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The changes in neuronal firing pattern are signatures of brain function,
and it is of interest to understand how such changes evolve as a function of
neuronal biophysical properties. We address this important problem by
the analysis and numerical investigation of a class of mechanistic mathe-
matical models. We focus on a hippocampal pyramidal neuron model and
study the occurrence of bursting related to the after-depolarization (ADP)
that follows a brief current injection. This type of burst is a transient phe-
nomenon that is not amenable to the classical bifurcation analysis done,
for example, for periodic bursting oscillators. In this letter, we show
how to formulate such transient behavior as a two-point boundary value
problem (2PBVP), which can be solved using well-known continuation
methods. The 2PBVP is formulated such that the transient response is rep-
resented by a finite orbit segment for which onsets of ADP and additional
spikes in a burst can be detected as bifurcations during a one-parameter
continuation. This in turn provides us with a direct method to approxi-
mate the boundaries of regions in a two-parameter plane where certain
model behavior of interest occurs. More precisely, we use two-parameter
continuation of the detected onset points to identify the boundaries be-
tween regions with and without ADP and bursts with different numbers
of spikes. Our 2PBVP formulation is a novel approach to parameter sen-
sitivity analysis that can be applied to a wide range of problems.

1 Introduction

The firing patterns in neurons are an important feature that is gener-
ally associated with specific brain functions (Llinás, 1988). Under various
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conditions, many neurons tend to fire bursts, that is, clusters of high-
frequency spikes (Krahe & Gabbiani, 2004). Bursts are generated in response
to stimuli, which can be electrical (Yue & Yaari, 2004; Brown & Randall,
2009) or chemical (Rinzel, 1985; Tsaneva-Atanasova, Sherman, van Goor, &
Stojilkovic, 2007) and occur periodically or as single events. The bursting ac-
tivity is characterized by slow alterations between near-steady-state behav-
ior, the so-called silent phase, and the active phase when clusters of spikes
are fired (Rinzel, 1987). This bursting behavior plays an important role in
many phenomena, namely, synaptic plasticity (Thomas, Watabe, Moody,
Makhinson, & O’Dell, 1998), transmission of stimulus-related information
(Krahe & Gabbiani, 2004), and sensory system function (Martinez-Conde,
Macknik, & Hubel, 2002). It is not only limited to controlled in vitro experi-
ments, but has also been reported to occur in-vivo. For instance, spiking
and bursting behavior has been documented in in-vivo recordings from a
single place cell (Lee, Manns, Sakmann, & Brecht, 2006; Harvey, Collman,
Dombeck, & Tank, 2009; Epsztein, Brecht, & Lee, 2011). In addition, such
firing patterns are reported to take place in pathological conditions such as
epilepsy (McCormick & Contreras, 2001) and Alzheimer’s disease (Brown,
Chin, Leiser, Pangalos, & Randall, 2011). Even relatively small changes
in biophysical properties of neurons (Brown & Randall, 2009; Nowacki,
Osinga, Brown, Randall, & Tsaneva-Atanasova, 2011; Brown et al., 2011) or
their morphology (van Elburg & van Ooyen, 2010) can have a large impact
on the neuron’s excitable behavior. Therefore, when using mathematical
models for studying such firing patterns, it is essential to consider differ-
ent sets of parameters because parameter uncertainty is common in these
models.

We present a method that allows the analysis of transient processes.
In contrast to periodic bursting, transients bursts are challenging to ad-
dress with standard bifurcation methods, which are designed for long-
term behavior. Periodic bursters, also called bursting oscillators, have
been studied extensively (see Rinzel, 1987; Terman, 1991; Guckenheimer,
Gueron, & Harris-Warrick, 1993; Izhikevich, 2000; Govaerts & Dhooge, 2002;
Guckenheimer, Tien, & Willms, 2005; Tsaneva-Atanasova, Osinga, Riess, &
Sherman, 2010; Ermentrout & Terman, 2010). Here, a parameter-driven
modification of firing patterns, such as spike adding, is associated with
so-called fold bifurcations of these periodic orbits (Terman, 1991; Osinga
& Tsaneva-Atanasova, 2010; Tsaneva-Atanasova et al., 2010). In this letter,
we are interested in spike adding and bursting as a transient behavior,
which is known to occur, for example, in hippocampal pyramidal neu-
rons (Andersen, Morris, Amaral, Bliss, & O’Keefe, 2007; Brown & Randall,
2009; Nowacki et al., 2011). In this case, a neuron is stimulated briefly,
that is, perturbed away from its resting potential, and bursting takes place
during the return to this equilibrium state. Due to the uniqueness of solu-
tions in deterministic systems, the firing patterns that arise from prescribed
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perturbations away from equilibrium cannot coexist. Hence, parameter-
driven modifications such as spike adding cannot be associated with fold
bifurcations of periodic orbits, and classical bifurcation methods used for
identifying different bursting patterns in mathematical models cannot be
applied in the context of transient behavior. Nevertheless, the underlying
spike-adding mechanism via a canard-like phase is the same as for peri-
odic orbits. Indeed, we have already presented a detailed slow-fast analysis
of this behavior using elements of geometric singular perturbation theory
(Nowacki, Osinga, & Tsaneva-Atanasova, 2012).

In this letter, we focus on the numerical detection of transient firing
patterns in our system. We show how one can associate a type of bifur-
cation or sequence of bifurcations with the phenomenon of spike adding
in a transient burst. As in Nowacki et al. (2012), we view the response
of the system to a short current injection as a finite-time orbit segment
that is the solution of a two-point boundary value problem (2PBVP). The
parameter dependence of such solutions can then be studied using the nu-
merical continuation of the solutions to this 2PBVP. The 2PBVP setup we
use in our approach is quite general and can be applied to many transient
bursting patterns. Our primary motivation for developing this method is
to study transient bursting related to so-called after-depolarization (ADP)
and how it depends on neuronal biophysical properties. The phenomenon
of ADP is empirically defined as a positive deflection of the membrane
potential after a spike, which creates a characteristic hump (Izhikevich,
2006). A series of additional spikes on top of ADP is generated if the mem-
brane potential crosses a bursting threshold during the ADP (Brown &
Randall, 2009; Nowacki et al., 2011). In this letter, we consider the ADP
to be the positive deflection of the membrane potential after the last spike
triggered by the short current injection. We use the 2PBVP formulation to
define the onsets of ADP and a spike, such that these onsets can be de-
tected as fold bifurcations in a one-parameter continuation of the 2PBVP.
A subsequent two-parameter fold continuation establishes curves in a two-
parameter plane that approximates the boundaries between regions of
different bursting behaviors in the model and identifies the excitability
threshold.

We consider a model of pyramidal neurons as a case study to illus-
trate the approximation of onsets of ADP and bursts with our numerical
method. This case study is a bursting neuron model that uses four gen-
eral classes of fast and slow, inward and outward currents in Hodgkin-
Huxley formalism (Hodgkin & Huxley, 1952) and has been systematically
derived through careful comparison to a detailed pyramidal cell model
(Nowacki et al., 2011). The main feature that we exploit in our study is a
natural timescale separation in the model. The majority of classical work
on periodic spiking and bursting behavior (e.g., Rinzel, 1987; Terman, 1991;
Guckenheimer et al., 1993; Izhikevich, 2000) emphasizes the pivotal role
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of the slow variables for governing these behaviors. We find that we can
also make use of this timescale separation when characterizing the onset
of ADP or the threshold for a new spike. Indeed, both onsets of ADP and
a spike can be approximated as extrema of a slow variable of the system.
We explain in detail how to formulate the problem such that one can de-
tect the extremum as a fold bifurcation with respect to a system variable,
which is not achievable using the standard fold detection with respect to
parameters. As a result, we are able to perform a one-parameter fold de-
tection and two-parameter fold continuation of the 2PBVP over a large
region of interest in the two-parameter plane. The advantage of our ap-
proach is that the numerical method automatically identifies a parameter-
dependent and state-dependent excitability threshold as part of the
computation.

Parameter continuations may be particularly important for model pre-
dictions that take into account the effects of parameters that currently cannot
be controlled in an experimental environment. Our approach is very effi-
cient, because we characterize the boundaries between regions of ADP and
other excitable behavior in such a way that they can be detected directly and
continued numerically in a two-parameter setting. This means that we com-
pute the boundary explicitly as a one-dimensional curve rather than iden-
tifying it implicitly in a brute-force exploration of the entire two-parameter
plane. Based on our analysis, we are able to describe the implications of
changes to model parameters for excitability.

This letter is organized as follows. In the next section, we present our
model of study. In section 3, we formulate the problem as a 2PBVP and
show how to constrain the system such that the solutions correspond to
those at a threshold. We discuss both the onsets of ADP and a spike in
sections 3.1 and 3.2, respectively, and show how to detect these as folds in a
one-parameter continuation. We continue these folds in two parameters in
section 4 and obtain an overview of the regions of different model behaviors.
We then provide a detailed investigation of the model behavior at and near
the boundaries of these regions. We end with conclusions in section 5. The
numerical computations are performed with the package Auto (Doedel,
1981; Doedel & Oldeman, 2009) and visualizations are done in Python
(Oliphant, 2007) using Matplotlib (Hunter, 2007).

2 The Model

We use the model from Nowacki et al. (2012) as a case study to illustrate
our new numerical method for detection and subsequent continuation of
the onsets of ADP or a spike. This model is a simplified version of the phys-
iological model of hippocampal pyramidal neurons presented in Nowacki
et al. (2011) and considers general classes IFI, ISI, IFO, and ISO of fast and slow,
inward, and outward currents in Hodgkin-Huxley formalism (Hodgkin &
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Table 1: Default Parameter Values for the Simplified Pyramidal Neuron Model
Equation 2.1.

Cm = 1.0 μF/cm2

Inward Currents Outward Currents

EI = 80.0 mV E0 = −80.0 mV

Fast gFI = 2.0 mS/cm2

VmFI
= −25.0 mV

kmFI
= 5.0 mV

gSI = 0.5 mS/cm2 gFO = 9.5 mS/cm2

VmSI
= −54.0 mV VmFO

= −6.0 mV

kmSI
= 5.0 mV kmFO

= 11.5 mV

τmSI
= 3.0 ms τmFO

= 1.0 ms

Slow gSO = 1.2 mS/cm2

VhSI
= −56.0 mV VmSO

= −20.0 mV

khSI
= 8.5 mV kmSO

= 10.0 mV

τhSI
= 20.0 ms τmSO

= 75.0 ms

Huxley, 1952). The model is five-dimensional and has the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dV
dt

= 1
Cm

[
−gFI mFI∞

(V ) (V − EI) − gSI m2
SI hSI (V − EI) ,

−gFO mFO (V − EO) − gSO mSO (V − EO) + Iapp

]
,

dx
dt

= x∞(v) − x
τx

,

(2.1)

where x ∈ {mSI, mFO, mSO, hSI}; here, we assume that the fast inward current
is instantaneous. We use the Boltzmann form

x∞(v) = 1

1 + exp
(
−V−Vx

kx

) , (2.2)

for the relevant activation and inactivation steady-state functions mFI∞
(V ),

mSI∞
(V ), mFO∞

(V ), mSO∞
(V ), and hSI∞

(V ). The parameters used are the same
as in Nowacki et al. (2012), unless specified otherwise; these default values
are also given in Table 1 for convenience.

System 2.1 is capable of reproducing a broad range of cell responses typ-
ically observed in experiments (see Nowacki et al., 2011; Brown & Randall,
2009; Golomb, Yue, & Yaari, 2006; Yue, Remy, Su, Beck, & Yaari, 2005). Here,
we mimic the experiment where a current is injected for only a short time. If



882 J. Nowacki, H. Osinga, and K. Tsaneva-Atanasova

(a) (b)

Figure 1: Three responses of system 2.1 to a current injection applied at t =
20 ms of strength Iapp = 20 μA/cm2 and duration 3 ms, where gSI (in mS/cm2)
takes the values gSI = 0.15, gSI = 0.40, and gSI = 0.60. (a) The resulting time
series of the membrane potential V. (b) An enlargement in the (dV/dt, V )-plane
of the region of interest near the V-nullcline (vertical dashed line).

the injected current is strong enough, then one or more spikes are generated
during the transient phase, where the system returns to its resting poten-
tial. For our numerical experiment, we set Iapp = 20 μA/cm2 and apply it to
system 2.1 over a time interval of 3 ms, which ensures that the membrane
potential V rises to a fully developed spike before the current is turned off.

Figure 1a depicts the time series of V for three such experiments, where
the conductance gSI of the slow inward current is set to the three successive
values of 0.15, 0.40, and 0.60 mS/cm2. The injected current is applied at t =
20 ms, and the resulting first spike is almost the same for each of the three
responses. However, the subsequent behavior, after the applied current
has been turned off, clearly depends on the choice of gSI. The responses
for gSI = 0.40 mS/cm2 (middle curve) and gSI = 0.60 mS/cm2 (top curve)
exhibit ADP, while the response for gSI = 0.15 mS/cm2 (bottom curve) is a
spike without ADP.

The occurrence of ADP can easily be defined as a crossing of the V-
nullcline (Nowacki et al., 2011); we illustrate this in Figure 1b, where we plot
the responses in the projection onto the (dV/dt, V ) plane and focus on the
activity near the V-nullcline, that is, the vertical dashed line at dV/dt = 0.
As explained previously (Nowacki et al., 2011), at the onset of ADP, the
membrane potential has a cubic tangency, which means that the response,
when projected onto the (dV/dt,V )-plane, makes a quadratic tangency with
the V-nullcline. The response without ADP, for gSI = 0.15 mS/cm2, lies en-
tirely to the left of the V-nullcline in Figure 1b, while the (middle) response
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for gSI = 0.40 mS/cm2 exhibits a nonmonotonic loop and dV/dt > 0 dur-
ing the short rise time of ADP. A second cubic tangency develops as
gSI increases from 0.40 mS/cm2 to 0.60 mS/cm2, so that the response for
gSI = 0.60 mS/cm2 in Figure 1b crosses the V-nullcline multiple times. Note
that the ADP after the last spike is qualitatively the same as that for
gSI = 0.40 mS/cm2.

The presence of ADP is a precursor for generating a spike, and we expect
that the respective onsets of ADP and a new spike occur close together in
parameter space. In the next section, we explain how to detect both onsets
numerically.

3 Excitability Thresholds as a Boundary Value Problem

We formulate the onset of ADP and the thresholds of each new spike in a
burst as two-point boundary value problems (2PBVP) in such a way that
a standard numerical continuation package can be used. We implemented
our approach using Auto (Doedel, 1981; Doedel & Oldeman, 2009), but
other continuation packages, such as the recently developed package COCO

(Dankowicz & Schilder, 2009, 2011), would be suitable as well.
The setup in Auto is rather similar to the computational approach taken

in Nowacki et al. (2012), but there is an important difference in the defini-
tion of the boundary conditions. In Nowacki et al. (2012), we analyzed the
geometrical mechanism of spike adding and investigated how the transient
response of system 2.1 was tracing the slow manifolds of the underlying fast
subsystem. Since the transitions between responses with a different num-
ber of spikes occur over exponentially small parameter intervals, we used
2PBVP continuation to capture the topological changes of the response,
which would be virtually impossible to compute using initial-value in-
tegration. However, the 2PBVP setup in Nowacki et al. (2012) does not
identify the moment of the spike-adding transitions; it only characterizes
these transitions from a geometrical point of view. For completeness, we
formulate the 2PBVP again here and point readers who are familiar with the
setup in Nowacki et al. (2012) to the difference in formulating the boundary
conditions 3.6 and 3.7 that determine the total integration time for the orbit
segment, respectively.

As is standard in Auto, we consider an orbit segment u = u(t) de-
fined on the time interval 0 ≤ t ≤ 1. For t ∈ [0, 1], we define u(t) =
[V(t T ), mSI(t T ), mFO(t T ), mSO(t T ), hSI(t T )] as the five-dimensional
phase-space vector in system 2.1, which is a solution of

u′ = T f(u, λ, Iapp). (3.1)

Here, f : R
5 × R

k × R is the continuously differentiable right-hand side of
system 2.1. The time rescaling to the [0, 1] interval has the effect that the total



884 J. Nowacki, H. Osinga, and K. Tsaneva-Atanasova

required integration time T appears as a parameter in equation 3.1 (see also
Nowacki et al., 2012). The parameter vector λ ∈ R

k essentially represents
the parameters of interest; we focus on the maximal conductances gSI and
gFO of the slow inward and fast outward currents. However, additional
parameters will be introduced to obtain a well-posed 2PBVP, so that λ

typically consists of more than two parameters. The applied current Iapp is
specified separately in equation 3.1, and we consider two consecutive orbit
segments, denoted uON and uOFF, such that uON satisfies equation 3.1 with
Iapp = 20 μA/cm2 and uOFF satisfies equation 3.1 with Iapp = 0 μA/cm2.

More precisely, we consider the system of equations

u′
ON(t) = TON f

(
uON(t), λ, Iapp

)
, (3.2)

u′
OFF(t)= TOFF f(uOFF(t), λ, 0), (3.3)

where the end point uON(1) of uON is the starting point uOFF(0) of uOFF.
That is, we require the boundary condition

uON(1) − uOFF(0) = 0. (3.4)

The short current injection is supposed to perturb system 3.1 from its resting
potential. Hence, the begin point uON(0) of uON should be equal to the stable
equilibrium of system 3.1 with Iapp = 0, which we can solve for implicitly
by imposing the boundary condition

f(uON(0), λ, 0) = 0. (3.5)

Note that system 3.2 and 3.3 with boundary conditions 3.4 and 3.5 is ef-
fectively an initial value problem that has a well-defined unique solution
as soon as the two integration times TON and TOFF have been specified.
The nature of the short current injection is such that TON is fixed (we set
TON = 3 ms). The idea is to restrict TOFF in such a way that the solution
to equations 3.2 to 3.5 is determined by the onset of ADP or the onset of a
spike. Indeed, both ADP and additional bursting take place after the current
has been switched off; hence, they are a characterization of the orbit seg-
ment uOFF. Figure 2 illustrates the setup with an example where we defined
uOFF with the additional constraint that uOFF(1) lies at a local maximum,
denoted P; this local maximum P is preceded by a local minimum, denoted
B, and indicates the presence of ADP. The concatenation of uON and uOFF
in original time coordinates is shown with the time series of V in Figure 2a.
This combined trajectory is a solution of system 2.1 with Iapp following
the short-current-injection protocol. We consider the trajectory in Figure 2a
only up to time TON + TOFF; the gray line indicates the extended trajectory
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0 T ON T ON + T OFF

V

uON(0)

uON(1) = uOFF(0)

B P

uON uOFF

(a)

0.0 0.2 0.4 0.6 0.8 1.0
t

V

uON(0)

uON(1)
uOFF(0)

B P

uONuOFF

(b)

Figure 2: Illustration of how to interpret solutions to the 2PBVP (see equations
3.2–3.5); shown is a solution of equation 2.1 for which the short current injection
generates a single spike and the transient response generates only an ADP.
(a) The time series of V for the concatenated orbit segments uON and uOFF
rescaled back to original time. (b) The corresponding numerical representation
on the [0, 1] interval. The first segment uON starts at the resting potential for
Iapp = 0 μA/cm2, as indicated by the horizontal dashed line, and is a solution of
equation 3.2 with Iapp = 20 μA/cm2; the total integration time is TON, which we
set to 3 ms. The second segment uOFF starts at the end point uON(1) of uON and is a
solution of equation 3.3 with total integration time TOFF. As explained in section
3.1, we define TOFF such that uOFF(1) lies at the local maximum, denoted P.

over a longer time interval. Figure 2b shows the two orbit segments uON
and uOFF with time rescaled to the [0, 1] interval.

The boundary conditions that determine TOFF at the onset of ADP or
the onset of a new spike are explained and illustrated in the next two
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sections. We do not describe here how to obtain a first solution to such
2PBVPs; this has been discussed in detail for a similar 2PBVP in Nowacki
et al. (2012). Note that a different first solution must be generated each time
when detecting the next onset of ADP or the next onset of a new spike.

3.1 Identifying the Onset of ADP in a Transient Burst. The ADP is
characterized by the existence of a local minimum B and a local maximum
P, which occur after one or a series of spikes and form a small hump
as shown in Figure 2a. The 2PBVP system 3.2 to 3.5 has a solution that
corresponds to a response with ADP if we restrict TOFF such that the orbit
segment uOFF ends at P, that is, uOFF ends precisely at the point where it has a
local maximum with respect to V. Hence, we do not fix the integration time
TOFF for uOFF, but determine its value by requiring dV/dt = 0 at uOFF(1).
This can be expressed as the boundary condition

f1(uOFF(1), λ, 0) = 0, (3.6)

where f1 is the first equation of system 2.1, that is, the equation for dV/dt.
Figure 3 shows six solutions selected from the family of orbit segments

that is obtained by continuation of the 2PBVP system 3.2 to 3.6, using gSI as
the free parameter; here, we decreased gSI from gSI = 0.5 mS/cm2. Figure 3a
shows the time series of V scaled back to the original time (see also Figure
2a). The variation in gSI has almost no effect on the orbit segment uON of
equation 3.2 that satisfies equation 3.5 with TON = 3 ms, so that uOFF starts at
almost the same point for all these orbit segments. However, the end points
of uOFF change substantially, and the value for TOFF decreases with gSI,
which also corresponds to a decrease in the value of the V-coordinate. Figure
3b shows only the orbit segments uOFF in projection onto the (dV/dt, V )-
plane, where we focus on the parts near the end points uOFF(1); as before,
the value of the V-coordinate decreases with gSI. The local minima B and
maxima P that indicate the existence of ADP are the points on uOFF with
dV/dt = 0, which is the vertical dashed line in Figure 3b. Since we require
equation 3.6, all end points uOFF(1) = P satisfy dV/dt = 0. Note that the local
minima B also lie on the V-nullcline, so that each selected orbit segment also
intersects the line dV/dt = 0 at a point uOFF(t) = B with 0 < t < 1. The only
exception is the orbit segment at the bottom in Figure 3b; this orbit segment
corresponds to the solution of system 3.2 to 3.6 for which the continuation
reaches a minimum value of gSI ≈ 0.2006 mS/cm2, and at this parameter
value Auto detects a fold bifurcation (Kuznetsov, 1998). This is visualized in
Figure 3c, where we plot only the V-coordinates of the local minimum B and
local maximum P along each of the orbit segments that end at points P and
the lower branch to orbit segments that end at points B. The fold bifurcation
itself corresponds to an inclination point at which B and P merge, which
means that it marks the onset of ADP; note that the fold bifurcation seems to
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(a) (b)

(c)

Figure 3: Continuation of the 2PBVP system, 3.2 to 3.6, as gSI decreases.
(a) Selected time series in V of the gSI-dependent solutions; the orbit segment
at the bottom corresponds to the smallest value of gSI and is the response at the
onset of ADP. (b) An enlargement near the V-nullcline (vertical dashed line) of
these solutions projected onto the (dV/dt, V )-plane and clearly showing that
all end points satisfy dV/dt = 0; the orbit segment at the bottom is again at the
onset of ADP. (c) The value of V for each point uOFF(t) that satisfies dV/dt = 0,
illustrating that the orbit segment at the bottom in panels a and b corresponds
to a fold (marked by the star), where gSI is minimal.

lie at a cusp point, but this is an artifact of the projection, and the computed
branch is actually a smooth curve.

Fold bifurcations can be detected automatically during a one-parameter
continuation run with the setup in Auto. Furthermore, any detected fold
bifurcation can be continued directly using a second parameter. Hence, our
approach allows us to trace the onset of ADP as a curve in two parameters.

3.2 Identifying the Onset of a Spike in a Transient Burst. Decreasing
gSI in section 3 led to an onset of ADP at the minimum value gSI ≈
0.2006 mS/cm2. On the other hand, we expect that increasing gSI leads to
the onset of a spike from the ADP. More precisely, we expect that the peak
P of ADP will rise until it reaches some critical threshold value of the mem-
brane potential V; indeed, classical studies of excitability tend to associate
the excitability threshold with a certain value of the membrane potential
(Hodgkin & Huxley, 1952; Izhikevich, 2006; Keener & Sneyd, 2008). Hence,
the naive approach would be to monitor the value of V at the end point
uOFF(1) in system 3.2 to 3.6 and define the onset of a burst as the point where
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gSI is such that uOFF(1) has reached the critical threshold of the membrane
potential. There is a major disadvantage to this idea: one would have to
guess what the value of the critical threshold actually is and make heuristic
assumptions, for example, that the critical threshold does not depend on
gSI. Here, we explore a different approach to define the onset of a spike,
which automatically establishes the critical threshold at the same time.

As we have explained (Nowacki et al., 2012), the critical threshold is
characterized by a response with an elongated depolarized state of maximal
duration. Nevertheless, the actual generation of a new spike takes place over
an exponentially small gSI interval. The first such spike generation occurs for
gSI ≈ 0.5615 mS/cm2. Figure 4 illustrates the result from a continuation of
the 2PBVP system 3.2 to 3.6, with gSI increasing from 0.5 mS/cm2. Here, we
plot the part where the response changes dramatically, while the increase
in gSI ≈ 0.5615 mS/cm2 is only of order O(10−7). Since Auto takes many
continuation steps to capture this variation in the response, we plot the
total integration time TOFF in Figure 4a versus the point number of the
continued branch. To illustrate the deformation of the response during
spike adding, we select 11 solutions along the continuation branch and plot
in Figure 4b their corresponding time series in V using a color gradient from
dark to light as gSI ≈ 0.5615 mS/cm2 increases. The continuation branch in
Figure 4a contains three extrema where the derivative with respect to TOFF
vanishes (marked by stars); the corresponding solutions are shown with
thicker lines in Figure 4b. The orbit segment with the smallest selected gSI
value has a local maximum with respect to TOFF at TOFF ≈ 105.3808 ms. Its
time series is the bottom (darkest) curve in Figure 4b, shown with a thicker
line to indicate that TOFF is at an extremum here. As gSI increases, the next
two solutions have smaller TOFF values, but we observe in Figure 4b that
the V value at the end point uOFF(1) rises; note that our selection includes
the second extremal solution, where TOFF has a local minimum. The voltage
at uOFF(1) continues to rise slowly as we follow the branch in Figure 4a up
to the maximum TOFF ≈ 168.8113 ms, which is again indicated by a thicker
line in Figure 4b. As expected, the time series of solutions that are selected
for values of gSI ≈ 0.5615 mS/cm2 past this maximum exhibit a well-defined
spike, that is, they exhibit a substantial rise in V over a relatively short time
interval.

Unfortunately, the numerical detection of a maximum in TOFF can be
computationally difficult because there is no a priori bound on TOFF. We
have found a different approach that is numerically very stable and detects
the onset of a spike at virtually the same gSI value. The substantially longer
duration of the depolarized state allows the slow inward current ISI to
inactivate almost completely. Figure 4c shows the same solution branch as
in Figure 4a, but instead of gSI, we plot the hSI-coordinate at the end points
uOFF(1) on the horizontal axis. We observe that the inactivation hSI of ISI
appears to reach a minimum exactly when TOFF achieves its maximum. As
for TOFF, there are three extrema for the hSI coordinate at uOFF(1), which
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Figure 4: Continuation of the 2PBVP system 3.2 to 3.6, as gSI increases over
an exponentially small parameter interval with gSI ≈ 0.5615 mS/cm2. (a) The
solution branch of the gSI-dependent family with TOFF on the vertical axis and
the point number # along the branch (in thousands) on the horizontal axis; time
series for V of selected orbit segments marked in panel (a) are visualized in
panel (b). The extremal orbit segments with respect to the TOFF are marked by
stars in panel (a) and shown with thicker lines in panel (b). Panel (c) shows the
same solution branch as in panel (a), but with the hSI-coordinate at the end points
uOFF(1) on the horizontal axis. This panel illustrates that the extrema of TOFF are
located at almost the same points where hSI at uOFF(1) is at a local minimum
or maximum (marked by a diamonds). The inset in panel (c) highlights the
smooth behavior near the global maximum for TOFF. Panel (d) shows the end
points uOFF(1) in projection onto the (hSI,V )-plane and gives a better idea of the
overall smoothness of the solution branch; again the gradient along the marked
solutions serves as a guide how gSI increases along the branch.

are marked by diamonds in Figure 4, and all three are close to the three
extrema for TOFF (marked by stars); in fact, one can distinguish only nine
different solutions in Figure 4b, because two of the extrema with respect to
the hSI-coordinate at uOFF(1) are virtually identical to extrema with respect
to TOFF. The solution branch for the continuation of system 3.2 to 3.6 with
gSI increasing from 0.5 mS/cm2 to 0.6 mS/cm2 is perhaps best visualized
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in projection of the end points uOFF(1) onto the (hSI,V )-plane as shown in
Figure 4d; gSI increases from the bottom right to the top right in this picture,
and the extrema for TOFF and hSI are again marked by stars and diamonds,
respectively. The spiking threshold, which is defined by the fact that TOFF
is globally maximal, can be viewed as the point where hSI at uOFF(1) is
minimal, which numerically occurs at the same value gSI ≈ 0.5615 mS/cm2

with a difference of O(10−8). Numerically, it is advantageous to detect the
global minimum of hSI at the end point uOFF(1), because the hSI-coordinate
at uOFF(1) is biophysically restricted to the interval [0, 1] and cannot grow
unboundedly. As shown in Figure 4, not only the gSI value but also the
corresponding value for V at uOFF(1) and the total integration time TOFF are
very similar at this minimum of hSI.

The behavior of the hSI coordinate at uOFF(1) is representative of the
behavior of the two slow variables hSI and mSO in our system, and extrema
of either the hSI or the mSO coordinates at uOFF(1) can be used to detect
the onset of a spike. We chose to work with the hSI coordinate because the
change of hSI in the low-voltage region is more profound than that of mSO,
which is also slightly slower (see Table 1).

For the setup in Auto, we solve system 3.2 to 3.6 and detect the minimum
in hSI at uOFF(1) using an optimization approach. To this end, we introduce
a parameter denoted he

OFF and add the boundary condition

[0, 0, 0, 0, 1] ∗ uOFF(1) − he
OFF = 0 (3.7)

to system 3.2 to 3.6. Here, the vector product [0, 0, 0, 0, 1] ∗ uOFF(1) extracts
the hSI-coordinate from uOFF(1). We now allow he

OFF to vary freely during
the continuation; note that TOFF also remains a free parameter in this 2PBVP
system. The advantage of such a setup is that Auto can detect folds with
respect to the parameter he

OFF; since the boundary condition 3.7 is satisfied
only when he

OFF equals the value of the hSI coordinate at the end point of a
solution {(uON(t), uOFF(t)) | 0 ≤ t ≤ 1} for system 3.2 to 3.6, this means that
Auto effectively detects the extrema of hSI at the end point uOFF(1).

Figure 5 illustrates that our method for detecting the onset of a spike
also works for solutions with more than one spike in their transient re-
sponse. The next two spike generations occur over exponentially small
parameter intervals at gSI ≈ 0.5697 mS/cm2 and gSI ≈ 0.6183 mS/cm2; the
associated continuation runs are shown in rows 1 and 2 of Figure 5, re-
spectively. The starting solutions for these runs were found as follows.
We selected two nearby solutions from the branch computed for Figure 4,
namely, at gSI = 0.5690 mS/cm2 and at gSI = 0.6180 mS/cm2. These param-
eter values are well past the exponentially small gSI-interval during which
the second spike is generated, so that both solutions are orbit segments
with one spike followed by the rising part of the next spike up to the (local)
maximum. We extended these orbit segments for gSI = 0.5690 mS/cm2 and
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Figure 5: Continuation of families with two and three spikes that solve system
3.2 to 3.6 as a function of gSI. (a–c) The branch of two-spike solutions continued
past the critical threshold at gSI ≈ 0.5697 mS/cm2. (d–f) The branch of three-spike
solutions, for which the critical threshold lies at gSI ≈ 0.6183 mS/cm2. Panels
(a) and (d) show the solution branches of the gSI-dependent families with TOFF
on the vertical axis and the point number # along the branch (in thousands) on
the horizontal axis; time series for V of selected orbit segments as marked in
these panels are visualized in panels (b) and (e), respectively, colored from dark
to light as gSI increases (exponentially small). The extremal orbit segments with
respect to the TOFF are marked by stars on the solution branches and shown
with thicker lines in panels (b) and (e). Panels (c) and (f) show TOFF versus the
hSI-coordinate at the end points uOFF(1) on the horizontal axis and illustrate
that these other two solution types also have the extrema of TOFF located at
almost the same points where hSI at uOFF(1) is at a local minimum or maximum
(marked by a diamonds). The insets highlight the smooth behavior near the
global maximum for TOFF. Compare also with 4.

gSI = 0.6180 mS/cm2 by increasing TOFF such that they are solutions of sys-
tem 3.2 to 3.6 that exhibit two and three spikes, respectively, before ending
in a local maximum of the ADP at uOFF(1). Figures 5a and 5d correspond to
Figure 4a and show the total integration time TOFF versus the point number
of the continued branch. The time series in V of selected solutions as marked
in Figures 5a and 5d are shown in Figures 5b and 5e, respectively; the thicker
curves indicate a solution for which TOFF achieves a local maximum or mini-
mum, which are marked by stars on the continuation branch. Figures 5c and
5f show the continuation branch by plotting TOFF versus the hSI-coordinate
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at the end point uOFF(1), as was done in Figure 4c for the one-spike solution
branch. This last projection illustrates that extrema of hSI at uOFF(1) (marked
by diamonds) appear to be closely related to extrema of TOFF (marked by
stars), and the global minimum of hSI at uOFF(1) is a good approximation for
the global maximum of TOFF that characterizes the onset of the next spike.

4 Computing Boundaries between Transient Bursting Patterns

Our numerical methods for detecting the gSI values at which the system
exhibits the onset of ADP or the onset of a spike are all based on detecting
fold bifurcations for a 2PBVP in Auto (Doedel, 1981; Doedel & Oldeman,
2009). This means that we can subsequently use fold continuation in Auto to
trace the onsets of APD or a spike as curves in a two-parameter plane. Such
curves would form the boundaries between different bursting behaviors
of the model. We illustrate this by computing the boundary curves in the
(gFO, gSI)-plane, because the magnitude of gFO influences the amplitude of
ADP and, thus, the overall excitability (Nowacki et al., 2011).

There are two types of curves: the onset of ADP and the onset of a spike.
In order to compute a curve in the (gFO, gSI)-plane that forms a separatrix
between regions with and without ADP, we start from a solution of the
2PBVP system 3.2 to 3.6 that has a fold with respect to gSI; here, only gSI
and TOFF are free parameters. A curve that corresponds to the onset of a
new spike, on the other hand, can be started from a solution of the 2PBVP
system 3.2 to 3.7, where he

OFF, gSI, and TOFF are the free parameters. We then
include gFO in the list of free parameters and solve the 2PBVP system in
Auto with the additional constraint that the system remains at a fold point
with respect to gSI (for onset of ADP) or he

OFF (for onset of a new spike);
the corresponding extended 2PBVP system is generated automatically in
Auto.

Figure 6 shows the results of the fold continuation in the (gFO, gSI)-plane.
The bifurcation diagram is shown in Figure 6a, and examples of responses
for parameter values in the different regions are shown in Figures 6b to
6m. The solid curves in Figure 6a are the fold continuation branches. We
are interested only in the positive quadrant, gFO, gSI ≥ 0 mS/cm2. Further-
more, the bursting regime is bounded from above by the (dashed green)
curve of Hopf bifurcations of the full system, 2.1. On the other side of this
Hopf curve, any short-current injection drives the system into a continu-
ous (tonic) spiking state due to the presence of a periodic attractor. For
reasons that we explain later, we stop the continuation when gFO reaches
the value gFO = 17 mS/cm2 (dashed vertical line on the right). The bottom
solid curve corresponds to the onset of ADP; representative responses on
either side of this curve in Figures 6b and 6c illustrate the transition from
a response with no ADP to one with the distinctive hump at the end of
the spike. The other solid curves correspond to onsets of a new spike and
the dark-to-light coloring indicates the increase in the number of spikes. We
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Figure 6: Regions of different model behavior in the (gFO, gSI)-plane established
by fold continuation of system 3.2 to 3.6 or with the additional boundary condi-
tion 3.7. (a) The bifurcation diagram, with an enlargement of the two-spike burst
region in the inset, and panels (b)–(m) responses of system 2.1 for the parameter
values as marked by dots in panel (a). The solid curves are the onsets of a spike,
and the color gets lighter as the number of spikes increases. The solid curve at
the bottom corresponds to the onset of ADP and the dashed curve at the top
to Hopf and the dashed curve in the middle to saddle-node bifurcation of the
full system 2.1. We stopped the computations at the dashed vertical line on the
right; the open circle marks the left end point of the continuation of onsets of a
spike.
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continued folds of bursts with one to seven spikes; representative responses
from the regions where the transient burst has an even number of spikes
are shown in Figures 6d to 6g. We show only the first curve of onset of ADP,
because the continuation of onset of ADP for solutions that already exhibit
more than one spike leads to curves that lie virtually on top of the branches
corresponding to onsets of a new spike. We computed some of these ad-
ditional ADP boundaries, but the other regions of responses with no ADP
are so small that we decided to ignore the distinction between such regimes
altogether. Note that the curves of onsets of the second and third spikes
lie very close together. Both curves are computed by fold continuation in
Auto, but the solutions along these two branches are very different when
considered in the full solution space (uON(t), uOFF(t), he

OFF, gSI, TOFF, gFO).
Hence, our method successfully distinguishes the two curves and estab-
lishes each boundary accurately; such boundary curves are much more
difficult to determine using brute-force simulations.

The advantage of our approach is that it also successfully continues the
different curves when they accumulate on each other, as is the case in the di-
rection with gFO decreasing. In fact, all seven computed curves merge on the
left and also merge with the boundary of ADP (the solid horizontal line at
the bottom). Again, the fold continuation in Auto views each curve as a dis-
tinct family in the full solution space (uON(t), uOFF(t), he

OFF, gSI, TOFF, gFO)

that is well separated from the other burst families, so that the accumulation
of curves is numerically not an issue.

The continuation for each of the branches that characterize the onset of a
spike stops on the boundary of ADP, approximately at the point marked by
an open circle in Figure 6a. Only the boundary of ADP extends to the gFO-
axis. This open circle in Figure 6a marks the point where the hSI-coordinate
at uOFF(1) reaches zero. Indeed, the curves of onsets of a spike are computed
by continuation of a minimum he

OFF in the hSI-coordinate at uOFF(1), and this
minimum he

OFF decreases as gFO and/or gSI decrease. Since hSI is constrained
by equation 2.2 to the biological range [0, 1], it is not possible to continue the
minimum he

OFF past zero. In contrast, the onset of ADP takes place for much
higher values of hSI at uOFF(1) so that the continuation of this boundary
proceeds until gSI = 0.

We computed seven curves of onsets of a spike, with the last curve
marking the transition between seven and eight spikes in a burst. As shown
in Figure 6a, these boundary curves accumulate in such a way that a left
boundary is formed by consecutive segments of the boundary curves. We
extrapolated this boundary (the dotted line) up to the dashed Hopf curve (at
the top of the figure) indicating the expected extent of the region with spike-
adding behaviour. For example, the response in Figure 6h is for a (gFO, gSI)

pair that lies very close but to the right of this extrapolated boundary. This
response is a transient burst with nine spikes; hence, there exists at least
one additional curve of onset of a new spike before reaching the Hopf
curve.



Continuation of Spike-Adding Thresholds 895

To the left of the (extrapolated) boundary of the spiking regime, the
response is no longer a burst, but exhibits a depolarized plateau with an
indistinguishable number of spikes that have extremely small amplitudes;
two representative responses chosen far apart from each other are shown
in Figures 6i and 6j. This regime is characterized by a slow passage through
a Hopf bifurcation of the fast subsystem (for more details, see Baer, Erneux,
& Rinzel, 1989; Izhikevich, 2006; Ermentrout & Terman, 2010; Desroches,
Guckenheimer, Krauskopf, Kuehn, Osinga, & Wechselberger, 2012). Note
that this behavior is still transient and the solution eventually returns to the
resting membrane potential.

The dashed curve through the middle in Figure 6a is a curve of saddle-
node bifurcations of the full system 2.1; above this curve, an additional
pair of equilibria coexists with the resting potential, but only the resting
potential is a stable equilibrium. This curve does not act as a boundary for a
particular type of bursting, but the presence of the two equilibria alters the
nature of the spike-adding mechanism and TOFF actually goes to infinity at
the critical threshold, which is now characterized by a (transiently induced)
heteroclinic connection to one of the saddle equilibria (see Nowacki et al.,
2012, for more details). While the spike-adding mechanism changes, the
responses of the system on either side of the middle dashed curve of saddle
node bifurcations inside each of the bursting regions are qualitatively the
same. Our approach for finding the onsets of a spike, where we detect a
minimum for the hSI coordinate at uOFF(1) instead of a maximum for TOFF,
also works for (gFO, gSI) values above this curve of saddle node bifurcations,
though the solution is a coarser approximation and only the (gFO, gSI) values
of the actual critical threshold are found accurately here.

We decided to stop the computations as soon as we reached gFO =
17 mS/cm2. For gFO > 17 mS/cm2 the burst response develops a plateau-
like ADP that contains a number of small-amplitude oscillations. The re-
sponse shown in Figure 6k, for gFO just below 17 mS/cm2 illustrates the
formation of the plateau-like ADP, and Figures 6l and 6m are examples
of what the response looks like for gFO > 17 mS/cm2. The nature of the
transient response changes in a way that is different from adding a new
spike, and it is more difficult to define the number of spikes in the burst.
Other behaviors may arise for gSI > 17 mS/cm2 that have not been ana-
lyzed here. Note that the occurrence of small-amplitude oscillations on top
of the ADP can lead to convergence problems in Auto, and it is challenging
to continue the branches for larger values of gFO. These numerical diffi-
culties are due to the fact that there now exist several nearby solutions
that all satisfy boundary condition 3.6, which requires that the end point
uOFF(1) lies at an extremum in V. Indeed, for slightly larger TOFF, there
exist solutions of the 2PBVP 3.2 to 3.7 that end at a minimum or maximum
in V of either one of these small-amplitude oscillations; these solutions
all lie close to each other, even when considering the full solution space
(uON(t), uOFF(t), he

OFF, gSI, TOFF, gFO). Figure 6a gives a good overview of
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the sensitivity of the bursting behavior in our model to changes in the
parameters gSI and gFO. We find that changes in gSI have a much larger
effect on the bursting behavior than changes in gFO. This means that the
low-voltage-activated slow inward currents have a larger impact on ex-
citability in our model. We distinguish three large regimes in our region of
interest: one-spike responses with ADP, one-spike responses without ADP,
and the combined regions of responses with multiple spikes. As shown
in Figure 6a, the responses with just one spike and with ADP appear to
cover the largest area in the parameter plane. Our simplified model has
been derived based on a more detailed, biophysical model (Nowacki et al.,
2011) calibrated using data from Brown and Randall (2009) and agrees with
experimental recordings indicating that the response with just one spike
followed by an ADP is the most robust (Brown & Randall, 2009). In addi-
tion, the region with no ADP after the first spike is relatively large, which is
in line with the experimental results reported by Brown and Randall (2009),
Golomb et al. (2006), and Yaari, Yue, and Su (2007).

5 Discussion

In this letter, we presented a continuation-based numerical method for the
detection of the onsets of after-depolarization (ADP) as well as a spike in a
transient burst. We defined a two-point boundary value problem (2PBVP)
that identifies such onsets as special orbit segments that are determined
as fold bifurcations in continuation packages such as Auto (Doedel, 1981;
Doedel & Oldeman, 2009). The 2PBVP formulation mirrors the stimulation
protocols used in electrophysiological experimental studies, so that the
analysis of our model can be related directly to the experimental results. We
have used a relatively simple model and protocol to illustrate our approach,
but our 2PBVP formulation can be adapted, in principle, to suit onsets of
other phenomena in applications involving transient responses generated
by different stimulation protocols. The advantage of using a model is that
we can analyze the sensitivity of the model to any choice of parameters.
In particular, we can make predictions for parameters that are hard, if not
impossible, to control using experimental techniques, such as time constants
or membrane capacitance.

For the detection of onset of ADP, we use the formal definition of ADP
as a local maximum of the membrane potential V and defined the 2PBVP
as a system for which the solutions are orbit segments that follow the
stimulation protocol and end at the local maximum identifying the ADP.
The disappearance of this local maximum, as a parameter is varied, occurs
through an inflection point, where the local maximum merges with the pre-
ceding local minimum. During the continuation of the 2PBVP, the inflection
point is detected as a fold with respect to the parameter. The onset of a spike
is more challenging because there is no parameter-independent definition
of a spiking threshold. Rather than setting an arbitrary critical threshold for
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V, we use our findings in Nowacki et al. (2012) that spike adding occurs
via a canard-like mechanism in models of Hodgkin-Huxley type that ex-
hibit different timescales (see also Terman, 1991, 1992, and Guckenheimer
& Kuehn, 2009). This means that the onset of a new spike coincides with a
maximum in the time TOFF that it takes the transient response to reach the
local maximum of ADP as it relaxes back to the resting potential. In this
letter, we argue that the drastic increase in TOFF, which indicates the onset
of a new spike, must be accompanied by a decrease in the inactivation hSI
of the slow inward current. From a numerical point of view, it is better to
detect a minimum in this bounded variable hSI at the end point of the orbit
segment that solves our 2PBVP, and we formulate it such that we can again
detect this minimum as a fold point on the branch; note that this fold is not
with respect to the continuation parameters.

We have shown that the detected onsets of ADP and a spike can be con-
tinued in a two-parameter plane to establish regions of different transient
behavior. Identification of such regions corresponds to a parameter sensi-
tivity analysis of transient bursting patterns found in this class of models.
Our analysis shows that there exists a large area in the parameter plane for
which the response exhibits a highly depolarized state (see the responses
in Figures 6i and 6j). Similar behavior has been observed experimentally
(Golomb et al., 2006) by applying the K+-channel blocker linopirdine. Such
a prolonged depolarized state is potentially very dangerous for the cell be-
cause the membrane potential is away from the resting state. This may lead
to excessive influx of Ca2+ that can reach toxic levels. We find that this region
is relatively large and directly adjacent to the physiological bursts regime.
Our findings indicate that hyperexcitable cells (that fire many spikes) could
easily be driven into such a potentially dangerous state. We note that an in-
crease in gFO could also be dangerous, as it decreases excitability and leads
to a prominent ADP with small oscillations (see the responses in Figures 6l
and 6m). Such a prolonged ADP can have a similar effect on the influx
of Ca2+. Hence, this behavior could possibly be detrimental for the cell
as well.
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