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Abstract

There is a growing interest in predicting the social and ecological contexts that favor the evolution of maternal effects. Most
predictions focus, however, on maternal effects that affect only a single character, whereas the evolution of maternal effects
is poorly understood in the presence of suites of interacting traits. To overcome this, we simulate the evolution of
multivariate maternal effects (captured by the matrix M) in a fluctuating environment. We find that the rate of
environmental fluctuations has a substantial effect on the properties of M: in slowly changing environments, offspring are
selected to have a multivariate phenotype roughly similar to the maternal phenotype, so that M is characterized by positive
dominant eigenvalues; by contrast, rapidly changing environments favor Ms with dominant eigenvalues that are negative,
as offspring favor a phenotype which substantially differs from the maternal phenotype. Moreover, when fluctuating
selection on one maternal character is temporally delayed relative to selection on other traits, we find a striking pattern of
cross-trait maternal effects in which maternal characters influence not only the same character in offspring, but also other
offspring characters. Additionally, when selection on one character contains more stochastic noise relative to selection on
other traits, large cross-trait maternal effects evolve from those maternal traits that experience the smallest amounts of
noise. The presence of these cross-trait maternal effects shows that individual maternal effects cannot be studied in
isolation, and that their study in a multivariate context may provide important insights about the nature of past selection.
Our results call for more studies that measure multivariate maternal effects in wild populations.
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Introduction

Since selection often varies both over space and time [1–3],

evolutionary mechanisms that increase adaptation to changing

environments are considered to be highly advantageous [4,5].

Conventional studies focus on mechanisms such as bet-hedging

[6–8] and, in particular, within-generational phenotypic plasticity

[5,9–11] as major adaptations to changing environments. How-

ever, a growing number of recent studies suggest that nongenetic

effects provide an additional way of adaptation to changing

environments [12–14]. Here, nongenetic effects refer to any effect

on the offspring phenotype that is brought about by the

transmission of factors (other than sequences of DNA) from

parents or more remote ancestors to the offspring [13,15].

Nongenetic effects can be realized through a variety of mecha-

nisms, such as social learning [16], the transmission of DNA

methylation variants [17] or the transmission of maternal factors

such as antibodies or hormones [18,19]. Importantly, when

nongenetic effects are present in a population, an individual’s

phenotype becomes a function of the phenotypes (or the

environment) of its parents or previous ancestors, giving rise to a

form of transgenerational plasticity that is suggested to allow for

increased flexibility when coping with environmental change [20–

22].

Theoretical studies indeed predict that nongenetic effects

are selectively favored in fluctuating environments [23–25],

particularly when the parental phenotype provides information

about selective conditions encountered by future generations

[23,24]. The role of parental information has been particularly

well studied in the context of maternal effects, whereby the

maternal phenotype or environment affects the offspring’s

phenotype through the provisioning of resources, antibodies or

hormones [26–29]. However, most studies on maternal effects

focus mainly on univariate scenarios, in which a single maternal

factor influences a single offspring character. By contrast, studies

in plants and animals suggest that maternal effects typically have a

multivariate nature, involving suites of interacting parental and

offspring characters (e.g., [30–33]). Indeed, this multivariate

nature has long been appreciated by those models that assess the

consequences of (non-evolving) nongenetic effects to phenotypic

evolution [34–38]. As yet, however, no theoretical predictions exist

about the evolution of these multivariate maternal effects

themselves.

We believe that taking a multivariate view on the evolution of

maternal effects is insightful for at least two different reasons. First,

as stated before, the main prediction of univariate models is that

maternal effects evolve when the parental phenotype correlates

with selective conditions encountered by offspring [23,24,29,39]. It

is currently unclear how these predictions play out when offspring

are not influenced by a single, but multiple components of a

parental phenotype, raising the question how offspring should

weigh information that results from the presence of multiple
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maternal effects (e.g., the presence of multiple maternal hormones

and immonoglobulins in avian eggs [33,40,41]). A second reason

for considering the evolution of nongenetic effects in a multivariate

context is the finding [42] that the multivariate configuration of all

maternal effects (here assumed to be captured in the matrix M,

[34,36,43]) plays an analogous role in determining the course of

evolution as the genetic variance-covariance matrix G that

describes the scope for correlated selection between traits [44–

46]. The role of the G-matrix in multivariate evolution has been

the focus of a vast body of research for the last 40 years, and a

substantial set of predictions exists on the ecological and social

contexts that give rise to specific configurations of G (e.g., [47–49])

and ensuing evolutionary constraints [46,50–54]. By contrast,

there are yet no studies which investigate the selective conditions

that lead to different configurations of M, which may similarly

constrain phenotypic evolution [25,34,42]. As a first step towards a

more inclusive theory that aims to incorporate both nongenetic

and genetic constraints on evolution, the current study therefore

aims to investigate which structures of M are likely to evolve across

different ecological contexts.

To this end, we develop a formal model to make predictions

about the evolution of multiple maternal effects in a periodically

fluctuating environment. In the current model, a maternal effect

reflects any causal influences of the maternal phenotype on the

offspring’s phenotype [18,55]. Prominent examples of maternal

effects are the modulation of offspring phenotypes by the

maternal adjustment of a variety of egg hormones [41,56] or the

transmission of maternal antibodies to the embryo [57,58]. In

the current study, we focus on the evolution of multivariate

maternal effects in the context of fluctuating selection. Specif-

ically, we are interested in scenarios where the nature of

selective fluctuations diverges between different maternal

characters. For example, different maternal traits endure

selection at different timepoints, because some maternal traits

endure selection at different seasons than others, or because

some selection on some characters may be more predictable

(i.e., less stochastic noise) than selection on other characters.

The current study thereby investigates whether such contexts

lead to the interaction among different maternal characters,

which cannot be inferred from studying the evolution of single

traits in isolation.

We study the evolution of multivariate maternal effects in a

fluctuating environment using individual-based evolutionary

simulations. Although analytical approaches would be preferred

to provide a general evolutionary model of multivariate

phenotypes, an analytical assessment of multivariate evolution

quickly becomes prohibitively difficult, even when only the

evolution of the genetic variance-covariance matrix G is

considered (while maternal effects are absent). It is thus no

surprise that individual-based simulations have been the method

of choice when considering more complicated scenarios of

multivariate evolution (e.g., [49,59–61]). Moreover, maternal

effects involve the additional complexity that phenotypic

evolution depends on past generations, so that an analytical

description requires a number of strong equilibrium assumptions

(such as a constant covariance between genotypes and pheno-

types, [34,43]). Here, however, we use the flexibility of

individual-based, evolutionary simulations to study the evolution

of maternal effects in a dynamical fashion without these limiting

assumptions.

Models

Our model assumes a sexually reproducing population of

N = 5000 randomly mating hermaphrodites having discrete,

nonoverlapping generations. A graphical summary of the life

cycle is given in Figure 1A.

Gene loci
To assess the evolution of multiple maternal effects, we study

the simplest possible case, in which an individual that breeds in

generation t expresses two phenotypic traits, z(t)~½z1(t),z2(t)�T
(where T denotes transposition). Each individual bears six

unlinked, diploid loci: two of which correspond to the breeding

values of both phenotypic characters a(t)~½a1(t),a2(t)�T, that

determine the baseline elevation of both phenotypic traits. The

remaining four loci code for the entries of the 26 maternal

effect matrix M(t)~
m11(t) m12(t)

m21(t) m22(t)

� �
, of which the entry

mij(t) reflects the maternal influence from maternal phenotype

j to offspring phenotype i (see eq. [1] below). For all six loci, the

two alleles at each locus interact additively (i.e., dominance

effects are absent) and inheritance is biparental. During each

generation, each allele mutates with probability ma~mm~m,

upon which a value drawn from a normal distribution with

mean 0 and variance s2
ma

~s2
mm

~0:0025 is added to the current

allelic value (i.e., a continuum of alleles model [62]). Each

individual simulation run started from the initial values

a(0)~0 and M(0)~0 continued for 50000 generations.

Throughout, we found that values of a(t) and M(t) attained

stable values after approximately a tenth of this total timespan

(e.g., see Figure S4).

Phenotypes
Extending seminal quantitative genetics models that focus on

non-evolving multivariate maternal effects [34,35,43,63–65], the

phenotype zi(t)[½z1(t),z2(t)�T of an individual in generation t is

then given by the following recursion:

Author Summary

In numerous organisms, mothers influence the phenotype
of their offspring by transmitting hormones, antibodies
and nutrients to the embryo. Evolutionary studies that
make predictions about the evolution of these maternal
effects typically focus, however, on single maternal
characters only, in isolation of other traits. This contrasts
with insights from quantitative genetics where reliable
predictions about evolutionary change can only be made
when measuring multiple traits simultaneously. The
current study is therefore the first to make formal
predictions about the evolutionary properties of multiple
maternal effects. We show that maternal phenotypic
characters generally give rise to developmental interac-
tions in which one maternal character affects multiple
offspring characters. In turn, such interactions can give rise
to correlations between different traits in parent and
offspring, which constrain evolutionary responses to
sudden change. In addition, we find that the rate of
environmental change directly affects some of the
measurable properties of maternal effects: in rapidly
changing environments, multivariate maternal effects are
negative, so that offspring attain phenotypes that are
different from their mothers, whereas positive maternal
effects where offspring are more similar to their mothers
occur in slowly changing environments. Hence, multivar-
iate maternal effects provide a clear signature of the past
selective environment experienced by organisms.

Multivariate Maternal Effects
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zi(t)~ai(t)ze(t)z
X2

j~1

mij(t)z
�
j (t{1): ð1Þ

Here, ai(t) is the breeding value of trait zi(t), while e(t) reflects the

contribution of environmental noise, which is normally distributed

with mean 0 and variance s2
e as in classical quantitative genetics

models [44,66]. The starred value z�j (t{1) denotes the value of

the maternal phenotype zj(t{1) after selection. As noted before,

mij(t) is the evolving maternal effect coefficient, describing how

maternal character z�j (t{1) influences offspring phenotype i. Note

that we assume that the maternal effect loci are controlled by the

offspring, representing a scenario in which entry mij(t) of M(t)

reflects the offspring’s sensitivity to maternal trait zj [67,68]. For

example, the vector z(t) may reflect titers of different offspring

hormones, and the entry mij(t) specifies how the maternal titer

z�j (t{1) of hormone j (e.g., measured during pregnancy or added

to the egg) affects the titer zi(t) of offspring hormone i (e.g.,

mediated by the number of hormone binding sites present in the

offspring endocrine cells). Indeed, studies indicate that maternal

hormone and protein titers affect offspring hormone concentra-

tions, often in a multivariate fashion (e.g., [33,56,69]).

While multivariate maternal effects M(t) are assumed to be

genetically expressed by the offspring, they still give rise to

nongenetic effects on the multivariate phenotype z(t). This is

because the offspring’s phenotype is not merely influenced by M(t)

itself, but the product M(t)z�(t{1) of maternal effects and the

parental phenotype. Consequently, the involvement of the

maternal phenotype gives rise to the well-known ‘cascading

nature’ of maternal effects [34,35,70], whereby the maternal

phenotype z�(t{1) is itself a function of the multivariate

grandmaternal phenotype z�(t{2), which in turn is a function

of the phenotypes ½z�(t{3),z�(t{4), . . .� of previous ancestors. As

the offspring’s phenotype z(t) is thus not only a function of DNA

sequences it received from its ancestors (i.e., genes coding for a(t)

and M(t)), but also of the phenotypes of its ancestors, M(t) gives rise

to nongenetic effects on the offspring phenotype (see also [38]).

Fluctuating survival selection
After birth and phenotype determination (as in eq. 1), each

newborn enters a survival stage during which it endures survival

selection. The survival probability ws decreases nonlinearly with a

displacement of the character zi(t) away from the selective

optimum hi(t), according to the Gaussian function

ws(t)~cz 1{cð Þexp {
z1 tð Þ{h1 tð Þð Þ2

2a2
{

z2 tð Þ{h2 tð Þð Þ2

2a2

" #
, ð2Þ

where all individuals are assumed to have a baseline survival

probability of c, while the strength of stabilizing selection on both

phenotypes is proportional to the remainder 1{c. a2 measures the

width of the selection function and is therefore inversely

proportional to the strength of selection. Throughout, we assume

that a~
ffiffiffiffiffiffiffiffi
1=2

p
.

Periodic fluctuations. Throughout the main part of the

paper, optima hi(t) are assumed to fluctuate according to a

discrete-time sinusoid

h1(t)

h2(t)

� �
~

sin v1 tzw½ �ð Þ
sin v1tð Þzd sin v2tð Þ

� �
, ð3Þ

where the optimum hi of trait zi fluctuates periodically with

amplitude v1, mimicking, for example, a seasonal environment or

periodic environmental forcing on longer timescales (e.g., ‘El

Niño,’ [71]). The rate at which the selective environment

fluctuates is given by v1. In addition, both fluctuating optima

can either be w time steps delayed relative to each other, or

fluctuations in one optimum can be characterized by a certain

degree of disturbance (d.0), through the presence of additional

(stochastic) fluctuations with a frequency of v2, where values of v2

are chosen from a uniform distribution between
4

5
vv2v

7

4
(see

Figure 1 for an example). Note that discrete-time sinusoids give

rise to more complicated periodic behaviors in comparison to their

continuous-time counterparts, since they typically lack strict

periodicity. Consequently, timeseries of selective optima generally

look more erratic and variable over short-term periods (e.g., see

insets in Figure 2), which is likely to more closely correspond to

temporal variation observed in natural timeseries.

Finally, because selective optima fluctuate around 0 (i.e., no

directional selection), we found no significant evolutionary

change in the breeding values ai(t) underlying each phenotype

zi(t) [72] (e.g., see Supplementary Figure S4A). We therefore

Figure 1. Graphical description of the model (panel A) and an example scenario in which fluctuating selective optima h1(t) and h2(t)
fluctuate over time (panel B). In this particular scenario, optimum h2(t) is delayed relative to h1(t) with phase shift w and h2(t) contains noise
(indicated by noise parameter d). The amount of noise in h2(t) is proportional to the disturbance parameter d. Parameters: v1~0:2, d~0:4, w~2.
doi:10.1371/journal.pcbi.1003550.g001

Multivariate Maternal Effects
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only focus on the evolved values of M:M(t) in the main part of

this study.

Stochastic fluctuations. In addition to the periodic fluctu-

ations, the Supplementary Figures consider a scenario in which hi

fluctuates according to a stochastic process rather than a sinusoid

function. Simulations are identical to the periodic case, except that

hi is now drawn from a Gaussian autocorrelated time series with

mean 0 and variance s2
Gauss~1, whilst varying the value of

the autocorrelation r:cor hi(t{1),hi(t)ð Þ or cross-correlation

cor hj(t{1),hi(t)
� �

in selective conditions between two subsequent

generations (see Results and Supplementary Figures S1, S2B, S3

and S5).

Reproduction
After survival selection, the nsurviving(t) surviving individuals

reproduce: each surviving individual produces a number of n = 10

ova, which are all fertilized by a randomly chosen other survivor

that acts as a sperm donor. From the zygotes, new individuals are

sampled with replacement to maintain a population of constant

size N. Subsequently, the cycle starts anew with mutation and

phenotype determination, as depicted in Figure 1A.

Results

Result 1: The shape of the maternal effects matrix M is
determined by the rate of environmental change

The evolution of a single maternal effect, m. To

understand the evolution of multiple maternal effects in a

fluctuating environment, it proves illustrative to first investigate

the evolution of a single phenotypic trait z that is influenced by

single a maternal effect, m (Figure 2). When selective conditions

fluctuate at a slow rate (small rate of change, v1), selection

between two consecutive generations is likely to be positively

correlated (autocorrelation rt,tz1w0, black line in Figure 2).

Consequently, offspring are selected to develop a phenotype of a

similar sign as their mother, leading to the evolution of positive

values of the maternal effect m. Faster fluctuations, however, (i.e.,

v1w
1
2

p) lead to negative autocorrelations (rt,tz1v0) in selective

conditions between mother and offspring. As a result, offspring are

selected to have phenotypes of a different sign in comparison to the

maternal phenotype, selecting for negative maternal effects (m,0,

Figure 2).

When environmental change is effectively absent (i.e., when the

frequency of change is v1 = 0 or when exactly half a period of

fluctuations has passed before selection takes place in the next

generation: v1~p,2p,3p, . . .), we find that m evolves to negative

values. The evolution of m,0 in the absence of environmental

fluctuations is in line with previous findings [25,73], which predict

that slightly negative values of m are optimal in stable environ-

ments, as a means to reduce the amount of phenotypic variance. It

also explains why m has a smaller absolute magnitude when it

evolves to positive values in comparison to cases where m evolves

to negative values (see Figure 2), as positive m are more likely to

increase, rather than decrease the phenotypic variance around the

selective optimum [25,34].

So far, we have only studied a periodic environment, which

raises the question whether these conclusions can be generalized to

stochastic environments. In Supplementary Figure S1, we study

the evolution of m when fluctuations in the selective optimum h(t)

are given by a Gaussian time series. Because the frequency

parameter v1 does not apply to stochastic environments, here we

therefore vary the autocorrelation r between two subsequent time

steps directly. Figure S1 shows that positive values of m occur when

fluctuations are characterized by positive autocorrelations r, while

negative values of m evolve when r,0. Hence, a marked

correspondence exists between the degree of environmental

autocorrelation and the sign and magnitude of m in both periodic

and stochastic environments (see Figure 2).

The evolution of multiple maternal effects, M. When

extending our model to allow for multiple, coevolving maternal

effects, we first focus on the simplest possible case in which

fluctuations in selective conditions are identical for both pheno-

typic characters z1 and z2. When only those maternal effects that

affect the same trait in offspring (i.e., M~
m11 0

0 m22

� �
) are

allowed to evolve, we find an identical outcome as in the

previously discussed case with a single maternal effect (see Figure

S2A): both entries m11 and m22 evolve to positive values in slowly

changing environments (that are characterized by positive

autocorrelations), and to negative values in rapidly changing

environments (characterized by negative autocorrelations). Figure

S2B shows that also in a stochastic environment, negative and

positive maternal effects evolve dependent on the value of the

autocorrelation between selective optima in parents and offspring.

When all entries of M~
m11 m12

m21 m22

� �
are able to evolve,

outcomes differ from the univariate case depicted in Figure 2.

Figures 3A and 3B show that all maternal effects either attain

positive or negative values (of a substantial magnitude) for a broad

range of rates of change v1. Moreover, Figure 3 shows that entries

of M evolve to two alternatively stable, evolutionary outcomes:

despite identical starting conditions, half of all replicate simulations

result in m11 and m21 having negative values (while m22 and m12 are

positive, Figure 3A), whereas the other replicates result in m11 and

Figure 2. The evolution of univariate maternal effects for
different frequencies v1 of periodically fluctuating selection.
Each dot represents the average maternal effect �mm measured over ten
replicate simulations (at generation t~50000), while the shaded areas
depict corresponding standard deviations. Boxes on the top of the
graph depict the a snapshot in time of the fluctuations in the selective
optimum h(t) over the course of 20 generations. Note that any
fluctuations are absent whenever v1 is a multiple of p, as the
environment then fluctuates back towards the same state (i.e., Dh = 0)
before selection takes place in the next generation. Black lines depict
the autocorrelation r:r h(t),h(t{1)ð Þ of selective conditions between
the parental and offspring generations. Parameters: m~0:02,
w~0, c~0, se~0:1.
doi:10.1371/journal.pcbi.1003550.g002
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m21 having positive values (with m22 and m12 being negative,

Figure 3B).

Both these alternatively stable outcomes result, however, in a

similar overall ‘shape’ of the maternal effects matrix M, when

measured in terms of its dominant eigenvalue lM: Figure 3C

shows that real (Re(lM)) and imaginary (Im(lM)) parts of the

eigenvalue are the same for alternative evolutionary outcomes.

Indeed, it is this shape of M that determines how the maternal

phenotype influences offspring phenotypes. For example, a

positive real part of the eigenvalue implies that offspring will have

a multivariate phenotype ½z1(t),z2(t)�T of a similar sign as the

maternal phenotype, which is advantageous when selective optima

are unlikely to change much between generations (left part of

Figure 3C). By contrast, negative values of Re(lM) imply that

offspring favor phenotypes that are different in sign to the

maternal phenotype, which is beneficial when the selective

environment changes rapidly between consecutive generations

(right part of Figure 3C). Since the real part of lM is given by

Re(lM)~ 1
2

(m11zm22), interchanging m11 and m22 gives rise to

identical values, hence explaining why the two alternatively stable

states lead to similar consequences.

Whereas the value of Re(lM) informs whether maternal effects

give rise to switches in sign between offspring and maternal

phenotypes, the imaginary parts Im(lM) indicate changes in

phenotypic values that span a larger number of generations

[74,75]. Although a full assessment of the dynamical consequences

of Im(lM) is beyond the scope of the current paper, we highlight

the role of Im(lM) when it attains its largest magnitude, at the

point v1~
1
2

p (Figure 3C). At this point, the autocorrelation

between selective conditions experienced by mother and offspring

is nearly absent (rt,tz1&0), while the autocorrelation rt,tz2

between selective conditions experienced by grandmothers and

offspring is, in fact, at a minimum: rt,tz2&{0:9. In other words,

offspring would benefit substantially from a phenotype that is

opposite in sign to that of their grandparents. Using results from

standard calculus (e.g., p. 355 in [75]), it can be shown that the

real and imaginary parts in Figure 3C at the point v1~
1
2

p give

rise to fluctuations in phenotypic values with a full period of

t~2p=arctan(Im(lM)=Re(lM)) ~ 4 timesteps. A period of t~4
implies that it takes t=2~2 timesteps for a phenotype to change

sign, which matches the change in environmental conditions

between grandparental and offspring generations. Supplementary

Figure S4 confirms this finding, by highlighting that the presence

of all four entries of M leads to a substantial increase in mean

fitness relative to scenarios in which only both diagonal entries of

M are evolving (and where Im(lM) is necessarily 0).

Alternatively stable outcomes are also found when selective

fluctuations are stochastic rather than periodic (Supplementary

Figure S3), at least when selective optima are identical for both

traits (h1(t)~h2(t), as previously considered for the periodic

environment) (see Figures S3A–B). However, the eigenvalues of M
(in particular their imaginary parts) are more modest in

comparison to Figure 2C, as longer term fluctuations in a

stochastic environment are inherently less predictable in compar-

ison to a deterministic environment.

Result 2: Temporally advanced selective conditions result
in positive cross-trait maternal effects

So far, we have assumed that fluctuations in both selective

optima h1(t) and h2(t) are identical, whereas different forms of

fluctuating selection may act on each maternal trait, dependent on

the ecological context that each trait experiences. Figure 4A

shows, for example, how delays between the selective optima of

both phenotypes impact on the evolution of multivariate maternal

effects matrix M. First, the presence of a delay of w timesteps

between the two selective optima leads to a collapse from the two

alternatively stable outcomes observed in Figure 3 to a single

Figure 3. The evolution of multivariate maternal effects for
different frequencies v1 of environmental change, when
periodically fluctuating selection is identical across traits (i.e.,
h1(t) = h2(t)). Panels A, B: entries of the multivariate maternal effects
matrix M evolve towards two alternatively stable outcomes (outcome 1
and outcome 2). Panel C: real and imaginary parts of the eigenvalue lM

of the maternal effects matrix are identical for both outcomes. For the
sake of clarity, a value of 0.01 was subtracted from the eigenvalues of
outcome 2, to prevent overlap with the eigenvalues in outcome 1. Each
point in panels A and B depicts values of the maternal effect mij(t) (at
generation t~50000) averaged over ten replicate generations, while
shading depicts corresponding standard deviations. Parameters:
m~0:02, w~0, c~0, se~0:1.
doi:10.1371/journal.pcbi.1003550.g003

Multivariate Maternal Effects
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evolutionary outcome, unless both optima fluctuate in an exactly

opposing fashion (depicted by the large error bars when w~p, 2p).

Second, Figure 4A shows that both cross-trait maternal effects (m12

or m21, which reflect maternal influences from one maternal trait

to a different offspring character) evolve to opposing positive and

negative values, dependent on the delay w between both optima.

The maternal effect m21 is positive (and m12 negative) when

fluctuating selection on trait z1 is advanced relative to selection on

z2 (grey region in Figure 4A), whereas m21 is negative (and m12

positive) when fluctuating selection on trait z2 is advanced relative

to selection on z1.

Insights on the adaptive significance of cross-trait mater-

nal effects can be derived from the cross-correlations

cor(hi(t{1),hj(t)) of selective conditions between different traits

in parents and offspring, which reflect to what extent one maternal

phenotype is able to predict future selection on a different offspring

phenotype (Figure 4B). Focusing on the grey region in Figure 4B

where the selective optimum h1(t) is advanced relative to h2(t),
we find that cor(h1(t{1),h2(t))wcor(h2(t{1),h1(t)). In other

words, selection on maternal phenotype z1(t{1) is overall

positively associated to selection on offspring phenotype z2(t)
(or when it attains negative values these are always smaller in

magnitude than the other cross-correlation). Since the evolving

maternal effect m21 reflects the influence of maternal trait

z�1(t{1) to offspring trait z2(t), it evolves to positive values so

that z2(t) matches its future environment. By contrast, selection

on the maternal phenotype z1(t{1) is overall negatively

associated to selection on offspring phenotype z2(t) (or when it

attains positive values these are always smaller in magnitude than

the other cross-correlation). Hence, the maternal effect m12

evolves to negative values instead. The reverse scenario applies

for the white region in Figure 3B, where selective optimum h2(t)
is advanced relative to h1(t). Indeed, we find that m12 then

evolves to positive values, while m21 evolves to negative values. In

other words, those maternal traits enduring fluctuating selection

that is advanced relative to selection on other maternal traits are

more likely to develop positive cross-trait maternal effects,

whereas delayed fluctuating selection on maternal traits is more

likely to lead to negative cross-trait maternal effects.

Lastly, we investigated whether such cross-trait maternal effects

also evolve in multivariate stochastic environments. As cross-

correlations are easily measurable in time series analyses [76], we

chose to vary the cross-correlation directly in Figure S3 (although

results are similar when adjusting the time-lag between both

optima). In a stochastic environment without any cross-correlation

between both selective optima, we find that cross-trait maternal

effects mij generally do not evolve, while the within-trait maternal

effects mii track the autocorrelation of its associated selective

optimum hi (Figure S3D,E). By contrast, when selective cross-

correlations are nonzero, cross-trait maternal effects evolve to

substantial values (Figure S5). For example, when varying the

cross-correlation cor(h2(t{1),h1(t)) from 21 to +1, we find that

the associated cross-trait maternal effect m12 evolves from strongly

negative to strongly positive (Figure S5A). Instead, when varying

the cross-correlation cor(h1(t{1),h2(t)), we find a similar pattern

for the other cross-trait maternal effect m21. Similar to the periodic

environment in Figure 4, we find that cross-trait maternal effects

evolve in concordance to the prevailing cross-correlations between

both fluctuating selective optima.

Result 3: The strongest maternal effects evolve from
maternal traits that endure little selective noise

Next, we assess the combined influence of environmental

stochasticity and periodicity, by considering a scenario in which

selection on trait z1 fluctuates only periodically whereas selection

on trait z2 fluctuates both stochastically and periodically (e.g. see

Figure 1). Such a scenario reflects, for example, a case in which

some traits (e.g., z1) are associated with more predictable selective

conditions than other traits (e.g., z2).

In Figure 5A we vary the degree of stochastic noise d in selection

acting on character z2. Increasing levels of noise lead to the

evolution of substantial cross-trait maternal effects m21 from

maternal character z�1(t{1) to offspring character z2(t). By

contrast, the value of the other cross trait maternal effect m12

(from maternal character z�2(t{1) to offspring character z1(t))

evolves towards zero. Both the same-trait maternal effects m11 and

m22 evolve towards positive and negative values respectively,

corresponding to a positive dominant eigenvalue lM that is

expected when the frequency of noise-free periodic fluctuations is

relatively low (e.g., v1~0:1 in Figure 5).

Figure 4. The evolution of multivariate maternal effects (panel
A) when the evolutionary optimum h2(t) lags w timesteps
behind the evolutionary optimum h1(t). Grey area: fluctuations in
optimum h1(t) precede those of optimum h2(t) (0vwvp). White area:
h2(t) precedes h1(t) (pvwv2p). Insets on the top of the panel depict
the fluctuating selective optima h1(t) (blue line) and h2(t) (red line) over
time. Panel B: selective cross-correlations that result from varying the
time-lag between both selective optima. Note that each point in panel
A depicts the maternal effect mij (at generation t~50000) averaged
over ten replicate generations, while error bars depict corresponding
standard deviations. Error bars are large when time lags are small, as
evolution then leads to alternatively stable states observed in
Figures 3A,B. The results in this figure also extend to a periodic
environment in which the time delay w is stochastically distributed

according to a normal distribution N (�ww,s2
w) with mean �ww[f0, . . . ,2pg

and variance s2
w varying from 0.1 to 4 (results not shown). Parameters:

m~0:02, c~0, v1~0:5, se~0:1.
doi:10.1371/journal.pcbi.1003550.g004
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In order to explain the marked evolution of the cross-trait

maternal effect m21, note that selection on maternal trait z2(t{1)
is characterized by white noise, while noise is absent on maternal

trait z1(t{1). Consequently, maternal trait z2(t{1) is a less

reliable source of information about future selective conditions

experienced by offspring. As a result, offspring are selected to

obtain their information about periodic fluctuations from the other

maternal trait z1(t{1), thereby evolving large, positive values of

the cross trait maternal effect m21 while its counterpart m12 evolves

towards a value of 0. Hence, asymmetries in information content

between both maternal characters favor the evolution of cross-trait

maternal effects from the most reliable maternal character,

phenotype z1(t{1).

When the degree of noise in h2 increases to ever larger levels, we

find that m21 attains either positive or negative values of a large

absolute magnitude, Dm21D&1 (Figure 5A). In line with analytical

models that show that values of DmDw1 are associated with very

large phenotypic variances [34], we find indeed that DmDw1 results

in a large phenotypic variance of trait z2, s2
z2

, while the variance of

the other trait s2
z1

is generally small (Figure 5B). Large phenotypic

variances are selectively favored in unpredictable environments,

since a large diversity of phenotypes among siblings warrants the

survival of at least a subset of them in the event of environmental

change (bet-hedging: [6,8,77,78]).

Given that maternal effects may thus drive the evolution of large

phenotypic variances, large values of s2
z2

relative to s2
z1

can only be

realized by evolving a large cross-trait maternal effect m21. By

contrast, evolving a large within-trait maternal effect m22 would

also generate large values of s2
z2

, but also gives rise to highly

detrimental carry-over effects in which extreme values of the

maternal phenotype z�2(t{1) will lead to values of z2(t) an even

larger magnitude in the next generation. Such detrimental carry-

over effects are absent for the cross-trait maternal effect m21, since

it has the more constant maternal phenotype z�1(t{1) as its input.

Hence, cross-trait maternal effects may facilitate the evolution of

large phenotypic variances without giving rise to deleterious carry-

over effects that are associated with large absolute values of within-

trait maternal effects mii.

Discussion

Maternal effects give rise to an interaction between parental and

offspring phenotypes that is considered to be an important

adaptation to changing environments [19,22,25,79]. Yet, few

formal models predict how selection shapes the strength and sign

of maternal effects in different ecological contexts (see [80] for

similar remarks in the context of social interactions). The current

study is therefore the first to show that different forms of

environmental fluctuations can have a profound impact on the

evolution of multivariate maternal effects.

When fluctuating selection acts in an identical fashion on all

maternal traits, we find that the shape of the maternal effects

matrix M (measured by its eigenvalues) evolves to be closely

aligned with the degree of autocorrelation between parental and

offspring phenotypes. Hence, we expect that slow fluctuations

(leading to a positive autocorrelation) select for positive real parts

of lM, while rapid fluctuations select for negative real parts of lM.

This finding corroborates a number of univariate models which

showed that the rate of environmental fluctuations corresponds to

the degree with which offspring should copy or diverge from their

parent’s phenotype in the case of discrete phenotypic variation

[23,39,81]. Interestingly, our multivariate model shows that the

same shape of M can sometimes be achieved in multiple ways,

thereby leading to alternatively stable states in which entries of M
can differ substantially in sign and magnitude between different

subpopulations. Consequently, hybrid crosses between subpopu-

lations are likely to lead to suboptimal values of maternal effects,

potentially leading to postzygotic reproductive isolation. Nonethe-

less, as alternatively stable states collapse to a single outcome when

fluctuating selection diverges between both traits, it remains to be

seen whether maternal effects can indeed contribute to reproduc-

tive isolation across a broad range of contexts.

The most important result of the current study is that cross-

correlations between selective fluctuations acting on different traits

can select for striking configurations of cross-trait maternal effects.

One way in which such cross-correlations can arise is due to time

lags between selection acting on one trait and selection acting on

another trait. Essentially, lag-times between fluctuating optima

Figure 5. The evolution of multivariate maternal effects when varying the degree of noise in selective optimum h2 while selective
optimum h1 remains noise-free. Panel A: evolving maternal effects. Panel B: corresponding phenotypic variances s2

zi
of each phenotypic trait,

showing that phenotype z2 exhibits increased phenotypic variance (resulting in bet-hedging) when compared to z1. Parameters:
w~0, c~0:1, v1~0:1, se~0:1.
doi:10.1371/journal.pcbi.1003550.g005
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create asymmetries in the information content between both

maternal characters, so that characters which endure selective

fluctuations which are ‘advanced’ (relative to selective fluctuations

on other traits) are more informative about future selective

conditions than other characters. As a consequence, cross-trait

maternal effects from such maternal traits should evolve to positive

values, whereas cross-trait maternal effects based on traits

enduring delayed selection should evolve to negative values.

Hence, our study suggests that pairs of positive and negative

maternal effects are indicative of lag-times (or cross-correlations in

the action of fluctuating selection between different traits.

Another context in which asymmetries in information content

occur between both maternal traits is when fluctuating selection on

one character contains more stochastic noise relative to selection on

other characters. In this case, we expect that offspring characters

benefit from information contained in those maternal traits that

endure the most predictable form of fluctuating selection, whereas

offspring are selectively favored to ignore information from

maternal characters with more selective noise when alternative

maternal traits are available. Henceforth, we may expect cross-trait

maternal effects to evolve that rely on those maternal traits which

endure the most predictable forms of fluctuating selection. In

addition, when stochastic noise in selective conditions acting on one

particular trait is substantial, cross-trait maternal effects of large

absolute magnitude may give rise to increased phenotypic variance

in the trait that experiences noisy selection (see Figure 5B). Such

increased phenotypic variation is selectively advantageous in

fluctuating environments, as it gives rise to bet-hedging [6,8,82].

Following the seminal model of Kirkpatrick and Lande [34] our

study indeed shows that large phenotypic variances are associated

with relatively large magnitudes of maternal effects coefficients, i.e.,

Dmij Dw1. Henceforth, such ‘large’ maternal effects may provide an

efficient means to increase phenotypic variation among offspring,

which is in line with a number of studies that have identified

maternal effects as a mechanism that gives rise to bet-hedging

[23,83,84]. On the other hand, large maternal effects will also imply

that any fluctuations in current trait values resonate to future

generations, generating ever larger mismatches to future environ-

mental conditions. To use maternal effects to increase phenotypic

variance, individuals are selectively favored to use other maternal

traits, which are less affected by stochastic fluctuations in selective

conditions. Consequently, cross-trait maternal effects used in the

context of bet-hedging are expected to rely on maternal characters

that are stably inherited across generations.

While numerous empirical studies have measured nongenetic

effects in animal and plant populations (reviewed in [15,18,79]),

almost all of these studies have taken a univariate perspective and

measured only single maternal effects coefficients [31,85,86], or

alternatively, measured different maternal traits lumped into a

single ‘maternal performance’ character ([30,87]). Consequently, it

is currently premature to assess whether our predictions corre-

spond to any empirical measurements of maternal effects matrix

M. The current study indicates, however, that overlooked

components of M, such as cross-trait maternal effects, could

potentially be an important adaptation to fluctuating selection,

and may provide a signature of past selective differences between

traits. We therefore hope that the current model provides an

incentive for future studies to assess maternal effects in a

multivariate context. Such measurements of M are facilitated by

the recent advent of multivariate methods developed within the

context of indirect genetic effects (IGEs, [87–90]) that allow for the

estimation of M using variance components [91]. To our

knowledge, only a single study so far has used these multivariate

methods to measure M: Galloway and coworkers ([32], see also

[70]) measured maternal effects across four different life history

traits in the plant Campanulastrum americanum, finding that some cross-

trait maternal effects have magnitudes similar to or sometimes even

larger than any within-trait maternal effects on similar characters.

Moreover, cross-trait maternal effects often differ considerably in

magnitude and even in sign, suggesting that observed variability

among components in M is present and might be matched to past

selective conditions to test our hypotheses. Moreover, a follow-up

study in the same population [70] highlights another distinctive

feature of maternal effects, namely that evolutionary change in

phenotypes in a given generation is the result of both current and

past selection gradients. We therefore hope that more studies follow

the example by Galloway, McGlothlin and coworkers [32] and

measure maternal effects in multivariate contexts.

The current model has made a number of limiting assumptions

that suggest possible directions for future work. The current study

considers the simplest possible genetic architecture, where the

breeding values ai and maternal effects mij are represented by

single, diploid loci. It is well established that the relative number of

loci coding for each trait may affect the magnitudes of the additive

genetic (co)variances (e.g., [92,93]), which in turn may either

enhance or constrain adaptation [46]. Apart from the potential

effects of additive genetic (co)variances, however, we note that

previous comparisons of multilocus and single-locus approaches

(e.g., [94–97]) have shown that evolutionary endpoints are often

remarkably similar regardless of the approach taken, so we expect

the evolution of M to be robust to more complicated genetic

architectures. Future studies should assess whether this prediction

indeed bears out.

In addition, we exclusively focus on the evolution of cross-trait

maternal effects due to temporal cross-correlations, thereby

generating interactions between two different characters in a

transgenerational context. By contrast, conventional studies on

multivariate evolution focus exclusively on genetic correlations as

the main (within-generational) signature of interactions between

traits [98–102]. It would therefore be interesting to investigate

whether those selective contexts that give rise to genetic correlations,

such as trade-offs [103,104], phenotypic plasticity [105,106],

developmental interactions [99,100,102] or sexual selection

[97,101,107] also affect the evolution of cross-trait maternal effects.

In turn, the potential role of cross-trait maternal effects as

constraints on phenotypic evolution is currently virtually unex-

plored [35], as conventional studies have focused almost exclu-

sively on genetic correlations that constrain the multivariate

response to selection [45,46,54]. When cross-trait maternal effects

are present, however, past selection on a particular character in

the previous generation may lead to a correlated selective response

on other characters even when genetic correlations themselves are

absent [34,35]. In addition, a recent study on univariate maternal

effects shows that maternal effects expose populations to stronger

transient perturbations in response to sudden environmental shifts

than populations without maternal effects [25,73]. More work is

therefore needed to single out those ecological conditions in which

significant cross-trait maternal effects are expected to evolve, as

well assessing their consequences to phenotypic adaptation.

Supporting Information

Figure S1 The evolution of a single maternal effect m when

fluctuations in h(t) are stochastic rather than periodic. Instead of

varying the frequency of environmental change v1 (which is only

relevant to periodic environments), we now vary the autocorre-

lation r between selective conditions experienced by mother and

offspring. Maternal effects evolve to be positive when r attains
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large, positive values. By contrast, negative values evolve for

smaller values of r. Each dot represents the average maternal

effect �mm measured over ten replicate simulations (at generation

t~50000), while the shaded areas depict corresponding standard

deviations. Parameters: m~0:02, c~0:1, se~0:32.

(PDF)

Figure S2 The evolution of the multivariate maternal effects

matrix M~
m11 0

0 m22

� �
when fluctuations in h1(t) and h2(t) are

periodic (panel A) or stochastic (panel B). Panel A: Similar to the

univariate scenario depicted in Figure 1, we find that m11 and m22

evolve to positive values when periodic fluctuations are slow,

whereas maternal effects evolve to be negative when fluctuations

occur rapidly. Panel B: when the autocorrelation in selective

conditions is positive (negative) between two subsequent timesteps,

m11 and m22 again evolve to positive (negative) values, although

magnitudes are more modest relative to panel A. Note that both

selective optima are identical h1(t)~h2(t) in the periodic

environment, whereas both optima are uncorrelated in the

stochastic environment. Parameters: se~0:1, m~0:01, w~0,

c~0 (panel A), se~0:32, c~0:1 (panel B).

(PDF)

Figure S3 The evolution of multivariate maternal effects in a

stochastically fluctuating environment, where h1(t) and h2(t) are

Gaussian random variables. Panels A–C: when both optima are

identical (h1(t)~h2(t)) we find alternative stable states, similar to

the ones found in the periodic environment in Figure 3. Panel D–

E: both optima are uncorrelated, yet identically distributed.

Consequently, the alternative stable states collapse to a single

outcome. Parameters: se~0:32, m~0:01, w~0, c~0:1.

(PDF)

Figure S4 An example simulation showing the selective

advantage of evolving maternal effects in a periodically fluc-

tuating environment, when the rate of environmental change is

v1~
1
2

p (see also Figures 3A,B). At first, only the genetic values

a(t) that code for phenotypes z1 and z2 are allowed to evolve, to

obtain a baseline measure of adaptation to a fluctuating

environment in terms of the number of surviving individuals �WW
(panel C). From generation 12500 onwards, the two same-trait

maternal effects m11 and m22 are allowed to evolve in addition to

both genetic values. However, panels B and C show that m11 and

m22 do not enhance adaptation to a fluctuating environment. This

is unsurprising, as the two same-trait maternal effects m11 and m22

can only lead to fluctuations in which phenotypes change sign at

every generation (i.e., when m11,m22v0). However, for the rate

of environmental change v1~
1
2

p considered here, the optimal

phenotype would need to change sign every second generation

(see main text). When also both cross-trait maternal effects m12

and m21 are allowed to evolve (from generation 28000 onwards),

increased flexibility allows for phenotypic adaptation to the

fluctuating environment (panel B), thereby eliminating the deep

troughs of the fitness landscape in panel C. Parameters:

m~0:02, c~0, w~0, se~0:1.

(PDF)

Figure S5 The evolution of multivariate maternal effects in a

stochastically fluctuating environment, where the selective opti-

mum hi(t{1) in the parental generation is cross-correlated with

hj(t) in the offspring generation. Panel A: the cross-correlation

between optimum h2(t{1) and h1(t) is varied from 21 to 1, while

the other cross-correlation cor(h1(t{1),h2(t)) is constrained

between values 0 and 20.1. As a consequence, the cross-trait

maternal effect m12 from maternal trait z�2(t{1) to offspring trait

z1(t) evolves from negative to positive values, in line with the

dominant cross-correlation. Panel B: now, the cross-correlation

between optimum h1(t{1) and h2(t) is varied from 21 to 1, while

the other cross-correlation is constrained to much smaller values.

Again, we find that the corresponding cross-trait maternal effect

m21 from maternal trait z�1(t{1) to offspring trait z2(t) evolves

from negative to positive, in line with the cross-correlation. In both

panels, the within-trait autocorrelations cor(h1(t{1),h1(t))~
cor(h2(t{1),h2(t))~r are set at r = 0.1. Parameters: m~

0:01, w~0, c~0:1, se~0:32.

(PDF)
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