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Abstract

This paper presents an artificial neural network-based model of domestic water consumption. The model is based on real-world

data collected from smart meters, and represents a step toward being able to model real-time smart meter data. A range of input

schemas are examined, including real meter readings and summary statistics derived from readings, and it is found that the models

can predict some consumption but struggle to accurately match in cases of peak usage.
c© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

Forecasting domestic water use is of vital importance for water utility companies, while the rising prevalence of

smart water meters, collecting high resolution data from individual users, provides a large corpus of data on which

predictive models can be based. The iWIDGET [1] project has recently begun collecting large volumes of meter

readings, measuring water consumption at 15 minute intervals for domestic properties in locations throughout Europe.

In this work, we use data from a pilot case study in Greece to develop a model capable of forecasting water usage at

hourly resolution for the households participating in the iWIDGET project. Predictions at this frequency are useful,

for example, for leakage detection.

Artificial neural networks (ANNs) are known to be adept at modelling nonlinear relationships, and have been

used for predicting domestic water consumption (e.g., [2,3]), as well as being applied in a range of hydroinformatics

settings (e.g., [4,5]). ANN training is conducted with an evolutionary algorithm.

An issue with water consumption data at a relatively fine resolution is that it is inherently noisy. An activity such as

flusing a toilet or using a washing machine will cause a peak of water usage in that timestep that will not be matched

in the preceding or following timesteps. We therefore consider the use of summary statistics to enhance the ability

of the ANN models generated herein to generalise to new data despite the presence of such noise. This allows us to

capture the history held within days-worth of meter readings without requiring an input for each reading. This greatly
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reduces the complexity of the ANN training, meaning that a useful model can be achieved with significantly shorter

training procedures. As is discussed later in the results section, this is met with some success, although the overall

results remain affected by the noise to a certain extent. We discuss possible approaches to ameliorating this issue at

the end of the paper.

The remainder of this paper is structured as follows. After some background information is presented in Section

2, we describe the case study and data used to train and test the model (Section 3), before the structure of the ANN

model used in this paper is outlined in Section 4. Results and discussion are presented in Section 5. Sections 6 and 7

concludes the paper with a discussion of ongoing and future work.

2. Background

The literature contains a range of studies in which computational intelligence approaches, such as that employed

herein, have been used to predict domestic water consumption. This contribution made by this work is to begin to

investigate the use of these methods for predicting at the fine resolution that smart water meters operate on.

A common goal is to predict daily water consumption. An example of this is [2], in which the SECM-UA [6]

algorithm is used to optimise network weights for ANN modelling; their results demonstrate comparable results to

using Bayesian training methods, regression and ANFIS (adaptive-network-based fuzzy inference system) [7]. ANNs

trained with EAs were also used in a study that was able to predict up to 24 hours ahead of the current time [3].

Another daily study employed the relevance vector machine [8] to predict water usage for a case study in China [9].

ANNs have been selected in this work as they have been found to offer competitive or superior predictions to other

data driven approaches [10].

An example of a study on a comparable timescale to that used in this work is [11], where a stochastic model

of water use was presented and demonstrated on a range of timescales including an hour. The model is based on

statistical data about water usage, rather than actual water usage measurements as is the case here. Another statistical

model was presented by [10], which also demonstrated the ability to predict at the hourly level. Statistical modelling

of the variety employed by these papers is beyond the scope of this initial study, however is an avenue that we will

explore in the future. Summary statistics describing water usage over periods of time are used in this work as inputs

to the ANN in order to reduce the amount of actual meter readings required, simplifying the resulting models.

3. Case Study

The data used in this study is drawn from a case study in the iWIDGET project, which has recently begun collecting

large volumes of data from three locations in Europe: Greece, Portugal and the United Kingdom. In this work, we

use data drawn from the Greek case study, and have selected nine properties for which to construct models of their

domestic water usage.

The period with which this study is concerned is 1st February 2015-31st March 2015. The properties were chosen

because of the quality of data in this period (some properties in the case have missing data because of meter trans-

mission errors). No other criteria were involved in the selection of properties to model. The time series for one of the

properties is shown in Fig. 2, along with a closer view of the first 24 hours of the time series. The model will take

as inputs recent measurements from the meter (e.g., the last four hours’ readings). However, as can be seen in Figure

1(b), the data is extremely noisy, spiking when water is consumed with frequent periods when there is no water usage

within the house. This represents a difficulty for the ANN approach we propose in this paper, so the data relating to

recent water usage will be supplemented with statistical information describing historical usage at those times. For

this reason, a week of historical data from 25th-31st January 2015 is included at the start of the dataset. The exact

amount, and nature of this supplementary statistical information will be discussed and examined later in this paper.

4. Artificial Neural Network

The model presented in this paper comprises two components: an artificial neural network, the design of which

was determined experimentally, and an evolutionary algorithm, with which the network weights were trained. These
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(a)

(b)

Fig. 1: An example of a user’s time series (a) and a close-up view of the same time series for the first twenty four hours (b). The data shown is for

the period 25th January 2015 - 31st March.

components are described in the following sections. The general structure of the ANN framework employed is based

on that presented in [4].

4.1. Model Structure

The ANN model employed herein is a multi-layer perceptron, a model comprising an input layer, one or more

hidden layers, and an output layer. The input layer consists of a set of D inputs, each of which represents an aspect of

the data being modelled. In this work we us a mixture of real and statistical information about domestic water usage

over time as inputs. The exact configuration of inputs is an area of investigation in this study, as we seek to produce

a model with the highest degree of accuracy possible while minimising the number of inputs needed, simplifying the

model.

A neural network employs hidden neurons to allow it to model nonlinear functions. The hidden neurons are

arranged into one or more hidden layers, the configuration of which depends on the problem at hand, and itself can be

cast as an optimisation problem. In this paper we employ a single layer of hidden neurons, and determine the number



1422   David Walker et al.  /  Procedia Engineering   119  ( 2015 )  1419 – 1428 

x1 x2 . . . xD

h1 h2
. . . hK

y

Fig. 2: The general configuration of ANN model used in this study. The model comprises D model inputs, K hidden neurons, and a single output.

of them experimentally. As with model inputs, we seek to minimise the number of hidden neurons in order to reduce

the complexity of training the model as far as possible.

The output layer comprises the neuron(s) that produce the actual output of the model. In this case, the task of the

model is to predict water consumption at the next timestep, thus we use a single model output. An extension of this

work will examine the construction of a model that can predict multiple timesteps ahead. The general configuration

of the ANN models examined in this paper is shown in Fig. 2.

The output of a neuron is defined by

yk = a

⎛⎜⎜⎜⎜⎜⎝
D∑

d=1

xdwdk + wk0

⎞⎟⎟⎟⎟⎟⎠ (1)

where a is the activation function. In this study, we employ the sigmoid activation function:

a(x) =
1

1 + e−x . (2)

4.2. Evolutionary Algorithm

An evolutionary algorithm (EA) is employed to optimise the weights of the neural network. EAs are particularly

well suited to solving such optimisation problems, and have been used extensively in neural network optimisation.

Often they are used to optimise the topology of the neural network, however in this study the optimisation is restricted

to the weight values.

A solution is represented as a real-valued vector θ, such that each θp represents one of the P = D×K +K weighted

edges between neurons in the ANN. Each weight value is in the range (−1, 1). The fitness φ of a solution is computed

in terms of the difference between the model’s prediction for a given set of inputs in the training data and the true

value of those inputs. This is computed with the mean absolute area between the model prediction yn for inputs xn

and its corresponding true target value tn evaluated under the model defined by solution θi:

φi =
1

N

N∑

n=1

|yi
n − ti

n|. (3)

The EA is run for a set number of generations, determined experimentally. At each generation, the current parent

population is copied to produce a child population. Then, each child solution θ′ is mutated with an additive Gaussian

mutation operator that adds a random value drawn from N(0, σ) with probability 1/P. The standard deviation σ of

the Gaussian distribution was 0.1. Once each of the child solutions has been evaluated under the objective function

(equation 3) the parent population for the next generation is selected from the union of the current generation’s parent

and child populations with an elite selection operator; the top ε solutions from the combined population are retained.
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Fig. 3: Test results for the initial ANN configuration on exemplar test cases (weeks one and six from the data). As can be seen, the model is capable

of predicting the general shape of the target data, however fails to properly match the magnitude of the larger values.

4.3. Model Training

The ANN model is trained using the supervised approach outlined above. The performance of the approach is

evaluated against eight datasets, each of which describes domestic water consumption for one of the properties in

iWIDGET’s Greek case study. Each of the nine datasets contains 24 measurements for each day (a measurement

every hour). We employ a leave-one-out cross validation approach, in which the data is divided into eight folds (one

for each week). We then train the data on seven of the folds and retain the eighth for testing the resulting model, which

is repeated eight times so that each of the folds is used as test data once.

5. Results

We present results for various arrangements of inputs to examine the difference in predictive quality offered by

each. The data is aggregated to the hourly level, and we evaluate the quality of predictions using the correlation

between the predictions and target values.

In each configuration, the model is trained using the EA outlined above. The algorithm is executed for 200 gener-

ations in each case, with each generation comprising five parent solutions which each generates a child solution.

5.1. Summary Historical Statistics

The initial configuration we examined comprised of three inputs, each of which is used to make a prediction of

water consumption at timestep t. The first is the actual water consumption at the previous timestep, t − 1. The second

input is an average of water consumption over the prior seven days for timestep t, and the third is a value representing

the current hour of the day.

A test case for this initial configuration is shown in Fig. 3. Clearly, the model is failing to accurately match

the peaks in the target data, although it does demonstrate some ability to follow the general trend of the data. For

example, the predictions (shown by a solid line) are clearly organised into seven blocks, corresponding to the seven

days comprising these test cases. In the left-hand example, usage of up to approximately 0.09m3 the model is capable

of matching the quantity of water consumed. For water consumption beyond that, the model is unable to properly

match the height of the peak in the targets.

In order to address the model’s failure to predict peak usage, we increase the data on which the prediction is based

by including the standard deviation of the historical values for timestep t. Fig. 4 illustrates the results of training

and testing against this input schema. In this case the predictions are smoother, and the model has apparent difficulty

predicting the extremely low values, more so than was the case for input schema 1. This indicates that the additional
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Fig. 4: Test results for the input schema using both the average and standard deviation of historical values for timestep t.

Fig. 5: Correlation between the target values and model output. Each of the nine case study users is shown, with predictions for user 7 showing the

greatest correlation between target values and prediction. The left-hand plot shows correlation for models using input configuration 1, while the

second shows input configuration 2.

statistical information does not provide any further additional information. That said, from examining Fig. 5 the

results are not considerably worse. These show the correlation between the target values and model predictions for

the nine case study users examined in this work. An experiment for a user comprises eight weeks, each of which is

used as a test case, and was repeated 10 times. Thus, the boxplots represent 80 correlation values per user. Clearly

there is a degree of correlation, with values greater than 0.5 being achieved in some cases. Since the model does not

properly match the magnitude of the peaks in cases of high water consumption, high correlation values cannot be

expected. An interesting feature of the figures is that there is a great deal of variability between users. User 7 showed

the best performance in both cases. The results for both input schemas are relatively similar, implying that there is no

great improvement given the additional information provided by the standard deviation.

5.2. Real Historical Values

To address the smoothing affect, observed above, from the introduction of additional statistical information, we

consider the use of real historical meter readings, rather than averaged readings, for the current timestep t. Two new

input schemas are employed. In the first, seven inputs are used to incorporate the meter readings for time t on the last
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Fig. 6: Test results for the input schema using both the average and standard deviation of historical values for timestep t.

Fig. 7: Test results for the input schema using both the average and standard deviation of historical values for timestep t.

7 days. This is used in combination with the meter reading for t − 1 (input schema 3) and four readings for (t − q,

for q = 1, . . . 4). Fig. 6 illustrates two test cases for input schema 3, while Fig. 7 shows results for schema 4. In

both cases, the results are comparable to those shown for input schemas 1 and 2. From examining the correlation

between targets and predictions in Fig. 8 we can see that there is a similar distribution of results to that of the earlier

experiments. Case study user 7 has the best predictions again. Fig. 9 shows the range of correlations for all four

experiments. The upper limits, as well as the mean, are generally consistent in all four cases, although there is a slight

reduction in mean performance for the experiment using real historical data in lieu of the earlier statistical inputs. This

can be attributed to the increased complexity of model training arising from the larger number of inputs.

6. Future Directions

Despite showing some ability to predict domestic water consumption, the models presented in this work suffer

from a lack of accuracy. This stems from the amount of noise present in the data; as can be seen in the model output

examples shown earlier, cases in which the model fails to predict are typically those where there is significantly greater

than normal water consumption. The ANN approach we have employed herein has failed to match the peaks of such

instances (e.g., Fig. 3). We therefore consider future directions of work that are ongoing to ameliorate this.
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Fig. 8: The correlation between target and model outputs for the nine case study users. The pattern of results here is similar to those obtained for

experiments with input schemas one and two.

Fig. 9: Correlation between targets and model predictions shown across the four experiments conducted in this study. The best and mean perfor-

mance is generally consistent throughout, however the poorer worst performance in the case of input schemas three and four indicates there is little

to be gained from using real input values instead of summary statistics in these cases.

One important avenue of investigation is to determine where the fault for this inability to predict peak usage lies.

We are currently comparing the predictive quality of the ANN model presented here against that of other data driven

approaches. This will identify whether an alternative configuration of this model produces better results, or if other

approaches also struggle to properly model data of this type and frequency.

We intend to refine the ANN approach in order to better model the available data. As the iWIDGET project

continues a greater corpus of training and testing data will be collected, which will enable more sophisticated learning

strategies to be developed, benefiting from the larger amount of data that can be retained for testing purposes, without

reducing the amount of training data. Increased data will also enable us to build better statistics for use as inputs to

the model. A simple example is the averaging over more historical timesteps to provide more accurate predictions.

As well as exploiting the increased amount of available data, we also intend to optimise the learning process by

which the model is constructed. This involves optimising the structural aspects of the model, for example the number
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of hidden neurons, as well as optimising the EA used to train the network. The experimental approach taken in this

paper involved selecting a set of values likely to produce good results based on experience (e.g., [4]) and the literature,

however this itself can be cast as an optimisation task and optimised with a self-adaptive EA. A problem with this

particular avenue is the computational expense of the network training problem, measured on the order of minutes.

In order to develop a self-adaptive EA designed to optimise a good training procedure the network must be trained

many more times than has been done in this paper. Here, the training required a runtime of the order of three to five

minutes, so steps must be taken to speed up the execution if this is to be a viable approach.

An alternative is to consider a statistical approach to modelling the data. A type of model that is used for examples

such as this, whereby the data follows a certain trend but contains outliers (here we consider consumption peaks to

be outliers) is to use a Student-t distribution to model the data [12]. That distribution contains heavy tails, increasing

the likelihood that the outliers will be incorporated into the model as is desirable here. Our proposed approach is to

use the expectation-maximisation algorithm to learn a parametrisation of the Student-t distribution that allows us to

properly model the data used in order to make more accurate predictions.

7. Conclusion

This paper has presented a preliminary study into forecasting domestic water usage with data collected during

the ongoing iWIDGET project. The study employed an artificial neural network to predict the next timestep’s water

usage for nine users from the project’s Greek case study. Models were trained using an evolutionary algorithm, with

parametrisations determined experimentally. The models resulting from the work used a range of input schemas, con-

trasting the use of historical input readings with inputs based on summary statistics constructed from those readings.

While the peak and mean performance of the different schemas was similar, the worst case of the schemas using

real historical values was lower than those using the statistical inputs. This can be attributed to the complexity of

optimising network weights for greater numbers of inputs.

In all cases, the models failed to accurately predict the magnitude of consumption in peak cases. Future work will

explore avenues to address this issue, exploring the extensions to the neural network approach described above, while

also examining the efficacy of statistic modelling approaches.
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