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Abstract 

This paper proposes the application of three different methods for preserving the correlation between duration and intensity of 
synthetically generated water demand pulses. The first two methods, i.e., the Iman and Canover (1982) method and the 
Gaussian copula (Nelsen, 1999) respectively, are derived from the known statistical approaches, though they had never been 
applied to the context of demand pulse generation. The third is a novel methodology developed in this work and is a variation in 
the Gaussian cupola approach. Applications carried out to reproduce the demand pulses measured in one household prove that 
the three methods are effective and applicable under general conditions. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the CCWI2013 Committee. 
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Nomenclature 

C correlation matrix of the independently generated pulse duration and intensities 
Cp correlation matrix to be preserved 
D daily demand 
i index 
I pulse intensity 
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k parameter in the gamma distribution 
L Choleski decomposition of matrix C 
Lp Choleski decomposition of matrix Cp 
n number of pulses in a generic sequence 
T pulse duration 
V pulse volume 
X matrix of the independently generated pulse duration and intensities 
X1 auxiliary matrix in the Iman Canover procedure  
X2 matrix of the correlated generated pulse duration and intensities  
x generic random variable 
z number of pulses per unit interval of time 

 parameter in the beta distribution 
 beta function 
  parameter in the beta distribution 
 gamma function 
t interval of time 
 parameter in the gamma distribution 
 parameter for Poisson distribution 
 parameter  in the bivariate normal distribution 
 correlation between pulse duration and intensity 
 correlation in the bivariate normal distribution 
ep correlation between pulse duration and intensity to be preserved 
 parameter in the bivariate normal distribution 
 generic time 

1. Introduction 

In the last two decades, the issue of residential water demand generation has been extensively investigated 
(Buchberger and Wu, 1995; Buchberger and Wells, 1996; Guercio et al., 2001; Alvisi et al., 2003; Garcia et al., 
2004; Buchberger et al., 2003; Alcocer et al., 2006; Blokker et al., 2010; Alcocer-Yamanaka and Tzatchkov, 2012; 
Alvisi et al., 2014; Creaco et al., 2015). A possible approach to modelling of residential water demand is based on 
the use of Poisson pulse models (Buchberger and  Wu, 1995; Buchberger and  Wells, 1996; Guercio et al., 2001; 
Buchberger et al., 2003; Garcia et al., 2004; Alcocer et al., 2006; Creaco et al., 2015). Inside these models, pulse 
durations and intensities can be generated using suitable probability distributions. In most cases (Buchberger and  
Wu, 1995; Buchberger and  Wells, 1996; Guercio et al., 2001; Buchberger et al., 2003; Garcia et al., 2004; Alcocer 
et al., 2006), pulse duration and intensity were considered to be independent random variables. However, Creaco et 
al. (2015) have recently shown that a non-negligible positive correlation exists between the two variables. The 
same authors then postulated that this has to be considered in order to obtain synthetic water demand pulses that are 
more consistent in terms of overall daily water demand volumes, while respecting statistical properties of measured 
demand pulses. In particular, their method is based on the use of a bivariate normal distribution. They also showed 
that the model can be effectively used when either the intensity or the duration of the pulse is well represented by 
either the normal or the lognormal distribution. However, the issue of how correlation can be preserved in the case 
of pulse duration and intensity being represented by other probability distributions has not dealt with yet. 

In this paper, three methods are described that can be applied to obtain correlated pulse intensities and durations 
for any marginal distribution used to represent the two variables as independent random variables. 

In the following sections, first the methodologies are described, then they are applied to a literature case study 
and a comparison with the method of Creaco et al. (2015) is also provided. Finally, results are analyzed and 
conclusions are drawn. 
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2. Methodology 

Hereinafter, first the typical Poisson model with no correlation between pulse intensity and duration is 
described. Then, the methods used to preserve correlation are described, followed by the model parameter 
estimation. 

2.1. Poisson model 

Inside the model, the time axis is scanned with a certain time resolution t. The probability of having z 
generated pulses in the time interval t that follows the generic time  is described by the Poisson distribution 
(Buchberger and Wu, 1995): 

     with 0,1,...
!

zte t
P z z

z
 (1) 

where rate parameter λ represents the expected number of “events” or “arrivals” that occur per unit time. 
For each pulse generated, the associate duration T and intensity I are generated using suitable probability 

distributions. As an example, the density functions of the beta and gamma distributions (Johnson and 
Bhattacharyya, 1992) are provided in eqs. (2) and (3) respectively: 
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where x is the random variable, equal to T or I, depending on which variable has to be generated;  and  are the 
parameters of the beta distribution and B=B( , ) is the beta function; k and  are the parameters of the gamma 
distribution and = (k) is the gamma function. Whereas the gamma distribution is defined on the interval [0,+∞], 
the beta distribution is defined on the interval [xmin,xmax]. Therefore, in order for the latter to be used for the 
generation of either the duration or the intensity, the interval [xmin,xmax] has to be defined. In any case, the 
cumulative distribution function F that ranges from 0 to 1 can be obtained as (Johnson and Bhattacharyya, 1992): 

0

x

F x f x dx  (4) 

After distribution parameters values have been fixed, values of the generic random variable can be sampled by 
generating for F random numbers in the range [0,1] and then deriving the corresponding elements of x by inverting 
eq. (4). 

If a Poisson model is used with constant parameter values to generate water demand pulses for a certain time 
duration, a sequence of n pulses, each of which featuring its own time arrival i, duration Ti and intensity Ii, would 
be obtained, as shown in Error! Reference source not found.. 
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Table 1– Arrival time , duration T and intensity I of the pulses generated by the Poisson model 
  (s) T (s) I (L/s) 

1  1T  1I  

2  2T  2I  

   

i  iT  iI  

   

1n  1nT  1nI  

n  nT  nI  

 
Variables T and I, as they appear in columns 2 and 3 of Table 1, are independent random variables; the 

corresponding correlation matrix C (see eq. 5) should thus feature an expected value of , Pearson correlation 
coefficient out of the diagonal, equal to 0. 

1
1

C  (5) 

2.2. Preserving correlation 

Method 1: Iman and Canover (IC) (1982) 
The Iman and Canover (1982) procedure is made up of two steps. In step 1, variables T and I are generated as 

independent random variables, as is described in section 2.1. This results in the matrix X, which is made up of 
columns 2 and 3 of Error! Reference source not found.. The corresponding correlation matrix C is given by eq. 
(5). Step 2 is then applied to find a new pairing for these variables, which enables the desired/observed correlation 

ep value to be preserved between the variables. 
In step 2 the following matrix operations are performed, which first entail constructing matrix Cp related to the 

desired/observed correlation ep to be preserved: 

1
1
ep

ep
pC

 (6) 

Then, matrices L and Lp can be obtained as lower triangular matrices from the Cholesky decomposition (Press 
et al., 1990) of matrices C and Cp respectively.  

The new matrix X1, which features a correlation matrix equal to Cp in eq. (6), has to be calculated as: 

1 T

1 pX X L L  (7) 

The elements of each column of matrix X have to be reordered in order to have the same sorting as the elements 
of the corresponding column of matrix X1, thus producing the matrix X2. In this manner, the matrices X2 and X1 
will have the same rank correlation matrix, and, consequently, similar (Pearson) correlation matrices. Since the 
application of step 2 simply modifies the sorting of the T and I values and does not change the values themselves, 
it preserves the exact form of the marginal distributions on these variables, as it comes from step 1.  
 

Method 2: Gaussian copula 
Unlike method 1 that is applied to pulse durations and intensities that have already been generated, method 2 

precedes the generation. A further difference lies in the fact that method 2 does not entail matrix operations. 
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Method 2 is known as the method of the Gaussian copula (Nelsen, 1999). It is based on generating n couples of 
auxiliary random variables y1 and y2 with average values  and standard deviations  
through the bivariate normal distribution (eqs. 8 and 9): 

, (8) 

 (9) 

where  represents correlation between y1 and y2. 
For each of the n values generated for y1, the value F1 of the cumulative probability of the marginal distribution 

can be calculated. In a similar way, for each of the n values generated for y2, the value F2 of the cumulative 
probability of the marginal distribution can also be calculated. 

The n values of F1 and F2 can be used to sample the probability distributions chosen for pulse durations and 
intensities (eq. 4) and then to obtain n couples of T and I. As a result of correlation  imposed between y1 and y2, a 
certain degree of correlation is also imposed on T and I. In particular, the resulting correlation between T and I is a 
monotonous function of . Iterative methods can then be applied in order to determine the suitable value of  that 
yields the expected correlation ep to be preserved between T and I. 

 
Method 3  
Method 3 is a modified version of method 2. Similar to the original method, it does not require matrix 

operations and is based on the use of the bivariate normal distribution (eqs. 8 and 9). However, following from 
method 1, it is applied after a preliminary first step, in which n uncorrelated couples of T and I are generated. 

Then, n couples of y1 and y2 with correlation equal to  are also generated. As in method 2, the corresponding 
values of F1 and F2 can be obtained. T and I can be reordered using the same sorting as F1 and F2 respectively. As a 
result of correlation  imposed between y1 and y2, a certain degree of correlation is also imposed on T and I. 
Iterative methods can be applied in order to determine the suitable value of  that yields the expected correlation 

ep to be preserved between T and I. 

2.3. Parameter estimation method 

The set of parameters of a Poisson model for pulse generation, in which T and I are generated as independent 
random variables, by using either the beta (eq. 2) or the gamma distribution (eq. 3), or using any kind of 2 
parameter probability distribution, is 5: one parameter ( ) for pulse arrival and two parameters for either of T or I. 
If correlation between T and I needs to be accounted for, the number of parameter increases to 6 and correlation ep 
is the sixth parameter of the model. 

As it was done by some authors (Alvisi et al., 2003; Buchberger et al., 2003; Creaco et al., 2015), the generic 
day of the month can be subdivided into a certain number of time slots (e.g., 12 bihourly) for parameter estimation. 
Robust models can then be obtained by allowing pulse arrival-related parameter  to take on a different value in 
each daily time slot. Each of the other parameters (in this case, the parameters related to T and I and correlation 

ep), instead, is allowed to take on a single value valid for all the time slots. 
The method of the moments (Hall, 2004) is considered in this work for estimating the parameters of the Poisson 

model. 
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3. Applications 

3.1. Case study 

By making calculations on data collected during an experimental campaign in some households in Milford, 
Buchberger et al. (2003) were able to reconstruct, with one second time step resolution, the water demand pulses 
which were taking place in these households in the period from April to October 1997. The data made available by 
the Authors concern pulse duration T, intensity I and volume V=T·I. 

As case study in this work, the indoor water demand pulses recorded in one of the households, i.e. household 2, 
in the month of April were selected. This case study has already been chosen by Creaco et al. (2015) on the basis 
of the regularity of the daily water consumption. The basic statistical parameters of measured water consumption 
variables z, T, I, V, total daily demand D and  are reported in Table 2. 

The modelling framework of this paper is aimed at investigating the extent to which the methods described in 
this paper for preserving correlation lend themselves to being used inside Poisson models. 

Overall, four Poisson models were constructed and compared with two benchmark Poisson models, hereinafter 
indicated as models A and B and drawn from the work of Creaco et al. (2015). In particular, model A features 
pulse durations and intensities being generated through the bivariate lognormal distribution. This enables 
correlation to be obtained between the two variables in this model. In  model A parameters are estimated with the 
method of the moments. Model B differs from model A in that pulse durations and intensities are generated as 
independent (uncorrelated) variables by making use of the lognormal distribution. The four models constructed in 
this work are models C-1, C-2, C-3 and D. Models C-1, C-2 and C-3 differ from model A in the way correlation is 
preserved. In fact, unlike model A, these models feature adoption of one of the three methods described in section 
2.2 (methods 1, 2 and 3 respectively). Model D differs from model C-3 in the generation of pulse durations and 
intensities, which take place through the beta (eq. 2) and gamma (eq. 3) distributions respectively, instead of the 
lognormal distribution. 

The features of all the models used in this work are summarized in Table 3. 
Overall, applications consisted in 3 phases for each test: 
phase 1 – parameter assessment; 
phase 2 – generation of synthetic water demand pulses; 
phase 3 – analysis of the results of the models and comparison with the observed data. 
 

Table 2 – Basic statistical parameters of water consumption variables z, T, I, V, D and  derived from the 
measured pulses and from the pulses generated by the models. 

  mean (z) mean (T) var (T) mean (I) var (I) mean (V) mean (D) cov (I,T) 

  [s-1] [sec] [sec2] [L/s] [L2/s2] [L] [L/day] [L2] [-] 

measured 0.00054 56 12743 0.106 0.00742 9.45 442 3.50 0.36 

model A 0.00054 56 11822 0.106 0.00730 9.39 438 3.48 0.37 

model B 0.00054 56 12321 0.106 0.00737 5.95 278 0.03 0.00 

model C-1 0.00054 56 12321 0.106 0.00737 9.26 431 3.34 0.35 

model C-2 0.00054 56 12049 0.105 0.00712 9.17 427 3.27 0.35 

model C-3 0.00054 56 12321 0.106 0.00737 9.27 432 3.36 0.35 

model D 0.00054 56 12723 0.106 0.00744 9.44 440 3.50 0.36 
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Table 3 – Features of the models used in this work. 
  distribution for pulses correlation 

  duration intensity method 

model A lognormal lognormal no correlation 

model B bivariate lognormal distribution Creaco et al. (2015) 

model C-1 lognormal lognormal method 1 

model C-2 lognormal lognormal method 2 

model C-3 lognormal lognormal method 3 

model D beta gamma method 3 

3.2. Results 

Phase 1 
The results of phase 1 for models C-1, C-2, C-3 and D are reported in Tables 4 and 5. The results for models A 

and B, instead, can be found in the work of Creaco et al. (2015). For the analysis of these tables, it has to be 
recalled that only  is parametrized in 12 daily time slots; the other parameters, instead, are assigned a single daily 
value. The data reported in Tables 4 and 5, related to models C-1, C-2, C-3 and D, were obtained by applying the 
method of the moments. In model D, in which the beta distribution is used to generate pulse durations, the interval 
[xmin,xmax] was set to [0,850] following analysis of the experimental pulses. 

 
Phase 2  
The models calibrated in phase 1 were then applied in order to create synthetic demand pulses for one month for 

each test. In order to account for the influence of the random seed, each month long pulse generation was repeated 
100 times. 

In each of the models which use one of the methods described in section 2.2 to preserve correlation (models C-
1, C-2, C-3 and  D), the method was applied once at the end of each of the 100 monthly generations of pulses. 

As an example, Fig. 1 shows the single realization of the simulated total demand for a typical day at the scale of 
1 sec, obtained by using model C. As expected, the figure shows a higher concentration of the pulses in the 
morning and in the late afternoon, when the household occupants usually get up and get back home after work. 
Very few pulses are instead generated at nighttime. 

 
Table 4 – Calibrated parameters for models C-1, C-2 and C-3. 

  0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 

0.000065 0.000028 0.001056 0.000991 0.000579 0.000356 0.000130 0.000333 0.001023 0.001032 0.000745 0.000157 

lnT 3.22 

lnT 1.27 

lnI -2.50 

lnI 0.71 

ep 0.36 
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Table 5 – Calibrated parameters for model D. 
  0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 

0.000065 0.000028 0.001056 0.000991 0.000579 0.000356 0.000130 0.000333 0.001023 0.001032 0.000745 0.000157 

 0.17 

 2.33 

0.07 

1.51 

ep 0.36 

 
 

 
Fig. 1. Model C - single realization of the simulated total demand for a typical day at the scale of 1 sec. 
 
Phase 3  
A first analysis was made concerning the basic statistical parameters of water consumption variables z, T, I, V 

and  derived from the pulses generated by models A-D, in comparison with those of the measured pulses (see 
Table 1). This table shows that all the models reproduce well mean (z), mean (T), var (T), mean (I) and var (I). This 
is a direct consequence of the goodness of the method of the moments for parameter calibration. Mean(V), mean 
(D),  and cov(T,I) are well reproduced only by the models that consider correlation (i.e. all the models except for 
model B). In particular, with regard to , the analysis of Table 1 proves also that the methods described in section 
2.2 and adopted in models C-1, C-2, C-3 and D have similar effects to the use of the bivariate distribution in model 
A. The advantage for these methods of being also applicable in the cases (see model D) where no bivariate 
distribution is available, that is when T and I are represented by two different kinds of marginal probability 
distributions, must also be highlighted. 

Another test was then carried out to analyse the consistency of the synthetic water demand pulses generated by 
means of the models with the measured water demand pulses in terms of overall daily water demand volume D. In 
particular, the total synthetic water demand volume D was calculated for each day in the generic one-month long 
pulse generation of each test. Then, the cumulative frequency curve was constructed reporting, for each value of D, 
the Weibull cumulative frequency F of days in the month which feature an overall daily water demand volume 
lower than or equal to D. Since each model application comprises 100 one-month long pulse generations, a band of 
synthetic cumulative frequencies was then obtained for each test. For each test, the band upper envelope (BUE), 
lower envelope (BLE) and mean value (BMV) of the 100 cumulative frequency curves were determined for all the 
models. The cumulative frequency of the measured daily water demand volume (ECF) was also calculated. 

The graphs in Figure 2 report BUE, BLE and BMV obtained using the various models as well as ECF. Analysis 
of the graphs shows that, as already highlighted by Creaco et al. (2015), the BMV obtained with model A (model 
that takes account of the mutual dependence of pulse intensity and duration by means of the bivariate distribution) 
follows ECF much more closely than that obtained with model B (model that neglects the mutual dependence of 
pulse intensity and duration). Furthermore, all the data points of ECF lie inside the band of cumulative frequency 
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obtained with model A. Only a few ECF data points, instead, are found inside the band of cumulative frequency 
obtained with model B. This attests to the better capability of model A to generate water demand pulses which are 
consistent with the observed demand pulses in terms of overall daily water demand volume. Figure 2 also shows 
that models C-1, C-2 and C-3, which use the methods described in this paper to preserve correlation, have an 
almost identical performance to model A. The change in the distributions used to represent the pulse durations and 
intensities does not affect results significantly (see results of model D with method 3). 

 

 

Fig. 2. Upper and lower envelopes (grey lines) and mean value (black line) of the band of Weibull cumulative frequencies F of daily water 
demand D produced by models A, B, C-1, C-2, C-3 and D in comparison with the daily water demand cumulative frequency calculated starting 

from the measured data (dots). 
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4. Conclusions 

This paper presented the application of three different methods that can be used to preserve correlation between 
duration and intensity of water demand pulses. Whereas the first two methods are derived from the known 
statistical approaches, the third was newly developed in this work. Applications showed that the three method yield 
similar results to those previously reported by Creaco et al. (2015) with the advantage of being applicable with any 
marginal distributions to represent the duration and the intensity. 

In light of the results of the paper, which confirmed the findings of Creaco et al. (2015), it seems that taking the 
correlation into account in water demand pulses is an essential requirement for producing synthetic pulses which 
are consistent with the measured pulses in terms of statistical properties while determining consistent daily demand 
values. 
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