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ABSTRACT  
 
Safety factors are critical to device reliability and are applied during device development to protect 
against early failures.  At each stage of a development a designer may apply their own safety factor in 
relation to the criticality of the component or subassembly for which they are responsible.  This paper 
seeks to understand how different assessment techniques can assist the design process by refining 
safety factors, with the aim of reducing device costs and improving economic viability.  
 
To achieve this, a methodology is presented to assess and verify the fatigue performance of mooring 
components.  The paper draws on field data and introduces a combined approach of modelling, service 
simulation and field tests to validate the reliability of components.  A shackle is used as a case study to 
demonstrate the methodology.  Results from finite element analysis (FEA) and accelerated service 
simulation testing on the Dynamic Marine Component test facility (DMaC) are presented and 
discussed, including fatigue damage and failures.   
 
FEA is found to accurately predict areas of weakness within a component, however it underestimates 
component strength due to unrealistic stress concentrations at applied boundary conditions.  Static and 
fatigue tests demonstrate the complex nature of reliability estimation, with static component safety 
factors of 8.6 being reduced to less than 3.7 under a fatigue loading regime.  Service simulation testing 
is found to be important in refining initial reliability estimations from S-N curves and FEA models.  
The effect of mean stress on fatigue failure is also found to be significant.  
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I INTRODUCTION 

 
The reliability of mooring systems is crucial for viable commercial installations of floating marine 
energy converters. The station-keeping must be secure, yet the mooring arrangement must be 
sufficiently compliant to allow the dynamic motions required for power conversion. High safety 
factors are a simple solution to improve reliability but are associated with increased equipment and 
deployment costs. The engineering challenge is to decrease uncertainties in component behaviour 
prior to deployment.  By establishing the evidence that the system will be reliable under the expected 
operating conditions, excessive design safety factors can be reduced. 
 
Reducing the cost of wave energy is essential for it to become competitive with other forms of energy 
generation. [1] suggests a cost saving of 50-75% must be achieved by 2025 for wave energy to 
become a commercial reality.  Moorings are a key area for cost reduction, and the potential for cost 
savings is highlighted in [2], which details moorings as one of three priority components for cost 
reduction in wave energy converters (WECs).  7% - 10% of the capital costs of a wave farm can be 
attributed to moorings [1, 2]. In an analysis on potential savings 50%/85% savings on the mooring 



system could be achieved by 2020/2050 respectively by efficiency improvements and improved 
deployments of mooring systems [1].  
 
Safety factors are applied throughout the design process.  In mooring systems alone the shackle 
manufacturer will apply a safety factor of approximately 5, and in addition the mooring designer may 
apply a further safety factor based on DNV guidance [3].  Within this guidance various safety factors 
are suggested.  Based on Ultimate Limit State (whereby each individual mooring line has adequate 
strength to withstand extreme environmental conditions), and based upon Consequence Class 1 (a 
failure is unlikely to lead to unacceptable consequences such as loss of life), a maximum safety factor 
of 1.7 is suggested.  However, when looking at design for fatigue, the minimum safety factor 
suggested is 5.  The increased size of the mooring systems to account for these safety factors can have 
implications for the design of the WEC body itself, which may require alterations to cope with the 
increased loads. The accumulation of these safety factors can lead to significant device costs, and this 
work seeks to understand whether such high safety factors are always necessary. 
 
Further to the potential cost savings, the importance of reliable mooring systems is evident from a 
brief review of the literature.  There are a large number of devices under development [4, 5] and no 
convergence on one device type.  However, the literature indicates a clear progression towards Point 
Absorber devices.  In 2010, [5] details that Point Absorbers account for over 50% of devices currently 
under development.  Point absorbers generate energy by the relative movement of different parts of the 
device activated by the motion of the waves and are located nearshore or offshore.  They have small 
dimensions relative to the wave front and either float on the wave surface or are submerged just 
beneath the wave surface [5-8].  Effective mooring systems are therefore crucial to the mode of 
operation for point absorbers. 
 
There have been numerous reports providing recommendations on key aspects requiring research and 
development to bring commercial wave energy to a reality.  A detailed review of the recommendations 
from five reports [2, 9-12], issued by various bodies over the period 2002 – 2010, highlights two 
components listed as a priority area in every report; the power take off system (PTO) and the mooring 
system.  To focus research on a more generic component, the recommendations from these reports 
were also assessed for commonality across different devices.  It was concluded that moorings are a 
more generic component, as many PTOs will be specific to a device.   
 
The importance of mooring systems is evident from the potential for cost savings and the dominance 
of the Point Absorber device type.  The review of recommendations from five technology reports has 
further confirmed the importance of mooring systems.   The approach suggested in this paper will 
contribute to the development of reliable and cost effective mooring components, by improved 
understanding of the application of safety factors in the design process. 
 
II APPROACH & METHODOLOGY 

 
The method presented here proposes a combination of finite element analysis (FEA), accelerated 
component testing and field deployment of components in order to assess reliability and fatigue 
behaviour. A case study is presented to develop the approach using a standard component; a steel 
shackle.  A flow chart is detailed in Figure 1 that sets out the key steps of the approach.  The sea 
deployment will not be covered in this paper.   
 
II - 1 Field measurement  
The component tests have been informed by extensive field measurements that have been conducted at 
the South West Mooring Test Facility (SWMTF) [13, 14]. It is located in Falmouth Bay, Cornwall, 
UK (50°47.5’N 5°2.85’W) and consists of a generic buoy that has been installed with a three-leg 
catenary hybrid (rope-chain) mooring since March 2010.  
 
The mooring lines have been fitted with tri-axial and in-line load cells to monitor and record the 
tensile mooring loads during the operation in real sea conditions. The installation site is relatively 



sheltered with mean annual wave power levels in the order of 5kW/m in a water depth of 27-32.4m. 
The peak loads that have been recorded during significant wave heights of Hs=3.5m range in the order 
of 50kN, with the maximum recorded at 53kN. 

Figure 1: Simplified process for the methodology highlighting the focus for this paper  
 
II - 2 Shackle selection and fatigue considerations 
Shackles are generally specified by Safe Working Load (SWL) or Working Load Limit (WLL).  This 
is the maximum load the shackle should be exposed to in use.  A Minimum Breaking Load (MBL) is 
also specified, which is the minimum load required to cause failure.  The MBL is related to the WLL 
by a safety factor (SF): 

ࡸࡸࢃ                    ൌ 	ࡸ࡮ࡹ ൈ  (1)                             ࡲࡿ
The safety factor applied ranges depending on specification but is often 4 to 6.    
 
Field measurements were considered when specifying the shackle, to ensure it would survive extreme 
loads but remain susceptible to fatigue damage at the SWMTF site.  This requires an understanding of 
the fatigue behaviour of the material.  There is limited material data available from shackle suppliers; 
although the yield strength and the tensile strength are often provided, S-N curves (detailing fatigue 
response to a given load and cyclical loading regime) remain elusive. Detailed fatigue experiments are 
beyond the scope of this research and instead approximations will be taken from Det Norske Veritas 
(DNV) guidance.  DNV provide guidance in their offshore standard for position mooring [3] and refer 
to the use of the B1 S-N curve parameters as detailed in their recommended practice for fatigue design 
of offshore steel structures [15]. They suggest these curves are appropriate for calculating the fatigue 
life of long term mooring shackles and are associated with a 97.7% probability of survival.  The 
general equation for the S-N curve is as follows:  

ࡺࢍ࢕࢒               ൌ ഥࢇࢍ࢕࢒ െ(2)                 ࣌∆ࢍ࢕࢒࢓ 
Where ܰ is the number of cycles to failure, തܽ is the intercept of the x axis, ݉ is the negative inverse 
slope of the S-N curve and  ∆ߪ is the stress range.  
 
In this set of experiments the DNV S-N curve for shackles in air will be utilised, defined by:  
ࡺࢍ࢕࢒														 ൌ ૚૞. ૚૚ૠ െ ૝(3)     ࣌∆ࢍ࢕࢒                    	ࡺࢍ࢕࢒ ൌ ૚ૠ. ૚૝૟ െ ૞(4)       ࣌∆ࢍ࢕࢒ 
ܰ	ݎ݋ܨ														 ൑ 10଻	ܿݎ݋ܨ                                            ݏ݈݁ܿݕ	ܰ ൐ 10଻	ܿݏ݈݁ܿݕ 
 
The following shackle type was specified: B.S. 3032, galvanized steel shackle, working load limit 2.5t 
(24.5kN), SF 5, minimum breaking load 12.5t (122.6kN), yield strength 890 MPa, tensile strength 
1010 MPa. 
 
 
 



II - 3 Numerical investigation (FEA) 
For the initial FEA modelling an existing CAD model was imported from a manufacturer catalogue  
[16].  This model was imported to ANSYS FEA software for analysis.  The pin and the shackle were 
analysed individually in static simulations to remove complex interactions in the model for the first 
iteration of the analysis.  Different loading regimes were applied to reflect mooring loads measured at 
the SWMTF and to review the shackle response to loads at the WLL and MBL of the specified 
shackle.   
 
Material data applied to the model reflected the data provided by the shackle manufacturer.  Although 
limited, this included figures for yield point, tensile strength and elongation.  Design points were 
created in the model to allow the exploration of the effects of applied load on the stresses created 
within the shackle, and to gain an understanding of what load is required to induce yield and ultimate 
failure in the shackle.   
 
Boundary conditions were applied as follows: 
Shackle pin - fixed supports applied at either end of the pin, load applied in centre of pin. 
Shackle bow - fixed supports applied to the bow of the shackle, load applied to the lower half of the 
inner shackle eyes.  
 
II - 4 Experimental methods 
The experimental procedure was conducted in the Dynamic Marine Component test facility (DMaC) 
based in Falmouth Docks, Cornwall, UK.  This test facility was developed to replicate the loading 
conditions imposed by sea states, in a controlled environment with detailed monitoring, and with the 
option of accelerating the testing regime [17].  The DMaC can be operated in either force driven or 
displacement driven testing regimes, and has the option of conducting tests fully immersed in water.   
 

II - 4 a) Break tests 
The aim of the break tests was to evaluate the shackle behaviour in comparison to the supplier 
specification and the FE model, and also to define the yield point of the shackle to inform the fatigue 
tests.   
 
Identical break tests were conducted on two individual shackles.  Displacement mode was used to 
conduct the break tests.  A displacement of 0.1m was used; from the FE model this would ensure 
complete failure of the shackle in one cycle.  
 

II - 4 b) Fatigue tests 
The fatigue tests were intended to ‘pre-age’ three sets of shackles to differing levels of damage.  To 
keep the complexity of the testing to a minimum it was decided to conduct constant amplitude fatigue 
tests, as opposed to variable amplitude fatigue tests.  Although this is clearly a simplification of a 
general sea state, there are limitations when quantifying variable amplitude loading and this 
investigation is not intended to address this. 
 
The level of loading applied was identified from the break tests.  This ensured the fatigue ageing 
occurred in the elastic region of the shackle prior to the yield point. Developing the fatigue loading 
frequency regime required a compromise between load accuracy and testing time.  Following 
preliminary tests, 2 Hz was specified.   
 
A load driven regime was defined based on the results from the break tests.  Pre-tension of 10kN was 
applied to ensure the samples were taut and load paths were clear, with a maximum of 90kN applied to 
conduct the fatigue cycles below the yield strength of the shackles.   
 
Three ageing regimes were specified with increasing numbers of cycles.  To calculate the accumulated 
damage over the three regimes, the Palmgren-Miner damage model was applied, as recommended in 
the guidance [18, 19].  The rule operates cumulatively over a series of different stress amplitudes and 
works on the basis that if failure occurs at N cycles for a given stress amplitude, cycling to n cycles at 



the same stress amplitude will cause relative damage D.  The cumulative damage can be summated 
over k different stress ranges to give                              ࡰൌ ∑ ࢏࢔

࢏ࡺ
࢑
ୀ૚࢏ 									ሺ5) and incorporated into 
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Dye penetrant testing was selected to identify fatigue crack development in damaged but un-failed 
specimens.  This qualitative method uses dye to identify fatigue crack development not visible to the 
naked eye.  The use of X-ray was also investigated for defect detection but proved less effective.   
 
III RESULTS 

 
III - 1 Numerical investigation (FEA) 
Two results will be discussed here that are particularly suitable for summarising the data from the 
model.  Firstly ߪ௩, the Von-Mises stress (or equivalent stress) which is helpful as it provides a single, 
equivalent stress for assessment against the yield or ultimate strength of a component.  The general 

equation for Von-Mises stress is detailed in ࢜࣌ൌ ටሺ࣌૚૚ି࣌૛૛ሻ૛ାሺ࣌૛૛ି࣌૜૜ሻ૛ାሺ࣌૚૚ି࣌૜૜ሻ૛ା૟ሺ࣌૚૛૛ା࣌૛૜૛ା࣌૜૚૛ሻ

૛
              

(7), and a common simplification (as utilised by ANSYS), which only considers the principal stresses 
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࢜࣌ ൌ ටሺ࣌૚૚ି࣌૛૛ሻ૛ାሺ࣌૛૛ି࣌૜૜ሻ૛ାሺ࣌૚૚ି࣌૜૜ሻ૛

૛
                                           (8) 

Using the common terminology where ߪଵଵ, ,ଵଶߪ ଷଷ denote principal stresses andߪ	݀݊ܽ	ଶଶߪ  ଷଵߪ	݀݊ܽ	ଶଷߪ
denote shear stresses. 

Two 
a) Applied load of 53kN, reflecting the maximum load measured at SWMTF 
b) Applied load of 122.6kN, reflecting the MBL of the shackle. 

 
Maximum 

 
The second metric, particularly informative when considering failures, is the Safety Factor (SF).  This 
provides a figure for the safety factor a component has with regard to yield or ultimate strength 
(depending which is specified).  When SF < 1, yield or failure has occurred.  Contour plots of the 
ultimate strength safety factor are detailed in Figure 2.  The pin shows weaknesses with several areas 
in red, indicating a SF<1 and hence failure.  The shackle bow on the other hand shows a better 
response but has some areas of weakness under load b), particularly around the commencement of the 
bow curvature.   

 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 2: Ultimate strength safety factor for pin and bow with load b 
To bring the various results together and detail the VM stress and safety factor over a range of applied 
loads Figure 3 has been included. 

Figure 3: Maximum VM stress and minimum ultimate tensile strength (UTS) safety factor at 
different applied loads for bow and pin models 

 
III - 2 Experimental results 

III - 2 a) Break tests 
Two break tests were conducted.  Failure loads occurred at 206.5kN and 214.6kN for Break 1 and 
Break 2 respectively (Figure 4).  These are significantly higher than the MBL specified by the 
manufacturer; the mean recorded break load has a factor of safety of 8.6 on the WLL, and a factor of 
safety of 1.7 on the MBL. 



Figure 4: Break test 1 and 2 
From Figure 4 it is assumed that neither shackle yielded before 100kN; this was used to define the 
fatigue loading regime. Both failures occurred on the pin at the start of the thread (Error! Reference 
source not found.). 

Figure 5: Shackles from Break Test 1, Break Test 2 and an undamaged shackle for reference 
 

III - 2 b) Fatigue tests 
Based 

 
 

Table 1 details the fatigue tests, with location of failures and the % damage induced based on the S-N 
curve discussed in II - 2 and the Palmgren Miner rule introduced in II - 4b.  Mean stress adjusted 
damage is also included; this will be detailed in IV - 3.  Dye penetrant testing technique was used to 
analyse damaged shackles for the identification of fatigue cracks.  Shackles 1-3 were left undamaged 
as a control for future tests. 

Table 1: Fatigue test results including calculated accumulated damage based on S-N curve [15] 
for comparison, 1 equates to failure.  Mean stress adjusted accumulated damage is included in 
italics; see IV-3 for further information.  

Shackle Test Failure No Accumulated Mean 

4 Low  No 4,958 0.023 0.127 

5 Low  No 4,958 0.023 0.127 

6 Med No 19,386 0.09 0.456 

7 Med No 19,386 0.09 0.456 

8 Med BREAK 19,386 0.09 0.456 

9 High Fatigue 24,344 0.113 0.583 

10 High Fatigue 24,344 0.113 0.583 

11 High BREAK 24,344 0.113 0.583 

Shackle Test Failure No Accumulated Mean 

4 Low  No 4,958 0.023 0.127 

5 Low  No 4,958 0.023 0.127 

6 Med No 19,386 0.09 0.456 

7 Med No 19,386 0.09 0.456 

8 Med BREAK 19,386 0.09 0.456 

9 High Fatigue 24,344 0.113 0.583 

10 High Fatigue 24,344 0.113 0.583 

11 High BREAK 24,344 0.113 0.583 



 
IV DISCUSSION OF RESULTS 

 
IV - 1  FEA models 

The 
 

IV - 2  Break loads 
The break loads observed are significantly higher than the MBL specified by the manufacturer as is 
clearly shown in Figure 4.  The break loads agree within 4% and the differences in the 0-50,000N 
region are likely to be due to differences in the ‘bedding in’ of the system. This occurred during pre-
tests for Break 1, but no pre-tests were conducted for Break 2.   

The 
‐ The shackles can survive loads significantly higher than the ratings quoted by the manufacturer; 

both shackles survived beyond 200kN despite having a WLL of 24.5kN and an MBL of 122.6kN.  
The average safety factor is 8.6 on the WLL and 1.7 on the MBL. 

‐ The shackles yield at a load slightly over 100kN, under the rated MBL. 

IV - 3 Fatigue tests 
Failures and cracks occurred earlier than anticipated from the S-N curve which suggests 
a
p
p
r
o
x
i
m
a
t
e
l
y
 
2
1
5
,
0
0
0
 
c
y
c
l
e
s
 
t
o
 
f
a
i
l
u
r
e
,
 
s

Figure 6.  The 10kN pre-tension applied throughout the fatigue testing regime creates a mean stress on 
the shackles.  It is widely accepted that the presence of a mean stress during cyclical loading can 
significantly affect the fatigue life of a component.  Whilst the S-N curve predicts lifetime for a fully 
reversed fatigue loading regime (a mean stress of 0), it is possible to use a mean stress adjustment 
factor to calculate an equivalent stress amplitude ߪ௔௥	 to account for the presence of a mean stress, ߪ௠	, 
which in this case is 75MPa.  A review of the literature on this effect was conducted [21-24] and 
various mean stress adjustment factors were investigated.  The most appropriate adjustment for 
general use appears to be the Smith, Watson and Topper (SWT) approach: 
௔௥ߪ																																																																													 ൌ ඥߪ௠௔௫ߪ௔   (9) 
Where ߪ௔௥	 is the equivalent stress amplitude for a completely reversed loading situation, ߪ௠௔௫	 is the 
maximum stress, and ߪ௔	 is the stress amplitude.    

Figure 6: S-N curve for shackles [15].  Fatigue test stress range and mean stress adjusted stress 
range identified, the difference between these being the acceleration level created by the 



presence of mean stress throughout the testing regime.  Cycling regimes identified 
(low/med/high cycles, see Table 1).  Failures plotted accounting for mean stress effects and 
identified by:   denoting Shackle 8 break;   denoting Shackle 11 break and Shackles 9 and 10 
fatigue cracks. 
This results in the mean stress adjusted accumulated damage figures detailed in  

  is the	௠௔௫ߪ ,is the equivalent stress amplitude for a completely reversed loading situation �	ݎܽ�	
maximum stress, and ߪ௔	 is the stress amplitude.    
Figure 6.  Accounting for the mean stress using this approach provides fatigue life estimations closer 
to the observed results. 
 
Shackles 9 – 11 showed consistent behaviour, with a fatigue crack developing in the centre of the pin 
under tension, leading to complete failure in Shackle 11.  The fatigue failure that occurred in the bow 
of Shackle 8 was a surprising failure due to the location as well as the low number of cycles.   Repeat 
tests are required to draw sound conclusions, but this shackle may have had an inherent defect that led 
to this failure.  
 
Under fatigue loading to 90kN, a safety factor of 3.7 on the WLL and 0.7 on the MBL are present.  

V SYNTHESIS, CONCLUSIONS AND FURTHER WORK 
 

The FEA models accurately highlighted areas of weakness in the shackle. However, both the Break 
Tests and Fatigue Tests showed the shackles to be considerably stronger than estimated by the FEA 
models.  The boundary conditions of the FEA models have affected these results, particularly in the 
pin model.  Further models should be developed to refine these boundary conditions, and develop one 
model combining the interactions between the pin and the bow.  Further to this, a model should be 
developed to investigate the effects of fatigue loading on the shackle.   
 
The Break Tests confirmed the large safety factors present in the shackle specification, with the 
average failure load showing a safety factor of 8.6 on the shackle WLL.  The Fatigue Tests showed 
that despite withstanding loads of over 200kN in the Break Tests, failures occurred with a load of 
90kN when applied cyclically in the region of 20,000 cycles.  This is a reduced safety factor of 3.7 on 
the WLL, below the MBL specified by the shackle supplier and earlier than the 215,000 cycles to 
failure anticipated from the S-N curve.  Accounting for mean stress effects improves the agreement 
between test results and the S-N curve, and one would expect 42,000 cycles to failure, but this is still 
twice the observed test results.  Further investigation into this is required; incorporating stress 
concentration factors with the use of the S-N curve as suggested by DNV [3] may further improve the 
agreement between the S-N curve and observed results.   
 
The nature of WEC moorings dictates the components will be subject to fatigue loading, and pre-
tension applied to mooring lines will frequently create mean stress loading situations.  Component 
safety factors are not always specific to static or fatigue loading regimes, and specific S-N data is hard 
to obtain, so designers must rely on generic curves.  DNV guidance to mooring designers [3] provides 
further safety factors that are more specific to the loading application.  However, if the suggested 

Shackle Test Failure No Accumulated Mean 

4 Low  No 4,958 0.023 0.127 

5 Low  No 4,958 0.023 0.127 

6 Med No 19,386 0.09 0.456 

7 Med No 19,386 0.09 0.456 

8 Med BREAK 19,386 0.09 0.456 

9 High Fatigue 24,344 0.113 0.583 

10 High Fatigue 24,344 0.113 0.583 

11 High BREAK 24,344 0.113 0.583 



safety factor of 1.7 was applied to the break test results a total WLL safety factor of 14.6 would be 
present, and with a safety factor of 5 applied to the fatigue results a total WLL safety factor of 18.5 is 
present.  Fatigue failure prediction is inherently burdened with scatter, so safety factors are necessary; 
however these results indicate safety factors may be excessive and creating unnecessary costs.  If 
safety factors are to be reduced, the combined approach suggested here, culminating in service 
simulation testing of components to observed environmental loads is critical if we are to apply 
adequate but not excessive safety factors. 
 
The experimental results presented in this paper are based on a small sample of shackles from one 
manufacturer. Good agreement is found between the results; however, a larger sample size is required 
to substantiate these findings.  Additionally, in a saline environment the effects of corrosion on 
components should be considered when specifying safety factors and will be a continuation to this 
work.   
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