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Abstract. We consider the global thermal state of classical and quantum harmonic

oscillators that interact with a reservoir. Ohmic damping of the oscillator can be

exactly treated with a 1D scalar field reservoir, whereas general non-Ohmic damping

is conveniently treated with a continuum reservoir of harmonic oscillators. Using the

diagonalized Hamiltonian of the total system, we calculate a number of thermodynamic

quantities for the damped oscillator: the mean force internal energy, mean force free

energy, and another internal energy based on the free-oscillator Hamiltonian. The

classical mean force energy is equal to that of a free oscillator, for both Ohmic and non-

Ohmic damping and no matter how strong the coupling to the reservoir. In contrast,

the quantum mean force energy depends on the details of the damping and diverges

for strictly Ohmic damping. These results give additional insight into the steady-

state thermodynamics of open systems with arbitrarily strong coupling to a reservoir,

complementing results for energies derived within dynamical approaches (e.g. master

equations) in the weak-coupling regime.

PACS numbers: 03.65.-w, 03.65.Yz, 03.70.+k

1. Introduction

Damped oscillators are of importance in numerous experimental and natural settings

and their dynamics has been extensively modelled [1, 2]. Various approaches to the

quantization of such oscillators have been explored. For example, one approach deals

solely with the oscillator as the total dynamical system in which case the energy is not

conserved [3, 4]. Other approaches add additional degrees of freedom, i.e. different kinds

of reservoirs, in addition to the system of interest. These reservoir approaches allow the

quantization of systems with dissipation to be developed with a time-independent global

Hamiltonian, which offers advantages in applying the quantum formalism. The usual

practice to arrive at damped motion is to couple the oscillator to additional harmonic

oscillators, either a discrete set [5, 6, 7, 8, 9, 2] or a continuum [10, 11, 12, 13]. Alternative

models couple the oscillator to a scalar field [14]. The quantization techniques

employed with reservoirs include path integrals [6, 7], canonical quantization [10], and

phenomenological approaches [9].
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The aim of this paper is to derive thermal-equilibrium energies and free energies of

damped oscillators in the classical and quantum regimes. We employ both a scalar field

reservoir [14] and the continuum reservoir [10] , and our approach throughout is based

on canonical quantization and diagonalization of the total Hamiltonian. Contrary to

many master equation approaches which assume an initial state of the oscillator and

reservoir that is a product state [7, 18, 14, 2, 21], we will here assume that the global

system is in a thermal equilibrium state, implying that it is not in a product state

because of the coupling. We consider two different definitions of the thermal energy

of a damped oscillator: the mean-force energy, which includes a contribution from the

oscillator-reservoir coupling term in the Hamiltonian [15, 16, 17], and an energy based

solely on the oscillator part of the Hamiltonian. A case of particular interest is Ohmic

damping of the oscillator, where the damping is proportional to velocity, but we also

wish to provide expressions for thermal energies for non-Ohmic damping. It is well

known that the energy of a quantum oscillator with Ohmic damping is divergent [22], a

problem usually treated by the introduction of a cut-off frequency [7, 22, 2] that changes

the damping from strictly Ohmic damping. Interestingly, in the most widely used

treatment of damped motion, which begins with a discrete set of harmonic oscillators as

a reservoir [7, 2], even the classical case contains divergent quantities in the equations

of motion. Using the scalar-field reservoir [14] and the Huttner-Barnett reservoir (a

continuum of harmonic oscillators) [10] to model Ohmic and non-Ohmic damping, we

will obtain finite results for the energies of the oscillator in the classical case, from

a dynamics that contains no divergent quantities. We will thereby exhibit within a

reservoir treatment that Ohmic damping is physically possible in classical mechanics

but impossible in quantum mechanics. A comparison will also be made between the

Ohmic-damping thermal energies and those for general damping, and between classical

and quantum thermal energies.

While we here consider the case of a global thermal state, the two reservoir

approaches we discuss can readily be applied to investigate non-equilibrium dynamics

(see [14], for example). The use of reservoirs for non-equilibrium problems is discussed

by many authors, e.g. [7, 18, 19, 20, 21, 23].

2. Ohmic damping with a scalar field reservoir

Ohmic damping corresponds to the following simple equation of motion of a harmonic

oscillator:

q̈(t) + γ q̇(t) + ω2
0 q(t) = f(t), (1)

where q is the oscillator displacement, γ is a damping constant, ω0 is the frequency of

an externally applied potential and f is an external force. The question now arises as

to how a reservoir and coupling can be chosen to obtain (1) as the effective equation of

motion for the oscillator. Coupling the oscillator to a reservoir of harmonic oscillators,

either a discrete or continuous set, does not give (1) as the equation of motion for q,
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except as a limiting case [7, 8, 2] or with an accompanying zero-frequency solution [11].

In order to obtain (1) exactly, a reservoir [14] consisting of a 1D scalar field φ(x, t) may

be used, linearly coupled to the oscillator. In detail, the Lagrangian is

L =
1

2

(
q̇2(t)− ω2

0 q
2(t)
)

+
1

2

∫ ∞
−∞

dx

[
1

c2
φ̇2(x, t)− (∂xφ(x, t))2

]
− α q̇(t)φ(0, t), (2)

where α is the coupling constant. This gives the equations of motion

q̈(t) + ω2
0 q(t) = α φ̇(0, t) and

1

c2
φ̈(x, t)− ∂2

xφ(x, t) = −α q̇(t) δ(x). (3)

As was shown previously [14], the solution for the scalar field is

φ(x, t) = − c
2
α q

(
t− |x|

c

)
+ φh(x, t), (4)

where φh(x, t) is a solution of the homogeneous φ-equation φ̈/c2 − ∂2
xφ = 0. This yields

a q-equation of the desired form stated in Eq. (1):

q̈(t) + γ q̇(t) + ω2
0 q(t) = α φ̇h(0, t) with γ :=

c

2
α2, (5)

with γ proportional to α2. As a main result of this paper we will now quantize

and diagonalise the Hamiltonian for this simple system, which exhibits exact Ohmic

damping.

3. Quantization and diagonalization of the scalar field model

From Eq. (2) one obtains the canonical momenta

Πq(t) = q̇(t)− αφ(0, t) and Πφ(x, t) =
1

c2
φ̇(x, t). (6)

We quantize in the Heisenberg picture by imposing the equal-time commutation relations

[q̂(t), Π̂q(t)] = i~ and [φ̂(x, t), Π̂φ(x′, t)] = i~ δ(x− x′), (7)

while all other commutators of these operators vanish. Here the quantized operators

are indicated with hats. Combining Eq. (2) and Eq. (6) the quantized Hamiltonian is

Ĥ =
1

2

[
Π̂2
q + ω2

0 q̂
2
]

+
1

2

∫ ∞
−∞

dx
[
c2Π̂2

φ + (∂xφ̂)2
]

+
α

2

[
Π̂qφ̂(0, t) + h.c.

]
+
α2

2
φ̂2(0, t) (8)

where h.c. stands for Hermitian conjugate and a Hermitian combination of operators

has been taken in the second-last term.

The diagonalization of a Hamiltonian of the general form (8) has been described

in detail in [11] (see also [13]). The Hamiltonian (8) is diagonalized by transforming it

into the normal form

Ĥ =
1

2

∫ ∞
−∞

dk ~ω
[
Ĉ†(k)Ĉ(k) + Ĉ(k)Ĉ†(k)

]
with ω := c|k|, (9)

where Ĉ†(k) and Ĉ(k) are the creation and annihilation operators for a free scalar field,

Ψ̂(x, t) =

∫ ∞
−∞

dk

√
c2~
4πω

[
Ĉ(k)eikx−iωt + Ĉ†(k)e−ikx+iωt

]
. (10)
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The ladder operators obey the standard bosonic field commutation relations

[Ĉ(k), Ĉ†(k′)] = δ(k − k′) and [Ĉ(k), Ĉ(k′)] = 0. (11)

The diagonalization also goes through classically, with commutators replaced by Poisson

brackets. We show in the Appendix that the relationship between the dynamical

variables appearing in Eq. (8) and in Eq. (9) is given by

q̂(t) =

∫ ∞
−∞

dk

√
~ω
4π

[
i c α

ω2 − ω2
0 + iγω

Ĉ(k) e−iωt + h.c.

]
, (12)

φ̂(x, t) =

∫ ∞
−∞

dk

√
c2~
4πω

[(
eikx − i γ ω

ω2 − ω2
0 + iγω

eiω |x|/c
)
Ĉ(k) e−iωt + h.c.

]
, (13)

Π̂q(t) = ˙̂q(t)− α φ̂(0, t), (14)

Π̂φ(x, t) =
1

c2

˙̂
φ(x, t). (15)

4. Thermal equilibrium of the scalar-field model

We are now ready to calculate thermal equilibrium expectation values of the total system

and deduce the internal energy and free energy of the open quantum oscillator, as well

as of its classical counterpart. A common assumption in dynamical approaches is that

the reservoir is always in a thermal state while the system evolves in time towards a

steady state [1, 2]. In contrast, we here consider the case where the oscillator and system

have been interacting for so long that a global thermal state has been reached.

For a non-equilibrium treatment of the scalar-field reservoir, in the context of the

quantum-classical transition, see [14]. In global thermal equilibrium, i.e. ρtot(β) = e−βĤ

Z
,

β−1 = kBT , the normal modes of the total system have the expectation values:

〈Ĉ†(k)Ĉ(k′)〉tot = N (ω) δ(k − k′) with N (ω) =

[
exp

(
~ω
kBT

)
− 1

]−1

(16)

〈Ĉ(k)Ĉ(k′)〉tot = 0. (17)

These equations now determine the thermal correlation functions of the q-oscillator.

Using Eq. (12) it is straightforward to show that

1

2
〈q̂(t)q̂(t′) + h.c.〉tot =

~
π

∫ ∞
0

dω
γω

(ω2 − ω2
0)2 + γ2ω2

cos [ω(t− t′)] coth

(
~ω

2kBT

)
. (18)

This result can also be obtained by using Eq. (1) and appealing to the fluctuation-

dissipation theorem [22]. In this scalar field model the fluctuation-dissipation theorem

does not have to be imposed, rather it arises as a consequence of thermal equilibrium of

the total system as formalised in Eqs. (16)–(17). The above autocorrelation function is

finite and depends on the damping parameter γ but further results show the quantum

case to be unphysical (see [22] and below).

To calculate the thermodynamic quantities for the oscillator, such as its internal

energy, one must quantify the contributions that come from its coupling to the

reservoir which causes the damping [24]. The energy of an open oscillator, which
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is part of a total thermal state, can be accounted for by the Hamiltonian of mean

force [15]. The Hamiltonian of mean force appears naturally in non-equilibrium work

relations [16, 17, 25], in the thermodynamic analysis of the second law and Landauer’s

principle for a damped oscillator [26], in the evolution to steady state of open systems

coupled to a thermal reservior [21], and also in the Casimir effect [12]. The Hamiltonian

of mean force for the oscillator is defined as [17]

Ĥ?(β) = − 1

β
ln

trφ[e−βĤ ]

Zφ
, Zφ = trφ[e−βĤφ ], β =

1

kBT
, (19)

where the traces are taken over the scalar field φ only and Ĥφ =
1
2

∫∞
−∞ dx

[
c2Π̂2

φ + (∂xφ̂)2
]

is the free scalar-field Hamiltonian, a part of the total Hamil-

tonian Ĥ given in (8). Thus, Zφ in (19) is the partition function of a free scalar field in

thermal equilibrium. The partition function Z? associated with Ĥ? is

Z? = trS

[
e−βĤ

?
]

=
Z

Zφ
, Z = tr[e−βĤ ], (20)

where Z is the partition function of the total system. The free energy F ? associated

with Z? is, from (20),

F ? = −β−1 ln(Z?) = F − Fφ, (21)

where F = −β−1 ln(Z) is the free energy of the total system and Fφ = −β−1 ln(Zφ)

is the free energy of a free scalar field in thermal equilibrium. From the standard

thermodynamic relation F = U − TS relating the free energy to the internal energy

U and entropy S, we can find the internal energy associated with the mean force free

energy F ?. From (21) we have

F ? = U − Uφ − T (S − Sφ), (22)

where U is the total internal energy, Uφ is the internal energy of a free scalar field, S is

the total entropy and Sφ is the entropy of a free scalar field. Equation (22) shows that

the mean force thermal energy U? associated with F ? is

U? = U − Uφ = 〈Ĥ〉tot − Z−1
φ trφ[Ĥφe

−βĤφ ], (23)

which is the total thermal energy minus the thermal energy of a free scalar field. Note

that U? is not defined as the expectation value of Ĥ? in the global thermal state, i.e.

U? :6= 〈Ĥ?〉tot. The total Hamiltonian (8) can be rewritten with (14) in terms of q̂ and

φ̂ as

Ĥ =
1

2
˙̂q
2

+
1

2
ω2

0 q̂
2 +

1

2

∫ ∞
−∞

dx

[
1

c2

˙̂
φ

2

+ (∂xφ̂)2

]
. (24)

Now U? can be obtained as the expectation value of (24) in the global thermal state ρtot

calculated using (12), (13), (16) and (17), and dropping all γ-independent terms in the

final scalar-field contribution (this subtracts out the free scalar-field energy as required

by (23)). Remarkably, the γ-dependent terms arising from the scalar-field part of (24)
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cancel out in the expectation value, and so U? is the same as would be obtained from

just the q-terms in (24). The result for U? is

U? =
~
2π

∫ ∞
0

dω
γω (ω2 + ω2

0)

(ω2 − ω2
0)2 + γ2ω2

coth

(
~ω

2kBT

)
. (25)

This expression diverges for any temperature T which proves that Ohmic damping of a

quantum oscillator is unphysical. Such divergences are often avoided by introducing a

high frequency cut-off at the outset [22] which in turn results in approximately Ohmic

damping for those frequencies that can be supported by the system.

4.1. Classical Ohmic damping

Classically the Ĉ(k) in (10) become the complex amplitudes C(k) of the normal modes,

and the thermal-equilibrium expectation value corresponding to (16) is 〈C∗(k)C(k′)〉 =

δ(k − k′) kB T/(~ω). The occurrence of ~ in this classical expression is due to the ~-

dependent normalization of the complex amplitudes in (10). We will derive classical

thermal results as limits ~→ 0 of the quantum expressions, but they may of course be

directly obtained from the classical normal-mode expectation values.

In the classical limit of (25) the mean force internal energy is finite and neatly gives

U? =
kB T

π

∫ ∞
0

dω
γ (ω2 + ω2

0)

(ω2 − ω2
0)2 + γ2ω2

= kB T, (26)

which is the same result as for an undamped oscillator. This result, U? = kB T , is

actually true not only for Ohmic damping, but also for very general damping, see next

section.

An alternative definition of the internal energy of the oscillator that is often

considered [24] is

U :=
1

2
〈 q̇2 + ω2

0 q
2〉tot, (27)

where the expectation value is again taken in the global thermal state. Note that this

energy could depend on the coupling to the reservoir through both the correlations in

the thermal state and the dependence of q and q̇ on the coupling α. As discussed after

Eq. (24), for Ohmic damping it turns out that the scalar field contribution to U? cancels

out, i.e. the mean force energy is the same as would be obtained using the definition

of U in Eq. (27). Thus for the case of Ohmic damping one obtains U = U? = kB T .

Interestingly, for general damping U? differs from U , see next section.

5. Huttner-Barnett reservoir and general damping

In the previous sections the reservoir was taken to be a 1D scalar field because this leads

very simply to Ohmic damping of the q-oscillator. For general damping, a reservoir of

harmonic oscillators can be used. In [11, 12, 13] an oscillator coupled to a reservoir

consisting of a continuum of harmonic oscillators {Xω : ω ∈ [0,∞)} was considered.
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This continuum reservoir was introduced by Huttner and Barnett [10]. The resulting

Hamiltonian is [11]

Ĥ =
1

2
Π̂2
q +

1

2
ω2

0 q̂
2 +

1

2

∫ ∞
0

dω
(

Π̂2
Xω + ω2X̂2

ω

)
− 1

2

∫ ∞
0

dω α(ω)
[
q̂ X̂ω + X̂ω q̂

]
, (28)

where α(ω) is a function describing the coupling between the oscillator and reservoir

modes. The resulting dynamics of the q-oscillator is governed by a complex susceptibility

χ(ω) = χ?(−ω) whose imaginary part is proportional to α2(ω). The susceptibility

obeys Kramers-Kronig relations and so χ(ω) is analytic in the upper-half complex ω-

plane [11]. In addition there is a sufficient condition on χ(ω) for the total Hamiltonian

to be diagonalizable, namely [11]∫ ∞
0

dω Im[χ(ω)] <
π

2
. (29)

The damping term in the effective equation of motion for q, see (1) for the Ohmic

damping case, now features a damping kernel, ω2
0

∫∞
−∞ dt′ χ(t − t′) q̂(t′). The position

operator for the q-oscillator then becomes [11]

q̂(t) =

∫ ∞
0

dω

√
~

2ω

[
−α(ω)

ω2 − ω2
0[1− χ(ω)]

Ĉ(ω) e−iωt + h.c.

]
, (30)

where Ĉ(ω) are the annihilation operators for the modes that diagonalize the full

Hamiltonian (28), analogous to Eq. (9). The explicit form of the Hamiltonian in (28)

allows the calculation of the mean force internal energy [11]:

U? =
~
2π

∫ ∞
0

dω coth

(
~ω

2kBT

)
Im

ω
2
0

[
ω dχ(ω)

dω
− χ(ω) + 1

]
+ ω2

ω2
0 [1− χ(ω)]− ω2

 .(31)

It is easy to obtain from the results in [11] that the internal energy U defined by (27)

differs from (31) by not having the χ-dependent terms in the numerator inside the curly

brackets, i.e.

U =
~
2π

∫ ∞
0

dω coth

(
~ω

2kBT

)
Im

{
ω2

0 + ω2

ω2
0 [1− χ(ω)]− ω2

}
. (32)

This means that for general damping the two energy expressions (31) and (32) will differ

(i.e. U∗ 6= U) both in the quantum and classical cases. For the classical oscillator, both

U? and U can be evaluated exactly for arbitrary χ, see below.

5.1. Ohmic damping

As can be seen by comparing Eq. (31) with the Ohmic expression Eq. (25), Ohmic

damping corresponds to choosing a “susceptibility”

χ(ω) =
iγω

ω2
0

. (33)

However, this choice is not physical as it obeys neither Kramers-Kronig relations nor

condition (29), reflecting the well-known result that strictly Ohmic damping cannot be
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treated by a reservoir of harmonic oscillators [8]. (We note, however, that the case of

Ohmic damping when accompanied by a zero-frequency solution for the q-oscillator can

be properly treated by a valid susceptibility [11].)

Despite the fact that the Ohmic damping “susceptibility” (33) is not a valid choice,

inserting it into the general result (31) gives the Ohmic-damping result (25) derived

with the scalar field reservoir. Also, in (31) the χ-dependent terms in the numerator

inside the curly brackets cancel out for this choice (33), which again gives U? = U in

the Ohmic damping case, as found in the previous section.

5.2. Classical limit

We now derive the important result that in the classical limit ~ → 0 one obtains

U? = kB T for almost any susceptibility, whereas U depends on the susceptibility (i.e.

the damping). If we take the Im outside the integration in (31) then the real part of

the resulting integral does not converge. However, setting the lower integration limit

to −∞ and dividing the whole integral by 2 removes the diverging real part, because

the real part of the integrand is odd in ω (recall that χ(ω) = χ∗(−ω), so Re[χ(ω)] is

even and Im[χ(ω)] is odd). The new integral from −∞ to +∞ now requires the pole at

ω = 0 to be treated as a principal value so that the integration picks out the even part

of the integrand. The resulting expression in the classical limit is

U? =
kBT

2π
Im

P

∫ ∞
−∞

dω
ω2

0

[
ω dχ(ω)

dω
− χ(ω) + 1

]
+ ω2

ω(ω2
0 [1− χ(ω)]− ω2)

 = kBT, (34)

where P denotes principal value. For very general χ(ω), the principal-value integral in

(34) evaluates to 2πi, as shown by the following analysis. If ω dχ(ω)
dω
|ω=0 = 0, then the

integrand in (34) has a simple pole at ω = 0. Consider the same integrand integrated

over a closed contour C in the complex ω-plane that runs along the real line but goes

below the pole at ω = 0, and then closes anti-clockwise in a large semicircle in the

upper-half plane. This contour integral can be decomposed as∮
C

dz = P

∫ ∞
−∞

dω +

∫
Cε

dz +

∫
R

dz, (35)

where Cε is an infinitesimal semicircle running anti-clockwise around the pole at ω = 0

and R is a large semicircle of radius R in the upper-half plane taken in the anti-clockwise

direction. As the integrand in (34) is analytic everywhere inside C except at the simple

pole at ω = 0 (recall that χ(ω) is analytic in the upper-half plane), the integral around

C is 2πi. The integral along Cε is πi, and it is easy to show that the integral along the

semicircle of radius R, as R → ∞, is −πi. From (35) this shows that the principal-

value integral in (34) is 2πi so we obtain the classical result U? = kBT for very general

susceptibility.

The classical limit of the energy U (32) is

U =
kBT

2π
Im

[
P

∫ ∞
−∞

dω
ω2

0 + ω2

ω(ω2
0 [1− χ(ω)]− ω2)

]
. (36)
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In evaluating this integral the only changes to the above analysis of U? are that the

integral around the closed contour C is now 2πi/[1− χ(0)], and the integral along Cε is

πi/[1 − χ(0)], assuming χ(0) is finite and not equal to 1. Hence, the classical internal

energy U becomes

U = kBT

[
1 +

χ(0)

2[1− χ(0)]

]
, χ(0) 6= 1. (37)

This depends on the damping unless χ(0) = 0. The general result (37) reproduces the

classical value U = kBT for Ohmic damping obtained in the last section if we again

substitute the “susceptibility” (33), because in this case χ(0) = 0. Thus, in the classical

limit considered here, the general damping dependence of the energy U (37) contrasts

with the damping independence of the mean force energy U? = kB T .

5.3. Comparison of energies for different damping

Table 1 summarises the classical and quantum results for U and U? with different types

of damping. The calculations above showed that for Ohmic damping of a classical

oscillator, the energy can be taken to be either U or U? as both reduce to kBT . In

contrast, for a quantum oscillator, both U and U? diverge for Ohmic damping. For

general non-Ohmic damping, classically U? is always kB T whereas U depends on the

damping. Quantum mechanically both U? and U depend on the damping, however they

are not equal. Note that for a classical oscillator small deviations from Ohmic damping

result in small changes in U . In contrast, for a quantum oscillator with Ohmic damping

the energies diverge, while small deviations from Ohmic damping make U and U? finite.

Thus, even for oscillators that are classically well described by Ohmic damping, their

quantum (including zero-point) energies are entirely determined by the deviations from

Ohmic damping.

damping classical quantum

no damping U = U? = kB T U = U? = ~ω0

2
coth ~βω0

2

Ohmic damping U = U? = kB T U,U? →∞
general damping U = kB T

[
1 + χ(0)

2[1−χ(0)]

]
6= U? = kB T U 6= U?, see (32) and (31)

Table 1. Table comparing energies for classical and quantum damped oscillators,

for no damping, Ohmic damping, and general non-Ohmic damping described by a

susceptibility χ(ω).

5.4. Free energy and entropy

Finally, it is also interesting to derive the Helmholtz free energy F ? arising from the mean

force energy U? for general damped oscillators. Using the standard thermodynamic

relations F ? = U? − TS? and S? = −∂F ?

∂T
, we obtain U? = −T 2 d

dT
F ?

T
, which gives F ? as

F ? = −T
∫

dT
U?

T 2
+ aT, (38)
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for some constant a. The entropy S? = −∂F ?

∂T
and must vanish at T = 0 in line with the

third law of thermodynamics, and this allows the value of a in (38) to be determined.

The results for F ? and S? are

F ∗ =
kBT

π

∫ ∞
0

dω ln

[
sinh

(
~ω

2kBT

)]
Im

ω
2
0

[
ω dχ(ω)

dω
− χ(ω) + 1

]
+ ω2

ω(ω2
0 [1− χ(ω)]− ω2)

+ kBT ln 2,

(39)

S? =
~
2π

∫ ∞
0

dω

{
1

T
coth

(
~ω

2kBT

)
− 2kB

~ω
ln

[
sinh

(
~ω

2kBT

)]}

× Im

ω
2
0

[
ω dχ(ω)

dω
− χ(ω) + 1

]
+ ω2

ω2
0 [1− χ(ω)]− ω2

− kB ln 2. (40)

To verify that the entropy (40) vanishes at T = 0, first note that the T -dependent factor

in the integral reduces to 2kB
~ω ln 2 in the T → 0 limit. The integral is then proportional

to an integral evaluated above, see (34).

The classical limit of the free energy (39) is

F ? =
kBT

π

∫ ∞
0

dω ln

(
~ω

2kBT

)
Im

ω
2
0

[
ω dχ(ω)

dω
− χ(ω) + 1

]
+ ω2

ω2
0 [1− χ(ω)]− ω2

+ kBT ln 2, (41)

where ~ still appears as the phase space volume element, which will cancel in free

energy differences [27]. In contrast to the damping independence of U?, the classical

free energy F ? does depend on the details of the damping in almost all cases. The

notable exception is Ohmic damping, for which F ? can be found with the “susceptibility”

(33). The resulting integral can be evaluated exactly and gives the free energy of an

undamped oscillator, i.e. F ? = kB T ln
(

~ω0

kB T

)
, independent of γ. Alternatively, the

classical Ohmic-damping result can be evaluated using the scalar-field reservoir of the

last section by the same analysis leading from (31) to (41).

6. Conclusions

To model damped harmonic motion we considered two time-independent Hamiltonians

for an oscillator coupled to a reservoir, one with a scalar-field reservoir and one with a

Huttner-Barnett reservoir. Using the diagonalised Hamiltonians we derived expressions

for thermodynamic quantities of a damped oscillator, for both Ohmic and general

damping, when the total system is in a global thermal state. These were evaluated

for both the quantum and classical regimes. We recovered the fact that strictly Ohmic

damping of a quantum oscillator cannot physically occur due to divergences forcing one

to abandon the exact Ohmic regime. In contrast, Ohmic damping of a classical oscillator

can be treated exactly using the scalar-field reservoir, giving finite and physically

meaningful results. The diagonalized form of the Hamiltonians allowed the calculation

of thermal energies of the oscillator, i.e. the mean force energy U∗ and its corresponding
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free energy F ?, and the commonly used internal energy U . We found that classically

U? = kBT for any damping type, no matter how strong the coupling to the reservoir.

This demonstrates a remarkable and non-trivial property of the classical mean force

energy. In contrast to U?, the classical internal energy U and the mean force free energy

F ? do depend on the coupling strength for general non-Ohmic damping.

For quantum oscillators it is surprising that while strictly Ohmic damping is plagued

with divergences, infinitesimal changes to the damping result in finite expressions for

both U? and U . In addition, the quantum mean force energy U? does depend on the

coupling, as do U and F ?. The treatment of classical and quantum open systems

often assumes initial product states between the system of interest and a reservoir

that are then evolved with a global Hamiltonian, and under a number of assumptions,

to a long-time steady-state [28, 1, 2]. In contrast we here considered the stationary

situation of the total system being in a global thermal state. The results presented

add a new perspective on the thermodynamics of open systems with arbitrarily strong

coupling to a reservoir. For example, the different energy measures may be of significance

when calculating efficiencies of small scale and quantum engines that operate between

equilibrium configurations in the strong coupling limit [29]. Such engine cycles may

show departures from standard thermodynamics which assumes weak coupling. Finally,

extending the thermal equilibrium analysis of the Huttner-Barnett reservoir presented

here to analyse the non-equilibrium dynamics of damped oscillators is an interesting

topic for future investigation.
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Appendix

Here we describe the diagonalization of the Hamiltonian (8). The procedure is very

similar to the diagonalization of the damped harmonic oscillator with a reservoir

composed of a continuum of harmonic oscillators [11, 13] (which is in turn similar to

part of the Huttner-Barnett model [10]).

We seek a linear transformation between the dynamical variables in (8) and (9). It

is more convenient to work with the time-dependent operators

Ĉ(k, t) = Ĉ(k)e−iωt, Ĉ†(k, t) = Ĉ†(k)eiωt, (A.1)

[Ĉ(k, t), Ĥ] = ~ωĈ(k, t), (A.2)

the last relation following from (9) and (11). The required transformation must take

the form

q̂(t) =

∫ ∞
−∞

dk
[
fq(k)Ĉ(k, t) + h.c.

]
, Π̂q(t) =

∫ ∞
−∞

dk
[
fΠq(k)Ĉ(k, t) + h.c.

]
(A.3)

φ̂(x, t) =

∫ ∞
−∞

dk
[
fφ(x, k)Ĉ(k, t) + h.c.

]
, (A.4)

Π̂φ(x, t) =

∫ ∞
−∞

dk
[
fΠφ(x, k)Ĉ(k, t) + h.c.

]
, (A.5)

for some unknown functions fq(k), etc. The commutation relations (11) with (A.3)–

(A.5) give:

fq(k) = [q̂(t), Ĉ†(k, t)], fΠq(k) = [Π̂q(t), Ĉ
†(k, t)], (A.6)

fφ(x, k) = [φ̂(x, t), Ĉ†(k, t)], fΠφ(x, k) = [Π̂φ(x, t), Ĉ†(k, t)]. (A.7)

The transformation (A.3)–(A.5) must be invertible, which together with (7), (A.6) and

(A.7) implies

Ĉ(k, t) = − i

~

{
f ∗Πq(k)q̂(t)− f ∗q (k)Π̂q(t)
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+

∫ ∞
−∞

dx
[
f ∗Πφ(x, k)φ̂(x, t)− f ∗φ(x, k)Π̂φ(x, t)

]}
. (A.8)

We find equations for the f -coefficients in (A.3)–(A.5) as follows. Insert (A.8) and (8)

into (A.2) and simplify using (7). This gives an expression for Ĉ(k, t) which can be

compared with (A.8) to find

fΠq(k) + αfφ(0, k) = −iωfq(k), iωfΠq(k) = ω2
0fq(ω), c2fΠφ(x, k) = −iωfφ(x, k),(A.9)

iωfΠφ(x, k) = αfΠq(k)δ(x)− ∂2
xfφ(x, k) + α2fφ(0, k)δ(x), (A.10)

which give

ω2
0fq(k) = ω2fq(k)− iαωfφ(0, k),

ω2

c2
fφ(x, k) = −iαωfq(k)δ(x)− ∂2

xfφ(x, k). (A.11)

These are the same as the classical equations (3) in the frequency domain and their

solution is

fφ(x, k) = −1

2
cαeiω|x|/cfq(k) + hφ(k)eikx, fq(k) =

iαωhφ(k)

ω2 − ω2
0 + iγω

, (A.12)

where hφ(k) is the amplitude of the solution to the homogeneous fφ equation (α = 0).

The value of hφ(k) is determined by the fact that (A.8) and its Hermitian conjugate

have commutator [Ĉ(k, t), Ĉ†(k′, t)] = δ(k − k′) (see (11) and (A.1)). A tedious

calculation shows that this commutator holds with (A.8) expanded in the solutions

for the f -coefficients if

hφ(k) =

√
c2~
4πω

. (A.13)

The commutator [Ĉ(k, t), Ĉ(k′, t)] = 0 is identically satisfied by (A.8) with the solutions

for the f -coefficients. The expansions (A.3)–(A.5) have now been determined and give

(12)–(14). Consistency of the diagonalization is demonstrated by showing that (12)–(14)

obey the commutation relations (7) because of (11).


