [Hart et al.,

1968], Floyd-Warshall algorithm [Floyd, 1962].

A natural extension of the shortest path problem is the k-shortest path problem, where

the task is to find the k-shortest paths between a node and the base station, and rank

them in increasing order [Eppstein, 1999; Hershberger et al., 2007]. This problem has

warranted much research interest in the past few decades, since it was first scrutinised by

Hoffman and Pavley [1959].

There are two variants of the k-shortest path problem. The distinction is characterised by

the restriction of incorporating only simple paths, that is paths without loops. As it turns

out, this problem with the simple path restriction is more challenging than with loopy

paths. Nonetheless, several effective algorithms exist to calculate k-shortest simple paths.

Some of the well-known algorithms are due to Yen [1971], Hoffman and Pavley [1959],

Pollack [1961], Hershberger et al. [2007] and Brander and Sinclair [1995]. Yen’s algorithm

stands out as having the best worst-case upper bound computational time complexity for a

directed graph. On the other hand, the problem is simpler to solve if simple paths are not

required [Hershberger et al., 2007], and the algorithm with the best-known upper bound

computational complexity to solve this problem is due to Eppstein [1999]. In this section,

we describe both Yen’s algorithm and Eppstein’s algorithm, preceded by the fundamentals

of graph representations.
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vB

v1

v2

v6

v3

v5

v4

e1B

e2B

e61

e62

e31

e34

e45

e46

e56

Figure 2.4 A directed network graph with six sensor nodes and the base station vB . Nodes are
represented by light blue circles, the base station is shown as a light green rectangle. Lines
connecting the nodes are the edges, where an edge from node vi to node vj is labelled with eij . In
this network, V = {v1, v2, v3, v4, v5, v6, vB} and E = {e1B , e2B , e31, e34, e45, e46, e56, e61, e62}.

2.2.1 Graph Representations

Generally, a network consists of vertices and the arcs that connect them. The vertices are

often referred to as nodes, while the connecting arcs are called edges or links. Therefore a

network may be represented as the graph G = {V,E}, where V is the set of N − 1 sensor

nodes vi plus a base station vB, and E is the set of M edges [Brander and Sinclair, 1995;

Cormen et al., 2001].

An edge eij between nodes vi and vj is quantifiable in terms of an associated weight or cost

wij (Figure 2.3). If eij ⇔ eji, then a graph is considered to be undirected, otherwise the

graph is directed. The characteristics of the edge costs vary with the problem definitions.

Costs can often be thought of a distance between nodes in which case the minimum cost

route has a natural interpretation as the shortest path.

A route Ri is defined as a sequence of nodes that is followed to reach the destination node

vB, starting from a specific node vi. For example, in Figure 2.4, one of the routes from

node v3 to node vB is the sequence R3 = 〈v3, v4, v6, v1, vB〉. As routes involve edges, we

can then calculate the total route cost by summing the edge costs:

Hi =
l−1∑
p=1

wRi[p],Ri[p+1]
. (2.1)

Here, l is the length of the route and Ri[p] is the p-th element of the route Ri. These route

costs may then be used as a basis for comparison between different routes.

In a computational environment working with graphs requires special data structures.
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Two particular structures are often used to define a network [Cormen et al., 2001]:

Adjacency list contains an array of nodes, where each member of the array is a list of

neighbouring (connected) nodes. Therefore, the memory required to implement an

adjacency list is Θ(M+N). In this structure, the information regarding connectivity

between two nodes is not readily accessible. Figure 2.5 shows the adjacency list for

the network presented in Figure 2.4.

List of Nodes Adjacent to

v1 vB
v2 vB
v3 v1, v4
v4 v5, v6
v5 v6
v6 v1, v2
vB -

Figure 2.5 Adjacency list for the network in Figure 2.4. In this list of lists each node of the network
has a list of connected nodes to which it can send data.

Adjacency matrix is a square matrix of size (N×N), where the numeric indices of rows or

columns are associated with nodes. Thus the i, j-th element of the adjacency matrix

is the weight wij of the edge eij . A particular edge and the associated weights are

easily accessible in this structure. A graph in adjacency matrix form can be described

as follows [Cormen et al., 2001]:

Gij =

{
wij if eij ∈ E
∞ otherwise

(2.2)

The memory requirements to implement an adjacency matrix is Θ(N2).

Depending on the nature of the application, different data structures may be used. From

memory and speed perspectives, the adjacency list is preferred when the application involve

iterating through all edges. In contrast, the adjacency matrix is used when it is necessary

to consider individual edges and their associated costs.

With this discussion of the basic notations and representations for computer networks, we

present Yen’s algorithm and Eppstein’s algorithm next.

2.2.2 Yen’s Algorithm

Yen’s algorithm deals with the problem of finding k-Shortest Paths (KSP) on a graph with

non-negative edge weights. It has the additional constraint that the paths are required

to be simple (no loops are allowed) [Yen, 1971]. The algorithm is based on the idea that

subsequent shortest paths share edges with previously found shorter paths. To exploit

this idea, this algorithm maintains two lists: list A – the list of ranked shortest paths,

and list B – the tentative list of candidate paths for the next shortest path. It starts with

empty lists A and B. The shortest path between the source node and the base station

14
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Algorithm 2.1 Yen’s Algorithm for k-shortest paths:

Inputs

1: G: Adjacency matrix of the network
2: s: Source node index
3: d: Base station index

Steps

1: A← 〈〉 . Empty list of shortest path
2: A1 ← 〈s, . . . , d〉 . Sequence of node indices in first shortest path 1

3: A← A+A1 . Append first shortest path to A
4: Gl ← copy(G) . Local copy of G
5: for k = 2→ K do
6: for i = 1→ [len(Ak−1)− 1] do
7: nc ← Ak−1[i] . Current node
8: ri ← Ak−1[0 : i] . Sub-path from source till current node in Ak−1
9: for j = 1→ k − 1 do

10: ind← Aj .index(nc) . index of current node
11: rj ← Aj [0 : ind] . Sub-path from source till current node in Aj

12: if ri = rj then
13: nn ← Aj [i+ 1]
14: Gl(nc,nn) ←∞ . Remove edge
15: Gl(:,nc) ←∞ . Current node becomes unreachable
16: end if
17: end for
18: Si ← 〈nc, . . . , d〉 . Shortest-path from current node till destination
19: Bi ← ri + Si . New candidate for k-th shortest path
20: end for
21: A← A+ min(B) . Append shortest-path among all paths in B
22: Gl ← copy(G) . Restore original graph to local copy of G
23: end for

is then added to list A. The algorithm then loops through the following process until k

shortest paths are found. For each path Rid in list A, for vi, remove each edge ejk in

turn, where vk and vj are the head and tail of the edge. A root path to the tail is then

Rid[:l] = 〈vi, . . . , vj〉, where vj is the l-th element in Rid. The shortest path Rj from vj

to the base station vB is found with ejk = ∞. The candidate path is then generated as

Ri(d+1)′ = Rid[:l] + Rj , and added to list B. In short, for each edge in each path in list

A, a candidate path is generated and added to list B. Then the shortest path in list B is

added to list A as the next shortest path. Algorithm 2.1 shows Yen’s algorithm.

Figure 2.6 illustrates Yen’s algorithm through an example of finding k-shortest paths in a

synthetic network with k = 2. The network graph is given in Figure 2.6a. We want to find

2-shortest paths from v0 to vB. The first path is found by deploying Dijkstra’s algorithm

[Dijkstra, 1959], which yields the sequence, R01 = 〈v0, v3, v4, v5, vB〉. As the shortest path

in the network, this path is added to the list A. Now, for each edge in R01, we remove

it and generate a spur path from the tail of the edge. For instance, in Figure 2.6d, we

remove the edge e34 with tail v3 and root path R01[:2] = 〈v0, v3〉. We then find the shortest

path from v3 to the base station vB; this is the spur path R3 = 〈v3, v6, v7, vB〉. The root

1Any suitable shortest path algorithm could be used to generate this sequence.
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(a) Network Graph

v0 v1 v2

v3 v4 v5

v6 v7 vB

2

13

20

27 14

9

15 20

10

12

18 8

(b) Shortest path from vi to
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(c) Candidate path 1
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(d) Candidate path 2
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(e) Candidate path 3
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(f) No candidate paths

Figure 2.6 Illustration of Yen’s algorithm for finding 2-shortest paths from v0 (solid yellow circle)
to vB (solid blue square) with a given graph in (a). The algorithm starts with the shortest path
(red arrows) from v0 to vB in (b) (nodes in the path depicted with green); this path is added to
the list of ordered shortest paths (list A). Edges from the shortest path are removed (grey arrows)
in turn ((c)-(f)), and in each instance a candidate path is generated (blue arrows plus the path
till solid red circles); each new path is added to the list of tentative paths (list B). Once all paths
in list A have been considered, the shortest path in list B is added to list A as the next shortest
path; in this case the next shortest path is (c).

path and the spur path are combined to generate a candidate path R02′ = R01[:2] +R3 =

〈v0, v3, v6, v7, vB〉, and it is added to list B. Note that, in some cases a candidate path

may not exist, see for example Figure 2.6f. Once all edges in R01 have been considered,

the shortest path in list B, in this case the path in Figure 2.6c, is added to list A. Since,

we have already found k = 2 paths, the algorithm returns list A, and terminates.

In this algorithm, the run time complexity has three components. The first component is

the shortest path calculation, which is O((M + N) logN) by using Dijkstra’s algorithm
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44 46 26
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26 8 0

Figure 2.7 Illustration of shortest path tree. Left : a complete network graph G is given where the
root node is the base station vB (red). Right : the shortest path tree for G is depicted with red
arrows, and the node specific shortest path cost is given inside a node.

with minimum priority queue [Cormen et al., 2001]. The second component is the length

of the previous shortest paths, which at worst case can be N . The last component is k,

as we have to iterate through previous shortest paths and find spur paths until we have

k-shortest paths. Finding the next shortest path requires running shortest path algorithm

once, and removing all edges in turn from the resulting path which may have N edges at

worst. The combined run time for this procedure is O((M + N)N logN). For finding k

shortest paths, the process is repeated k times, and therefore the accumulated worst case

running time becomes O((M + N)kN logN), which is better than the reported original

computational complexity of O(kN3) [Yen, 1971; Brander and Sinclair, 1995].

This algorithm is designed to find the k-shortest simple paths between a source node

and the base station. When the k-shortest paths for all nodes to the base station are

required, this algorithm may be iterated for each node in turn. In the next section, we

discuss Eppstein’s algorithm, which deals with the k-shortest path problem without the

limitation of simple paths. A straightforward modification to that algorithm may achieve

simple paths as well.

2.2.3 Eppstein’s Algorithm

Eppstein’s algorithm has the lowest known run time complexity in calculating the k-

shortest paths in a directed graph with non-negative edge weights and no restrictions on

the paths being simple. The algorithm is based on three central concepts: shortest path

tree, sidetrack costs and implicit representation of paths. We present a brief overview of

these concepts first.

Shortest Path Tree

A tree in graph theory is defined as a subgraph of the complete graph where every

pair of nodes has at least one route connecting them [Avis et al., 2005]. The shortest

path tree problem extends this idea. In this problem the goal is to find a tree in

the graph that is built with only the shortest paths from all nodes to a designated

central or root node [Wu and Chao, 2004]. In the context of this thesis, the base

station is considered to be the root node. A shortest path tree may be calculated
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vi vt

vh

vB

Ht

Hh

eth wth

Figure 2.8 An edge eth (black arrow) with edge cost wth from node vt to node vh is not a part of the
shortest path tree (red arrow). Ht and Hh are the shortest path costs for vt and vh respectively.
The sidetrack cost at eth is: wth +Hh −Ht.

using Dijkstra’s algorithm with Fibonacci heaps that has a run time complexity of

O(M + N logN) [Fredman and Tarjan, 1987; Wu and Chao, 2004]. An example of

shortest path tree is given in Figure 2.7.

Sidetrack Costs

The sidetrack cost at an edge captures the cost saved by not being sidetracked from

the shortest path tree. Let, for node vt, the shortest path Rt on the shortest path

tree have a total route cost Ht. Similarly, the shortest path Rh for node vh has a

cost Hh. Consider, an edge eth from vt to vh which is not a part of the shortest path

tree. Therefore, vt may be sidetracked from the shortest path tree through the edge

eth taking the route R′t instead of the shortest route Rt. By definition, the cost H ′t

for new route R′t would be greater than Ht as eth is not a part of the shortest path

tree. Thus the cost saved by vt when it takes Rt without being sidetracked through

eth is given by:

∆th = H ′t −Ht = wth +Hh −Ht, (2.3)

where, wth is the edge cost for eth (see Figure 2.8). Clearly, the sidetrack cost at an

edge on the shortest path tree would be zero as Ht and H ′t must be equal in this

case.

Note that by using the shortest path tree and the sidetracks costs, we can easily find

new routes that are not in the shortest path tree for any node in the network, and

the next shortest path must be among one of these new routes.

Implicit Path Representation

An explicit representation of paths in a graph is a sequence of nodes starting from

the source node and ending at the base station. Eppstein [1999] argued that explicit

representations of paths is computationally expensive, and hence he suggested an

implicit representation of paths using sidetrack costs which is essentially a heap

structure. The heap is formed with the edges that are not in the shortest path tree

and ordered in terms of sidetrack costs. The root of this heap is the shortest path tree

with null sidetrack cost. For building the rest of the heap, the rule is that every child

in the heap is a possible sidetrack from the parent, and thus the child is essentially a

particular sequence of edges where none of the edges appear in the shortest path tree

(see Figure 2.9). Therefore, every pop operation, that is extracting the root of the

heap, results in a particular sequence of edges. This sequence is essentially the least
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(a) Network graph.
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(b) Shortest paths tree (red
arrows) with shortest route
costs shown inside a node,
and sidetrack costs (blue ar-
rows).

{}

{4} {6} {10}

{4, 3} {4, 3, 6}
(c) Heap built from sidetrack costs. Every pop operation extracts a sequence
of sidetrack costs, and this sequence represents the next shortest path.

Figure 2.9 Building heap structure in Eppstein’s algorithm for calculating k-shortest paths from
vi (solid yellow circle) to vB (solid blue square) with given network graph in (a). The shortest
path tree and the associated sidetrack costs are shown in (b), which is then used to build a heap
structure in (c).

costly sequence of possible sidetracks within the current heap, and thus represents

the next shortest path.

Eppstein’s algorithm simultaneously generates the shortest path tree, the sidetrack costs

and the implicit representation of the paths. Figure 2.9 demonstrates the sidetrack cost

calculation and building the special heap structure. With the edge costs given in Figure

2.9a and the shortest path tree in Figure 2.9b, the sidetrack costs may be calculated. For

instance, if v0 sidetracks through edge e01, the sidetrack cost would be: w01+H1−H0 = 4;

all sidetrack costs can be calculated in this way. Starting from v0, all possible sequences of

these sidetrack costs may be pushed into a heap as in Figure 2.9c. Clearly, every instance

the minimum is extracted from this heap, a particular combination of costs are produced,

and thus using this sequence of costs a route may be constructed which would be the

next shortest path. For example, extracting the minimum from the heap in Figure 2.9c,

will produce the sidetrack cost {4} which is associated with the sidetrack from v0 to v1

through e01, so the next shortest route is: 〈v0, v1, v2, v5, vB〉 with total cost of 48.

According to Eppstein [1999], the heap structure may be built with a worst case run time of

O(M+N logN). Then the k paths extraction, i.e. extracting the minimum from the heap
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structure k times, has a run time complexity of O(k log k). Therefore the combined com-

putational complexity for this basic Eppstein’s algorithm is of O(M +N logN + k log k).

However, Eppstein explains a performance improvement technique using a tree decom-

position method by Frederickson [1991], where the computational complexity becomes

O(k+M +N logN). Also, in recent times, practical performance improvements with the

same upper bound complexity, have been described by Jiménez and Marzal [2003] and

Aljazzar and Leue [2011].

Extracting Simple Paths

Eppstein’s algorithm has no restrictions on the paths being simple. Nonetheless, it can

be modified to produce simple paths. To achieve this, we ignore any loopy paths that are

extracted from the heap and continue extracting the next shortest routes until we have

k-shortest loopless paths or the heap is empty. This does not add any overhead on building

the heap tree, as this is a common operation done as the first step of the algorithm.

In this section, we have reviewed the k-shortest paths problem and the state of the art

solutions. Eppstein’s algorithm, modified to discard loopy paths, is used to generate

candidate routes in the evolutionary optimisation approaches described in chapters 3 and

4.

2.3 Multi-Objective Optimisation Problems (MOPs)

In this thesis, our aim is to find a set of routes with a view to improving two objectives

simultaneously, that is to estimate the optimal trade-off between objectives. This gives

rise to two-objective problems, which can be generalised as multi-objective problems. In

this section, we review the basic concepts of multi-objective optimisation problems.

2.3.1 Optimisation and Multiple Objectives

Optimisation can be described as a problem of finding the best among a set of feasible

solutions with respect to certain criteria. The feasibility is determined by the imposed

constraints that must be satisfied for a solution to be considered as valid. If there is only

one criterion to improve (either maximise or minimise), this is known as a single objective

optimisation problem, and can be expressed as [Boyd and Vandenberghe, 2004]:

min f0(x), (2.4a)

subject to:

fi(x) ≤ bi, i = 1, . . . , k; (2.4b)

fj(x) = bj , j = k + 1, . . . ,m; (2.4c)
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where the objective is to minimise f0(x) : Rn → R, and fi(x) is the i-th (equality or

inequality) constraint of m constraints. A feasible solution vector x ∈ Rn resides in the

set X = {x ∈ Rn : fi(x) ≤ bi ∧ fj(x) = bj , i = 1, . . . , k, j = k + 1, . . . ,m}. An optimal

solution to this problem is x∗, where x∗ ∈ X and f0(x
∗) ≤ f0(x);∀x ∈ X .

There are various classes of optimisation problems [Boyd and Vandenberghe, 2004]. An

optimisation problem is described as a convex problem, if the f0, . . . , fm functions satisfy

the following conditions (in case of a minimisation problem):

fi(αx+ βx′) ≤ αfi(x) + βfi(x
′), ∀x, x′ ∈ X , (2.5)

where α, β ∈ R. Note that the convexity property implies that global information may

be derived from local information, that is if a local minimum is found, then it is also the

global minimum [Boyd and Vandenberghe, 2004].

An important subclass of convex problems are linear programming problems, where all

associated functions are linear, i.e. they satisfy the following conditions:

fi(αx+ βx′) = αfi(x) + βfi(x
′), ∀x, x′ ∈ X . (2.6)

If conditions (2.5) and (2.6) are not satisfied, then an optimisation problem is referred to

as a non-linear programming problem.

In general, linear programs and convex problems can not be solved analytically. Nonethe-

less, there are effective algorithms to solve them. The most used approach to solve linear

programming problems is the simplex algorithm due to Dantzig [1963]. Although this

algorithm has an exponential worst case computational complexity, it performs well in

practice and it has been shown to have polynomial smoothed complexity [Spielman and

Teng, 2004]. Similarly, interior point methods may be used to solve convex problems, and

the maximum number of operations required to achieve a specified accuracy is a polyno-

mial of the problem dimensions [Karmarkar, 1984; Nesterov and Nemirovsky, 1994]. In

contrast there are no known methods to solve non-linear programs in polynomial time

[Boyd and Vandenberghe, 2004].

In many real world problems, it is not sufficient to optimise one objective; multiple ob-

jectives are required to be optimised simultaneously: this is known as a multi-objective

optimisation problem (MOP). This can be formally expressed as [Zhou et al., 2011]:

minF(x) = (f1(x), . . . , fm(x))T , (2.7)

where x ∈ X ∈ Rn is a decision vector within the decision space X , there are m objectives

to minimise, and F : X → Y with Y being the objective space (see Figure 2.10). Note

that there may be equality or inequality constraints associated with the problem as well.

Here we are minimising all m objectives. In practice, some objectives may be required to

be maximised while others are being minimised. Also, note that a maximisation problem

can be expressed in the form of (2.7) without loss of generality [Deb, 2009].
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x1
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x

F(x)X

Y

Figure 2.10 Objective space Y (red) is the image of the decision space X (blue). A solution
x = (x′1, x

′
2)T (yellow dot) in decision space corresponds to a point F(x) = (f1(x′1, x

′
2), f2(x′1, x

′
2))T

(green dot) in the objective space. Solution quality is compared in the objective space.

2.3.2 Dominance and Pareto Optimality

In MOPs, the objectives are often conflicting: improving one objective can only be done

at the expense of the other objectives [Coello Coello et al., 2007; Deb, 2009]. Therefore, a

single solution that optimises all objectives simultaneously may not be available. In such

cases only the best trade-off between the objectives exists, and these optimal trade-off

solutions are known as the Pareto optimal solutions [Stadler, 1979]. A solution may then

be chosen from the Pareto optimal solutions by the decision maker based on available

extrinsic information, such as relative importance of the objectives.

The idea of Pareto optimality is based on the notion of dominance which is the standard

basis of comparing two solutions in the objective space. A solution x = (x1, . . . , xn)> is

said to dominate another solution x′ = (x′1, . . . , x
′
n)> if x is wholly better than x′; this is

written as x ≺ x′. Formally, for the MOP in equation (2.7), x ≺ x′ iff:

F(x) ≤ F(x′) ∧ ∃i ∈ {1, . . . ,m}, fi(x) < fi(x
′), (2.8)

where, x, x′ ∈ X , and F(x) ≤ F(x′) represents element wise comparison [Coello Coello

et al., 2007]. Figure 2.11 illustrates the dominance relationship.

There may be solutions x′ ∈ X , for which neither x ≺ x′ nor x′ ≺ x, i.e. x is better in

some objectives while x′ is better in others. Then x and x′ are incomparable and written

as: x ⊀ x′. These mutually non-dominating solutions are considered to be members of

the Pareto optimal set if they are not dominated by any x ∈ X . The Pareto optimal set

is thus defined as:

PS = {x ∈ X |@x′ ∈ X , x′ � x}. (2.9)

The associated Pareto front in the objective space Y is described as:

PF = {z = F(x)|x ∈ PS}. (2.10)

22



2. Background

f1

f 2

z

B

A

C

C

f1

f2

Figure 2.11 Dominance comparison in the objective space. Solution x has an objective value
z = F(x) (blue dot). x dominates any solutions with objective values in area B (red), and x is
dominated by any solutions with objective values in area A (green). The solutions with objective
values in area C (white) are not directly comparable with x: these solutions are mutually non-
dominated with respect to x.

2.3.3 Brief Overview of Solution Approaches

Traditionally, MOPs were solved using different scalarisation techniques [Ehrgott, 2006].

The most well-known among them is the weighted sum method in which the objectives

are reduced to a single objective problem as follows:

min

m∑
i=1

λifi(x), (2.11)

where the weight λi represents the relative importance of the objective function fi(x).

Solving this problem then results in a single solution, which relates to a particular trade-off

on the Pareto front [Coello Coello et al., 2007]. The Pareto front may then be constructed

by varying the λi, i.e. by varying relative importance of the objectives. This technique is

however known to perform poorly for problems with non-convex Pareto fronts, and in fact

evenly distributed weights fail to locate an even distribution of solutions across all parts

of the Pareto front, even if the front is convex [Das and Dennis, 1997].

In the past few decades, evolutionary algorithms (EAs) have grown in popularity due

to their ability to produce multiple solutions in a single run, and thus approximate the

Pareto front rapidly. An approximation of the true Pareto front is often sufficient for real

world problems [Coello Coello et al., 2007; Deb, 2009]. Rosenberg [1967] was the first to

mention the use of a heuristic search approach towards solving MOPs. However, the first

real application of EAs is due to Schaffer [1985]. Since then multi-objective optimisation

using evolutionary algorithms (MOEAs) have received significant attention. There are

many comprehensive survey papers. For example see Fonseca and Fleming [1995], Coello

Coello [1999], Zitzler et al. [2004], Zhou et al. [2011], and Nedjah and Mourelle [2015].

There are many well known algorithm frameworks for MOEAs. Notable among these

are Non-dominated Sorting Genetic Algorithm (NSGA) [Srinivas and Deb, 1994; Deb
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et al., 2002], Pareto Archived Evolution Strategy (PAES) [Knowles and Corne, 2000],

and Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler and Thiele, 1999]. These

frameworks mostly utilise a selection operator based on Pareto dominance and an iterative

reproduction approach [Zhou et al., 2011].

In recent years, the focus of the research community shifted towards solving many-objective

problems in which more than three objectives are optimised. Lücken et al. [2014] and Li

et al. [2015] presented comprehensive surveys on recent evolutionary approaches to solve

many-objective problems. Here we present a brief account of some important methods.

We note that in solving many-objective problems, the major difficulties are that the search

ability deteriorates, and the number of solutions necessary to approximate the Pareto front

increases exponentially [Ishibuchi et al., 2008]. With a view to combat such shortcomings,

many methods have been proposed. An important class of techniques is decomposition

based techniques in which the original problem is simplified into a collection of scalar func-

tions [Lücken et al., 2014]. Hughes [2003, 2007] proposed a decomposition method called

multiple single objective Pareto sampling (MSOPS, and MSOPS-II). In this method, each

solution in the evolutionary population is ranked according to a set of target weights,

and an individual’s ranking is calculated using weighted max-min method. At the end of

optimisation, the solution with most scores in the highest rank across all target weights is

selected as the final solution. Multi-objective evolutionary algorithm based on decompo-

sition (MOEA/D) is another popular decomposition method developed by Zhang and Li

[2007]. In this technique, the scalarisation is achieved with a uniformly distributed weight

vector. Each weight in the weight vector represents a particular scalar optimisation prob-

lem, and each individual in the evolutionary population is associated with improving one

of these unique problems. To generate an appropriate weight vector, various methods,

such as weighted sum, weighted Tchebycheff, boundary intersection and different combi-

nations of them, have been used [Zhang and Li, 2007]. In addition to the decomposition

methods there are indicator based approaches which use a quality indicator, such as the

hypervolume indicator, as the fitness measure, and therefore the many-objective problem

is converted into a single objective problem of extremising an appropriate quality indicator

[Lücken et al., 2014]. In this context, Zitzler and Künzli [2004] have proposed an indicator

based evolutionary algorithms (IBEA), which is a general framework. In this framework

solutions are compared in pairs using a binary indicator, and only non-dominated solutions

are evaluated. The hypervolume indicator may be used for indicator based approaches,

for instance, S-metric selection-EMOA (SMS-EMOA) is a method that was designed to

maximise the hypervolume indicator [Emmerich et al., 2005]. However, as calculating

hypervolume in high dimensions is computationally expensive [Bringmann and Friedrich,

2008; Bradstreet, 2011], Bader and Zitzler [2011] described a fast hypervolume estimation

method using a Monte Carlo algorithm, and they called the overall approach hypervolume

estimation algorithm for multi-objective optimisation (HypE). Apart from that, Deb and

Jain [2014] discussed a reference point based non-dominated sorting approach to deal with

many objective problems, and this approach is known as NSGA-III.

In this thesis, in which two or three objectives are optimised, we use a straightforward

elitist evolutionary algorithm combined with the deterministic search space pruning and
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the solutions of linear programs; thus we develop a hybrid approach. We provide details

of the algorithms in chapters 3 and 4.

2.3.4 Performance Metrics

To evaluate the performance of the hybrid evolutionary approach presented in this thesis,

we use two methods:

Hypervolume Indicator [Zitzler, 1999]

The hypervolume indicator is the space covered between all function values z = F(x)

and a predefined reference point r, where x ∈ PS′, an approximation of the optimal

Pareto set. Usually, a reference point in the objective space is selected such that it

is dominated by any function values from all approximation sets. Therefore, the in-

dicator helps measure the coverage and the convergence quality of an approximation

set. Thus it works as a basis for comparison between approximation sets.

Let, ai = {y : y ∈ Y ∧ y � zi ∧ y ≺ r}, then the hypervolume indicator with respect

to a reference point r may be expressed as:

HV = vol{
⋃
i

ai|zi = F(xi ∈ PS′)}. (2.12)

In Figure 2.12, we give an illustration of the hypervolume indicator.

The advantage of using the hypervolume metric is that it can capture the dominance

relationship between two approximation sets from the same simulation run precisely.

This is because if an approximation set dominates another then it would have strictly

better quality in terms of hypervolume in comparison to the latter [Zitzler et al.,

2007]. The limitation of the hypervolume indicator is that the calculation of union

of volumes takes exponential time in the number of objectives, and therefore there

are no polynomial time algorithms to solve it [Bringmann and Friedrich, 2008; Brad-

street, 2011]. Although this may prove to be too expensive in very high dimensional

problems, calculating the hypervolume in two or three dimensions is cheap.

Summary Attainment Surfaces [Fonseca and Fleming, 1996; Knowles, 2005]

With an approximation front, the objective space may be divided into two regions:

firstly, the region where a point is either dominated by or equal to at least one

member of the approximation front, and secondly, the region where no points are

dominated by any members of the approximation front. Hence, there exists a bound-

ary between these regions, and this boundary is known as the attainment surface

[Fonseca and Fleming, 1996; Knowles, 2005].

The summary attainment surface (SAS) – also known as the empirical attainment

surface (EAS) – is a statistical tool which shows the probabilistic distribution of the

attainment surfaces achieved by a particular heuristic algorithm over many simula-

tion runs. It is therefore used for estimating the performance of a heuristic algorithm,

and it may be used to compare different algorithms.
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Figure 2.12 Hypervolume indicator (HV ,
blue area) in two dimensions. In this exam-
ple, both objectives f1 and f2 are being min-
imised, andHV is the area dominated by the
estimated Pareto front (green squares) with
respect to the reference r (red dot).
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Figure 2.13 Schematic summary attainment
surfaces for three simulation runs. Differ-
ent Pareto front approximations are shown
in black squares, magenta diamonds and or-
ange dots. The red dotted line shows the
33.33% attainment surface, the blue solid
line shows the median attainment surface,
and the green dotted line shows the 100%
attainment surface.

As stochastic optimisers only approximate the Pareto set, the solutions in final ap-

proximation may vary in different runs. The goal attainment of each run can be

inspected using the attainment function, which is defined as the probability of an

arbitrary point in the objective space F(x′) = z′ ∈ Y being attained by solutions

x ∈ PS′, where PS′ is the final approximation Pareto set from the optimiser. In

essence this is the probability that ∃x ∈ PS′ : x � x′.

SAS extends this idea to incorporate multiple runs [Fonseca et al., 2011]. Let an in-

dicator function I(ρ) : Rn → {0, 1}, where I(ρ) = 1 if proposition ρ is true, otherwise

I(ρ) = 0. Consider PS′ = {xi}ki=1 is a randomly drawn Pareto set approximation

from some random non-dominated point set distribution, then the summary attain-

ment surface is the discrete function α : Rm → [0, 1] with

α(z′) =
1

k

k∑
i=1

I(xi � x′), (2.13)

where F(x′) = z′ is an arbitrary point in the objective space.

Clearly, this is an estimate of the probability distribution of achieving certain quality

in terms of the locations in the objective space. Thus this may be used to statistically

evaluate the overall performance of a stochastic algorithm, and to compare different

algorithms. An illustration of summary attainment surfaces is given in Figure 2.13.

2.4 Summary

In this chapter, we have reviewed some of the basic concepts regarding wireless sensor

networks, k-shortest paths algorithms, and multi-objective optimisation problems that are
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necessary to appreciate our proposed hybrid evolutionary routing optimisation method.

In this thesis, we experiment with WSNs in mesh network topology where each sensor is a

node and sends data periodically to a base station. As we discussed, the major challenges

in WSNs are the resource limitations at sensors and the unpredictability of radio environ-

ment. Due to the resource limitations, it is necessary to improve the energy efficiency in

the network. In a mesh network topology, ensuring energy efficiency is equivalent to se-

lecting routes with minimum energy links. This may impose undue burden on a few nodes

that relay most traffic. Hence, it is necessary to distribute the loads in order to extend

the time before any node exhausts its battery, that is the network lifetime. Additionally,

WSNs are often deployed in unpredictable radio environment. It is therefore important

to improve robustness of data delivery under uncertainty, and this objective has no direct

relationship with the loads on nodes or energy efficiency. These unrelated and conflicting

objectives may be considered as multi-objective problems, where good routes are sought

to improve such goals.

The focus of this thesis is to locate a set of routes where each node has one or more routes

to the base station with a view to optimising multiple objectives simultaneously. Here we

consider two multi-objective problems: firstly, energy efficiency and network lifetime in

chapter 3, and secondly, robustness and network lifetime in chapter 4.

Locating good routes is essentially a search problem, where the task is to find a set

of routes from many possible combinations of routes. This is therefore susceptible to

combinatorial explosion, that is as the number of nodes increases the number of possible

combinations grows rapidly. To deal with this problem, we use various pruning methods,

and one important pruning method uses k-shortest path algorithm, in particular modified

Eppstein’s algorithm discussed in this chapter, to reduce the search space by retaining

energy efficient routes with an appropriate edge cost parameter. We discuss this method

in more detail in chapter 3.

As discussed in this chapter, solving a multi-objective problem results in a range of solu-

tions, and in this context a solution is a set of routes. Evolutionary algorithms are often

used to solve such problems and to estimate the optimal trade-off between objectives. In

the following chapters we show how hybrid evolutionary approaches may be used to solve

the multi-objective routing optimisation problems in the reduced search space, and thus

estimate the trade-off between different objectives.
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Chapter 3

Energy Efficiency and Network
Lifetime1

In this thesis, we consider a wireless sensor mesh network, where data is relayed from

node to node en route to the base station. Mesh networks are preferred to ad hoc point-

to-multi-point topologies as they are capable of extending the network range and provide

alternatives when routes fail. However, mesh networks can be expensive in terms of en-

ergy consumption due to a higher overhead at each node for additional activities, namely

relaying messages for other nodes and, in systems with distributed planning, calculating

new routes. These additional activities can be severely detrimental to the overall life of

the network, reducing the time before it requires servicing and battery replacement. It

is desirable to minimise the energy consumption in the network, which is equivalent to

maximising average lifetime [Rodoplu and Meng, 1999]. However, as Chang and Tassiulas

[2004] indicated, using minimum energy routes throughout the lifetime of a network can be

detrimental to the group of nodes that relays most routes. Hence, in addition to improving

average lifetime, it will usually be important to maximise the time before the battery of

the shortest-lived node is exhausted; this is the network lifetime. This routing optimisa-

tion problem is often referred to as the maximum lifetime routing problem [Chang and

Tassiulas, 2004; Madan and Lall, 2006]. Devising routes in mesh networks therefore re-

quires consideration of the trade-off between individual and system-wide battery lifetimes

within the network.

Both efficient energy usage and maximum lifetime routing have attracted much research

interest in recent years. These approaches can be divided into two groups: distributed and

centralised [Kulkarni et al., 2011]. In distributed approaches, the responsibility for routing

is distributed across the constituent nodes, i.e. the nodes are able to make decisions on

routing locally. On the other hand, in centralised approaches, a centrally calculated route

is broadcast to participating nodes.

Distributed approaches can provide good performance, and even optimal solutions. For

instance, the distributed approach described by Rodoplu and Meng [1999] is guaranteed to

1The materials in this chapter have been published in [Rahat et al., 2014, 2015b].
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converge to the minimum energy topology in a strongly connected network where the com-

munication links are not vulnerable to environmental changes. In addition, Madan and

Lall [2006] described a distributed approach that can locate the optimal routing scheme

using a sub-gradient optimisation algorithm to solve the convex optimisation problem

presented by maximum lifetime routing. Also, some heuristic approaches, such as rein-

forcement learning [Förster, 2007] and swarm intelligence [Bashyal and Venayagamoorthy,

2007], can be applied in a distributed fashion, although these only approximate the optimal

solutions. An important consideration with distributed approaches is that nodes require

sufficient computational power and storage to collect and store information regarding local

connectivity and compute the best routes based on available information. In comparison,

centralised approaches, which mostly incorporate variants of heuristic algorithms [Chang

and Tassiulas, 2004; Xue et al., 2006; Islam and Hussain, 2006; Yetgin et al., 2012], require

lower computational power and storage at the nodes, as most of the computation and stor-

age is conducted by the central base station. Nonetheless, there is a system-wide overhead

incurred in gathering connectivity information and broadcasting routing information. In

this thesis we consider very low power nodes, each of which has limited computational

power and storage. Routes are therefore computed at a mains-powered base station.

Most current evolutionary algorithm (EA) based energy-aware centralised systems consider

energy expense. This is the case even for multi-objective routing optimisation, where

energy expense is optimised with additional objectives describing different factors, such as

quality of service, bandwidth, packet loss ratio, etc. [Xue et al., 2006; Yetgin et al., 2012].

However, as noted earlier optimising the overall energy expenditure of a network may be

detrimental to the overall performance of the network, because often the goal is to prolong

the network lifetime: the time before any battery needs replacing. Merely reducing the

overall energy expenditure may place a large burden on a few nodes, resulting in the

rapid exhaustion of their batteries. We therefore seek to optimise the network lifetime

by modelling the charge held in their batteries and the energy expenditure at each node.

Islam and Hussain [2006] and Kamath and Nasipuri [2011] have considered maximising

only the network lifetime. Such approaches can improve the individual node specific energy

state, but can be sub-optimal from system-wide perspective. We therefore seek to find the

optimal trade-off between local and network-wide battery lifetimes.

In a mesh network where each node is able to route its messages to the base station

via a number of different routes. Chang and Tassiulas [2004] have shown that a linear

programming (LP) problem may be solved to obtain the proportions of messages that

should be sent by each different route so as to achieve the maximum minimum lifetime.

However, in very low powered battery networks the requirement to use many routes places

an undue burden on the storage and computation that must be performed at each node.

We therefore consider a routing scheme in which each node uses only a single path to the

base station (this is known as single-path routing scheme). This routing strategy is widely

used due to its simplicity and efficient resource utilisation [Xue et al., 2006; Jaffrès-Runser

et al., 2010; Radi et al., 2012; Yetgin et al., 2012; Magaia et al., 2015]. In addition, we

extend this concept to incorporate multiple single-path routing schemes (two or three)

for the entire network to be changed at a few discrete times – this can be described as a
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multi-path routing scheme, where nodes have multiple paths to send their data to the base

station. Nonetheless, this is a somewhat limited version of multi-path strategy as nodes

are not allowed to utilise their multi-paths independently as paths for all nodes change

as a group. Ideally in a general multi-path scheme node specific route changes may be

independent of other nodes – we discuss this in chapter 4.

The main contributions of this chapter are as follows.

• We present a hybrid evolutionary approach to approximate optimal routings with

a view to maximise network lifetime and average lifetime; we also discuss why this

problem is analytically intractable and the necessity for an evolutionary approach.

• To combat the potential combinatorial explosion presented by this multi-objective

combinatorial routing optimisation problem, and promote rapid search, we use search

space pruning using a k-shortest path algorithm and utilise the results of the linear

program devised by Chang and Tassiulas [2004] to reduce the graph.

• The proposed method is shown to achieve close approximation to the path unlimited

LP solution for a real network deployed in Victoria & Albert Museum, London.

• We also show that a different LP may be solved to find the optimum time share for

which each routing scheme is active, given that entire network is allowed to change

between single-path routing schemes.

In section 3.1 we describe the model of the wireless sensor network, derive the multi-

objective problem, and discus why this problem can not be solved in polynomial time.

In section 3.2 we present the maximum-minimum lifetime LP problem and discuss why

maximising the average lifetime cannot be formulated as an LP problem. In section 3.3,

we present search space pruning methods incorporating k-shortest paths and a graph re-

duction method using the LP solution to the maximum minimum lifetime problem. These

are combined in section 3.4 where we present a hybrid evolutionary routing optimisation

strategy. Based on this, in section 3.5, we demonstrate and discuss our findings in a real

network deployed in the Victoria & Albert Museum, London. In section 3.6 we discuss

how minimum lifetime of the system can be improved by using multiple routing schemes

in an optimal time-shared manner. The chapter summary is presented in section 3.7.

3.1 Network Model and Multiple Objectives

In this section we model the WSN and derive a multi-objective problem in order to in-

vestigate how different routing schemes affect the trade-off between network and average

lifetimes.

In the communication protocol used in this thesis, each node must send messages to the

base station, perhaps by relaying a message through one or more other nodes. It is not

acceptable for nodes to be disconnected from the network (i.e. to be unable to directly

or indirectly route a message to the base station). In practical situations where this
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vi vg vk

Agk, Tkj

vj vB

ugk, wgk

Figure 3.1 A route for node vi: Ri = 〈vi, . . . , vg, vk, vj , . . . , vB〉. The energy costs to send data
from vg to vk are Tgk (transmission cost) at node vg and Agk (reception cost) at node vk. The
number of times edge egk is used by different routes (the edge utilisation) in the active routing
scheme is ugk with edge cost wgk (the energy required to transmit data).

occurs, it is the role of the network engineer to distribute additional ‘repeater’ nodes

to bridge communication gaps or to use nodes which can transmit at greater strengths.

The connectivity information, that is which nodes can communicate with which other

nodes, is gathered at an initial mapping phase; we call this a connectivity map. With

this connectivity map the routing optimisation stage (the focus of this thesis) may be

undertaken at the central base station with the assumption that the links are reliable. The

result of this routing optimisation is a range of trade-off solutions, where each solution is

a routing scheme that describes the communication activity between nodes during normal

operation. The network engineer is then responsible for selecting a routing scheme based on

extrinsic information; for instance the relative importance of network lifetime and average

lifetime (relative importance may vary between deployments due to customer requirements

or nature of the site). This selected routing scheme is then broadcast to all nodes, and it

becomes the active routing scheme.

As discussed in section 2.2.1, a WSN is represented as a network graph, G = {V,E}, where

V is the set of N − 1 sensor nodes vi plus a base station node, vB, and E is the set of M

edges describing the connectivity map [Cormen et al., 2001].

In Figure 3.1, a route from node vi to the base station vB is described by the sequence,

Ri = 〈vi, . . . , vg, vk, vj , . . . , vB〉. We denote by Ri[p] the pth element of the route Ri. Since

we consider only single-path routes, a routing scheme R can then be described as a set of

routes, one for each node in the network, to the base station:

R = {R1, R2, . . . , RN} . (3.1)

The energy required to transmit a message from vi to the base station is the sum of the

energies required to transmit a message between each of the nodes comprising the route:

Hi =
l−1∑
p=1

wRi[p],Ri[p+1]
(3.2)

where l is the length of the route and wgk is the energy required to transmit a message

from vg to vk. Note that this generally involves energy expenditure at both the transmit-

ting node and the receiving node, and will also involve expenditures for transmitting an

acknowledgement. As noted above, we assume that the communication is reliable, but if

an acknowledgement is not received from the receiver the message is resent; this additional
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expense is not modelled, but if a link becomes unreliable, the routing may be re-optimised.

In many routing optimisation problems, such as shortest path problems, minimising a

route’s overall cost is desirable. The overall cost is found by summing the costs associated

with each edge in the route. There are many well-known methods for minimising such

costs, e.g. [Eppstein, 1999]. In this problem, however, we focus on the costs expended at

the nodes themselves, rather than the edge costs. This is because it is energy expended

at the nodes that depletes charge in the batteries and thus governs the lifetime of a node.

Let Tkj be the energy (charge) required at node vk to send a message to vj (Figure 3.1) and

let Agk be the energy required to receive a message from vg at vk. Then in one reporting

cycle, the energy cost at vk associated with relaying message in route Ri is:

Ck
i = Agk + Tkj . (3.3)

Note that, at the originating node vi, there is no reception cost; hence, Ci
i = Tir, where

vr is the immediately downstream node from vi in Ri.

Also let the edge utilisation ugk for a directed edge between vg and vk be the number

of times in one reporting cycle that the particular edge is used by the routing scheme

for a transmission between the associated nodes. Then considering all routes that use vk

to send messages in one reporting cycle, vk receives messages from nodes with indices in

the set Ik and sends data (including its own data) to nodes with indices Ok; the overall

associated energy expense is

Ck =
∑
g∈Ik

ugkAgk +
∑
j∈Ok

ukjTkj . (3.4)

Clearly
∑n

k C
k =

∑n
k Hk is equal to the energy cost across the whole network of sending

a message from each node.

In order to calculate the lifetime remaining due to a routing scheme we require additional

intrinsic information about the nodes, namely the charge qk remaining in the battery and

the quiescent energy consumption per reporting cycle Bk due to constant micro-controller

operation, sensor measurements, running an on-board display, etc. The life of the current

node therefore is modelled as

Lk =
qk

(Bk + Ck)Nc
(3.5)

where Nc is the number of reporting cycles per unit time (e.g. per year). We emphasise

that Lk ≡ Lk(R) is a function of all the routes which utilise vk, and Ck is calculated from

all routes in R.

Our goal is to prolong the average life of the network, that is to minimise the total energy

consumed, and to maximise the network lifetime, that is the time before any individual

node requires its battery to be recharged or changed. We therefore arrive at the two
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objective problem:

Maximise f1(R) =
1

n

n∑
k=1

Lk(R), (3.6)

Maximise f2(R) = min
k∈[1,n]

Lk(R). (3.7)

In addition, it may be important to prolong the lifetime of one or more nodes vk for k ∈ U ,

because, for example, they are particularly inaccessible. In this case the two-objective

problem is augmented with a third objective:

Maximise f3(R) = min
k∈U

Lk(R). (3.8)

The energy efficiency objective in (3.6) will ensure paths with the least energy consumption

are selected irrespective of the load imposed on the nodes. As a consequence, certain

nodes in the network may end up relaying most of the traffic (depending on the network

structure). This is in conflict with the minimum lifetime objectives in (3.7) and (3.8),

as to maximise these objectives it is better to distribute some load away from the nodes

relaying most traffic. Additionally, (3.7) and (3.8) will be in conflict when the minimum

lifetime node vm /∈ U and U 6= V .

Solving this multi-objective problem may result in multiple solutions, as opposed to a

single solution for single objective optimisation. In this case, there exists a set of solutions

which are Pareto optimal; that is, there are no other feasible solutions available that

improve performance on one objective, without a simultaneous decrease in at least in one

other objective (see, for example, section 2.3.2 and Coello Coello et al. [2007]).

The dominance criterion is used to locate such solutions in the search space. The dom-

inance criterion from a routing optimisation perspective is described as follows. In a

multi-objective problem with m objectives, a routing scheme, R′, is said to dominate

another routing scheme, R, denoted R′ � R, iff

fi(R′) ≥ fi(R) ∀i = 1, 2, . . . ,m, and (3.9)

fi(R′) > fi(R) for some i.

Hence, we seek the maximal set of feasible routes which are mutually non-dominating,

which is known as the Pareto set as discussed in section 2.3.2.

Locating Pareto set for this problem exactly would require searching all possible combi-

nations of single-path routing scheme in the network. However, just counting all possible

simple paths in a graph is known to be #P -complete; thus the corresponding problem

of listing all simple paths is NP -complete [Valiant, 1979a,b; Roberts and Kroese, 2007].

Hence, there are no suitable algorithm that can solve this problem in polynomial time

and we therefore use hybrid evolutionary approach to approximate the optimal trade-off

between average and network lifetimes.
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3.2 Maximum Lifetime Routing and Energy Efficiency

Maximising the network lifetime – the time before at least one node exhausts its power

source – is often referred to as the maximum lifetime routing problem [Chang and Tas-

siulas, 2004; Madan and Lall, 2006]. Chang and Tassiulas have identified the maximum

lifetime routing as a linear programming problem. This is particularly useful as this LP

problem can be solved in polynomial time. We use this solution in our hybrid evolutionary

method, not only as a yardstick for our approach, but also as a means of directing the

search. In this section, we present the LP formulation for maximum lifetime routing and

discuss why the problem of maximising the average lifetime cannot be formulated as a

linear program.

The LP problem formulated by Chang and Tassiulas [2004] incorporates multiple sets of

source-destination pairs, and can be generalised when these pairs are active at different

times with variable reporting rates in a multi-commodity setting. In this thesis, we con-

sider a special case of their formulation, where all nodes send the same amount of data

periodically at fixed intervals, e.g. a message every minute. This scenario is most com-

mon in industrial applications, especially for constant monitoring of locations. Also, we

extend the approach with the inclusion of quiescent consumption at nodes as a practical

consideration.

At the heart of the formulation of the LP problem lies the concept of network flow conser-

vation: the outgoing flows from a node vi must be equal to the sum of the incoming flows

from other nodes and the flow generated at vi. The network flow effectively indicates edge

utilisations, i.e. how many times a particular edge has been used in a routing scheme.

Hence, the flow conservation at vi can be written in terms of edge utilisations.∑
k∈Ii

uki + Ui =
∑
j∈Oi

uij , (3.10)

where uij is the edge utilisation of the link from vi to vj and Ui is the flow generated at vi,

namely the data generated in each reporting cycle at vi; the recipient node indices belong

to set Oi and nodes transmitting to vi have indices in the set Ii.

A mathematical programming formulation for the maximum lifetime routing can be de-

rived in the following way. The objective is:

max
{ujk}

(
min
i=[1,n]

Li

)
, (3.11a)

which is the second objective of our multi-objective problem as presented in (3.7). The
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associated constraints of this problem for vi ∈ V are:

uij ≥ 0, (3.11b)

NcLiBi +
∑
j∈Oi

NcLiuijTij +
∑
k∈Ii

NcLiukiAki ≤ qi, (3.11c)

∑
k∈Ii

uki + Ui =
∑
j∈Oi

uij . (3.11d)

Here the first constraint (3.11b) ensures that edge utilisations are non-negative, the sec-

ond constraint (3.11c) expresses the fact that the energy usage of a node cannot exceed

the remaining charge at the node, and the final constraint (3.11d) represents the flow

conservation in the network.

The second constraint (3.11c) is derived from the definition of lifetime as provided in

(3.4) and (3.5). Note that this expression is non-linear in uij , which means in general

that the feasible region is non-convex and that methods guaranteed to find the optimum

in polynomial time are not available [Boyd and Vandenberghe, 2004]; furthermore, the

max-min objective function (3.11a) is non-smooth [Zang, 1980].

In the minimum lifetime case: Li ≥ mini=[1,n](Li) = L, so Li may be replaced with L.

Chang and Tassiulas [2004] therefore recast the problem in terms of ûij = Luij to obtain

an LP problem that can be solved in polynomial time [Boyd and Vandenberghe, 2004].

The LP problem has the following objective:

max
{ûjk}

(L), (3.12a)

subject to the following modified constraints:

ûij ≥ 0, (3.12b)

NcLBi +
∑
j∈Oi

NcûijTij +
∑
k∈Ii

NcûkiAki ≤ qi, (3.12c)

∑
k∈Ii

ûki + LUi =
∑
j∈Oi

ûij . (3.12d)

This LP problem may be solved to obtain the minimum lifetime for the system, L, and a

set of compound edge utilisations ûij .

The energy efficiency of WSN systems is often viewed in terms of the average lifetime of the

nodes. Maximising this ensures best possible usage of the energy available in the network

as a whole [Rodoplu and Meng, 1999]. Similar to the minimum lifetime problem, the

objective is a linear function of the edge utilisations (3.6) with the same constraints as for

the minimum lifetime problem (equations (3.11b), (3.11c), and (3.11d)). Unfortunately,

in this case the multiple quadratic constraints cannot be reformulated to obtain an LP

problem meaning that efficient polynomial time methods cannot be employed. In addition,

when the number of routes from a node to the base station is limited the Chang and

Tassiulas [2004] method cannot be used to obtain an LP method for solving the minimum

lifetime solution. We therefore turn to evolutionary methods to locate an approximate
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Pareto front describing the trade-off between these objectives.

3.3 Search Space Pruning

The multi-objective optimisation problem described in section 3.1 is a combinatorial op-

timisation problem with, for practical WSNs, a vast number of potential solutions. The

number of possible routing schemes, i.e. the search space size, depends on the number

of available routes for each node in the system. For instance, in a network with n nodes

excluding the base station let the number of available loopless paths from vi to vB be ai.

In this case, the number of possible routing schemes, i.e. the number of combinations of

routes for individual nodes that can build the routing scheme, is:

Z =

N−1∏
i=1

ai. (3.13)

It is important for practical implementations that the optimisation process is fast. A way

to improve the speed of optimisation is to sensibly prune the search space, while retaining

important potential solutions. In this section, we describe two methods of pruning the

search space: k-shortest path pruning and a max-min lifetime pruning, based on the

maximum minimum lifetime solution, and discuss how they are used in approximating the

Pareto set.

3.3.1 k-shortest Path Pruning

In order to combat the potential growth in the size of the search space as the number

of nodes increases we limit the number of potential routes available to each node. More

specifically, we limit the search to the space defined by the k-shortest paths for each node,

where the metric defining the distance between nodes (the weight of the edges) is described

below. This reflects our intuition that short paths to the base station are most likely to be

energy efficient. We select from among several shortest path routes for each node because,

if each node were to utilise its shortest path, nodes that occur in many of the 1-shortest

paths would be disproportionately burdened.

Algorithms for discovering the shortest path between two nodes in a weighted graph are

well known and the shortest path can be found in O(M + N logN) time [Yen, 1971;

Eppstein, 1999; Brander and Sinclair, 1995]. However, as we noted above, the energy

costs in this problem are associated with the nodes themselves rather than with the edges.

We therefore weight the edges in the network graph to associate the energy cost at the

nodes with the edges connecting them. Consider the nodes vi and vj . We define the weight

of the edge between them as:

ωij =
Tij
qi

+
Aij

qj
, (3.14)

where, as above, Tij is the energy required at vi to transmit a message from vi to vj , Aij is

the energy required to receive a message at vj from vi, and qi and qj are the battery charges.
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It is expected that if qi = qj , then ωij = ωji. This edge weighting models the fact that a

high transmission cost can be borne by nodes with a high battery charge, but transmission

is relatively expensive for nodes with low battery charge because each transmission will

make a larger fractional depletion of the charge. Likewise, if a node is connected to mains

power then transmissions are free, which is modelled by setting qi →∞. We call the cost

of a routing scheme calculated using the weights ωij the composite cost.

As we require diversity in the search space and the possibility of load balancing among

nodes, we propose to evolve solutions from among the k-shortest paths for each node

calculated with the composite cost (3.14). We presented a brief account of k-shortest

path algorithms in section 2.2. In our implementation we have used Eppstein’s algorithm

modified to produce only simple or loopless paths as discussed in section 2.2.3.

We denote the m-th shortest route found for node vi by Rm
i , for m = 1, . . . , k. For a

chosen k, we build a library PK = 〈{Rm
1 }km=1, {Rm

2 }km=1, . . . , {Rm
n }km=1〉 of paths, where

each node has no more than k paths. The bound of k is not always attained because the

number of loopless paths to the base station, vB, for a node may be less than k, especially

if it is close to vB. A complete routing scheme R is then represented by a path for each

node selected from one of the paths available in the library. Using this technique the

reduced search space of possible solutions, Ω, is no larger than kN−1.

Relationship between objectives and composite cost

In order to validate the use of the composite metric for choosing candidate routes, Figure

3.2 presents the correlation between the objectives and composite cost for 1000 randomly

chosen routing schemes with random initial charge levels qi at nodes for the real network

deployed in Victoria & Albert Museum (see section 3.5). There is a fairly strong negative

correlation between the average battery life f1(R) and the composite cost. This indicates

that routing schemes selected with low composite cost via the k-shortest paths algorithm

are likely to have long average lives. On the other hand, there exists a weak negative

relationship between the minimum lifetime f2(R) and the composite cost. This is unsur-

prising since the minimum lifetime depends on a single node in the network and is highly

dependent on the interaction between routes.

3.3.2 Max-Min Lifetime Pruning

The good correlation between composite edge cost and average battery lifetime, but poor

correlation between composite edge cost and minimum battery life means that, although

the k-shortest paths pruning retains good average lifetime routes, it may discard routes

that would yield a long network lifetime. To obtain good candidate routes for long network

lifetimes we solve the linear program in (3.12) to obtain the edge utilisations uij which

maximise the minimum lifetime. We then consider the subgraph G′ ⊂ G obtained by

deleting from G all the edges eij for which uij = 0. This subgraph G′ is then used as the

basis for generating a library P ′K of k-shortest paths with Eppstein’s algorithm. The use

37



3. Energy Efficiency and Network Lifetime

6.4 6.6 6.8 7.0 7.2

Composite Cost (10−6 )

1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

A
v
e
ra

g
e
 L

if
e
ti

m
e
 (

y
e
a
rs

)

Correlation Coefficient: −0.707

6.4 6.6 6.8 7.0 7.2

Composite Cost (10−6 )

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
e
tw

o
rk

 L
if
e
ti

m
e
 (

y
e
a
rs

)

Correlation Coefficient: −0.136

Figure 3.2 Correlation between objectives and composite cost. Scatter plots show the composite
cost and average lifetime f1(R) (left) and minimum lifetime f2(R) (right) for 1000 randomly
generated routing schemes with random initial charges at the nodes.

of G′ prunes the size of the search space, but retains routes that are good for prolonging

the minimum lifetime. We call this reduced search space Ω′.

The purpose of using such search space pruning is to retain routes from which to build

good solutions. Here each method has its own specific goal: k-shortest path pruning for

retaining solutions with better average lifetime and max-min lifetime pruning for retaining

solutions with better minimum lifetime. We can then utilise the modified search space

to rapidly obtain a sensible approximation of the optimal Pareto set. Although G′ ⊂ G,

the k-shortest paths derived from G′ may be different from those derived from G. As a

consequence, using the k-shortest path pruning may result in the search spaces Ω and Ω′

being quite dissimilar if not completely disjoint.

3.4 Hybrid Evolutionary Approach to Routing

Optimisation

The main focus of our approach is the rapid approximation of the trade-off front between

minimum lifetime and average lifetime from infrequent maintenance and energy efficiency

perspectives. In this section, we describe how we use hybrid evolutionary approaches in a

multi-objective evolutionary algorithm to locate an approximately optimal set of routes.
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Algorithm 3.1 Multi-objective routing optimisation of a battery powered mesh network.

Inputs

1: P : Library of paths for each node
2: T : Number of iterations
3: s : Size of initial archive
4: µ : Perturbation rate
5: c : Crossover rate

Steps

1: A← InitialiseArchive(P, s) . Initialise random archive
2: for i = 1→ T do
3: {R1,R2} ← Select(A) . Select two parent solutions
4: R′ ← Crossover(R1,R2, c)
5: R′′ ← Perturb(R′, µ,P) . Mutation
6: A← NonDominated(A ∪R′′) . Update archive
7: end for
8: return A . Approximation of the Pareto set

As described in the previous section, we prune the search space in two ways to obtain

path libraries, PK and P ′K , of potential routes for each node in the network. We represent

a solution as a vector of indices into these libraries, one index for each node, so that a

complete solution R describes a route for each node to the base station. One optimisation

strategy would be to select a route for each node from P = PK ⊕ P ′K . However, as we

demonstrate below, it is more effective to optimise in two stages. In the first stage, we

perform two separate optimisations, one selecting routes from PK and the other selecting

routes from P ′K . In the second phase routes are selected from P = PK ⊕ P ′K . This

phase is initialised from the non-dominated archives resulting from the two first stage

optimisations.

Optimisations for both stages use a genetic algorithm, with an unconstrained Pareto

archive to reap the benefits of better convergence properties [Fieldsend et al., 2003]. Al-

gorithm 3.1 describes this multi-objective optimisation process in more detail.

Solutions, R, are represented by vectors of n integers; the ith element of the solution

indexes one of the k-shortest paths found for node vi. In the initialisation step, we generate

at random a population from the pruned search space, Ω. (The search space is Ω′ when

using the max-min pruning, but we describe the algorithm in terms of Ω.) This population

comprises randomly-chosen routing schemes where the member routes are chosen from

the k-shortest paths for each node; thus for node vi the shortest paths are selected from

{Rm
i }km=1. Also, we include in the initial population the routing scheme which uses the

first shortest route for each node. The initial archive of non-dominated solutions A is the

maximal non-dominated subset of this random population. At any step of the evolution,

A is the current approximation of the Pareto set within the particular chosen search space.

During the evolution process, we randomly select two routing schemes. These parent

routing schemes are then crossed-over to yield a single offspring R′: the route for each

node vi is selected either the first or second parent with probability c and 1−c respectively,

independently of the other nodes. This child is then perturbed by choosing new routes
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(uniformly at random from PK) for a proportion µ of the nodes in the network. The

perturbed child, R′′, is compared against the members in the archive: if it is not dominated

by any of them then it enters the archive and any elements of A which are dominated

by the new solution are removed from A. In this fashion only the non-dominated routing

schemes are preserved in the archive and the archive can only approach the true Pareto set.

The process of evolution continues for a fixed number of episodes2. Alternatively, another

termination criterion, such as a specified minimum dominated hypervolume [Zitzler, 1999],

may be employed.

We denote the estimated Pareto sets resulting from the separate optimisations using PK
and P ′K as A and A′ respectively. As illustrated below, the archive A resulting from optimi-

sation using PK tends to favour solutions with long average lifetimes, whereas A′ resulting

from optimisation using P ′K tends to yield solutions with long minimum lifetimes. How-

ever, solutions with intermediate average and minimum lifetimes may be scarce in A∪A′.
The second phase of the optimisation remedies this by employing the same optimisation

algorithm, but now selecting paths from P = PK ⊕ P ′K . This optimisation is initialised

from the maximal non-dominated subset of A∪A′; that is A′′init = NonDominated(A∪A′),
where NonDominated(·) is the function that returns the maximal subset of non-dominated

elements of X:

NonDominated(X) = {R ∈ X | @(R′ ∈ X ∧R′ ≺ R)}. (3.15)

We denote the archive resulting from the second optimisation by A′′.

The overall hybrid evolutionary approach can be summarised as follows:

1. Gather the connectivity map, and construct the network graph G.

2. Solve the LP problem for maximum lifetime routing (3.12) to find the optimal net-

work lifetime L and edge utilisations uij .

3. Search space pruning.

a) Use uij to generate the reduced graph G′ by selecting edges where uij > 0.

b) Apply k-shortest path pruning to G and G′ creating path libraries PK and P ′K
respectively.

4. First stage of routing optimisation. Apply Algorithm 3.1 using PK and P ′K sepa-

rately. This results in archives A and A′, which are the approximations of the Pareto

set in the relevant search space.

5. Initialise the second stage optimisation with A′′init = NonDominated(A ∪A′).

6. Second stage of routing optimisation: Apply Algorithm 3.1 using P = PK⊕P ′K . On

termination, we have the estimated Pareto set A′′.

2As exactly one child is produced per episode, the number of function evaluations is equal to the number
of episodes.
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Once the evolution process is finished, the decision maker may manually choose the op-

erating point using the final approximation of the Pareto front A′′. The chosen routing

scheme is sent to the nodes via the base station and becomes the active routing scheme.

3.5 Illustration

A real network deployed in the Victoria & Albert Museum, London, is used to illustrate

the proposed approach.3 In a controlled environment over a vast area, such as Victoria

& Albert Museum, it is essential to monitor temperature and humidity in galleries and

display cases for the preservation of the artefacts. Compared to wired networks, battery

powered WSNs carry huge advantages in deployment cost and flexibility.

The network incorporated 30 sensor nodes and a base station, spanning five floors within

an approximate area of 35,000 m2. The thick, solid walls provide a challenging radio

environment whose characteristics vary with the passage of visitors through the galleries.

3.5.1 Baseline Optimisation

The connectivity map G was built in an initial mapping phase in which nodes pinged each

other using a range of baud rates and powers to discover the minimum energy configuration

for communication between those nodes within radio range of each other.

Solving the maximum minimum lifetime LP problem results in a network lifetime of 1.38

years, together with a set of edge utilisations. These edge utilisations were used to calculate

the average lifetime of the system, which is 1.69 years. They also enable the extraction

of the sub-graph G′. We emphasise again that this network lifetime is only achievable

through the use of multiple routes from each node to the base station, whereas we are

constrained to seek a routing in which each node uses only a single route to communicate

with the base station. Clearly, the requirement to use a single route means that battery

loadings cannot be shared optimally so that a single routing scheme will have a worse

(shorter) maximum lifetime than that given by linear programming.

Applying subspace pruning using k = 10 shortest paths results in libraries PK and P ′K
from each of which 1030 solutions could be constructed. In each search space, the ini-

tial population was built with 100 randomly chosen solutions from the relevant subspace

together with the solution consisting of the shortest route for each node. The initial

archive was then found by extracting the maximal set of non-dominated solutions in this

population.

In the evolutionary optimisation we used µ = c = 0.1 as the perturbation and crossover

rates; these rates were chosen after a short empirical study on simulated networks, but

the performance of the optimiser is relatively insensitive to their precise values. Using

3Data on the network to allow comparison with this work can be found at http://emps.exeter.ac.uk/
computer-science/wsn/
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the dominated hypervolume measure [Zitzler, 1999], the Pareto sets for the first stage

optimisation were well converged after 150000 function evaluations (Figure 3.6). The

second stage optimisation used the same µ and c as the first stage. This evolution was

run for 500000 function evaluations, resulting in the final approximation of the Pareto set

A′′.

A single core Python implementation takes about 2 minutes to complete each of the initial

150000 iterations on a 2.5 GHz machine. The 500000 iterations in the second stage takes

about 4 minutes to complete. Consequently, the routes for new installations can be found

readily, making this approach particularly feasible as part of a real system.

Figure 3.3 shows the estimated Pareto fronts generated during the initial stage of opti-

misation. As the figure suggests, in both search spaces, Ω and Ω′, there is a wide range

of routes which trade-off the average lifetime of the network against the time before any

single node exhausts its battery. We note that the optimisation has resulted in routing

schemes that are substantially better, in terms of both average and network lifetime, than

routing schemes utilising randomly chosen routes from the 10 shortest paths in both Ω

and Ω′. Indeed, for both search spaces, the routing schemes with the longest network

lifetime have a better average lifetime than any of the random solutions for that search

space. Interestingly, the shortest paths only solutions Rc and R′c are very close to the

estimated Pareto front in both spaces. We include Rc and R′c in the initial archives for

the relevant search spaces.

We note that for the Victoria & Albert Museum network 13 of the 30 nodes have a possible

path which appears in both PK and P ′K , although no node has more than 3 paths common

to both libraries. Since 17 of the nodes therefore have no paths appearing in both libraries,

it is not possible to construct a complete routing scheme, R, that exists in both libraries

and the search spaces Ω and Ω′ are completely disjoint. Also the fronts occupy different

parts of the objective space. Many of the solutions in A′ (resulting from the max-min

pruning) are dominated by solutions in A, which resulted from k-shortest path pruning of

the full graph G. Nonetheless, the utility of using the min-max pruning is shown by the

11 solutions that achieve longer network lifetimes than any solution found in Ω.

Combining A and A′ leaves a large gap in the estimated Pareto front for intermedi-

ate average lifetimes. To remedy this, the second stage optimisation is initialised from

NonDominated(A ∪ A′) and the union of the two pruned search spaces is available for

constructing new solutions. The result of this second optimisation is shown in Figure 3.4.

As can be seen from Figure 3.4, A′′ is very close to A in the high average lifetime region,

but combining paths from PK and P ′K has resulted in solutions being found with good

network lifetimes and better average lifetimes than those in A′. The linear programming

solution (that solves for many routes per node rather than a single route) is marked by

a grey triangle in the figure and this upper bound on the minimum lifetime, L = 1.38

years, is indicated by the horizontal line. The best minimum lifetime solution when nodes

are constrained to use a single route found by the evolutionary optimiser has a minimum

lifetime of 1.29 years. This solution improves the shortest-path only routing scheme by
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Figure 3.3 First stage optimisations using two pruned search spaces Ω (blue) and Ω′ (green) for
the Victoria & Albert museum network. Initial randomly generated solutions and the optimised
fronts are shown. Green coloured symbols represent solutions for Ω′, while blue indicates solutions
for Ω. Initial populations (I in Ω and I ′ in Ω′) are shown with crosses; ringed crossed show the
non-dominated initial archives, Ainit and A′

init. The shortest paths only solutions (Rc in Ω, and
R′

c in Ω′) are indicated with diamonds.

approximately 5 months in minimum lifetime at an expense of 2 months in average lifetime.

In contrast, the solution with best average lifetime improves the shortest-path only solution

by 7 days in average lifetime, while the minimum lifetime is worse by 2 months, which is

a rather small gain at a large expense.

Figure 3.5 shows a comparison between the two-stage approach and a single-stage approach

in which solutions may be constructed from PK ⊕P ′K throughout the entire optimisation.

As can be seen from Figure 3.5, the estimated Pareto fronts resulting from the two strate-

gies mostly overlap, except at the extreme maximum network lifetime/ minimum average

lifetime end. Here, the strategy of evolving solutions using a path library that favours good

network lifetime solutions has paid off, yielding additional solutions with long network life-

times. To generate this figure, the single stage strategy was allowed to run for as many

objective function evaluations as the two stage strategy. This advantage is also apparent

from the hypervolume progressions of the single-stage and the two-stage approaches as

depicted in Figure 3.6. Despite the additional complexity of the optimisation algorithm,

we therefore adopt the two-stage approach.

We also investigate the utility of using the search space pruning methods by comparing

optimisation performances in an unbounded search space and a pruned search space (see
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Figure 3.4 Final stage of optimisation. The initial population (represented with crosses) is gen-
erated by combining the archives from the previous stage; c.f. Figure 3.3. The non-dominated
elements of A ∪A′ are ringed in magenta, and form the initial archive of the second stage routing
optimisation problem (A′′

init). Solid green dots show the final approximation of the Pareto set (A′′).
The maximum minimum lifetime solution if nodes were allowed to use multiple routes rather than
a single route is indicated by the grey triangle. The horizontal red line through L is an upper
bound to the network lifetime.

Figures 3.5 and 3.6). In this case, to achieve an approximation of the unbounded search

space, we select k = 10000 without considering the shortest path in the initial archive

and the max-min pruning method. This results in a search space with 103(N−1) solutions,

which is significantly larger than the pruned search space with 2 × 10(N−1) solutions.

The simulation results indicate that the single-stage approach in the larger space perform

poorly in comparison to the single- or two-stage approach in the pruned space with the

same number of function evaluations. This confirms the effectiveness of using the search

space pruning methods for rapid approximation of optimal routings.

3.5.2 Protecting a Group of Nodes

In practice, it is often desirable to give priority to one or more nodes so that their lifetimes

are prolonged, because, for example, they are hard to access. To address this issue, we

introduce an additional objective (3.8) with the aim of prolonging the minimum lifetime

of the priority group of nodes, alongside aforementioned objectives.

We selected a priority group, U = {v8, v19, v21, v26} to include two heavily-loaded nodes

(v19 and v21 ) and two others. In Figure 3.7, we show the estimated trade-off surface in
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Figure 3.5 Comparison between single-stage optimisation (green squares) and two-stage optimisa-
tion (blue crosses) strategies. The single-stage approach performs as well as two-stage approach,
except at the extreme network lifetime end. The grey empty dots show the estimated front when
the search space is much larger with k = 10000 and without max-min pruning, which is significantly
worse than approximations made in pruned search space.
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Figure 3.6 Comparison between the hypervolume progressions of two-stage (blue) and single-stage
(green) approaches. In the first stage, optimising only in PK (0 to 150000) and P ′

K (150000 to
300000) the hypervolume is close to convergence after about 150000 function evaluations. At this
point, switching to the combined PK ⊕ P ′

K provides an immediate improvement in hypervolume
over the single-stage hypervolume. The single-stage technique is unable to match the two-stage
with the same number of function evaluations, even when optimising using the combined path
libraries PK ⊕P ′

K . The additional grey line depicts the hypervolume progression when the search
space is significantly larger with k = 10000 and without max-min lifetime pruning for an arbitrary
single-stage optimisation run, and h (grey rectangle) shows the hypervolume measure after 2000000
function evaluations. It clearly indicates that if the pruning methods are not used, the optimisation
process is likely to substantially underperform with the same number of function evaluations.
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Figure 3.7 Pareto front approximation (blue shaded circles) with three objectives for the Victoria
& Albert museum network. The solutions with best average lifetime, Ra, best overall network
lifetime, Rm, and best network lifetime of the priority group, Rp, are indicated. The minimum
energy solution Rc is dominated by all solutions in the Pareto front approximation.

3-dimensions between average lifetime, overall network lifetime and network lifetime of a

priority group of nodes. Except for the additional objective, the hyper-parameters and

general strategy for optimisation remain the same as before.

In Figure 3.8 we show the connectivity map as an adjacency matrix partitioned to place

the priority group at the top left. The distinct nature of routing schemes corresponding

to the extreme solution with respect to each of the objectives is depicted through the

visualisation of the edge utilisations shown in Figure 3.9; here the grey scale indicates

the frequency with which an individual radio link (edge) is used in a particular routing

scheme.

To illustrate the underlying distinction in nature of the extremal solution for each objec-

tive, we consider the edge utilisations, i.e. the number of times a particular edge is used in

a routing scheme, of three particular routing schemes: the best average lifetime (Ra), the

best overall network lifetime (Rm) and the best network lifetime of priority group (Rp)

solutions. In Figure 3.9, we see that in Ra most paths utilise the link between node v19

and the base station vB. As minimum energy routes are preferred, the average lifetime is

high (1.99 years), but overall network lifetime and network lifetime of the priority group

are low. The network lifetime is low as nodes on minimum energy paths relay most routes,

and as a consequence exhaust their batteries quickly. The overall network lifetime and

network lifetime of the priority group are the same, 0.73 years. This is because the most
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Figure 3.8 Adjacency matrix showing connectivity of nodes in the Victoria & Albert Museum
network. The numbers on the left and bottom show the node indices; the base station is vB .
The grey scale indicates the energy consumption required for communication, with darker shades
denoting less energy; white cells indicate there is no radio link between cells (infinite energy required
for communication). The matrix is partitioned into submatrices showing connectivity between
nodes in the priority group (A), nodes outside the priority group (D) and the inter-connectivity
between priority and non-priority nodes (B> = C).
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Figure 3.9 Edge utilisations for best average lifetime Ra, best overall minimum lifetime Rm and
best minimum lifetime for the priority group Rp routing schemes. Higher edge utilisations are
represented by darker greys.
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energy efficient routes heavily load v19, which is in the priority group, so causing it to

exhaust its battery first.

In contrast, Rm provides a more evenly distributed edge utilisation map, in particular v19

and v21 share the load between them. In this case, an increase of 78.1% in network lifetime

when compared with Ra is achieved, at the expense of not using all energy efficient routes.

Hence, the average lifetime is reduced by 12.5%. The minimum lifetime of the priority

group is 1.3 years as v19 is the minimum lifetime node. We note that in this case the

intra-connectivity between protected group nodes also diminishes.

The most dramatic difference is in Rp, where most paths avoid the priority nodes, improv-

ing the minimum lifetime for the priority group by 48.3% for v19 with respect to Rm. To

achieve this increase in minimum lifetime for the priority group, high energy cost paths

must be used for paths in the rest of the network resulting in a reduction in the minimum

lifetime for the network as a whole; v2 is the node whose battery is first exhausted in this

case.

3.6 Better Approximation of Maximum Lifetime Routing

It is of considerable practical importance to maximise the minimum lifetime of any node

in the network, because the network requires no maintenance until the battery of the

shortest-lived node is exhausted. Chang and Tassiulas [2004] described how this can

be modelled as an LP problem. The LP formulation relies on each node being able

to use many paths to the base station, which in turn enables load balancing by using

different routes for fractions of the network lifetime. However, the computational power

and the storage requirements associated with switching between many routing schemes

can be prohibitive for low-powered devices. Therefore, so far in this thesis, we have only

considered a single-path routing scheme for the network, where each node has a single

path to the base station through the network lifetime, that is the time until any node

exhausts its battery. However, we can extend this idea to a multi-path routing scheme in

which only a small number of routing schemes (two or three) are available to the network,

and all nodes change at pre-determined times to a new scheme. This re-routing can be

accomplished at low energy cost from the base station. Note that this is a limited version

of a general multi-path routing strategy as paths for nodes change together rather than

being independent. In this section, we describe an evolutionary algorithm that optimises

a small number of routing schemes together, and thus achieves a better approximation to

the LP solution quality in comparison to using a single routing scheme throughout the

network lifetime.

Intuitively, to see how using multiple routing schemes in a time-shared manner can be

useful, suppose that under the initial routing scheme R, a node v? has the minimum

lifetime. Now suppose that the network is optimised a second time after it has been in

operation for a while. The result of this second optimisation can be a routing scheme in

which v? is very lightly loaded, prolonging its life, while a different node, v′, which was
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lightly loaded in the first epoch, now carries a heavier load. In this way the life of v? is

extended and it may be that v? or v′ or some other node is exhausted first, but in any

case the time before any single node is exhausted is delayed.

3.6.1 Optimal Time Share

Inevitably the question now is how to best distribute the time share between multiple

routing schemes. For a particular routing scheme, the current drain per reporting cycle is

constant (the sum of a quiescent current together with transmission and reception costs to

each of the nodes it communicates with). The decay in stored battery charge is therefore

linear in time, although the decay rate depends on the particular routing scheme used.

With this (good) assumption, the times for which each routing scheme should be used can

be found by linear programming.

Consider a single routing scheme. If the initial charge at node vi is q0i, then after running

the system with routing scheme R for time τ the charge remaining at the node is qi:

qi = q0i +miτ, (3.16)

where, mi < 0 is the rate of decay determined by the particular routing scheme in operation

and given by mi = −(Bi + Ci) (c.f., equations (3.4) and (3.5)).

In a similar fashion, if there are D routing schemes, R1, . . . ,RD, in operation for times

τ1, . . . , τD, the charge decay equation for vi becomes:

qi = q0i +

D∑
d=1

midτd. (3.17)

Figure 3.10 illustrates the decay for vi for multiple routing schemes.

Denoting the vector of time shares by τ = (τ1, τ2, . . . , τD)>, the vector of initial battery

charges by q0 = (q01, q02, . . . , q0n)>, the vector of remaining charges by q = (q1, q2, . . . , qn)>

and the n by D matrix of decay rates by M, the charge decay equations for all the nodes

can be written as:

q = q0 + Mτ . (3.18)

The lifetime of the network is
∑D

d=1 τd = 1>τ subject to the constraint that the charge

remaining at all nodes is positive. This allows us to formulate an LP problem for the

time shares that will maximise the minimum lifetime of the network, given the D routing

schemes as follows:

max(1>τ ) (3.19a)
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Figure 3.10 Battery charge decay for a node vi with initial charge q0i using multiple routing
schemes. Routing scheme Rd is active for time span τd with a decay slope of mid.

subject to:

τd ≥ 0 d = 1, . . . , D, (3.19b)

qi > 0 i = 1, . . . , n. (3.19c)

Solving this LP problem enables us to derive the optimal time share vector τ ∗ for a given

set of routing schemes.

The minimum lifetime node will exhaust its battery first. At this point the network would

be re-routed for establishing connectivity for all other nodes as they have some charge

left. However, discounting the re-routing, we can consider this residual charge at nodes

for achieving better overall average lifetime. For such an arrangement, we can assume

that the nodes with remaining charge will carry on with the last, i.e. Dth, routing scheme.

Hence, the overall average lifetime will depend on the last routing scheme in sequence.

The time ti remaining for node vi after the minimum lifetime node is exhausted is given

by

q0i +
D∑

d=1

midτ
∗
d +miDti = 0. (3.20)

The average lifetime of the network is then

τ̄ = 1>τ ∗ +
1

N − 1

N−1∑
i=1

ti. (3.21)

Clearly, although changing the order in which the routing schemes are used does not affect
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the network lifetime, the average lifetime depends on which routing scheme is chosen as the

last routing scheme, RD. We therefore select RD as the routing scheme that maximises

the average lifetime.

Solving this LP problem and finding the routing scheme to use as RD enables us to achieve

the best network lifetime and average lifetime for a given multi-path routing scheme.

3.6.2 Evolving Multi-Path Routing Schemes

In order to locate good routing schemes we consider an evolutionary algorithm in which

a solution R is constructed from D routing schemes: R = {R1,R2, . . . ,RD}. In this

D-path routing scheme approach the evolutionary algorithm is used to optimise the routes

comprising each of the constituent schemes, but optimal time shares of these evolved routes

are found by solving the LP problem in (3.19). This speeds up the search considerably

compared with using an evolutionary algorithm or similar stochastic search to find good

time shares as well as the good routing schemes. Note that it is possible for one or more

time shares to be zero, so that the evolutionary algorithm can locate solutions in which

only a single routing scheme is used.

Despite the pruning used to limit the size of the search space described in section 3.3, the

use of several routing schemes leads to a further explosion in search space size because

the number of paths available for each node is 2k in each of the D routing schemes (using

k-shortest path pruning on G and G′). The number of possible solutions is thus approxi-

mately (2k)nD, although some nodes may have fewer than 2k shortest paths available.

In order to combat this combinatorial explosion we adapt the basic evolutionary strategy

for a single-path routing scheme to perform a series of evolutionary searches in increasingly

large search spaces as follows.

1. Evolutionary searches using path libraries PK and P ′K are carried out separately but

evolving single routing schemes rather than multiple schemes. (This can be achieved

by replicating a single routing scheme D times and applying the same mutation and

crossover operations to all of them.) As illustrated above, optimisation using PK
and P ′K separately helps to find good average lifetime solutions and good minimum

lifetime solutions by restricting the size of the search space and guiding the search

according to the pruning method used.

2. Still optimising using PK and P ′K separately, we seek D-path solutions. Here at

each iteration mutation and crossover operations suggest new paths for nodes in

one of the D constituent routing schemes, after which the optimal time shares, and

thus the minimum and average lifetimes, are calculated by linear programming in

(3.19). As we illustrate later, solutions in which the routing schemes are the same

throughout the lifetime of the network can produce better average lifetime solutions.

Therefore, in half the iterations, a new solution is generated by replicating one of

the component routing schemes D times.
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Figure 3.11 Performance comparison between optimisation with 1-path (blue crosses), 2-path (green
pluses), and 3-path (orange squares). The performance of the maximum network lifetime solution
L with unlimited paths (∞-path) is shown with a triangle. The horizontal red line through L
shows the upper bound for network lifetime for the given network.

3. Finally, the non-dominated subset of the union of the archives obtained in step 2 is

used as the initial archive for a further optimisation using both PK and P ′K .

Recall that, as described in section 3.3.1, the path libraries were constructed from the

k-shortest paths based on the composite cost. There the edge weights in (3.14) were

calculated using the initial battery charges. However, the batteries become depleted by the

network operation due to the routing scheme. We therefore, albeit infrequently (e.g. every

100000 function evaluations), update the path libraries with k-shortest paths calculated

on the basis of battery charge distributions from partially drained networks, and add any

newly discovered paths to the path library. This allows the evolutionary mechanism to

choose paths better suited to a network that has been in operation for some time.

3.6.3 Performance Comparison

We compare the performance of optimised 1-path, 2-path and 3-path routing schemes on

the Victoria & Albert Museum network.

For both 2-path and 3-path strategies, we used path libraries generated with k = 10

shortest paths. The first stage of the optimisation (1-path) was run for 150000 iterations,

while the second stage (multi-path routing schemes using PK or P ′K separately) were run

for a further 800000 iterations. Finally the third stage (multi-path routing schemes and
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Figure 3.12 Performance comparison between 1-path (blue), 2-path (green), and 3-path (magenta)
approaches in terms of summary attainment surfaces over 10 runs with solid lines representing
50% attainment surfaces, and dotted lines depicting 10% and 90% surfaces. The performance of
the maximum minimum lifetime solution with unlimited paths is shown with a black triangle. The
horizontal red line through L shows the upper bound for network lifetime.

combined path libraries) was run for an additional 1000000 iterations. These numbers

of iterations yield well-converged fronts, and for practical purposes fewer iterations can

obtain a good approximation.

In Figure 3.11, we show the estimated fronts for 1-path, 2-path, and 3-path strategies. As

may be expected, the estimated Pareto front for 2-path dominates or equals the 1-path

scheme and it in turn is equalled or dominated by the 3-path front. The 1-path solution

has a maximum network lifetime of 93.7% of the maximum minimum lifetime routing

solution, L, which has the freedom to use unlimited routes. The 2-path strategy achieves

an improved minimum lifetime which is 97.8% of L. The additional flexibility inherent in

the 3-path strategy allows a network lifetime that is 99.2% of L to be found.

In Figure 3.12 we present the summary attainment surfaces (see section 2.3.4, Fonseca

and Fleming [1996], and Knowles [2005]) for 1-path, 2-path, and 3-path strategies calcu-

lated over 10 runs. The narrow width between 10% and 90% attainment surfaces clearly

indicates the desirable repeatability and convergence of this approach. It also shows that

the approximation improves with each additional routing scheme; however, the rate of

improvement diminishes as we increase the number of routing schemes.

Edge utilisations for best minimum lifetime and best average lifetime 1-path and 2-path

solutions are shown in Figure 3.13. As noted previously, with a single routing scheme
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(a) 1-path, maximum network lifetime, Rm (b) 1-path, maximum average lifetime, Ra

(c) 2-path, max-network lifetime; 1st routing,

R
′m
1

(d) 2-path, max-average lifetime; 1st routing,

R
′a
1

(e) 2-path, max-network lifetime; 2nd routing,

R
′m
2

(f) 2-path, max-average lifetime; 2nd routing,

R
′a
2
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Figure 3.13 Multi-path routing scheme edge utilisations. The top row shows edge utilisations for
the best network lifetime Rm and best average lifetime Ra solutions using 1-path routing scheme.
Edge utilisations for the two components of the best network lifetime for a 2-path solution shown
in (c) and (e) and for the best average lifetime (d) and (f).
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(top row of Figure 3.13) the best average lifetime solution heavily utilises a few edges,

whereas the load is more evenly distributed for the maximum network lifetime solution.

This pattern is also evident in the 2-path solutions. The two component routing schemes,

R
′a
1 and R

′a
2 , for the best average lifetime solution are both similar to the 1-path solution.

In fact, the 1-path solution has a slightly better average lifetime than the 2-path solution

and in general we find that good average lifetime solutions tend to have a single path.

Edge utilisations for the best minimum lifetime 2-path component schemes R
′m
1 and R

′m
2

are shown in Figures 3.13c and 3.13e. These are active for 0.3 years and 1.05 years

respectively, amounting to a total minimum lifetime of 1.35 years. However, individually

R
′m
1 and R

′m
2 can only provide minimum lifetimes of 0.88 and 1.29 years respectively, with

the latter being the same as the best minimum lifetime solution from 1-path (Rm in Figure

4.4a). As the different distributions of edge utilisations in Figures 3.13c and 3.13e show,

the additional lifetime is achieved by protecting some nodes while the first component is

active, but then loading them more while the second component is active. Here these

components are active for 22.2% and 77.8% of the network lifetime. The extra flexibility

provided by a third component produces a small increase in achievable lifetimes, but the

additional component is only used for a small fraction of time: the best minimum lifetime

3-path scheme uses components for 6%, 18.7%, and 75.3% of the network lifetime.

Figure 3.11 and 3.12 also show that with each additional routing scheme in the solution, the

approximation of the Pareto front improves. As well as improving the range of minimum

lifetime solutions located, it also becomes denser. We attribute this to the additional

flexibility to introduce paths that provide a finer grained trade-off between the objectives.

3.7 Summary

Using mesh network topologies in low power wireless sensor networks poses a challenging

problem of finding routes that best preserve the lifetime of individual nodes and the net-

work as a whole. In this chapter we have proposed a hybrid multi-objective evolutionary

approach to approximate the optimum trade-off between the minimum lifetime for any

node and the average lifetime of the whole network, where these objectives are associated

with infrequent maintenance and energy efficiency respectively. Although not discussed

here, we remark that straightforward re-optimisation from a stored Pareto front approxi-

mation is an effective way of re-routing a network in case of node or link failure or if new

nodes are introduced [Rahat et al., 2014].

Chang and Tassiulas [2004] have shown that the maximum lifetime routing for a network

can be modelled as an LP problem that can be solved in polynomial time to obtain the

proportions of messages that should be sent via different routes. However, this formulation

requires that each node to be able to use many different paths to the base station. In

low-power battery networks this is not feasible due the limited computational power and

storage. Hence, we use an evolutionary approach to locate a set of routes for each node

that can produce a close approximation to the unlimited-path LP solution (99.2% with
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3-path routing scheme).

As a combinatorial problem, the search space size can increase drastically as the number of

nodes increases. To reduce this potentially large space while retaining sensible solutions,

we use k-shortest path pruning on the full connectivity graph and on a reduced graph.

The k-shortest path pruning of the full graph limits the number of routes available to a

node and thus limits the search space, while retaining solutions that are energy efficient.

On the other hand, the graph reduction method retains paths which tend to yield good

network lifetime solutions. Central to the efficacy of our approach is optimisation in these

limited search spaces, both for single and multiple routing schemes. In addition, solving

exactly for the proportions of time that each component is active in a multiple routing

scheme solution obviates the need for an additional, expensive stochastic search.

As we have shown, the flexibility of more than one routing scheme – a multi-path routing

scheme – allows better solutions to be located. The nodes in the solutions here are con-

strained to change to another routing simultaneously. This is a constrained multi-path

scheme as routes for nodes are dependent on other nodes’ routes for changeover. Ideally,

in general multi-path routing schemes, route changes for a node should be independent of

other nodes. We investigate this in the next chapter while still restricting the number of

routes available to nodes. In this case we propose methods to approximate the trade-off

between robustness in data delivery against link or node failure, and network lifetime as

it is often more important to focus on network lifetime instead of energy efficiency.
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Chapter 4

Robustness and Network Lifetime1

In wireless sensor mesh network, each sensor (a node) sends its data to the base station,

often by relaying data through other nodes. The routing decisions, for instance considering

only the most energy efficient routes, may result in some nodes relaying most nodes’ data

and thus exhausting their batteries quickly. At this point manual intervention is necessary

to change batteries or nodes and restore the network operation. It is therefore more

important to extend the time before any node expires – the network lifetime – to minimise

maintenance activities. In the previous chapter, we have introduced a multi-path routing

approach that enables us to well approximate the optimal routings for network lifetime;

however, the multi-paths are constrained, because nodes change their paths together at the

same time. In this chapter we remove this dependency, and nodes are allowed to change

paths independent of other nodes. In addition, wireless sensors operate in unpredictable

and dynamic radio environment, where links between nodes may fail. The usage of such

unconstrained multi-paths are capable of battling against link unpredictability if data is

sent through routes that share as few links as possible. This works because in an event of

link failures in one route, partial data may be retrieved from the affected sensor(s) through

other routes. In devising robust multi-paths, energy consumption and loads on a node are

not of concern, and as a result robust paths may have deleterious effects on battery life.

In this chapter, we therefore propose an evolutionary approach to estimate the optimal

trade-off between network lifetime and robustness.

In WSNs, alongside network lifetime, it is important that data from sensors are delivered

reliably. Data delivery may fail for various reasons: node failure, link failure, and conges-

tion [Paradis and Han, 2007]. In modern deployments, node failure is a rare event due to

recent advances in WSN technology. Moreover, it is considered to be a critical event that

requires immediate attention from the network administrator so that faulty nodes may

be replaced.Additionally, the congestion problem at the Medium Access Control (MAC)

layer may be addressed with Time Division Multiple Access (TDMA) techniques [Cionca

et al., 2008]. Furthermore, Forward Error Correction (FEC) methods can be deployed to

improve link reliability in the Data Link Layer (DLL) [Jeong and Ee, 2003]. However,

1Some of the materials presented in this chapter have been submitted for publication in [Rahat et al.,
2015a].
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even if these techniques are used, unpredictable link failures due to the changing radio

environment may still occur [Cerpa et al., 2005; Zhao and Govindan, 2003].

In the literature, many terms have been used to refer to the fault tolerance in data delivery

of a routing scheme against link failures [Akyildiz et al., 2002; Yick et al., 2008; Chen

et al., 2009]. The most common are: resilience, reliability and robustness. Resilience is

generally used to refer to the ability of a network configuration to recover from failures

and restore functionality rapidly by dynamically adjusting its configurations, cf. [Ganesan

et al., 2001]. Therefore, this term is appropriate for distributed protocols as they take

routing decisions reactively, and thus this term is not suitable in the context of this

thesis. The distinction between reliability and robustness is not well-defined in WSNs,

and both terms are often used in the same context, see for example [Shin et al., 2007;

Yahya and Ben-Othman, 2009]. However, in semantic sense, reliability means achieving

a particular performance level, and does not necessarily signify the ability to cope with

the uncertainties in the system. In contrast, robustness refers to the ability to continue

operating effectively despite unpredictable failures. In this thesis, we focus on maintaining

the ability of every node to communicate to a central base station while considering the

link failure probabilities. We therefore use robustness to refer to the fault tolerance in

data delivery. Furthermore, we formulate a novel robustness measure that quantifies the

fragility of a network configuration. This provides us with an avenue to compare different

configurations and thus estimate the optimal routings.

In this chapter, we are interested in locating efficient multi-paths that trade-off between

network lifetime and robustness; this multi-objective problem is analytically intractable

(we discus this in section 4.2). We therefore propose an evolutionary routing optimisation

framework to estimate optimal multi-path routing schemes. This approach can achieve

solutions with network lifetimes close to the theoretical maximum network lifetime (when

no constraint on the number of routes per node is imposed) as presented in [Chang and

Tassiulas, 2004], and a range of solutions representing various levels of robustness.

The main contributions of this chapter are as follows:

• We describe a hybrid evolutionary search procedure to approximate the optimal

trade-off between network lifetime and network robustness.

• We introduce a novel robustness measure (the fragility) of multi-path routing schemes

to quantitatively analyse and compare the robustness of different multi-path routing

schemes.

• We show how the proportion of time for which each path should be used in a multi-

path scheme may be determined by an appropriate linear program to optimise either

network lifetime or robustness.

• In addition to pruning search space with k-shortest paths and max-min lifetime prun-

ing (as discussed in section 3.3), we use novel search space pruning methods, based

on braided and edge disjoint paths, which in turn speed the search by restricting the

search space to regions likely to contain good (robust) solutions.
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• The proposed methods are illustrated in a real network deployed in Victoria &

Albert Museum, London, and successfully locate a wide range of robust multi-path

routing schemes with long network lifetimes and greater robustness, surpassing the

performance of single-path routing schemes.

• We discuss how incorporating vertex enumeration in case of alternative optima may

improve local lifetime and fragility for a given multi-path routing scheme.

• We show that an extension to the evolutionary method using weighted sum may

improve the quality of the approximation.

The rest of the chapter is structured as follows. In section 4.1 we describe our network

model and the associated formulation of network lifetime and robustness. This recapit-

ulates some material from chapter 3, but is included here for completeness. Section 4.2

describes the multi-objective problem to be optimised and in section 4.3 a hybrid evolu-

tionary algorithm to solve it is presented. A new search space pruning using braided and

edge-disjoint paths is discussed in section 4.3.1, and illustrations on synthetic and real

networks are also given. We also discuss possible extensions to the evolutionary approach

that may improve local performances in sections 4.3.4 and 4.3.5. Finally, the chapter

summary is presented in section 4.4.

4.1 Network Model, Lifetime and Robustness

In this section, we present a model for WSNs with unconstrained multi-path routing, and

formulate network lifetime and robustness as objectives to be optimised. For clarity and

completeness, we repeat some of the concepts discussed in chapter 3.

4.1.1 Network Model

We consider a communication protocol in which all nodes periodically (e.g., once every

minute) send their sensed data to the base station, potentially by relaying a message

through one or more nodes. Such data reporting periods are repeated throughout the

network lifetime: the time before which any node exhausts its battery. This scenario is

most common in industrial applications, especially for constant monitoring of locations.

Once a connectivity map, showing which nodes may communicate with each other, has

been established, routing is performed under the assumption that links are reliable. Gen-

erally, pairs of nodes are configured to use the most energy efficient settings that allow

reliable communication. Usually energy efficient links correspond to high baud rate and

low transmission power.

We deem the hardware to be reliable, and thus node failure is a rare event that necessitates

replacement of the node. On the other hand, the radio environment is seldom constant

and links may occasionally fail due to changing atmospheric conditions, the passage of

people, radio interference, and so on. One mechanism to combat the intermittent failure
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vi

vj

vk

vB

Figure 4.1 Two paths Ri1 = 〈vi, vj , . . . , vB〉 and Ri2 = 〈vi, vk, . . . , vB〉 from vi to the base station
vB . In a multi-path routing scheme, Ri1 is active for time share τi1 and Ri2 is active for time share
τi2.

of links is to provide more than one path from each node to the base station. Each node

then splits its traffic between the available paths, sending a proportion of messages via

each of the available paths; exactly one path is used on each data reporting cycle, rotating

between the available paths. Thus if there is a failure on one path, messages sent via other

paths will still be received, providing at least partial information. We call the proportion

of time that a particular path is utilised the active time share for that path.

Recall that a WSN is represented as a network graph, G = {V,E}, where V is a set of N−1

sensor nodes vi plus a base station node vB, and E is the set of M edges, describing with

which other nodes each node can communicate [Cormen et al., 2001]. Figure 4.1 illustrates

a multi-path routing in which there are two routes from node vi to the base station vB:

Ri1 = 〈vi, vj , . . . , vB〉 and Ri2 = 〈vi, vk, . . . , vB〉. We denote by τid the active time share

of path Rid, namely the proportion of messages sent by vi via route Rid. Clearly, τid ≥ 0

for all i, d and
∑

d τid = 1, ∀vi ∈ V .

Hence, we define a D multi-path routing scheme (R, T ) as a set of paths, where each node

has D routes to the base station, and a set of associated time shares:

R = 〈{R1d}Dd=1, {R2d}Dd=1, . . . , {R(N−1)d}Dd=1
〉, (4.1)

T = 〈{τ1d}Dd=1, {τ2d}Dd=1, . . . , {τ(N−1)d}Dd=1
〉. (4.2)

Again as discussed in chapter 3, practical memory constraints of the current devices gen-

erally require that D, the number of paths for any node, is small, perhaps two or three;

this is why the optimal network lifetime as devised by [Chang and Tassiulas, 2004] may

not be achieved in a centralised WSN.

4.1.2 Network Lifetime

The energy expended at a node due to transmitting its own data and relaying other nodes’

data depletes charge in its battery and thus governs the lifetime of a node. An individual

node’s lifetime, and thus the network lifetime, then depends on the routing scheme as it

dictates the total number of transmissions and receptions involving the node.

Let Tkj be the energy (charge) required at node vk to send a message to vj and let Apk

be the energy required to receive (and acknowledge) a message from vp at vk (Figure 4.2).

Then in one reporting cycle, the energy cost at vk associated with relaying messages in
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vi vp vk

Apk, Tkj

vj vB

Figure 4.2 Notation for the d-th route for node vi: Rid = 〈vi, . . . , vp, vk, vj , . . . , vB〉. The energy
costs to send data from vp to vk are Tpk at node vp and Apk at node vk.

path Rid = 〈vi, . . . , vp, vk, vj , . . . , vB〉 is

Ck
id = Apk + Tkj . (4.3)

At the originating node there is no reception cost, so that Ci
id = Tir where vr is the node

immediately downstream of vi.

In order to calculate the battery lifetime remaining due to an unconstrained multi-path

routing scheme, we require additional intrinsic information about the nodes, namely the

charge qk remaining in the battery and the quiescent energy consumption per reporting

cycle Bk due to constant micro-controller operation, sensor measurements, running an

on-board display, etc. The life of the node vk is therefore given by

Lk =
qk

Nc(Bk +
∑

Rid∈RC
k
idτid)

(4.4)

where Nc is the number of reporting cycles per unit time (e.g. one year). Note that the

energy expended at node vk as a result of using route Rid depends on the associated time

share τid; more frequent use naturally incurs a greater energy expense. We emphasise that

Lk ≡ Lk(R, T ) is a function of all the paths and the associated time shares which utilise

vk.

Note that the formulation for lifetime in equation (3.5) takes into account the combined

energy usages at edges due to different routes, and thus it is edge based. In contrast,

in equation (4.4) the lifetime formulation considers the energy usages for different routes

separately, and therefore it is a route based formulation. Here, as we use an unconstrained

multi-paths approach, where nodes may change between available routes without depend-

ing on other nodes, we use the route based approach so the contributions due to individual

routes may be separated naturally.

Our goal here is to maximise network lifetime, that is the time before any individual node

requires its battery to be changed or recharged; thus we seek to maximise

L(R, T ) = min
vk∈V

Lk(R, T ). (4.5)

Optimal Time Share

Suppose that the routesR have been determined. Then the time shares that best distribute

the time share between multiple paths for each node can be found as follows.
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Inspecting (4.4), we note that rearranging this equation for a mathematical programming

formulation will impose quadratic constraints with variables Lk and τid in product form,

which is an NP-hard problem [Boyd and Vandenberghe, 2004]. In order to reformulate

this problem as a linear program, we consider the inverse lifetime

L′k(T ) ≡ 1/Lk =
Nc

qk

Bk +
∑

Rid∈R
Ck
idτid

 (4.6)

so that maximising minvk∈V {Lk} is equivalent to minimising maxvk∈V {L′k}. Defining

L
′∗ = maxvk∈V {L′k}, the optimal time shares are then the solution to the linear program:

min
T

L
′∗ (4.7a)

subject to:

qkL
′∗ −Nc

Bk +
∑

Rid∈R
Ck
idτid

 ≥ 0 ∀k; (4.7b)

τkd ≥ 0 ∀k, d; (4.7c)∑
d

τkd = 1 ∀k. (4.7d)

Note that in deriving the inequality constraints in (4.7b) we utilise the relationship that

for all nodes in the system L
′∗ ≥ L′k and replace L′k by L

′∗ in (4.6). We use this trick

because min-max functions are non-smooth [Zang, 1980], and considering L
′∗ instead of

L′k lets us formulate a convex linear program which can be solved in polynomial time

[Bertsimas and Tsitsiklis, 1997].

Here, the inequalities (4.7b) (derived from (4.4) and (4.6)) ensure that the batteries have

non-negative charge, while (4.7d) ensures that every node has paths allocated for all its

messages.

Clearly, by solving the linear program (4.7) we can obtain a set of optimal time shares once

a multi-path routing scheme is generated. This provides a means to efficiently calculate

optimal time shares and thus compare routes R and R′. In the evolutionary optimisation

method that we present below, candidate paths are generated by the stochastic evolu-

tionary mechanism; optimal network lifetimes for these are obtained by solving the linear

program, obviating the need to perform a further stochastic search to locate optimal time

shares.

4.1.3 Robustness

A network can be considered as robust when it can deliver data despite link failures.

Clearly, in a single-path routing scheme failure of a link will cut off any node whose path

uses that link. Multi-path routing schemes offer the possibility of partial data delivery
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during link failures and we therefore seek to characterise the robustness of a multi-path

routing scheme to link failures. We consider the expected message loss associated with

the failure of a link in one of the paths used by a single node. We then characterise the

fragility of the network as the maximum expected data loss in the event of a link failure

anywhere in the network. Then maximising robustness is equivalent to minimising the

fragility for a given multi-path routing scheme.

Let πm be the failure probability of an edge em ∈ E. We assume that the edge failure

probabilities are independent, so that the probability that a path Rid ∈ R fails in a unit

time can be written as:

pid = P (Rid fails) = 1−
∏

em∈Rid

(1− πm) =
∑

em∈Rid

πm − p̃id, (4.8)

where p̃id represents all the higher order product terms. When the edge failure probabilities

are small (πm � 1), the higher order product terms (representing the probability of more

than one edge failing) are negligible, and pid is thus well approximated by:

pid ≈
∑

em∈Rid

πm. (4.9)

In the Victoria & Albert network πm ≈ 1% and we examine the effects of this approxima-

tion below.

If a node vi sends Ui messages per unit time, then it uses Rid to send Uiτid of these

messages and the expected loss of messages associated with a failure of a link in Rid is

Uiτidpid. (4.10)

Now, in multi-path routing schemes the paths from a particular node may share edges.

As a result, failure in a link in Rid may also be associated with loss in another path

Rxy ∈ R \ Rid that shares edges with Rid. In this case the expected data loss associated

with the failure of an edge is:

Fid = Uiτidpid +
∑

Rxy∈(R\Rid)
vx∈V

Uxτxy

1−
∏

en∈(Rxy∩Rid)

(1− πn)

 (4.11)

where the bracketed term is the probability that an edge common to Rid and another path

Rxy fails.

In the following we use the first order approximation of path failure probabilities:

Fid = Uiτid
∑

em∈Rid

πm +
∑

Rxy∈(R\Rid)
vx∈V

Uxτxy

 ∑
en∈(Rxy∩Rid)

πn

 . (4.12)

We call Fi = maxd Fid the fragility of the multi-path routes for vi. To quantify the
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robustness of the entire network, we define the fragility of the network as the maximum

expected data loss for any node:

F = max
vi∈V

Fi = max
vi∈V

max
d
Fid. (4.13)

Clearly F ≡ F (R, T ) depends on the choice of paths and time shares. To maximise the

robustness of the network, we therefore minimise the fragility with respect to R and T ,

that is, we seek to minimise the maximum expected data loss in the event of a link failure.

Our work on robustness is complementary to the work presented in [Cerpa et al., 2005;

Zhao and Govindan, 2003]: they devise ways to calculate statistical and empirical edge

failure probabilities πm and such information can be used to estimate robustness of multi-

path routing schemes. If this information is not readily available, especially when the

network is being established, it may be assumed that all edges are equally likely to fail

and we set πm = π = const. for all m.

We next show that the optimum time shares T may be found by solving a linear program

when the routes R are known, after which, in section 4.1.3, we illustrate the fragility

measure for some simple intuitive cases. In section 4.2 we then present the multi-objective

optimisation problem and an evolutionary approach to maximise both the network lifetime

and robustness.

Optimal Time Share

In a similar manner to the network lifetime problem, we can devise a linear program

to locate the active time shares T for a particular multi-path routing scheme R that

minimises the network fragility (4.13).

With F ∗(T ) = maxRid∈R Fid, the linear program to minimise the network fragility can be

described as follows:

min
T

F ∗ (4.14a)

subject to:

F ∗ ≥ Fid, ∀Rid ∈ R; (4.14b)

τkd ≥ 0, ∀k, d; (4.14c)∑
d

τkd = 1, ∀k. (4.14d)

Here too, setting F ∗ = maxRid∈R Fid ≥ Fid enables us avoid the non-smoothness of the

min-max problem (4.14a) and formulate the linear program. The set of constraints in

(4.14b) indicates that any path specific fragility in (4.11) is less than or equal to the

network fragility F ∗. As before, the constraints in (4.14d) ensure that all data reporting

cycles are used.

Solving this linear program results in a set of active time shares according to the best
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vi

vB

Ri1 Ri2

(a) Node vi has two
routes to the base sta-
tion vB : Ri1 (dotted),
and Ri2 (solid) with
associated time shares
τi1 and τi2 respectively.
With equal link failure
probabilities, the routes
are used equally, τi1 =
τi2 = 50%.

vi

vB

Ri1 Ri2

Ri3

(b) Node vi has three
routes to the base sta-
tion: Ri1 (dashed) and
Ri2 (dotted) and Ri3

(solid). With equal
link failure probabilities
π, the time shares are
τi1 = 18.2%, τi2 =
27.3% and τi3 = 54.5%
and the fragility is Fi ≈
0.545Uiπ.

vi

vB

Ri1 Ri2

Ri3

(c) Same configuration
as Figure 4.3b except
for the link (dash-
dotted) shared between
Ri1 (dashed) and Ri2

(dotted). With equal
link failure probabil-
ities the time shares
are τi1 = 12.5%, τi2 =
25%, τi3 = 62.5%.
The fragility is
Fi = 0.625Uiπ.

vi vj

vB

Ri1

Ri2

Rj1

Rj2

(d) vi and vj each
have two routes with
equal numbers of links,
but share a single link
(dash-dotted). With
equal link failure prob-
abilities π and traffic
Ui = Uj = U , the op-
timal time shares are
τi1 = τj1 = 55.6%,
τi2 = τj2 = 44.4%. The
fragility of vi and vj is
2.22Uπ.

Figure 4.3 Case studies illustrating the fragility (4.13). The first order approximation of the route
failure probabilities (4.9) is used in expressions for Fid (4.12).

robustness for a routing schemeR. This allows us to simply compare robustness of different

multi-path routing schemes R with the knowledge that the active times for each route are

optimal, and thus locate routing schemes with better robustness.

Case Studies

Here we demonstrate the fragility in some simple scenarios, which are illustrated in Figure

4.3.

Edge-disjoint routes between a pair of nodes

Edge-disjoint routes do not share any edges; however, they may share nodes. In such

situations, the node fragility Fi is independent of the other nodes and the second term in

(4.11) is zero.

As illustrated in Figure 4.3a, node vi has two routes of equal length to the base station

vB: Ri1 and Ri2. The active time shares for these routes are τi1 and τi2. If the edge

failure probabilities are equal for all the edges, by either solving the linear program or

straightforward direct calculation, the minimum fragility occurs when τi1 = τi2 and Fi1 =

Fi2, as would be expected from symmetry. Clearly, if the two routes have equal probability

of failing then they should be used equally. Likewise, if the total failure probability for

path Rid is pid (c.f. (4.9)), then the minimum fragility occurs when the expected losses of
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(a) Edge disjoint routes (network graph in Fig-
ure 4.3b)
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(b) Shared edges between routes (network graph
in Figure 4.3c)

Figure 4.4 Effects on optimal time shares among different routes with changes in homogeneous
failure probabilities at edges considering the fragility definition in equation (4.8) that incorporates
the product terms p̃id of failure probabilities. For small values of edge failure probabilities, the
impact of p̃id is negligible.

each of the independent routes are equal, which occurs when:

τid =
1

pid

(∑
l

1

pil

)−1
. (4.15)

When there are just two routes (Figure 4.3a) then (4.15) simplifies to τi1 = pi2/(pi1+pi2) =

1− τi2. The fragility is Fi = Ui

(
p−1i1 + p−1i2

)−1
, which is clearly minimised when pi1 = pi2

so that the risk of failure is borne equally by the two routes. The case for three routes with

3, 2, and 1 links respectively, each with equal failure probability π, is shown in Figure 4.3b.

Here the routes are utilised in the proportions τi1 = 18.2%, τi2 = 27.3% and τi3 = 54.5%

so that the expected loss for each route Fid is equalised using the first order approximation

to Fid in (4.12); at the optimum Fi = 6Uiπ/11 ≈ 0.545Uiπ.

Shared edges from a single node

Sometimes the paths from a single node to the base station will have to share edges.

Clearly, this makes the node more fragile because failure of one of the shared links will

compromise more than one path, although there might be another independent route.

Figure 4.3c shows a node vi with three routes in a similar configuration to Figure 4.3b,

except that Ri1 and Ri2 share a link (shown dash-dotted). With equal link failure prob-

abilities there is less advantage in using Ri1 and Ri2 than there was in the previous case.

This is reflected in the time shares: τi1 = 12.5%, τi2 = 25% and τi3 = 62.5% and the

greater fragility Fi = 0.625Uiπ.

When the failure probability πm is the same for all edges, i.e. πm = π,∀em ∈ E, and

the first order approximation of route failure probability pid in (4.9) is used, then the

fragility is proportional to π and the precise value of π is not important. When the

failure probabilities at edges are large, however, the chance of more than one link failure
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is appreciable and the full expression for pid in (4.8) should be used. Figure 4.4 shows the

result of using complete expression for pid for network shown in Figure 4.3b and 4.3c. As

the figure shows, the higher order terms can be safely ignored when π . 0.2, although for

routes with many edges this may be lower.

Note that when all links are completely reliable, that is all edge failure probabilities are

zero, there are no fragility at the routes, and thus any combination of time shares can be

considered as optimal. Similar arguments can be made for the case when all links fail all

the time and no data can possibly be delivered.

Multiple nodes sharing edges

When multiple routes share edges, failure of a single link may affect more than one node.

In practice, since most nodes in a network generate data, there will be a large number of

shared edges and the second term in (4.11) and (4.12) is significant.

As a simple illustration, Figure 4.3d shows two data reporting nodes vi and vj , which send

their data to the base station each using two paths. These routes have equal numbers of

links, so with equal edge failure probabilities, the fragility of each individual route is the

same. In this illustration routes Ri2 and Rj2 share a single link. In this case, assuming

the vi and vj generate equal traffic Ui = Uj = U and assuming π � 1, the optimal time

shares are τi1 = τj1 = 55.6% and τi2 = τj2 = 44.4%, so that traffic is directed away from

the shared edge. Without the shared link the time shares for all routes would be 50% and

the fragility 2Uπ, whereas the shared link increases the fragility of both nodes to 2.22Uπ.

The fragility measure described here may be used for other similar problems. For instance,

it may be useful in reducing congestion in transport networks. Generally, such problems are

modelled with the predefined edge capacities and the appropriate path flows are sought to

reduce the edge based congestion factors. Banner and Orda [2007] have described a multi-

path scheme to solve this problem. However, if the problem is required to be route based,

that is the overall congestion in the network due to many commodities being transported

through multi-paths are minimised, then the fragility measure may be adapted to achieve

this. The modifications required would incorporate considering the reciprocal of edge

capacity as equivalent to the edge failure probabilities, the path flows as equivalent to the

time shares, and the overall network congestion at routes as equivalent to the fragility.

With these assumptions, minimising the overall network congestion would be equivalent

to minimising the fragility.

4.2 Multi-Objective Optimisation Problem

Our overall goal is to discover routes and time shares for a network that maximise the

network lifetime and maximise the network robustness by minimising the fragility. These

two objectives are expressed by (4.5) and (4.13) and may be collected together as a two-
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objective optimisation problem:

maximise f1(R, T ) = min
vk∈V

Lk(R, T ), (4.16)

minimise f2(R, T ) = max
Rid∈R

Fid(R, T ). (4.17)

These objectives might be augmented with others. For example, as discussed in section

3.5.2, it might be important to maximise the lifetime of one or more particularly inac-

cessible nodes or to ensure the maximum robustness for other nodes. The optimisation

procedure we describe below is easily generalised to these situations, but for simplicity we

illustrate our approach with just these two objectives.

We emphasise that in some senses the time shares T are subsidiary to the routesR, because

if R is known then the T maximising the lifetime or minimising the fragility may be found

by solving the appropriate linear program. For a routing scheme R we denote by TL(R)

and TF (R) the solutions to the linear programs for lifetime and fragility respectively.

The network lifetime objective in (4.16) ensures that although energy efficient paths are

selected, some load is distributed away from the heavily loaded nodes to prolong minimum

lifetime. This may be in conflict, however, with the fragility objective in (4.17), where the

load distribution that minimises fragility is purely dependent on the nature of the paths

and shared edges between paths, without any regard to the traffic carried by each node

and therefore the load imposed on its battery. As it will usually be impossible to optimise

both objectives with a single routing, we therefore seek the set of solutions corresponding

to the optimal trade-off between these objectives.

Just as we described in section 3.1, locating the optimal Pareto set would require searching

all possible multi-path routing schemes permitted by the network graph. As counting the

number of all possible simple paths in a graph is #P -complete, the corresponding problem

of listing all simple paths in order to build multi-path schemes is NP-complete [Valiant,

1979a,b; Roberts and Kroese, 2007]. Therefore, this multi-objective problem is analytically

intractable, and hence, we use a hybrid evolutionary approach to approximate the optimal

routings.

4.3 Hybrid Evolutionary Approach to Multi-Path Routing

Optimisation

We use a straightforward elitist evolutionary algorithm as the basis of our search. The

algorithm (see Algorithm 4.1) maintains an archive A of mutually non-dominated (R, T )

solutions which at any stage of the algorithm is the best approximation to the Pareto set.

The algorithm is initialised by constructing s candidate routing schemes from a library of

possible routes for each node, P = 〈{R1m}Mm=1, {R2m}Mm=1, . . . , {RNm}Mm=1〉, where M is

the number of routes available for each node.2 To obtain an efficient search and combat

2In practice some nodes may have fewer than M routes available.
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Algorithm 4.1 Multi-objective multi-path routing optimisation using evolutionary algo-
rithms.
Inputs

P : Library of paths for each node
T : Number of iterations
s : Size of initial archive
µ : Perturbation rate
c : Crossover rate

Steps

1: A← InitialiseArchive(P, s) . Initialise random archive
2: for i = 1→ T do
3: {R1,R2} ← Select(A) . Select two parent solutions
4: R′ ← Crossover(R1,R2, c)
5: R′′ ← Perturb(R′, µ,P) . Mutation
6: A ← NonDominated(A ∪ {(R′′, TL(R′′)), (R′′, TF (R′′))})
7: end for
8: return A . Approximation of the Pareto set

the combinatorial explosion in the number of possible solutions with increasing network

size, this library is built to contain routes that are likely to be good candidates for optimal

solutions; details of its construction are given in section 4.3.1. In a D-path routing scheme,

D paths for each node vi are drawn at random from the available routes for vi in P to

form R. Optimal time shares for TL(R) and TF (R) are found via linear programming

and the candidate solutions (R, TL(R)) and (R, TF (R)) added to A. Solutions in A which

are dominated by other solutions are removed from A, so that it is a set of mutually

non-dominating solutions.

At each generation of the evolutionary procedure, the routes R1 and R2 corresponding

to two solutions in A are selected at random from the elite archive A (line 3). These

parent routing schemes are combined in a uniform crossover operation (line 4), in which

a new routing scheme R′ is constructed by selecting each path Rid in the paths for each

node vi from either R1
id or R2

id with probability c or 1 − c respectively, independently

of other nodes and the paths for vi. The new routing scheme R′ is then perturbed by

choosing a number of paths in the solution to alter based on the perturbation rate µ, and

then replacing these from P at random (line 5). Finally, having evaluated the optimal

time shares and the corresponding objectives, if either of the newly constructed routings

(R′′, TL(R′′)) or (R′′, TF (R′′)) is not dominated by any of the solutions in A, then it is

added to A and any solutions in A that are dominated by these are removed from A. In

this way non-dominated routing schemes are retained in the archive and the corresponding

objectives can only approach the true Pareto front. The evolutionary process continues for

a fixed number of generations, although another termination condition, such as a specified

minimum dominated hypervolume [Zitzler, 1999] may be employed.

Note that, alongside being a single stage optimiser, the generic framework of algorithm

4.1 differs from algorithm 3.1 in step 6, where appropriate LPs are solved to generate two

candidate multi-path schemes and compared with all solutions in the archive.
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4.3.1 Search Space Pruning

As noted above, the multi-objective optimisation problem is a combinatorial optimisation

problem with, for practical WSNs, a vast number of potential solutions. The number of

possible multi-path routing schemes depends on the number of available routes for each

node in the network and the number of routes allowed per node. For instance, let the

number of available loopless paths from vi to vB be ai. If the number of paths per node is

D, then the number of possible multi-path routing schemes is (
∏

i ai)
D. Hence, it is crucial

for practical implementations that we derive an efficient algorithm by sensibly pruning

the search space, while retaining important potential solutions, rather than considering

solutions from the whole search space. In addition to the pruning methods (k-shortest path

and max-min lifetime pruning) described in section 3.3, in this section, we describe new

methods of pruning the search space: braided and edge-disjoint path pruning are used to

construct libraries of potential paths for each node Pbraid, and Pedge from the connectivity

graph, G; we also reduce G to a new graph G′ using max-min pruning and construct

additional libraries P ′braid, and P ′edge from it. We also use the path libraries PK and P ′K
generated using k-shortest path pruning on both G and G′ respectively. The evolutionary

algorithm (Algorithm 4.1) then selects candidate routes from P = PK ⊕ Pbraid ⊕ Pedge ⊕
P ′K ⊕ P ′braid ⊕ P ′edge.

Braided and Edge-Disjoint Path Pruning

In the interest of retaining potential good routes from the perspective of robustness, we

build two additional path libraries: Pbraid, containing braided paths, and Pedge, containing

edge-disjoint paths, which have been shown to be highly resilient and energy efficient

[Ganesan et al., 2001].

Ganesan et al. [2001] describe braided paths as partially disjoint paths, i.e. paths in a

braid are allowed to share nodes and edges as long as they differ in some edges or nodes.

These braided paths are based on a primary path, which we take to be the shortest path

from a node to the base station considering the composite cost as edge weights; these

primary paths are found during the construction of PK or can be found using Dijkstra’s

algorithm [Dijkstra, 1959].

Two particular types of braided paths are presented by Ganesan et al.: idealised and

localised braids. In idealised braids, two paths must differ in at least one node; while in

localised braids two paths are allowed to share nodes as long as they have different edges

to and from at least one shared node. Therefore to produce idealised braids, we remove

one node at a time from the primary path from the network graph and calculate new

primary path. Similarly, for localised braids, we remove only the edges connecting a node

in the primary path, and generate the primary path on the new graph. This is repeated

for each node and associated edges in the primary path. Hence, the number of braided

paths depends on the length of the primary path.

To generate edge-disjoint paths, starting from the primary path, we remove edges of the
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1-st to m-th path from the network and calculate the next shortest path, i.e. the (m+1)-th

completely edge-disjoint path, based on the composite edge costs. We repeat this process

to construct Pedge with k edge-disjoint paths. In a partially connected network, as is

usually the case in WSNs, a node may be completely disconnected from the network by

removing a small number of edges, and as a consequence may have very few edge-disjoint

paths.

4.3.2 Synthetic Network Illustration

We first illustrate our multi-path routing algorithms on randomly generated synthetic net-

works. In these networks nodes were distributed uniformly at random in a rectangular

area, and an edge defined between each node and its three nearest neighbours. This pro-

cess results in networks in which every node is attached to at least three others, however

as the nearest neighbour relation is not symmetric, some nodes may be connected to more

than three neighbours. Transmission and reception costs associated with each link were

selected randomly from 5 configurations. The most energy required for a single trans-

mission amounted to approximately 2.77 times the quiescent current expended between

transmissions, while the least energy was 0.17 times the quiescent energy. Note that while

nodes on the periphery of the network will make only a single transmission per reporting

cycle, those closer to the base station may make many transmissions and receptions as

they relay other nodes’ data.

In the illustration presented here the network comprised 11 nodes plus a base station

and we allow two paths per node, making it a 2-path routing scheme. Figure 4.5(left

panel) shows the connectivity map for this network. For simplicity, all node batteries

had the same initial charge and all edges were assumed to have the same link failure

probability. In subspace pruning, we used k = 10 shortest paths for building each PK
and P ′K ; in addition we used braided and edge-disjoint path pruning to build the complete

path library P. The initial evolutionary population was created by randomly selecting 100

routes R from P. Then solving the linear programs (4.7a) and (4.14a) generated distinct

time shares TL(R) and TF (R) respectively for each route, resulting in 200 initial solutions

(R, T ). The initial archive comprised the non-dominated solutions among these random

solutions. During the evolutionary optimisation we used c = µ = 0.1 for the crossover and

perturbation rates. After 40000 generations, the Pareto front estimation was judged to

have been well-converged based on the dominated hypervolume measure [Zitzler, 1999].

In Figure 4.5, the estimated Pareto front from the evolutionary optimisation is shown. As

the figure shows, the 2-path routing schemes in the estimated Pareto set not only contains

a wide range of solutions representing various levels of trade-off between network lifetime

and robustness, but also performs better than solutions in the random initial archive. Note

that the initial random archive was constructed from solutions within the pruned subspace

and by solving the linear programs in 4.7 and 4.14. Routing schemes selected at random

from the entire search space with all possible routes and arbitrary time shares between

the constituent routes, perform substantially worse in comparison (see Figure 4.5). With

the estimated Pareto optimal solutions, the network engineer may inspect the solutions

71



4. Robustness and Network Lifetime

∞
high med low

Energy Cost

5 10 15 20 25 30 35 40
Fragility

1

2

3

4

5

6

7

N
e
tw

o
rk

 L
if
e
ti

m
e
 (

y
e
a
rs

)

Rf

Rl

N
et
w
o
rk

L
if
et
im

e
(y
ea
rs
)

Fragility

Figure 4.5 Pareto front approximation showing the trade off between network lifetime and fragility,
resulting from the evolutionary multi-path routing optimisation in a random network with 2 paths
per node, for the network on the left. The Pareto front approximation is shown with blue crosses,
with Rl and Rf being the best network lifetime and the most robust solutions respectively. Initial
random solutions are depicted with solid green dots and the non-dominated solutions in the initial
archive are indicated with empty orange square around the associated random solutions. The
magenta pluses depict solutions selected at random from the entire search space with the time
shares between routes assigned arbitrarily, and they perform significantly worse in comparison to
the random archive used here. The red line shows the upper bound for network lifetime if unlimited
paths per node are permitted.

and select a suitable multi-path routing scheme for this particular network.

The best lifetime solution Rl achieves a network lifetime of 6.6 years with two routes

allowed per node; this is within 0.001% of the theoretical upper bound of the network

lifetime for this particular network, which can be calculated when there is no limit to

the number of paths available to each node. At the other extreme, the evolutionary

algorithm has located a comparatively robust solution reducing the fragility to 29.3% of

best lifetime solution, at the expense of a 59.4% decrease in network lifetime. In most

circumstances the network operator will want to choose a solution between these two

extremes. Inspection of the figure shows that a solution close to the “knee” in the Pareto

front (fragility ≈ 9.9, lifetime ≈ 5.9) may be preferred because decreasing the fragility

further leads to a rapid deterioration in lifetime, whereas large increases in fragility are

required to achieve significantly longer lifetimes.

To clarify the nature of both objectives and their relationship with multi-path routing

schemes, we further visualise in Figure 4.6 the routes corresponding to the solutions Rl

and Rf , which optimise the lifetime and fragility respectively. This figure shows the

connectivity map for the network (Figure 4.6a), the overall edge utilisations for Rl and

Rf (panels 4.6b and 4.6c) and each node’s paths in Rl and Rf . Time shares τi1 and τi2

allocated to each of the two paths from a given node vi are indicated using the colour

scale, green for Rl and red for Rf .
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Figure 4.6 Comparison between extreme solutions: best lifetime solution (Rl) and most robust
solution (Rf ) in the median run of 31 runs for the random network; see Figure 4.5. (a) shows
the connectivity map with all available links between nodes and associated energy costs (darker
represents lower energy cost), with the grey square node indicating the base station. (b) and (c)
depict the edge utilisations for all routes in solutions Rl and Rf respectively (darker represents
higher utilisation). Each of (d) – (n) shows the active time shares between a pair of paths forming
the solutions Rl (shades of green) and Rf (shades of red) for individual nodes (solid grey), with the
associated lifetimes and fragility written at the bottom left. Only paths with non-zero time shares
are shown. Overall Rl prefers energy efficient single routes with only few nodes using multi-paths
to distribute load from most heavily loaded nodes, while Rf mainly balances traffic to form disjoint
paths and improve fragility irrespective of energy costs.
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The edge utilisations for Rl in Figure 4.6b indicate that energy efficient edges are utilised

to achieve long network lifetime. This is clear when edge utilisations are compared with

the connectivity map in Figure 4.6a: higher edge utilisations occur where energy costs are

relatively low. This is also evident from inspecting individual node’s paths: for 6 of the

11 nodes Rl uses single-paths, i.e. only a single path is used to send all the data (τi1 = 1

and τi2 = 0). Multiple paths tend only to be used for nodes distant from the base station

(Figures 4.6k-4.6n) in order to relieve more heavily loaded nodes closer to the base station.

By contrast, edge utilisations for the least fragile routing Rf (Figure 4.6c) show no obvious

relationship with energy costs, although nodes close to the base station are inevitably

used more heavily than distant nodes. Instead, it is clear that robustness is achieved by

providing two paths for 7 of the 11 nodes. Where only a single path is used for a node (e.g.,

Figure 4.6g), we have verified that adding an additional path increases the overall fragility

of the network because it requires additional traffic to use an already vulnerable link. It is,

of course, possible to ensure that all nodes incorporate some redundancy by using distinct

paths at least a fraction τmin of the time by replacing the positivity constraints (4.7c) and

(4.14c) with τkd ≥ τmin for all k, d.

In the left hand panel of Figure 4.7 we present the summary attainment surfaces (see

section 2.3.4, Fonseca and Fleming [1996], and Knowles [2005]). These are the Pareto

fronts achieved by 10%, 50% and 90% of 31 independent runs of the evolutionary optimiser.

Clearly, the attainment surfaces for 2-path schemes are superior to those from single-path

schemes in terms of both lifetime and fragility. We attribute this to the possibility of

load balancing between the paths for a single nodes as well as between nodes. Also, the

narrow width of the attainment surfaces indicates desirable repeatability and convergence

properties of the proposed evolutionary approach.

4.3.3 Real Network Illustration

Finally, we show the performance of the approach on the real network deployed in the

Victoria & Albert Museum, London as discussed in chapter 3.3 The network comprises 30

sensor nodes and a base station. Nodes are connected to between 3 and 21 other nodes,

with the average degree being 11.9. The characteristics of the radio environment also vary

with the passage of visitors through the galleries (over 3 million visitors passed through

the museum in 2014), which may lead to occasional link failures.

We used the same evolutionary algorithm configuration as described for the synthetic

network for evolutionary multi-path routing optimisation in this network; except 60000

function evaluations were required to achieve similar convergence quality as indicated by

the dominated hypervolume measure [Zitzler, 1999]. Routing optimisation, using two

paths per node, resulted in a range of trade-off solutions, with the best lifetime solution

in the median run of 31 optimisations achieving 99.51% of the theoretical best network

lifetime with unlimited paths. In this network the quiescent energy expenditure is higher,

3Data on the network to allow comparison with this work can be found at http://emps.exeter.ac.uk/
computer-science/wsn/
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Figure 4.7 Performance comparison between single-path routing schemes (red) and 2-path routing
schemes (blue) approaches. Left : Random network, Right : Victoria & Albert Museum network.
The solid lines depict 50% summary attainment surfaces and dotted lines show 10% and 90%
surfaces. The upper bound of the maximum minimum lifetime for the network is shown with
horizontal dashed line in light grey. In both cases the multi-path schemes completely dominates
the single-path schemes.

so that transmission and reception energy costs amount to between 0.017 and 0.27 times

the quiescent energy expended in a reporting cycle. Consequently, the maximum available

lifetime and the range of available lifetimes is smaller than in the synthetic network where

transmission and reception costs are more significant. Nonetheless, the evolutionary search

has located a wide range of lifetimes and shows the trade-off with robustness. At the other

extreme, the fragility of most robust solution was 37.9% of the robustness of the best

lifetime routing at an expense of a reduction of 29.5% in network lifetime in comparison

with the best lifetime solution.

The right hand panel of Figure 4.7 shows the 10%, 50% and 90% summary attainment

surfaces from 31 optimisation runs for one and two paths per node routings. As for the

synthetic network the close proximity of the attainment surfaces, indicates the repeatabil-

ity and convergence of the optimisation. The optimised 2-path routings clearly dominate

the single path routings, providing better lifetimes and robustness.

Note that, in this network, allowing an additional path for each node does not provide

significantly better routings (see Figure 4.8), and in fact many time share distributions in

3-path routings indicate only 2 paths are being utilised. Furthermore, the best network

lifetime solution with unconstrained 2-path scheme in the median run achieves 99.51% of

the theoretical best lifetime.

Also, recall that in section 3.6.3, a constrained version of 3-path scheme where nodes

were only allowed to change routes together, achieved a best lifetime equal to 99.2% of

the theoretical best. The unconstrained 2-path scheme can achieve similar performance

without the use of an extra route per node. We attribute this to the greater flexibility of

unconstrained multi-path schemes where nodes may change routes without depending on

other nodes.
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Figure 4.8 Pareto front approximation comparison between 1-path (blue dots), 2-path (green
crosses), and 3-path (orange empty squares) routing schemes for a single run. While using more
than one path significantly improves performance; allowing additional paths over 2-path routing
scheme does not substantially improve performance.

4.3.4 Local Lifetime and Fragility Optimisation

Finding the time shares best for either network lifetime or robustness amounts to solving

the linear programs (4.7) and (4.14) for the time shares T . While obtaining a solution

is straightforward and rapid, it turns out that for many networks not all the time shares

for all the nodes are uniquely determined by the solution, that is there may be multiple

optimal solutions to this problem.

To see how this may occur consider a network in which the minimum lifetime node is vi

and there is another node vj , but none of the routes passing through vj also pass through

vi; this might be because vi and vj are on geographically opposite sides of the network, for

example. In this case changing time shares for vj ’s routes has no impact on the lifetime of

vi, and vi remains the optimal minimum lifetime node. Consequently, the time shares for

vj are not determined by the solution to (4.7), although a numerical solver (e.g. Gurobi

[2015] or CPLEX [2015]) will generally set the relevant variables to arbitrary values.

Similarly, when considering the fragility, if the routes from two nodes vi and vj have no

edges in common and vi is the node found to have the maximum fragility by the solution

to (4.14), then the time shares for vj have no bearing on fragility of the network as a

whole and are undetermined by the solution to the linear program. In each of these cases,

although the network-wide lifetime or the fragility cannot be improved, there is freedom

to choose the undetermined (slack) time shares τid ∈ T \ {τi′d′} to improve the local

performance, where τi′d′ ∈ T are the time shares determined by solving corresponding LP.

One way to identify the time shares τid and τi′d′ is to consider the total derivatives of

the fragility in (4.14) or the inverse lifetime in (4.7) with respect to the time shares; this
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works because the time shares with no impact on network-wide fragility or lifetime will

result in a total derivative of zero. However, the approach fails for problems involving

more than 2-paths: in this case the problem becomes under-constrained, and thus the

dependent variables for total derivative can not be readily replaced (see equations (4.7d)

and (4.14d)). We therefore utilise vertex enumeration for this purpose.

The space of feasible solutions to a linear program is well known to be a convex polyhedron

[Bertsimas and Tsitsiklis, 1997; Boyd and Vandenberghe, 2004]. The solution is either a

vertex of the polyhedron (if it is unique and all the τid are determined) or a convex

polyhedral facet on which the objective takes the optimum value [Miller, 1963; Bertsimas

and Tsitsiklis, 1997]. Numerical solvers return an arbitrary vertex on this polyhedral facet.

However, the number of τid which are determined at particular vertices of the optimum

polyhedral facet will vary according to the vertex because different constraints ((4.7d)

and (4.14d)) are active. We therefore explore the optimal facet’s vertices using a vertex

enumeration algorithm (e.g. Avis and Fukuda [1992]) to find the solution which determines

the smallest number of active τid. Note that vertex enumeration algorithms commonly use

a similar tableau format to the simplex solvers for linear programs, so that the latter may

be readily adapted for vertex enumeration beginning at one of the vertices of the optimum

polyhedral facet. The vertex enumeration approach does not suffer from the limitations

of the total derivative approach, and may be adopted as a generic approach. Once the

active variables are identified, the linear program may be solved again but with the active

τid constrained to their determined values.

Solving the constrained LP will fix additional τid, but may not determine all of them if

they are loosely coupled, as is usually the case. In this case, a deflationary procedure may

be deployed to determine all time shares. The process starts by solving the associated LP

((4.14) or (4.7)) to find a vertex on the optimal polyhedral facet. The vertex enumeration

process is then applied to locate all vertices on the facet, and thus the vertex with the

minimum number of active constraints is located. This vertex may then be considered as

the solution that determines the least number of time shares. The LP is then constrained

with the fixed time shares from this solution, and solved again with the freedom to vary

only the undetermined time shares. As this may not determine all of the remaining

time shares, the process is repeated until all time shares are determined. This process is

summarised in Algorithm 4.2.

We note that the new vertices found through vertex enumeration have the same optimal

objective value for the associated LP. If the subspace (of the decision space), on which

the other objective is constant, is parallel to the part of the optimal polyhedral facet

bounded by the contiguous vertices, then traversing between such vertices results in the

same objective value for the other objective. In other words, the potential changes in the

time shares due to traversing between these vertices have no impact on the objective value

for both objectives. Although these vertices are distinct in the decision space, they have

the same objective value in both objectives, and therefore overlap in the objective space.

In contrast, when the subspace, on which the other objective is constant, is not parallel to

the part of the optimal polyhedral facet, the other objective value changes from one vertex

to another. As a result a vertex is either better or worse in comparison to its immediate
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Algorithm 4.2 Linear program deflationary procedure. The function
ConstrainedLPSolve(T , T̃ ) denotes a numerical LP solver for problem (4.7) or (4.14),
with variables T̃ fixed.
Inputs

T : Set of time shares to be determined

1: T̃ = ∅ . Determined T
2: while | T \ T̃ |> 0 do
3: τ ← ConstrainedLPSolve(T , T̃ )
4: V ← VertexEnumerate(τ )
5: τ ← argminτ ′∈V NumberActiveConstraints(τ ′)
6: T̃ ← T̃ ∪ {τ}
7: end while
8: return T̃ . Fully determined time shares

neighbours in terms of the other objective, while still maintaining the optimal objective

value for the associated LP. These effects of vertex enumeration on the other objective are

illustrated in Figure 4.9. With this discussion, it can be envisaged that the initial vertex

may be suboptimal in terms of the other objective. Therefore, while selecting the vertex

with the least number of active constraints (step 5 in Algorithm 4.2), it is necessary to

consider only the vertices that improve, or at least maintain, the other objective.

We also note that the number of vertices per polyhedral facet varies from one to thou-

sands, although the exact number of vertices that must be explored is initially unknown.

Therefore, even running the full deflationary procedure for a routing scheme may prove

to be expensive, especially if there are many vertices to explore. Since the LP solver may

produce a suboptimal initial vertex in the other objective, it is still necessary to enumerate

the vertices for the routing schemes in the final estimated Pareto front as it would aid in

discarding any suboptimal vertices in the other objective.

In Figure 4.10, we use only vertex enumeration for the solutions in a final estimation of

the Pareto front for the network discussed in section 4.3.2 with 2-path routing schemes.

The results show that all solutions generated by only the evolutionary procedure are also

optimal vertices in terms of the other objective. We attribute this to the evolutionary pres-

sure, that is the pressure exerted by the evolutionary mechanism to select routing schemes

for which the LP solver produces the optimal vertex in the other objective. Therefore,

the additional check on the routing schemes from the final estimation of the Pareto front

to ensure that none of the initial vertices are suboptimal in the other objective by using

vertex enumeration is not necessary.

An alternative approach to improve local performances is to use evolutionary algorithms to

determine the undetermined time shares whilst constraining the search within the optimal

polyhedral facet. This approach, however, is likely to be suboptimal, and it is expected

that the deflationary procedure with vertex enumeration would be efficient if there are few

vertices to explore.

Future work might involve investigating the full deflationary process in order to explore the

extent of local performance improvement that may be achieved. However, we emphasise
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Figure 4.9 Nature of vertex enumeration for two 2-path routing schemes Rl and Rf from random
initial archive for the network discussed in section 4.3.2. Left: all (832) vertices for Rl with
time shares solved for lifetime linear program; right: all (96) vertices for Rf with time shares
solved for robustness linear program. The initial vertex from appropriate solver is shown with
empty blue square, new vertices found through enumeration are depicted with red crosses, and the
green line connecting all vertices show that they belong to the same polyhedral facet. The initial
optimal objective value for the associated LP does not change while conducting vertex enumeration
(perpendicular to corresponding axis). However, the opposing objective value may differ among
vertices with the initial vertex potentially being suboptimal in this regard.
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Figure 4.10 Illustration of vertex enumeration for the synthetic network presented in section 4.3.2
with 2-path routing schemes. Solutions are included from the final estimation of Pareto front. The
blue squares show the initial vertex from solver, the red crosses portray all discovered vertices,
and the green line connects all vertices within the same polyhedral facet. Due to the evolutionary
pressure, none of the initial vertices from the estimated Pareto front are suboptimal in the other
objective.

that this procedure need only be undertaken after a routing scheme has been selected by

the evolutionary algorithm as the network-wide quality (network lifetime and fragility) of

the solutions may remain unaffected, and as the results suggest there is very little to gain

from using this method with potentially great computation cost.
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4.3.5 Bi-Objective Linear Program (BOLP)

The evolutionary approach discussed so far is capable of generating a wide range of solu-

tions representing varying degrees of trade-off. Recall that during the evolutionary process,

a set of routes is proposed through the evolutionary mechanism, and then the LPs in (4.7)

and (4.14) are solved independently to generate associated sets of optimal time shares.

This process effectively generates two (extremal) solutions, each of which is then com-

pared with the current members of the archive, and non-dominated solutions are retained

(step 6 in algorithm 4.1). These two linear programs may be treated as a Bi-Objective

Linear Program (BOLP) instead, and thus there is an optimal Pareto front with poten-

tially many solutions lying between these two extremal solutions. It may be desirable to

augment the estimated Pareto front from the evolutionary approach with the intermedi-

ate solutions from the BOLP, and it is possible that some of the BOLP front solutions

may dominate the estimated Pareto front obtained using only the extremal solutions. We

investigate this idea in this section.

The simplest approach to locate the Pareto front of this BOLP is to reduce it to a straight-

forward weighted sum of the two objectives, and generate a Single Objective Linear Pro-

gram (SOLP), where the weights associated with each objective represents the relative

importance of the objectives [Boyd and Vandenberghe, 2004; Ehrgott, 2006]. Combining

the LPs in equations (4.7) and (4.14), the SOLP may be expressed as:

min
T

(
λL

′∗ + (1− λ)F ∗
)

(4.18a)

subject to:

qkL
′∗ −Nc

Bk +
∑

Rid∈R
Ck
idτid

 ≥ 0 ∀k; (4.18b)

F ∗ ≥ Fid ∀Rid ∈ R; (4.18c)

τkd ≥ 0 ∀k, d; (4.18d)∑
d

τkd = 1 ∀k; (4.18e)

where 0 ≤ λ ≤ 1 is the weight that controls the relative importance of the inverse lifetime

L
′∗ and the fragility F ∗.

Solving this SOLP results in a single point on the optimal front. Clearly, when λ = 0, it is

effectively the same as solving the optimal time share problem for robustness. Similarly,

when λ = 1, it is equivalent to solving for optimal time shares that maximise the network

lifetime. The optimal trade-off front may be discovered from one end of the front to other

by varying λ. In Figure 4.11, the result of applying weighted sum on all the solutions

from the estimated Pareto front for the synthetic network is shown. Clearly, the newly

generated solutions interpolate between solutions in the estimated front. In this case the

BOLP augmented front does not lie significantly ahead of the base front, although larger

gains might be achieved for different networks.

80



4. Robustness and Network Lifetime

N
et
w
o
rk

L
if
et
im

e
(y
ea
rs
)

Fragility

Figure 4.11 Effects of applying weighted sum on the solutions from the estimated Pareto front
(magenta crosses) for the synthetic network discussed in section 4.3.2 with a resolution of 0.001
in varying λ. All solutions (blue dots) generated through weighted sum interpolates between
solutions from the estimated Pareto front. Incorporating these solutions does not improve Pareto
front approximation significantly.

The optimal Pareto front of the BOLP is a segment of a convex polyhedron in two-

dimensional objective space, and to discover the complete front it is sufficient to locate

the vertices of this facet [Ehrgott, 2006]. The parametric bi-objective simplex algorithm

is capable of identifying such vertices [Ehrgott, 2006]. Rather than incorporating many

solutions from the front by varying λ, just considering the vertices of the front may be a

more sensible approach in order to potentially improve the Pareto front approximation.

However, the computational overhead due to such additions to the overall evolutionary

approach is likely to be very expensive, and as this makes little practical difference, we do

not investigate this further.

4.4 Summary

Despite advances in battery technology it remains important to extend the lifetimes of

wireless sensor networks by choosing routes that balance the loads placed on individual

nodes. However, as we have shown here, optimisation solely of the lifetime may be detri-

mental to the robustness of the network to link failure. In this chapter we have therefore

presented novel methods for discovering the best trade off between network lifetime and

network robustness with unconstrained multi-path routing schemes.
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Chang and Tassiulas [2004] elegantly showed how the network lifetime may be maximised

by solving a linear program. However, their work is applicable only when each node may

use an unlimited number of paths, which may be impractical for low-power, limited mem-

ory devices. In contrast, limiting the number of paths results in an NP-hard combinatorial

problem. Nonetheless, in the example networks presented here, our multi-objective evolu-

tionary algorithm is able to locate routes with network lifetimes within 1% of the Chang

et al. lifetime, even with only two paths per node. Undoubtedly there will be networks

that require more paths to approach the Chang et al. lifetime, but our experience suggests

that two paths allows routes with very good lifetimes to be found.

Network robustness to link failure is quantified by the network fragility, which measures the

maximum expected data loss if a link fails. This measure incorporates the probabilities of

individual links failing. Initially, in the absence of any prior information these probabilities

may be set equal, but during network operation links may be monitored to better estimate

these probabilities. With these on hand, the optimisation may be repeated to minimise

the fragility. In the case of protracted link failure, we have shown elsewhere [Rahat et al.,

2014] that re-optimisation of the routing using the present solution as a base can cope

with dynamic conditions.

Inspecting the robustness measure, i.e. network fragility, it is clear that a many-objective

problem involving one objective per node with a view to improving node-wise fragility can

be derived. In solving many-objective problems however, the major difficulties are: the

search ability deteriorates, and the number of solutions necessary to approximate Pareto

front increases exponentially [Ishibuchi et al., 2008]. Therefore, we only considered one

network-wide objective regarding robustness, that is to minimise the network fragility

across all nodes. As the results in this thesis suggest, the network fragility measure in its

current form can be a useful tool to analyse robustness for any network.

Evolutionary algorithms are an effective way to obtain good solutions to combinatorial

optimisation problems. Efficient optimisation for this problem was obtained by two mea-

sures. First, the space of possible solutions was pruned to limit the search to routes likely

to have good lifetime and/or robustness. Secondly, we showed how to find the optimal

division of traffic between the paths from each node by solving a linear program for either

lifetime or fragility. The resulting hybrid algorithm is efficient because the need to use

a further, relatively slow, evolutionary process to find the optimal division of traffic is

obviated.

Solving the optimal time share LPs for a given multi-path scheme may result in finding an

optimal solution for respective LP with many alternative optima, and some time shares

may be undetermined. Such optimal solutions lie on a polyhedral facet, and any of the

vertices of the facet may be selected as the optimal solution. Moving from one optima to

another provides an opportunity to minimise the number of active constraints, and thus in-

creasing the number of undetermined time shares; this problem may then be reformulated

as another LP with only the undetermined time shares treated as variables. Therefore,

we may achieve better local lifetime or fragility as all time shares are determined through

vertex enumeration and iterative deflationary LP solving process. This process may also
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be undertaken to check whether the solutions in the final approximation of the Pareto

front contain any suboptimal vertices with respect to the other objective. However, it is

not desirable to incorporate this as part of fitness evaluation in the overall evolutionary

process as this may prove to be exorbitantly expensive with very little practical gain.

Furthermore, in the evolutionary process, we only consider two extreme solutions by solv-

ing the optimal time share problems for lifetime and fragility separately. Treating these

two LPs as a BOLP indicates that there is an optimal trade-off front with many potential

solutions, which we do not consider and thus there are areas that are never explored by the

evolutionary approach. As a consequence, some gaps may occur in the overall estimated

Pareto front. Additionally, augmenting the estimated Pareto front with the solutions from

the BOLP may improve the quality of the approximation. As Ehrgott [2006] suggested,

the Pareto front of a BOLP is a convex polyhedral facet, and the vertices of this facet may

be identified using parametric bi-objective simplex algorithm. As a potential extension,

we propose incorporating all such vertices within our evolutionary method to reduce the

discontinuities that may appear in the estimated Pareto front. This is however computa-

tionally expensive procedure that appears to make relatively little practical difference.
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Conclusion

With the advancement in micro-electro-mechanical embedded systems and battery tech-

nologies, wireless sensors are becoming more popular for industrial and regulatory moni-

toring applications, mainly because of the ease of installation and the capability to monitor

locations that are difficult to access.

Modern deployments of wireless sensor networks increasingly use mesh network topologies,

where sensors send data to the base station either directly or indirectly by relaying data

through other nodes. Mesh networks not only extend the network range as nodes do not

need to have a direct link to the base station so long their neighbours are connected, but

also provide an avenue to deal with the dynamic radio environment through alternative

routes in case of node or link failure.

In mesh networks, if paths to the base station use expensive links – links with higher power

and lower baud rate configurations – then the total energy consumption in the network

will be high. Therefore, networks are often designed with a view to reduce overall energy

consumption throughout the network; this is equivalent to maximising average lifetime of

nodes.

Using only energy efficient routes may require directing most traffic through a few nodes,

especially the nodes that are close to the base station. As a consequence, these nodes will

exhaust their batteries quickly, and manual intervention would become necessary to replace

batteries. It is therefore important to extend the time before any node exhausts its battery

– the network lifetime – to enable load balancing and infrequent maintenance activities.

Chang and Tassiulas [2004] formulated an LP for maximising the network lifetime when

there is no limit on the number of paths that may be used by a node. However, for

practical centralised systems this may not be achieved due to limited computational and

memory resources at sensor nodes.

Clearly, extending network lifetime is in conflict with energy efficiency objective, and

thus there is a trade-off to consider while selecting routing schemes. This multi-objective

problem of extending network lifetime and promoting energy efficiency simultaneously

requires considering all possible routing schemes. This combinatorial problem is NP-hard.
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In this thesis, we therefore presented a hybrid evolutionary approach to estimate the

optimal trade-off front. To combat the potential combinatorial explosion, we limited the

search space using various pruning methods, namely k-shortest path pruning to retain

energy efficient paths, and graph reduction based on the LP formulation for network

lifetime to retain paths with long lifetimes.

Most routing optimisation approaches consider single-path routing schemes: a set of routes

where each node has a route to the base station. In this thesis, we showed that an evolu-

tionary approach may be used to locate optimal routings with single-path routing schemes.

However, single-path schemes are somewhat limited in balancing the loads. Hence we ex-

tended this to incorporate multi-path routing schemes, where each node has more than

one route to the base station. In chapter 3, this multi-path scheme was constrained as all

nodes changed routes together, effectively switching between multiple single-path routing

schemes. We also showed that a linear program may be solved to calculate the optimal

time shares between these constituent single-path schemes. Results showed that with

only three paths allowed per node, we can approximate within 1% of the optimal net-

work lifetime when there is no limit on the number of routes, and significantly better the

approximation over single-path schemes in a network deployed in the Victoria & Albert

Museum.

As wireless sensors are often placed in dynamic radio environments, link failures are un-

predictable and data may be lost due to link failures as routes cease to function, even if

multi-path routing schemes are used. In such instances, a straightforward re-optimisation

of networks may be used to re-establish network operation with current connectivity in-

formation (see, for example, Rahat et al. [2014]). Nonetheless, using multi-path routing

schemes provides an opportunity to split the traffic between different routes such that the

expected data loss in the event of link failure – the fragility – is minimised. Minimis-

ing the fragility therefore improves network robustness against link failures. The fragility

measure introduced in this thesis is associated with the routes. It is essentially the total

data loss across all routes that may share the failed links, and calculated using link failure

probabilities. This is designed to promote robust multi-paths that share as few links as

possible so that some data may be retrieved in case of link failure.

Note that the link failure probabilities may not be available readily, especially when the

network is being established, and it may be assumed that all edges are equally likely to

fail. Nonetheless, during normal operation of the network, links that are being used by

different routes may be monitored and associated failure probabilities may be calculated.

The network may later be re-optimised with this empirical information to achieve a more

robust routing scheme.

Designing robust networks requires paths to be as disjoint as possible without any regards

to energy efficiency or network lifetime. Therefore, promoting robustness is in conflict with

both energy efficiency and network lifetime objectives. As network lifetime is often deemed

as more important than energy efficiency in practical implementations, we investigated the

trade-off between network lifetime and network robustness.
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Optimising for robustness and network lifetime is again an NP-hard multi-objective rout-

ing optimisation problem, and thus we used a hybrid evolutionary algorithm to estimate

the optimal Pareto front. In addition to k-shortest path pruning and max-min lifetime

pruning, we used braided and edge-disjoint paths to limit search space and retain robust

paths in the search space. Note that although the energy efficiency objective is not di-

rectly addressed, using k-shortest path pruning implies that paths available for selection

are fairly energy efficient. We also showed that an appropriate linear program may be

solved for robustness or network lifetime once an unconstrained multi-path scheme is pro-

posed by the evolutionary mechanism. Solving the linear programs makes the evolutionary

approach more efficient as it is needless to conduct an additional evolutionary search to

determine suitable time shares which would be significantly more time consuming.

Additionally, we discussed how local performance improvements may be achieved through

vertex enumeration, and solving the bi-objective linear program combining robustness

and network lifetime. Our approach was successful in locating a wide range of multi-

path routing schemes with varying levels of robustness and network lifetime with the best

network lifetime within 1% of the upper bound for network lifetime, and in this instance

only with two routes allowed per node in the Victoria & Albert Museum network.

Although we illustrated our approach in a small wireless sensor network with 30 sensors,

our formulations are not restricted to the number of nodes and can be easily used in its

current form for larger networks. We also emphasise that our novel fragility measure can

be used in other graph based problems with link uncertainty where route robustness or

traffic load balancing through disjoint routes is important. For instance, a straightforward

adaptation of the fragility measure may be used to minimise congestion in a network as

using multi-paths may ease congestion. Furthermore, the techniques used in the evolution-

ary mechanism may be applied to other similar problems. The k-shortest path pruning

method with appropriate edge cost parameters may be applied to any network based prob-

lems to limit search space. Also, the idea of conducting two-phases of evolutionary search;

firstly in smaller local space, and, secondly in a combined wider space, in order to gain

better convergence at the edges of the estimated Pareto front, may prove to be useful in

other evolutionary search methods.

It should be noted that the full multi-path routing optimisation process may take several

hours. Hence, initially the network may be configured with a routing scheme from non-

dominated solutions generated during early stages of the optimisation process as this

routing scheme should still be better than using any arbitrary routes. The optimisation

may then continue, and at the end the network may be re-configured with an appropriate

solution.

5.1 Future Work

In this thesis, we have demonstrated a hybrid evolutionary approach in wireless sensor

networks that is capable of locating good routing schemes in terms of energy efficiency,
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network lifetime, and robustness within a sensible time frame, making it viable for prac-

tical implementations. We discussed some possible future avenues in improving local

performances in sections 4.3.4 and 4.3.5. Also improving hardware and radio technology

to mitigate the challenges of WSNs, for example applying turbo coding for superior error

correction performance [Berrou et al., 1993] or using new clock synchronisation methods

to improve medium access performance [Lenzen et al., 2010], will always be beneficial.

Here we briefly present the most relevant future research directions.

Non-linear Battery Model

In this thesis, we have considered a rather conservative linear battery discharge model.

This is a good approximation and a standard practice in industry, even for lithium-ion

batteries which show non-linear characteristics. Modelling non-linear discharge character-

istics is a challenging problem, especially under intermittent discharge loads as prevalent

in WSNs; see for example Castillo et al. [2004] and Yurur et al. [2015]. One way to tackle

this modelling problem is to generate stochastic models under intermittent loads, see for

instance Chiasserini and Rao [2001], or a regression model may be learnt from experimen-

tal data, e.g. Liu et al. [2012]. These models will introduce non-linearity in the network

lifetime and energy efficiency formulations, and thus a linear program may not be solved

for network lifetime. However, incorporating such models in the evolutionary approach

may prove to be beneficial in terms of energy efficiency or network lifetime optimisation.

It should be noted that there is a significant drain at nodes due to quiescent operations.

If this is reduced the true impact of optimisation may be observed; we demonstrated a

wider range of solutions may be achieved when the quiescent consumption is lower in a

synthetic network. Hence, using more energy efficient display devices, micro-controller

and transceivers may yield greater benefits.

Distributed and Parallel Multi-Objective Optimisation

In this thesis, we have devised an approach for centralised systems, where the routing

decisions are made at a central base station, and the routing information is distributed to

the nodes. With improved batteries, memory resources and micro-controllers, sensors may

afford to make routing decisions locally, and this can be then considered as a distributed

multi-agent system, where agents (sensors) perform local actions in order to achieve a

collective goal [Vinyals et al., 2011]. The nature of distributed algorithms indicates that a

network may be flexible and self-configurable with changing environment and little external

intervention, and therefore may be considered as an exciting avenue to explore.

Distributed multi-objective optimisation is a comparatively new field of research with few

papers (see for example Clement et al. [2013]), and very little work has been done on

WSNs [He et al., 2010]. In distributed multi-objective optimisation, transforming system-

wide multiple objective into node specific multiple objectives is a challenging task, and He

et al. [2010] presented a general decomposition method that may be used to achieve this
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in WSNs. This technique may be used to decompose system-wide robustness and network

lifetime to node specific objectives; however this may prove to be non-trivial.

To solve the resulting node specific multi-objective problem He et al. [2010] used standard

scalarisation techniques, and their discussion is based on only one solution for a specific rel-

ative importance between objectives. This is because, without a decision maker available

locally, the nodes are unable to choose an operating point, and communicating potentially

large amounts of information regarding the Pareto set over the radio is infeasible in wire-

less sensor networks. Thus the trade-off information and the benefits of multi-objective

optimisation are lost. Nonetheless, it may be interesting to investigate the distributed

implementation of the optimisation problem discussed here.

A more interesting avenue to explore would be to use such decomposition methods in par-

allelising the multi-objective optimisation approach. Additionally, graph decomposition

algorithms, e.g. [Raynal, 2013], may prove to be useful. Although parallel approaches to

multi-objective optimisation is not new (see for example [Talbi et al., 2008]), but there is

little work pertinent to wireless sensor networks.

With this discussion, an interesting extension to our work would be to develop decompo-

sition based parallel multi-objective optimisation methods that can improve our current

approach in estimating the optimal trade-off between robustness and network lifetime.

At the very least, it is expected that the parallel approaches will speed the search in

significantly large networks.
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Baccour, N., Koubâa, A., Mottola, L., Zúñiga, M. A., Youssef, H., Boano, C. A., and

Alves, M. (2012). Radio Link Quality Estimation in Wireless Sensor Networks: A

Survey. ACM Transactions on Sensor Networks, 8(4):34:1–34:33.

Bader, J. and Zitzler, E. (2011). HypE: An Algorithm for Fast Hypervolume-Based Many-

Objective Optimization. Evolutionary computation, 19(1):45–76.

Banner, R. and Orda, A. (2007). Multipath Routing Algorithms for Congestion Minimiza-

tion. IEEE/ACM Transactions on Networking, 15(2):413–424.

Bashyal, S. and Venayagamoorthy, G. K. (2007). Collaborative Routing Algorithm for

Wireless Sensor Network Longevity. In Proceedings of the Third International Con-

ference on Intelligent Sensors, Sensor Networks and Information, ISSNIP ’07, pages

515–520.

Bellman, R. E. (1958). On a Routing Problem. Quarterly of Applied Mathematics, 16:87–

90.

Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo-Codes. In Proceedings of the IEEE Interna-

tional Conference on Communications, volume 2 of ICC ’93, pages 1064–1070.

89



Bibliography

Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to Linear Optimization, volume 6.

Athena Scientific Belmont, MA, USA.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press,

New York, NY, USA.

Bradstreet, L. (2011). The Hypervolume Indicator for Multi-Objective Optimisation: Cal-

culation and Use. PhD thesis, University of Western Australia, Australia.

Brander, A. W. and Sinclair, M. C. (1995). A Comparative Study of k-Shortest Path

Algorithms. In Proceedings of the Eleventh UK Performance Engineering Workshop,

pages 370–379.

Bringmann, K. and Friedrich, T. (2008). Approximating the Volume of Unions and In-

tersections of High-Dimensional Geometric Objects. In Algorithms and Computation,

pages 436–447. Springer.

Castillo, S., Samala, N. K., Manwaring, K., Izadi, B. A., and Radhakrishnan, D. (2004).

Experimental Analysis of Batteries Under Continuous and Intermittent Operations. In

Proceedings of the International Conference on Embedded Systems and Applications,

ESA ’04, pages 18–24.

Cerpa, A., Wong, J., Kuang, L., Potkonjak, M., and Estrin, D. (2005). Statistical Model

of Lossy Links in Wireless Sensor Networks. In Proceedings of the Fourth International

Symposium on Information Processing in Sensor Networks, IPSN ’05, pages 81–88.

Chang, J.-H. and Tassiulas, L. (2004). Maximum Lifetime Routing in Wireless Sensor

Networks. IEEE/ACM Transactions on Networking, 12(4):609–619.

Chehri, A., Fortier, P., and Tardif, P.-M. (2006). A Comparison Between Different FHSS

Techniques for Use in A Multiple Access Secure Wireless Sensor Network. In Proceedings

of the IEEE Annual Wireless and Microwave Technology Conference, WAMICON ’06.

Chen, X., Makki, K., Yen, K., and Pissinou, N. (2009). Sensor Network Security: A

Survey. IEEE Communications Surveys and Tutorials, 11(2):52–73.

Chiasserini, C. and Rao, R. (2001). Energy Efficient Battery Management. IEEE Journal

on Selected Areas in Communications, 19(7):1235–1245.

Chien, C., Elgorriaga, I., and McConaghy, C. (2001). Low-Power Direct-Sequence Spread-

Spectrum Modem Architecture for Distributed Wireless Sensor Networks. In Proceedings

of the International Symposium on Low Power Electronics and Design, pages 251–254.

Chong, C.-Y. and Kumar, S. (2003). Sensor Networks: Evolution, Opportunities, and

Challenges. Proceedings of the IEEE, 91(8):1247–1256.

Cionca, V., Newe, T., and Dadarlat, V. (2008). TDMA Protocol Requirements for Wireless

Sensor Networks. In Proceedings of the Second International Conference on Sensor

Technologies and Applications, SENSORCOMM ’08, pages 30–35.

90



Bibliography

Clement, M., Okimoto, T., Ribeiro, T., and Inoue, K. (2013). Model and Algorithm

for Dynamic Multi-Objective Distributed Optimization. In Boella, G., Elkind, E.,

Savarimuthu, B., Dignum, F., and Purvis, M., editors, PRIMA 2013: Principles and

Practice of Multi-Agent Systems, volume 8291 of Lecture Notes in Computer Science,

pages 413–420. Springer Berlin Heidelberg.

Coello Coello, C. (1999). A Comprehensive Survey of Evolutionary-Based Multiobjective

Optimization Techniques. Knowledge and Information Systems, 1(3):269–308.

Coello Coello, C. A., Lamont, G. B., and Veldhuizen, D. A. V. (2007). Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to

Algorithms. MIT Press.

CPLEX (2015). IBM ILOG CPLEX Optimizer. Available at http://www-01.ibm.com/

software/commerce/optimization/cplex-optimizer/index.html.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton university press.

Das, I. and Dennis, J. (1997). A Closer Look at Drawbacks of Minimizing Weighted

Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems.

Structural optimization, 14(1):63–69.

Deb, K. (2009). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley

paperback series. Wiley.

Deb, K. and Jain, H. (2014). An Evolutionary Many-Objective Optimization Algo-

rithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving

Problems With Box Constraints. IEEE Transactions on Evolutionary Computation,

18(4):577–601.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist Multiob-

jective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,

6(2):182–197.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik, 1(1):269–271.

Ehrgott, M. (2006). Multicriteria Optimization. Springer Science & Business Media.

Emmerich, M., Beume, N., and Naujoks, B. (2005). An EMO Algorithm Using the Hy-

pervolume Measure as Selection Criterion. In Coello Coello, C., Hernández Aguirre,

A., and Zitzler, E., editors, Evolutionary Multi-Criterion Optimization, volume 3410 of

Lecture Notes in Computer Science, pages 62–76. Springer Berlin Heidelberg.

Eppstein, D. (1999). Finding the K Shortest Paths. SIAM Journal of Computing,

28(2):652–673.

Fieldsend, J. E., Everson, R. M., and Singh, S. (2003). Using Unconstrained Elite Archives

91



Bibliography

for Multiobjective Optimization. IEEE Transactions on Evolutionary Computation,

7(3):305–323.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6):345.

Fonseca, C. and Fleming, P. (1996). On the Performance Assessment and Comparison

of Stochastic Multiobjective Optimizers. In Voigt, H.-M., Ebeling, W., Rechenberg, I.,

and Schwefel, H.-P., editors, Parallel Problem Solving from Nature - PPSN IV, volume

1141 of Lecture Notes in Computer Science, pages 584–593. Springer Berlin Heidelberg.
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