
Potential Biological and Ecological Effects of Flickering
Artificial Light
Richard Inger*, Jonathan Bennie, Thomas W. Davies, Kevin J. Gaston

Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom

Abstract

Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological
processes. However, the extent and density of artificial lighting within the environment has increased recently, causing
widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology,
behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most
attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered
is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been
shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be
determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a
series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion
frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in
widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously
been considered.
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Introduction

For many animals perception of light reflected from objects is

the primary method used to gain information about their

environment, and is critical for finding food and mates and for

avoiding predation. A species’ visual system must therefore be well

adapted to its habitat and activity patterns in terms of spectral

sensitivity, detectable light levels and the temporal resolution at

which it can sample its environment. It has been known for some

time that an evolutionary trade off between light sensitivity and

temporal resolution exists, such that photoreceptors capable of

detecting low light levels cannot sample the environment as

frequently as can those operating at higher light intensities.

Indeed, this trade-off was first recognised by Autrum [1], who

demonstrated how the eyes of fast moving diurnal insects such as

honey bees and dragonflies have much higher temporal resolution

than do those of slow moving nocturnal species such as crickets

and stick insects. This is also true for higher vertebrates, with, for

example, fish living in clear waters with high light levels tending to

have higher temporal visual resolution than do those found in

turbid waters [2], and diurnal sharks found in shallower waters

having higher temporal resolution than species found in deeper

waters [3].

Animal visual systems, including their temporal resolution

capabilities, have evolved across vast geological timescales with

stable light regimes, provided almost exclusively by variation in

sunlight (including that reflected by the moon). It is therefore

unsurprising that there has been growing concern over the

environmental implications of increasing artificial light levels,

which typically differ significantly from natural light, and which

have characteristics not necessarily optimal for highly adapted

animal eyes. These differences have been shown to have

implications for animal behaviour [4,5], reproduction and

mortality [6,7], and community composition [8]. Such studies

have, however, concentrated almost exclusively on the biological

effects of the intensity, duration and, to a lesser extent, spectral

signature of artificial light [9]. Another characteristic of many

forms of artificial light has largely been overlooked. This is that the

outputs of electrical lamps often flicker. The majority of modern

artificial light sources connected to an alternating current (AC) will

fluctuate or flicker, although the frequency and intensity of flicker

will vary with the lighting technology. Incandescent bulbs flicker at

the frequency of the electrical supply (50–60 Hz), although the

intensity of flicker is low (low flicker index), whereas fluorescent

lighting extinguishes and returns to full brightness twice over each

voltage cycle (100–120 Hz), leading to a pronounced flicker effect

(high flicker index). Light emitting diode (LED) technology is also

increasing in popularity particularly for street lighting and these

lamps also have a high flicker index. Indeed the perceived

brightness of many LED lamps is controlled by regulating the

flicker frequency.

The potential for widespread biological implications of flicker as

a characteristic of artificial nighttime light is suggested by studies of

the effects on humans. Major concerns have been raised about the

impacts on human health and wellbeing of living and working

under artificial lights, both for typical behavioural patterns in
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developed countries (e.g. regular periods of evening/night spent

under artificial light), and for more acute exposures (e.g. night-shift

workers). Documented effects of flicker include headaches, visual

effects, and both neurological and physiological symptoms

(Table 1). In some cases these arise under flicker rates that

individuals can visually perceive. In others cases however they

occur at higher rates which cannot be perceived by the individual

but have been demonstrated to produce detectable physiological

and neurological effects. In addition, there is some evidence, in a

limited number of species, that flickering lamps can have a range

of effects on non-human animals (Table 2) and that these effects

can be produced by flicker that may or may not be perceivable by

the animal.

A key measure of the temporal resolution of vision systems is the

critical fusion frequency (CFF), the threshold at which an animal

ceases to perceive a flickering light source as a series of flashes, but

rather as a continuous stream of light. An obvious first step

towards assessing the likely effects of the flickering of artificial

lights on animals other than humans is to determine in which

species the CFF is higher than the flicker rates of widely used

electrical lamps, and hence those that will perceive the light source

as flickering. In addition, we explore whether the perception of

flicker is segregated taxonomically or towards animals adapted to

light, dark or variable natural light environments. Here we do this,

building on the extensive, but scattered, literature in which CFF

values have been reported.

Materials and Methods

A literature search was conducted using ISI Web of Science,

Google Scholar and Google. The ISI Web of Science search used

the terms ‘‘flicker fusion frequency’’ and ‘‘critical flicker fusion’’ as

topic fields spanning all years with no filters. The same terms were

entered into Google Scholar and Google with no filters. Searches

were conducted in September 2012. The Web of Science search

produced 577 and 240 results for each term respectively. The

Google Scholar search produced 4810 and 6150 results respec-

tively whilst the Google search produced 23300 and 26400 results

respectively. All Web of Science results were scanned for the use of

non-human animals in the title and the resulting papers were

downloaded from the University of Exeter electronic library for

subsequent analysis. The first 1000 results for both search terms

from Google Scholar and Google were also scanned for papers

containing non-human animals in the title and these papers were

then obtained either directly from the Internet or via the

University of Exeter electronic library. All the resulting papers

were then searched for data on the measurements of CFFs, which,

when present, where added to the dataset along with the species

name. Where CFFs were measured over a range of light intensities

we took the mean measured value (CFFmean) under photopic

conditions for use in the subsequent analysis. Where data were

only presented graphically we extracted data from papers using

Graph Click (Arizona Software). We also searched all papers for

references to other papers reporting CFFs for non-human animals.

Only data from peer-reviewed papers were used in the subsequent

analysis. We also only included data from papers containing a full

description of the methodology involved. CFF values are

determined either by using electroretinography (ERG) to measure

the electrophysiological response of the retina to flickering light of

various frequencies, or by examining the spontaneous or taught

behavioural response to flickering light. Using either method the

CFF is taken as the frequency at which the subject ceases to

respond to an increase in flicker frequency [34]. As behavioural

methods often produce lower values than those of ERG, the

method used to calculate CFF was included as a fixed factor in the

analysis. In addition as different light sources with differing spectra

characteristics may affect CFF values above and beyond the

intrinsic CFFs of the species being measured we including light

source (Incandescent, luminescent, gas discharge or monochro-

mator) used to make the measurement within the analysis as a

fixed factor.

It has been known for some time that animals adapted for low

light environments tend to have lower CFFs than animals found in

more intense light environments [3]. Hence we also included

within the analysis a measure of the light intensity each species is

likely to experience in natural situations. All diurnal animals were

considered to be exposed to high light levels. Crepuscular and

cathemeral animals were considered to be exposed to a variable

light regime. Nocturnal and aquatic species inhabiting deep waters

were considered as being exposed to low light levels.

Table 1. Documented effects of flickering artificial lights on humans.

Effects Source of flicker Frequency (Hz) Reference

Headaches/Visual Effects Low frequency fluorescent 100 [10]

Neurological Effects Malfunctioning fluorescent 50 [11]

Neurological Effects Amplitude-moderated flickering light 20–75 [12]

Neurological effects in photosensitive epileptics Xenon gas discharge photo-stimulator 3–60 [13]

Physiological effects in agoraphobics Low frequency fluorescent 100 [14,15]

Seizures in photosensitive epileptics Various Various [13]

Unperceived neurological effects Light-emitting diode Up to 200 Hz [16]

Unperceived neurological effects Computer monitor 42.5–75 [17]

Unperceived retinal effects Various 76–162 [18]

Unperceived retinal effects Cathode ray tube 76 [18]

Visual Effects Low frequency fluorescent 100 [19]

Visual Effects Cathode ray tube 50 & 100 [19]

Visual Effects Low frequency fluorescent 120 [20]

Visual Effects Computer monitor 70–110 [21]

doi:10.1371/journal.pone.0098631.t001
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To explore differences in CFF between taxonomic classes,

natural lighting regimes and CCF calculation method we used

linear mixed effects models (Gaussian error structure) fitted with

the R (v3.0.2) language and environment [35], using the package

‘lme4’ [36]. Within the models CFFmean was the dependent

variable, taxonomic class, light level exposure, light source type

and CCF calculation method were fixed factors, and species was a

random factor (intercept only) to account for multiple data for

some species. As the purpose of this study was only to identify

groups of animals most likely to be affected by flicker we did not

include a phylogenetic component to the model. To evaluate the

variance explained by the model we calculated R2
GLMM(m), the

marginal R2 which describes the variance explained by the fixed

factors and R2
GLMM(c), the conditional R2 which is concerned with

the variance explained by both the fixed and random factors [37].

Additional metrics of model fit were also calculated, these being

the pseudo R2
(N) of the models using the methods of Nagelkerke

[38] and the % deviance explained by the fixed effects component

of the model. This was achieved by comparing the deviance to a

null (intercept only) model such that % deviance = (deviancenull–

deviancemodel)/deviancenull. Package ‘MuMIn’ [39] was used for R2

calculations. Package ‘lmerTest’ [40] was used to calculate F and p

values using Satterthwaite [41] approximations to determine

denominator degrees of freedom.

Results

We located 56 studies containing 93 measurements (19

behavioural & 74 using ERG) of CFFmean for 81 species from

66 genera and 9 classes (Table 3, Table S1). We found a

considerable range in CFFmean values amongst species, with the

lowest value of 6.7 Hz being obtained for the cane toad (Bufo

marinus), and the highest value of 400 Hz for the black fire beetle

(Melanophila acuminate) (Fig. 1A). In a considerable number of cases

(16.1% of measurements, 13.5% of species, 16.6% of genera and

44.4% of classes), CFFmean values were above the flicker frequency

of fluorescent lamps on a 50 Hz electrical supply; i.e. 100 Hz. It

should be noted that a number of countries utilise a 60 Hz

electrical supply and hence the flicker frequency with be higher at

120 Hz.

The mixed effects model explained a substantial proportion of

the variation in CFFmean (R2
GLMM(m) = 0.70, R2

GLMM(c) = 0.94,

R2
(N) = 0.76, % deviance = 0.55) and highlighted significant

differences between the taxonomic classes (F[8,81] = 9.47, p,

0.0001; Fig 1B) and between levels of light exposure

(F[2,80] = 17.63, p,0.0001) but no differences were found between

the methods used to calculate CFF (F[2,22] = 1.10, p = 0.30) and the

lighting source used (F[2,40] = 0.54, p = 0.70, data were available

for 71 of the 93 studies). To further ensure that these differences

were not related to the methodology used to obtain the CFF

measurements we conducted the analysis on a subset of data where

CFF values had been measured only by ERG, which retained

significant differences between taxonomic classes (F[8,71] = 14.37,

p,0.0001) and levels of light exposure (F[2,71] = 25.15, p,0.0001).

Nocturnal animals had the lowest CFF values (mean = 32.09,

SD = 16.73) compared to animals exposed to variable lighting

regimes (mean = 45.25, SD = 17.77) and diurnal animals (mean

= 92.21, SD = 75.72), which had significantly higher CFF values.

The lowest CFF values were found within the amphibians

(mean = 19.23, SD = 11.75), followed by arachnids

(mean = 25,SD = 21.21), Chondrichthyes (mean = 26.1,

SD = 8.41), and malacostracans (mean = 33.7,SD = 21.26), al-

though one intertidal species, the tock louse (Ligia occidentalis), had a

CFFmean of 120 Hz. All the reptiles (mean = 42.94, SD = 12.79)

and actinopterygians (mean = 45.9,SD = 21.53) had CFF values

below 100 Hz, as did most mammals (mean = 64.77, SD = 26.77)

with the exception of two species, the yellow-pine chipmunk

(Neotamias amoenus) and the golden-mantled ground squirrel

(Spermophilus laterali) which both had CFFmean values of 108 Hz.

Birds (mean = 82.23, SD = 28.97) had the second highest

CFFmean, although two of the six species of birds within the

dataset were nocturnal owls. When the diurnal species were

considered independently CFFmean rose to 93.38, with domestic

chickens (Gallus domesticus) (one out of five measurements), pigeons

(Columba livia) (two out of three measurements), and the common

starling (Sturnus vulgaris) all having CFFmean values above 100 Hz.

Table 2. Documented effects of flickering artificial lights on animals.

Species common name Species scientific name Effects Reference

Honeybee Apis mellifera Behavioural [22]

Minute Pirate Bug Orius tristicolor Behavioural [23]

White Fly Aleyrodidae Behavioural [24]

Southern House Mosquito Culex quinquefasciatus Behavioural [25]

Housefly Musca domestica Behavioural [25]

Pink boll worm Pectinophora gossypiela Behavioural [25]

House cricket Acheta domesticcus Behavioural [25]

Housefly Musca domestica Behavioural [26]

European Starling Sturnus vulgaris Physiological [27]

European Starling Sturnus vulgaris Behavioural [28]

European Starling Sturnus vulgaris Possible Physiological stress [29]

European Starling Sturnus vulgaris Physiological stress & behavioral [27]

European Starling Sturnus vulgaris Behavioural [30]

European Starling Sturnus vulgaris Physiological stress & behavioral [31]

Albino Rat Rattus norvegicus Physiological stress [32]

Laboratory Mouse Mus musculus Visual [33]

doi:10.1371/journal.pone.0098631.t002
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Insects (mean = 166.46, SD = 106.29) had by far the highest

CFFmean values, although there was a distinct difference between

nocturnal (mean = 70) and diurnal species (mean = 201.1), a

pattern first noted by Autrum [1]. Most diurnal insects, including

dragonflies Anisoptera spp., honeybees (Apis mellifera), blow-flies

Calliphoridae spp., tsetse flies (Glossina morsitans) and black fire beetles

had CFF values greater than 100 Hz, apart from the fruit fly

(Drosophila hyde)i and migratory locust (Locusta migratoria).

A subset of the dataset of those species with CFFs of over

100 Hz also measured CFFs over a range of light intensities,

allowing us to estimate the minimal light intensity required to

produce such values. Tsetse flies produced a CFF of 286 at

300 lux, which dropped to 101 Hz at 3 lux. For domestic

chickens, CFFs of greater than 100 Hz can be achieved at around

250 cd/m2 (approximately 150 lux) [85]. Srinivasan & Lehrer

[89] measured CFF for honeybees at two light intensities,

3000 lux, producing a CFF of 200 Hz, and 300 lux, producing

a value of 144 Hz. Interpolating from these data we predict a light

level of around 138 lux would be needed to produce a CFF of

100 Hz.

Discussion

Our results clearly demonstrate how a significant proportion of

animals, particularly fast moving diurnal birds and insects have the

potential to perceive the flicker of electric lamps, which has been

demonstrated to have detrimental effects on both human and non-

human species. When we also consider that in the case of humans,

flicker can produce symptoms when it cannot be perceived (but

can invoke measurable physiological changes [16,17,18]) we

suggest that, in addition, any species with a CFF of 60 Hz (as in

humans) or higher, including many other mammals, and some

Figure 1. Distribution of critical fusion frequencies. (a) Histogram of the mean critical fusion frequency for all taxa; and (b) Boxplot of log10

critical fusion frequency (CFF) by class. The solid line indicates the flicker frequency of lamps on a 50 Hz electrical supply. The dotted line indicates
mean CFF for humans. CFFs for Insecta are significantly higher and Amphibia significantly lower than for other classes.
doi:10.1371/journal.pone.0098631.g001
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crustaceans, reptiles and fish, have the potential to be affected by

flicker.

This said, the perception of flicker is likely to be limited in many

natural situations for a number of reasons. First, all animals able to

detect artificial flicker are naturally diurnal hence only species for

which artificial light serves effectively to increase day length, or

which are facultatively nocturnal, are likely to be affected [9].

Second, CFF decreases with light intensity, which itself decays

with distance from the light source. Hence lamps need to produce

light that, once it reaches the animal, is still sufficiently intense to

induce CFFs that are high enough for animals to perceive the

flicker. For example, CFFs in Tsetse flies remain relatively high at

low light intensities, such that individuals will still be able to

perceive flickering street lamps at 3 lux, which is approximately

the lowest intensity light found at ground level between

neighbouring metal halide lamps [94]. Whereas in honeybees

and domestic chickens a much greater light intensity is required,

such that, based on the output from a typical metal halide street

lamp (Phillips Cosmopolis 80 W, measured by JB), a subject would

need to be closer than three metres to the light source in order to

perceive the flicker.

The evidence presented here suggests that impacts from the

perception of the flicker of artificial light may be rather limited for

most species studied thus far. There remains, however, a scarcity

of data on CFFs for many taxa that are most likely to be affected,

hence we suggest that the potential ecological effects should not be

wholly dismissed. Considering the case of insects, CFFs have only

been characterised for nine diurnal and three nocturnal species,

producing a wide range of values (42.5–400 Hz). Given the vital

role insects play in ecosystem functioning (e.g. pollination,

decomposition), and as nutrition for other organisms, this

depauperate knowledge base should give cause for concern. Those

species for which we have data suggest that a wide range of insects

have the potential to be affected by flicker and as such should be a

key target for further research. To the best of our knowledge,

quantification of CFFs has only been carried out in five species of

birds (although CFFs of greater than 100 Hz have been inferred

for starlings), with considerable variation within the range of values

being reported (40–143 Hz). More importantly, we only have

direct measurement of CFFs for two diurnal species. One of these

is the domestic chicken, whose wild counterparts are weakly flying,

mostly ground dwelling birds, adapted to living under the forest

canopy which are unlikely to move rapidly enough to have

adapted a particularly high temporal sensitivity. The only other

diurnal species of bird for which CFFs have been quantified is the

pigeon, a very common urban bird that is likely to encounter high

levels of artificial light. Pigeons have the highest CFF values

recorded (143 Hz) of any vertebrate species and will easily be able

to perceive flicker from artificial lights. From an evolutionary

perspective, it is likely that other birds capable of rapid flight have

high CFFs, and are able to detect flickering artificial light.

For both birds and insects there is substantial variation in the

range of CFFs recorded. A component of this variation may be

explained by the method by which CFF measurements were

made, as behavioural mechanisms are generally considered to

produce lower values than those obtained via ERG, because of

Figure 2. CFF responses to light intensity. How CFF decreases with light intensities for different species. Squares indicate data collected from
domestic chickens, with empty squares being from behavioural measurements (y = 221.5x2+113.1x262.6, R2 = 0.8, data from Linsey et al. 2011) and
filled squares from ERG measurements (y = 222.4x2+132.2x294.1, R2 = 0.97, data from [82]). Solid circles indicate data collected from tsetse flies
(y = 230.6x2+118.4x28.9, R2 = 0.98, data from [59]). Two data points were available for honey bees, taken from [89]; shown as filled diamonds).
Shaded area highlights the parameter space within which flicker from 50 Hz supply lamps will be perceptible under light intensities commonly
produced by artificial lamps within the environments (0–40 lux [9,94]).
doi:10.1371/journal.pone.0098631.g002
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post-retina neurological processing [34], though this study found

no effect of experimental method. There remains however,

considerable variation within measurements for each method,

suggesting other causes. Understanding of what drives variation in

temporal sensitivity within and between taxa remains poor,

beyond the fact that CFFs are related to the light levels to which

animals are exposed and tend to scale with metabolic rate and

body size [95]. At the level of the individual a number of factors

have been found to influence CFF, most importantly light

intensity, with CFF increasing linearly with the logarithm of light

intensity (within certain limits) for humans [96,97]. The shape of

this relationship and how it varies within and between taxa are key

to understanding the potential impacts of flicker from artificial

light, but have only been determined for a limited number of non-

human species [82]. For example, tsetse flies will be able to

perceive flicker within a range of light intensities likely to be

produced by artificial lighting sources within the environment

(Fig. 2), where as for domestic chickens their ability to perceive

flicker is at the very limits of their visual capabilities. As such

chickens will only be able to perceive flicker at light intensities

exceeding the range likely to be produced by artificial lamps.

Our results suggest that diurnal species are most likely to be

affected by flicker as nocturnal species studied up until now have

CFFs too low to perceive flicker, and many nocturnal species tend

to shun artificially lit areas. There remains however a number of

nocturnal animals groups likely to be affected by flickering lights,

these being animals which move rapidly in light environments.

This presents a particular challenge for visual systems, as generally

there is a trade-off between detectable light levels and the temporal

resolution at which they can sample the environment. Potential

groups prone to being affected by flicker include, but are not

limited to, nocturnal flying insects, for example hawkmoths,

nocturnal flying birds (including some Charadriiformes, Capri-

mulgiformes and Strigiformes) and bats. Whilst bats primary

mechanism of navigation is via echolocation, there exists

increasing evidence that many species rely to a varying extent

on vision [98]. In addition, it is becoming increasingly apparent

that some species of bats often utilise artificially lit areas as they act

to concentrate their food resources, which often aggregate around

the lamps [99,100]. Given these factors it seems prudent further to

investigate the visual systems of these groups in order to identify

those with the potential to be affected by the flickering of artificial

lamps.

Explicit studies of the biological effects of light flicker on animals

remain scarce, and have focused on the efficacy of trapping

devices for insects and on welfare issues for captive vertebrates.

Nonetheless, those that have been conducted provide further

support for a potentially widespread impact (Table 2), as flicker

has been found to influence behavioural and movement patterns,

visual systems and levels of stress.

A wide range of taxa are likely to be able to detect flicker, and it

has been found to produce detrimental effects in both human and

non-human animals. We suggest that flickering from electric lamps

represents a potential environmental impact from artificial light

pollution which has not previously been considered. Given the

precautionary principle and that it is likely that in the future an

increasing level of artificial light will come from lamps with a high

flicker index, as incandescent bulbs are phased out, and replaced

with fluorescent (including compact fluorescent bulbs, generally

referred to as ‘low energy bulbs’) and LED lamps, we suggest the

impacts of flickering light on natural systems are given urgent

attention.

Supporting Information

Table S1 Species for which critical fusion frequencies have been

measured. Includes the light source type used in the measurement

of CFF values. Species are ordered by class.
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