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Abstract– Reliability analysis of rock slope stability has received considerable attention in the 

literature. It has been used as an effective tool to evaluate uncertainty so prevalent in variables. In 

this research the application of the jointly distributed random variables method for probabilistic 

analysis and reliability assessment of rock slope stability with plane sliding is investigated. In a 

recently published paper, the authors showed the dependency of the numerator and denominator of 

the safety factor relationship and argued that, as a result of this dependency, the method could not 

assess the reliability correctly. In the current research the authors present a new approach to solve 

this problem. In this approach, using the basic relations in this method, the safety factor 

relationship is obtained directly without separation of its numerator and denominator. Furthermore, 

in addition to friction angle of sliding surface, apparent cohesion, depth of water in tension crack, 

and earthquake acceleration ratio, in the present work the unit weight of rock is also considered as 

a stochastic parameter. The results are compared with the Monte Carlo simulation. Comparison of 

the results indicates good performance of the proposed approach for assessment of reliability. The 

new results of parametric analysis using the jointly distributed random variables method show that 

the friction angle of sliding surface is the most effective parameter in rock slope stability with 

plane sliding.           
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1. INTRODUCTION 
 

The application of probability analysis for reliability assessment of complex engineering systems was first 

introduced in the 1940s in the fields of structural and aeronautical engineering. Among its early uses in 

geotechnical engineering was the application in reliability assessment of open pit mine slope design where 

a certain risk of failure is acceptable [1-4]. Probabilistic evaluation of slope failures is increasingly seen as 

the most appropriate framework for accounting for uncertainties in design. Herein rock slope stability 

analysis often involves a considerable uncertainty. 

Generally, two main observations can be made concerning the existing body of work on this subject. 

The first common approach accounts for the uncertainty in the geometrical properties of the joint/fracture 

network in the slope, and the second one considers uncertainties in the slope performance. Uncertainty in 

the geometrical characterization of fractures within the rock mass has led to the development of stochastic 

fracture network models which are widely discussed and well documented in the literature [5-9]. In the 

second approach which is frequently used in rock slope stability analyses, the aim is to find the probability 

of slope failure given uncertain input parameters in the stability analysis model. In this category, the 
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output of slope stability analysis is a probability distribution of either factor of safety for a fixed slope 

height, or a probability distribution of critical height for a fixed level of factor of safety. However, due to 

incomplete information, some uncertainties cannot be managed satisfactorily by probability theory. 

Rock slope stability is one of the most widely reported geotechnical applications of reliability. A few 

recent examples are cited herein.  

Some research on the application of finite or distinct element method in slope stability analysis has 

been documented in the literature [10-12]. Li et al. [13] demonstrated the use of a new form of stability 

number for rock slope designs that has been recently developed from finite element analysis methods and 

provided guidance for its use in probabilistic assessments.  

Additionally, several attempts have been made to analyze the stability of slopes using Monte Carlo 

simulation (MCs) [14, 15]. Wang et al. [16] presented a reliability-based Robust Geotechnical Design 

(RGD) approach and demonstrated this approach using a rock slope design example. In Park et al. [17] the 

uncertain parameters in rock slope stability analysis were expressed as fuzzy numbers using the fuzzy set 

theory. The MCs technique and reliability index approach were implemented with fuzzy set theory in 

order to take into account the fuzzy uncertainties in the evaluation of probability of failure. Li et al. [18] 

proposed a stochastic response surface method for reliability analysis involving correlated non-normal 

random variables, in which the Nataf transformation is adopted to effectively transform the correlated 

non-normal variables into independent standard normal variables. 

Lee et al. [19] developed a Knowledge-based Clustered Partitioning (KCP) technique for determining 

reliability index and failure probability of rock wedge. In this approach, reliability index is analyzed and 

optimized using KCP technique.  

A number of recent attempts have been made to apply the response surface method to assess the 

reliability of slope stability analysis [e.g. 20]. Also, some attempts have been made to apply approximate 

methods such as Point Estimate Method (PEM) [e.g. 21–23], First Order Second Moment reliability 

method (FOSM) [e.g. 24] and First Order Reliability Method (FORM) [25, 26] in reliability analysis of 

stability of slopes. 

Some researchers have used analytical methods to slope stability analysis [27, 28]. Nomikos and 

Sofianos [29] obtained an analytical solution for the probability density of the factor of safety in 

underground rock mechanics. In analytical methods, the probability density functions of input variables 

are expressed mathematically. They are then integrated analytically into the adopted rock slope stability 

analysis model to derive a mathematical expression of the density function of the factor of safety. The 

Jointly Distributed Random Variables (JDRV) method that is used in this research lies in this category 

[30-32].  

Recently, Johari et al. [28] presented the results of an investigation into application of the JDRV 

method in reliability assessment of rock slope stability. This work showed the dependency of the 

numerator and denominator of the safety factor relationship and argued that, as a result of this 

dependency, the JDRV method could not assess the reliability correctly. In the current research, for 

solving this problem, instead of calculating the numerator and denominator of the safety factor equation 

and dividing them (as was done in the previous paper) the authors used a new approach. For this purpose, 

using the basic relations in the JDRV method, the safety factor relationship was obtained directly without 

separation of its numerator and denominator.  

 

2. ROCK SLOPE WITH PLANE SLIDING 

In the present study, planar sliding rock slope is considered. The rock slope is an unweathered granite with 

exfoliation or sheet joints. These joints are parallel to the surface of the granite and the spacing between 
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successive joints increases with increasing distance into the rock mass. Furthermore, the sheet joint 

surface continues under the potentially unstable slope, which is the potential triggering factor of the slope 

failure. Figure 1 shows this type of sliding and its parameters.  

 
Fig. 1. Geometrical definition of the rock slope stability with plane sliding 

For this type of sliding failure the equation for determination of safety factor can be expressed as [33]: 

(1) 
  
 

       

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FS : Factor of safety against sliding  

Z : Depth of tension crack 

Zw : Depth of water in tension crack 

A : Area of wedge  

W : Weight of rock wedge resting on failure surface  

H : Height of the overall slope 

U : Uplift force due to water pressure on failure surface 

Fw : Horizontal force due to water in crack 

: Horizontal earthquake acceleration 

c : Cohesive strength along sliding surface 

: Friction angle of sliding surface 

p: Angle of failure surface, measured from horizontal 

f : Angle of slope face, measured from horizontal 

r : Unit weight of rock 

w: Unit weight of water 
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In this research, two sets of parameters are considered in equation (1), fixed parameters H, p , f and Z 

and stochastic parameters Zw, , c,  and r  which were assumed to be uncorrelated. 

 

3. STOCHASTIC PARAMETERS 

To account for the uncertainties in rock slope stability, 5 input parameters have been defined as stochastic 

variables. The selected parameters are friction angle of sliding surface (), apparent cohesion (c), depth of 

water in tension crack (Zw), and earthquake acceleration ratio () and unit weight of rock (r). Friction 

angle, apparent cohesion and unit weight are modeled using a normal probability density function and 

depth of water in tension crack and earthquake acceleration ratio are modeled by truncated exponential 

parameters. It should be noted that although in reality cohesion and friction angle are negatively 

correlated, they are considered as uncorrelated variables for mathematical convenience. The parameters 

related to geometry are regarded as constant parameters. 

 

4. JOINTLY DISTRIBUTED RANDOM VARIABLES METHOD 

The JDRV method is an analytical probabilistic method. In this method, density functions of input 

variables are expressed mathematically and joined together by statistical relations. The available statistical 

and probabilistic relations between parameters are given in this section [30-32].  

Theorem 1 

Let X1, X2, …, Xn be continuous random variables having marginal densities fX1(x1), fX2(x2),…, fXn(xn). 

Then X1, X2, …, Xn are independent if and only if for all x1,x2,…,xn the joint pdf  fX1,X2,…,Xn(x1, x2,…, xn) is  

defined by: 

       =
n 2 n,..., 2 n 2 nf ,...,x f .f ... .f

1 2 1X ,X X 1 X 1 X Xx ,x x x x                              (7)  

Theorem 2 

Suppose that X1,X2,…,Xn are continuous random variables with joint probability density fX1,X2,…,Xn(x1, x2,…, 

xn) and let Y1=g1(X1,X2,…,Xn), Y2=g2(X1,X2,…,Xn), …, Yn=gn(X1,X2,…,Xn) define a one-to-one 

transformation between the points (x1,x2,…,xn) and (y1,y2,…,yn). Let y1=g1(x1,x2,…,xn), …, 

yn=gn(x1,x2,…,xn) be uniquely solved for x1,x2,…,xn in terms of y1,y2,…,yn as x1=h1(y1,y2,…,yn), 

x2=h2(y1,y2,…,yn), …, xn=hn(y1,y2,…,yn). Then the joint probability of y1,y2,…,yn is: 

        .
n nn n X 1 n n nf f h ,...,h

1 2 1 2Y , Y , ...,Y 1 2 1 2 , X , ...,X 1 2 1 2y , y , ...,y = J y , y , ...,y y , y , ...,y y , y , ...,y            (8) 

Where: 
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,..., y y y

x x x

y y y

1J y , y y                                                          (9) 

Where  2 nJ ,...,1y , y y  is the absolute value of  2 nJ ,...,1y , y y . 

Theorem 3 

If the joint probability density function of continuous random variables X1, X2, …, Xn is fX1,X2,…,Xn(x1, x2,…, 

xn) the marginal probability density function of Xi is: 
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   =   i n

Xi

i 2 n 1 2 i 1 i 1 n
R

f ... f ,..., ,...,x dx dx ...dx dx ...dx
1 2

X X ,X X 1x x ,x                        (10) 

Theorem 4 

If X is a random variable with the probability density of fX(x), and Y is a function of X in the form 

Y = g(x), the probability density of Y can be determined as: 

    
 

 

1
1

Y x

dg y
f y f g y

dy
                                                   (11)     

This relation is valid for monotonically increasing or decreasing function g(x).  

 

5. RELIABILITY ASSESSMENT OF THE ROCK SLOPE  

STABILITY WITH PLANE SLIDING 

In this research the terms of the safety factor Eq. (1) are grouped together in the following form (Eq. 12) 

and the probability density equation of each group is derived separately using Eqs. (7) to (11). The 

derivation of these equations is presented in the Appendix 1. 

 

(12) 
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And 

(14) 
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Using the obtained mathematical functions k1 to k5, fK1(k1) to fK5(k5) and equations A20 to A32 a computer 

program, coded in MATLAB, was developed to determine the probability density function of factor of 

safety. However the integrals in equation A31 do not have analytical solutions and must be solved 

numerically. In addition, for comparison, determination of the safety factor for rock slopes using the MCs 

was also coded in the same computer program.  
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6. EXAMPLE 

To demonstrate the efficiency and accuracy of the proposed method in determining the probability density 

distribution of the safety factor in rock slopes with plane sliding, an illustrative example is presented. For 

this purpose, the Sau Mau Ping slope in Hong Kong, which is analyzed probabilistically in Chapter 8 of 

Hoek [33], is used. In this example, all rock parameters are considered as stochastic parameters.  

The stochastic parameters with normal and truncated exponential distributions are shown in Tables 1 

and 2 respectively, and the deterministic parameters are given in Table 3.  

Table 1. Stochastic parameters with normal distribution  
 

 

 

 

 

 

 

Table 2. Stochastic parameters with truncated exponential distribution 

 

 

 

 

 

Table 3. Deterministic parameters  

 
  

 

 

In order to verify the results of the presented method with those of the MCs, the final probability 

density functions for the factor of safety are determined using the same data for both methods. For this 

purpose, 10,000,000 generation points are used for the MCs. The results are shown in Fig. 2. As it can be 

seen in this figure, the results obtained using the developed method are very close to those of the MCs. 

Figure 3 shows the cumulative distribution curve of safety factor. It can be seen that the probability of 

failure (FS≤1) for this slope is about 78.826%, indicating that the slope will most likely be unstable. It 

shows that with these stochastic parameters, the maximum probability value of FS for this site is about 

1.5. 

On the other hand, a deterministic calculation using the mean values of the stochastic parameters 

shows that, the safety factor of failure is about 0.7492. This demonstrates that in this situation the slope 

would fail, but the probability of failure is not specified. Therefore, the designer cannot have an 

engineering judgment. In fact, reliability assessment and engineering judgment are employed together to 

develop risk and decision analyses.  

7. PARAMETRIC ANALYSIS 

To evaluate the response of stability of slope with plane sliding (equation 1) to changes in parameters, a 

parametric analysis is carried out following two different approaches using the JDRV method. In the first 

approach, the means of the five stochastic input parameters are increased based on their standard deviation 

(new mean = old mean + 2.0×std). The results are shown in Fig. 4. Additionally, the cumulative 

distribution curves are plotted in Fig. 5. To evaluate the influence of changes in each parameter, the 

parameter is increased while the ranges of the other stochastic input parameters are kept constant. Using 

Fig. 5 the amounts of changes in probability of failure corresponding to 2×std increase in the pdf of the 

Parameters Mean Standard deviation Minimum Maximum 

c (kPa) 10.0 2.0 2.0 18.0 

Φ (Degree) 35.0 5.0 15.0 55.0 

γr (kN/m
3 
) 24.5 0.875 21 28 

Parameters λ Mean=1/ λ Standard deviation Minimum Maximum 

Zw (m) 0.1428 7.0 3.6795 0.0 14.0 

α 12.5 0.08 0.0420 0.0 0.16 

Height of the slope (m) Ѱp (Degree) Ѱf (Degree) w (kN/m
3 
) 

60.0 35.0 50.0 10.0 
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input parameters are calculated and given in Table 4. Similar to the previous approach, it can be seen that 

the friction angle of sliding surface is the most sensitive parameter in the safety factor (stability) of rock 

slopes. 
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Fig. 2. Comparison of probability density functions of 

the factor of safety by MCs and JDRV method 
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Fig. 3. Cumulative distribution function of failure in the 

example problem 

 

In the second approach, the mean of each stochastic input parameter is kept constant and their 

variances are changed. For this purpose, the variance of the variable is increased (1.0×std and 1.5×std) 

while the variances of the other stochastic input parameters are kept constant. Figures 6 and 7 show the 

probability density functions and cumulative distribution curves related to 1.0×std increase in variance and 

Figs. 8 and 9 show these curves for 1.5×std increase. Using Figs. 7 and 9 the changes in probability of 

failure corresponding to 1.0×std and 1.5×std increase in the pdf of input parameters are calculated and the 

results are given in Tables 5 and 6. It can be seen that, as in the previous approach, the friction angle of 

sliding surface is the most effective parameter in safety factor (stability) of rock slopes. 

For this analysis, the standard deviation of truncated exponential distribution is determined using the 

following procedure. The pdf of variable x is defined as Eq. (15). 

(15)    


   x
X x

k

f x .exp x a x b
c

  

where a, b are lower and upper truncated values of x. ck is the area under exponential distribution between 

a and b which is calculated using Eq. (16). Additionally, the mean and variance of truncated exponential 

distribution can be calculated through Eqs. (17) to (19). 
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(19)     
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E X E X
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Fig. 5. Parametric analysis to determine the most 

effective parameter  
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Fig. 4. Variation of probability density functions of the 

factor of safety in parametric analysis 

 

Table 4.  Changes in probability of failure corresponding to 2×std increase (shift rightward) 

 in the pdf of input parameters 

Stochastic 

parameter 

Shift in the 

φ 

Shift in the 

c 

Shift in the 

r  

Shift in the 

α 

Shift in the 

Zw 

Change (%) -69.96 -4.61 -0.98 +20.80 +23.11 

 

Table 5.  Changes in probability of failure corresponding to 1×std increase (shift rightward) 

 in the pdf of input parameters 

Stochastic 

parameter 

Shift in the 

φ 

Shift in the 

c 

Shift in the 

r  
Shift in the 

α 

Shift in the 

Zw 

Change (%) -35.55 -2.32 -0.67 +13.94 +15.95 

Table 6. The amounts of changes in probability of failure corresponding to 1.5×std increase  

(shift rightward) in the pdf of input parameters 

Stochastic 

parameter 

Shift in the 

φ 

Shift in the 

c 

Shift in the 

r  

Shift in the 

α 

Shift in the 

Zw 

Change (%) -7.91 -1.09 -0.43 +4.45 +5.43 
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Fig. 6. Variation of probability density functions of the 

safety factor in parametric analysis based 
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8. CONCLUSION 

Analysis of stability of rock slopes is a probabilistic problem due to the inherent uncertainties in the 

geometrical properties and geotechnical parameters. In this paper, the application of the jointly distributed 

random variables method in assessing the reliability of analysis of rock slope stability with plane sliding 

was investigated. Recent research by the authors showed the dependency of the numerator and 

denominator of the safety factor relationship and argued the fact that, as a result of this dependency, the 

JDRV could not assess the reliability correctly. In the current paper, a new approach was presented to 

overcome this problem. For this purpose, using the basic relations in the JDRV method, the safety factor 

relationship was obtained directly without separation of its numerator and denominator. Comparison of the 

results of the jointly distributed random variables method and the MCs showed good performance of the 

proposed method. A parametric analysis was carried out to assess the influence of various stochastic 

parameters using the JDRV method. The results showed that the friction angle of sliding surface is the 

most effective parameter in influencing the safety factor of rock slopes.  
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APPENDIX 1 

Derivation of mathematical functions k1 to k7 and F.S and their domains is presented in this Appendix: 

(20)  
  
    
   

1

2

1 mean
k 1 min 1 max

cc

k A.c1
f k = exp -0.5 c .A k c .A

A.A.σ 2π
  

(21)  
 

 

 
 

 

2 2

2

2

k k 2

k 2 2 2max

k 2max

.exp .k
f k = 0 k k

1 exp .k
  

(22)  
 

 

 
 

 

3 3

3

3

k k 3

k 3 3 3max

k 3max

.exp .k
f k = 0 k k

1 exp .k
  

(23) 
     

 

 

   








  
                       

   

4

2
1

3 mean
1

k 4 4 4 2
4 3

min 4 max

180
tan k

d 180 180
f k = f k tan k = exp 0.5

dk 1 k 2

tan k tan

  

(24)  


   
      
     

mean

5 min max

rr

2

5 r
k 5 r 5 r

k1
f k = exp -0.5 k

σ 2π
  

Using Theorem 2 the following equations can be written: 

http://www.cambridge.org/
http://www.rocscience.com/hoek/PracticalRockEngineering.asp
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(25) 

 
    

 

 
 
 
 

     
  

  

  


 
  


 

1 5 2 3 s 3 4
1 1 2 3 4 5 2

5 2 c 3

1 1 2 3 4 5 2

1 1 2 3 4 5 3

1 1 2 3 4 5 4

1 1 2 3 4 5 5

k k a b.k k .k .k
u FS g k ,k ,k ,k ,k

k b a.k .k

v g k ,k ,k ,k ,k k

w g k ,k ,k ,k ,k k

z g k ,k ,k ,k ,k k

p g k ,k ,k ,k ,k k

  

(26) 

         

 

 

 

 

          

  



 


 
  


2
1 1 c s

2 2

3 3

4 4

5 5

k h u,v,w,z,p u p b a.v .w z p a b.v w .w

k h u,v,w,z,p v

k h u,v,w,z,p w

k h u,v,w,z,p z

k h u,v,w,z,p p

  

Using Theorem 1 the following equation can be written: 

(27)            =
3 4 5 2 3 4 5, 2 3 4 5 2 3 4 5f f .f k .f k .f .f

1 2 1K ,K ,K ,K K 1 K 1 K K K Kk ,k ,k ,K ,K k k k  

Using Theorem 2 the following equation can be written: 

(28)
 

            .
1 2 3 4 5K ,K ,K ,K ,K 1 2 3 4 5

f w,z,p

J u,v,w,z,p f h w,z,p ,h w,z,p ,h w,z,p ,h w,z,p ,h w,z,p

U, V, W,Z,P u, v, =

u, v, u, v, u, v, u, v, u, v, 
  

Where: 

(29)  

    

    

    

    

    
 
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2 2 2 2 2
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5 5 5
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u v w z p
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J J J J J
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J J J J J
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J u,v,w,z,p J J J J J

u v w z p
J J J J J

k k k k k
J J J J J

u v w z p
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u v

    

 
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2
11 c

5 5

J p(b a.v) .w

k k

w z p

  

Where: 

(30) 
 

 

 


     


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1
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ij
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J p(b a.v) .w

u
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J p(a.u b.z)
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J 2w(u. z ) z
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J p(b.v a) w .w
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k
J u(b a.v) z(a bv)

p

J 1 if i j i 2 and j 1

J 0 if i j i 2 and j 1

  

Using Theorem 3 the following equation can be written: 



An analytical solution for reliability assessment of… 

 

August 2015                                                                                IJST, Transactions of Civil Engineering, Volume 39, Number C2      

363 

(31)    =

  

   

   
34 2 1

4 3 2 1

Uf u f u,v,w,z,p dvdwdzdpU,V,W,Z,P  

In what follows, the integral bounds of the above equation are determined. As this integral has differentials dv, dw 

and dz and as v, w and z are the same functions k2, k3 and k4, therefore, the bounds of the integral can also be 

obtained as functions k2, k3 and k4. For this purpose, max is related to the bounds αi and min is related to βi. 
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(32)        1 1min 2max 3max 4min 5max 1 1max 2min 3min 4max 5ming (k ,k ,k ,k ,k ) u FS g (k ,k ,k ,k ,k ) 


