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ABSTRACT

Reliable estimates of future changes in extreme weather phenomena, such as tropical cyclone maximum wind

speeds, are critical for climate change impact assessments and the development of appropriate adaptation strat-

egies. However, global and regional climatemodel outputs are often too coarse for direct use in these applications,

with variables such as wind speed having truncated probability distributions compared to those of observations.

This poses two problems: How canmodel-simulated variables best be adjusted tomake themmore realistic?And

how can such adjustments be used to make more reliable predictions of future changes in their distribution?

This study investigates North Atlantic tropical cyclone maximum wind speeds from observations (1950–

2010) and regional climate model simulations (1995–2005 and 2045–55 at 12- and 36-km spatial resolutions).

The wind speed distributions in these datasets are well represented by the Weibull distribution, albeit with

different scale and shape parameters.

A power-law transfer function is used to recalibrate the Weibull variables and obtain future projections of

wind speeds. Two different strategies, bias correction and change factor, are tested by using 36-kmmodel data

to predict future 12-kmmodel data (pseudo-observations). The strategies are also applied to the observations

to obtain likely predictions of the future distributions of wind speeds. The strategies yield similar predictions

of likely changes in the fraction of events within Saffir–Simpson categories—for example, an increase from

21% (1995–2005) to 27%–37% (2045–55) for category 3 or above events and an increase from 1.6% (1995–

2005) to 2.8%–9.8% (2045–55) for category 5 events.

1. Introduction

Reliable estimates of future changes in extreme

weather phenomena, such as tropical cyclone (TC) max-

imum wind speeds (ymax), are critical for climate change

impact assessments and the development of appropriate

adaptation strategies. With increases in the most intense

tropical cyclones in the western North Pacific and North

Atlantic being more likely than not over the coming

decades (Stocker et al. 2013), identifying the likely fu-

ture range of TC maximum wind speeds is essential.

However, climate models are unable to resolve fully all

the processes within tropical cyclones, resulting in sim-

ulated maximum wind speeds with very different prob-

ability distributions from those of observed wind speeds.

While the realismofmaximumwind speeds improveswith

increases in model resolution (Bender et al. 2010; Done

et al. 2014) or by running high-resolution coupled simu-

lations along synthetic cyclone tracks (e.g., Knutson et al.

2013), such simulations are computationally expensive
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and consequently not available to many decision makers.

One notable exception is Emanuel (2006), who achieved

a realistic distribution of maximum wind speeds by

running an axis-symmetric hurricane model driven by

large-scale data. A limitation of this approach is that

by not using information from the historical archive it

is not possible to reproduce observed maximum wind

speeds. While some high grid resolution climate change

projections have been used for assessments (e.g.,Murphy

et al. 2009; Whetton et al. 2012), most adaptation and

mitigation decisions (e.g., ExecutiveOffice of the President

2013; Benton et al. 2012) are informed by lower-resolution

global models (Brown and Wilby 2012) such as those in-

volved in phase 5 of the Climate Model Intercomparison

Project (CMIP5) (Knutti et al. 2013).

Many statistical downscaling techniques exist, each

with benefits and disadvantages relative to the applica-

tion in question [e.g., refer to Maraun et al. (2010) or

Rummukainen (2010) for recent summaries]. However,

downscaling techniques that are effective for daily

temperature or precipitation may not be appropriate for

extremewind speeds (Curry et al. 2012). Some statistical

downscaling methods attempt to relate the probability

density functions (PDFs) of model simulated and ob-

served data through a transfer function (e.g., Piani et al.

2010). This transfer function may represent a relation-

ship with larger-scale atmospheric variables (Salameh

et al. 2009; van der Kamp et al. 2012; Kallache et al.

2011) or a transfer through a distribution such as the

exponential (Piani et al. 2010). However, it is important

to note that the transformations are sensitive both to the

selected calibration method and to the ‘‘calibration

pathway’’ from observations to the estimated future

output (Ho et al. 2012).

This study fits Weibull distributions to observed and

model-simulated tropical cyclone maximum wind speeds

and assesses the goodness of fit. TheWeibull distribution

is used to develop an appropriate power-law transfer

function for mapping between model wind speeds and

observedwind speeds.Unlike quantile–quantilematching,

this parametric approach can be used to map values

greater than those observed historically. Model-simulated

wind velocity vector components are used to diagnose

why model simulated and observed wind speeds have

distributions with such different Weibull shapes. The

power-law transfer function is used to make projections

of future wind speeds using both the bias correction and

the change factor strategies. The approaches are then

tested by treating the higher-resolution 12-km data as

pseudo-observations.

The data used in this research are described in section

2 and the underlying statistical methods are outlined in

section 3. Section 4 presents initial analyses of the wind

speed components, while section 5 presents the antici-

pated changes in the distribution of future maximum

wind speeds.

2. Data

Observations are taken from the historical archive of

North Atlantic tropical cyclones from the International

Best Track Archive for Climate Stewardship (IBTrACS)

database (Knapp et al. 2010), with intensities corrected

for high biases arising from early aircraft reconnaissance

as in Holland (2008). The series extends from 1950 to

2010, recorded in discrete 5-kt intervals; a uniform dis-

tribution ‘‘jitter’’ on the interval (22.5, 2.5) has been

added to the wind speeds prior to analysis to alleviate the

artificial discretization.

Modeled data utilize the National Center for Atmo-

spheric Research (NCAR) archive of nested regional

climate model (NRCM) simulations for the periods

1990–2005 and 2045–55 (Done et al. 2014). The NRCM

simulations are derived from a 36-km grid using the

Weather Research and Forecasting (WRF) Model

(Skamarock et al. 2008) nested one-way within the 2.58 3
2.58 Community Climate System Model version 3

(CCSM3; Collins et al. 2006) run in ‘‘climate’’ mode

from 1950 using theA2 emissions scenario (Nakicenovic

et al. 2000). Higher-resolution simulations are derived

from a further one-way nest of the 12-km grid WRF

run in climate mode within the 36-km model output.

For clarity, IBTrACS wind speeds are referred to as

observed and NRCM model wind speeds are referred

to as simulated. Tropical cyclone wind speeds are the

surface observations, or wind speeds extracted from

the model simulations at a vertical level of 10m;

the maximum wind speed (TC ymax) is the maxi-

mum wind speed at any location within the tropical

cyclone at any point of its life, as defined by a tracking

algorithm.

Figure 1 compares the observed and the 36- and

12-km simulated TC ymax relative frequency distribu-

tions and highlights the tendency of models to un-

derestimate the most intense tropical cyclones and

overestimate moderate intensity systems (Done et al.

2014); observed TC ymax are also lower-truncated. For

consistency with the tracking algorithm used to identify

simulated tropical cyclones (Suzuki-Parker 2012), ob-

served TC ymax are assumed to be truncated at 17m s21.

Model simulations of the 36-km (Figs. 1c,d) and 12-km

(Figs. 1e,f) distributions differ considerably in shape and

skewness from the observed distribution (Fig. 1a);

Fig. 1b highlights the absence of realistic future esti-

mates of maximum wind speeds. Maximum sustained

winds reported in the IBTrACS database are the 10-min
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FIG. 1. Relative frequency of observed and model simulated TC maximum wind speeds. (a) Observations 1950–

2010, (b) future observations, (c) 36-km simulations 1995–2005, (d) 36-km simulations 2045–55, (e) 12-km simula-

tions 1995–2005, and (f) 12-km simulations 2045–55. The distributions have notably different scale and shape. Note

the difference in the highest maximum speed on the abscissa.
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average maximum intensity at 10m above the sea sur-

face and may contain some subtropical systems; more-

over, historical wind speeds were subjectively reported

and less reliable at low intensities (Kossin et al. 2007).

Davis et al. (2008) demonstrated that model resolutions

approaching 1 km are needed to reproduce the full range

of observed maximum wind speeds.

3. Methods

a. Weibull distribution

The two-parameter Weibull distribution (Weibull

1951; Stewart and Essenwanger 1978) has long been

established as a useful probability distribution for rep-

resenting wind speeds (Justus et al. 1978; Conradsen

et al. 1984). The Weibull distribution, with scale pa-

rameter a . 0 and shape parameter b . 0, has a cumu-

lative distribution function for x . 0 given by

Pr(X# x)5F(x;a,b)5 12 exp

�
2
�x
a

�b�
. (1)

The special case of the Weibull distribution with

shape parameter equal to 2 (the Rayleigh distribution)

occurs if the wind velocity vector components (u, y) are

independent and identically normally distributed with

mean zero (Tuller and Brett 1985). Haas et al. (2014)

used a Weibull distribution probability mapping to ad-

just model-simulated daily maximum wind speeds and

gust speeds to point observations, finding a significant

improvement in wind speed estimates. Zhou and Smith

(2013) identified considerable regional variability in the

shape parameter, with values ranging from 1 to 4;

however, they suggest that a comparison of Weibull

distribution parameters may provide a useful way to

capture differences between observed and simulated

wind speeds. The independent and identically normally

distributed relationship has been exploited by others to

improve statistical downscaling (Monahan 2012a), par-

ticularly in areas of high topography (Salameh et al. 2009).

Pryor (2005) found, in common with others (Tuller and

Brett 1985; Salameh et al. 2009), that the Weibull distri-

bution does not provide a good fit to high wind speeds

where there is variable topography or synoptic flow forc-

ing, and tends to overestimate the highest maximum

values (Jagger et al. 2001). Since the Weibull distribution

is unbounded above, it will overestimate the probability of

wind speeds above the physical upper limit (Holland and

Bruyère 2014). However, when an allowance is made for

observed and modeled truncation at low wind speeds, the

Weibull distribution represents model and observed wind

speeds sufficiently to enable statistical downscaling (Curry

et al. 2012; Pryor and Barthelmie 2013).

Batts et al. (1980) identified that observed and mod-

eled tropical cyclone maximum wind speeds were best

represented by a Weibull distribution for probability

estimates. More recently, Jagger et al. (2001) extended

theWeibull distribution with linear regressionmodels to

represent spatial and temporal variations in the distri-

bution parameters, concluding that this is an effective

representation of the dynamic probability. Others have

explored changes in tropical cyclone maximum wind

speed using the generalized extreme value (GEV) dis-

tribution for both the maximum over several storms

(e.g., Heckert et al. 1998) and the maximum over the life

of the storm (e.g., Bürger et al. 2012). However, we

consider that the GEV is not appropriate for this ap-

plication with tropical cyclone maximum wind speeds

over individual storms as the observations at different

grid points are strongly dependent, contravening the

assumption that data are the maxima of independent or

only weakly dependent variables.

ESTIMATION OF THE WEIBULL PARAMETERS

The wind speeds used for our analyses are for features

identified with at least tropical storm status on the

Saffir–Simpson scale (Simpson 1981), so very low wind

speed values below u 5 17m s21 are not included. In

other words, our data are left-truncated with wind

speeds only above u and so should be fitted to the left-

truncated Weibull distribution having cumulative dis-

tribution function

F(x;a,b)2F(u;a,b)

12F(u;a,b)
, (2)

where F is given by Eq. (1). Failure to acknowledge such

truncation in the wind speeds leads to biases in the

Weibull parameter estimates. Table 1 gives the scale and

shape parameter estimates found using maximum like-

lihood estimation (see R code in appendix A) assuming

a truncation threshold of u 5 17m s21; error estimates

were obtained from the variance-covariance matrix of

100 bootstrapped samples. The shape parameter esti-

mates are very different for observed and model-

simulated wind speeds. The shape parameter estimate

for the observed wind speeds is close to the value of 2

whereas the model-simulated wind speeds have shape

parameters greater than 4 (much more peaked distri-

butions). The reasons for this are diagnosed in the next

section. Table 1 also contains summary statistics for each

of the datasets, indicating that the different shape and

scale are not due solely to finite sampling over short

model time periods.

The goodness of fit can be assessed by plotting quan-

tiles from the fitted Weibull distributions against the
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empirical quantiles in each dataset (Fig. 2). The line y5
x generally lies well within the 95% confidence intervals

on the quantile–quantile plots for all datasets, indicating

that the fitted Weibull distributions well represent the

empirical distributions. The 95% confidence intervals

(in gray) were estimated from randomly sampling 1000

times from each fitted distribution. There is evidence of

a slight positive curvature at very high wind speeds,

which is most likely related to the unbounded nature of

the Weibull distribution. The tail of the fitted Weibull is

too heavy for the most intense observed wind speeds

(e.g., Wilks 2011, p. 115).

b. Why are the distribution shapes so different?

It is of interest to try to understand why the shape pa-

rameter for wind speed observations is close to 2 and why

the shape parameters from the model simulations are

much greater (i.e., more strongly peaked distributions).

FIG. 2. Goodness of fit of two-parameter Weibull distributions. Plots show quantiles of the wind speeds vs quantiles from the fitted

distributions for (a) observed (1950–2010), (b) observed (1995–2005), (c) 36-km model-simulated control period (1995–2005), (d) 36-km

future period (2045–55), (e) 12-km model-simulated control period (1995–2005), and (f) 12-km future period (2045–55) maximum wind

speeds.

TABLE 1. Summary statistics and Weibull parameter estimates (standard errors) for observed and model maximum wind speeds.

Sample size Mean (m s21) Minimum (m s21) Maximum (m s21) Scale (a, m s21) Shape (b)

1950–2010 Observations 668 39.04 17.00 91.48 39.16 (1.05) 2.09 (0.01)

1995–2005 Observations 168 39.06 17.00 81.53 37.40 (7.46) 1.85 (0.03)

1995–2005 36-km model 79 30.52 20.21 39.93 32.23 (0.81) 5.91 (0.42)

2045–55 36-km model 108 32.07 20.04 43.41 34.05 (0.34) 6.43 (0.28)

1995–2005 12-km model 189 54.49 28.70 80.29 58.89 (1.28) 4.85 (0.07)

2045–55 12-km model 219 56.56 27.70 86.22 61.26 (0.82) 4.83 (0.06)
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A Weibull distribution with shape parameter equal to 2

is known as the Rayleigh distribution. One way it can

arise is if the orthogonal velocity vector components

(u, y) satisfy certain conditions: they are independently

normally distributed with zero mean and equal variance

(Monahan 2012a; Tuller and Brett 1985). While these

assumptions cannot be tested for this set of observed

maximum wind speeds, as the vector components are

not available, it is possible to examine whether the

model shape parameters differ from 2 because one or

more of these assumptions is strongly violated. Each

assumption has been tested here for the control period

(1995–2005) of the 36-km simulation. It should be noted

that we do not expect any of these assumptions to be

strictly valid for tropical cyclones—unlike normally

distributed variables, physical wind speeds are expected

from energy conservation to have maximum upper

bounds. Furthermore, the velocity components are as-

sociated with one another because of the cyclonic flow

around the center of cyclones although this effect can be

masked due to irregular variations in the translation

velocities of cyclones.

1) EFFECT OF NONZERO MEAN VELOCITIES

Sample means from the 36-km model simulated

maximum wind speeds were removed from the u and v

components (211.9 and 25.7m s21, respectively) sepa-

rately before recalculating the distribution parameters.

This centering of the velocity components had the effect

of substantially reducing the model wind speed shape

parameter from 5.91 to 3.11.

2) EFFECT OF NONEQUAL VARIANCE IN THE

VELOCITY COMPONENTS

Centering followed by rescaling of the (u, y) compo-

nents by their respective sample standard deviations

(19.7 and 20.2m s21) to make the velocity distribution

perfectly isotropic only led to a slight further decrease in

the wind speed shape parameter down to 3.09. This

minimal improvement is not surprising considering how

similar the standard deviations are in both velocity

components.

3) EFFECT OF NONINDEPENDENCE OF THE

VELOCITY COMPONENTS

The estimated correlation between the u and y com-

ponents for the model wind speeds is very small at

0.0012; this is unlikely to be the reason why the model

speeds are not Rayleigh distributed. Apart from a pos-

sible clustering of points toward negative zonal velocity

in Fig. 3a, there is no obvious nonlinear dependence

visible in the scatterplots of the u and y components (Fig.

3a). It is reasonable to assume that the model velocity

components are independent of each other because

tropical cyclones propagate and rotate at variable

rates rather than remaining static, which helps remove

dependence between the two velocity components

(Monahan 2012b).

4) EFFECT OF NONNORMALITY IN THE VELOCITY

COMPONENTS

A qualitative way to assess how far the velocity vector

components differ from the normal is through compar-

ison of scatterplots of the model u and y vector com-

ponents to simulations of normal vector components

that are truncated above the minimum observed wind

speed. Figure 3 illustrates this comparison for model

simulated u and y components (in the Eulerian frame of

reference defined by the model grid) and samples from

a normal distribution derived the mean and variance of

the model simulated u and y. The model velocity vector

components are more constrained (platykurtic) than nor-

mally distributed variables, which possibly accounts for

the remainder of the difference between the distribution

shape parameters. Platykurtic velocity vector components

indicate the inability in the model to simulate extremes

arising from the low resolution of the models with respect

to the scale of the observed physical processes required for

tropical cyclone growth (Done et al. 2014).

The mean of the squared wind speeds from the model

simulation (959m2 s22) is considerably less than that

seen in the historical observations (1382m2 s22) due to

a lack of variance in the model simulated velocity

components. The smaller variance in the velocity vector

components leads to the wind speed distribution being

more strongly affected by departures from zero mean in

the velocity components. To test whether additional

variation in velocity components can bring model wind

speeds closer to observed maximum wind speeds, ran-

dom normal variants were added to each velocity

component.1 That is, sample means were subtracted from

each u and y vector component and their respective stan-

dard deviations adjusted by a noise factor estimated from

the difference in the mean of the observed and model

simulated squared wind speeds. This reduced the shape

parameter estimate to a median value of 2.16, near to the

shape of the distribution of the observed wind speeds.

The lack of variance in the model velocity compo-

nents is most likely the main cause of the wind speed

1 Ideallymore physical nonnormal noise should be added to ve-

locity components at each grid point, cyclone features tracked

again in the new fields, and then maximum wind speeds identified

along the new tracks. However, here we prefer to adopt a some-

what simpler approach for this initial test of concept.
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distributions being more peaked and having an unre-

alistically large Weibull shape parameter. Future re-

search on stochastic subgrid-scale parameterizations

might therefore be able to help alleviate this major

source of model bias in simulating extreme hurricane

wind speeds.

c. Transforming variables to have different
Weibull distributions

When two variables, such as observed and model-

simulated wind speeds, come from the same family of

distributions, then the common form of the distribution

provides a simple way of mapping one variable to have

the same distribution as the other [e.g., Piani et al. (2010)

for mapping between gamma distributed variables]. It

can be shown that if a random variable X is Weibull

distributed with scale parameter a and shape parameter

b, then Z5 (X/a)b will be exponentially distributed.

Hence,X can be transformed into aWeibull variableX*

having scale and shape parameters a* and b* by the

following power-law transfer function:

X*5a*

�
X

a

�b/b*

. (3)

Taking the logarithms of both sides of Eq. (3) reveals

that the log-transformed Weibull variables are linearly

related to one another by

logX*5 loga*2
b

b*
loga1

b

b*
logX . (4)

Since the transfer function is monotone, this relation-

ship is also shared by the quantiles of the log-transformed

variables (Stewart and Essenwanger 1978); a similar re-

sult was demonstrated by Haas et al. (2014). The validity

of this relationship can be tested by making quantile–

quantile plots of the log-transformed variable. Figure 4

shows quantile–quantile plots for the logarithm of the

wind speeds between observations (1950–2010) and the

simulations. There is a reasonable linear relationship

between all of the datasets, which justifies our later use

of this power-law transform to recalibrate the wind

speeds.

4. Recalibration of model maximum wind speeds

a. Calibration pathways

Two calibration pathways can be considered when

downscaling model-simulated projections to obtain a

FIG. 3. Scatterplots of u and y velocity components for (a) model-simulated maximum wind speeds and (b) data

simulated from independent Gaussian distributions truncated to match the minimum model wind speed

(20.21m s21). Note the increased scatter of points further away from the origin in the Gaussian simulation.
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more realistic future: bias correction (BC) and change

factor (CF). The first assumes that differences between

the control model (m) and current observations (o) re-

main the same in the future (of) (change factor): path-

way 1 in Fig. 5. The second pathway assumes that the

difference between the control (m) and future (mf)

model outputs is the same as for observed and projected

data (bias correction): pathway 2 inFig. 5.Ho et al. (2012)

demonstrated that these two calibration pathways give

very different estimates of future daily surface air tem-

perature. Intuitively this result is obvious when applied to

the distribution of wind speeds as the differences in var-

iance are treated in different ways, and yet estimates of

future impacts often employ only one recalibration

method (e.g., Piani et al. 2010; Lafon et al. 2013).

New estimates of the transformed shape, b, and scale, a,

parameters are derivedbelow for each calibrationpathway;

derivations of the transformations are included in appendix

B. The ‘‘future observed’’ shape parameter is the same for

both calibration pathways and derived as follows:

bof 5
bobmf

bm

. (5)

The bias-corrected scale parameter is defined in terms

of the ratio of the scale parameters between the future

and control simulations and also depends on the ratio of

shape parameters

aofBC5ao

�
amf

am

�b
m
/b

o

(6)

while the change factor correction to the scale parame-

ter is defined in terms of the ratio of the control simu-

lation and the observation scale parameters:

FIG. 4. Quantile–quantile plots of log wind speed illustrating linear relationship between (a) observations and 36-km control simula-

tions; (b) observations and 36-km future simulations; (c) observations and 12-km control simulations; (d) observations and 12-km future

simulations; (e) 12-km and 36-km control simulations; (f) 12-km control and 36-km future simulations; (g) 12-km future and 36-km control

simulations; (h) 12-km and 36-km future simulations; (i) 36-km control and future simulations; and (j) 12-km control and future simu-

lations. Distributions are identical if points lie on the line y 5 x (dashed line).
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aofCF 5amf

�
ao

am

�b
m
/b

mf

. (7)

Note that Eqs. (6) and (7) will differ unless all three

shape parameters (bo, bm, bmf) are identical.

b. Method validation

To assess the performance of the recalibration

methods, a proxy experiment was carried out using the

higher-resolution grid model outputs. While the 36-km

and 12-km model-simulated wind speeds have a differ-

ent range and maximum/minimum values from each

other, they both differ considerably from the range and

distribution shape of the observed maximum wind

speeds. Thus, this experiment is not a true test of the

adequacy of the method to downscale to reality, but it

may remove some ambiguity from selecting the most

appropriate calibration pathway.

The 12-km model simulated wind speeds are treated

as pseudo-observations and their future distribution is

predicted using the 36-km wind speed data. The recali-

brated ‘‘future’’ parameters are then compared to the

Weibull parameters for the 12-km future model (Fig. 6).

The 95% confidence interval was established from the

variance-covariance matrix of Weibull parameter esti-

mates from 1000 bootstrapped samples.

Although the bias correction narrowly overestimates,

and the change factor underestimates, the scale param-

eter from the 12-km simulations (61.2m s21), both sets

of parameter estimates are reasonably close to the 95%

confidence interval and give similar predictions. This

provides some reassurance in past results as downscaling

estimates premised on a statistical distribution (Done et al.

2014; Pryor and Barthelmie 2013) have not distinguished

between calibration pathways. It also emphasizes the

importance of accounting for uncertainty in the future

wind speed estimates by using both calibration path-

ways.

Shape parameter estimates are the same for each

calibration pathway, as dictated by Eq. (5), and are

overestimated due to the large change in shape param-

eter between the control and future simulations that is

not found in the 12-km simulations. As no higher-

resolution future period simulations exist with these

model runs, it is not possible to test the influence of even

higher model resolution (e.g., 4 km) on the relative

changes in predicted tropical cyclones. Further, as sim-

ulation results are only available for 1995–2005, it is not

possible to verify the methodology using a hindcast es-

timate of a different period of observations. These

results suggest that a hybrid dynamical–statistical down-

scaling approach is required, whereby higher-resolution

(12km) grid dynamical simulations that allow tropical

cyclone formation are recalibrated using statistical tech-

niques to achieve the appropriate range of maximum

wind speeds.

c. Estimate of future wind speeds

The parameter estimates were next used to derive the

future distribution of maximum wind speeds, through the

transformations in Eqs. (5)–(7), for 12-km and 36-km

model simulations. Revised parameter estimates for the

future distributions calculated from the bias correction and

change factor calibration pathways, and the 95% confi-

dence intervals, are presented in Table 2. The recalibrated

distribution parameters are compared with model and

observed fitted distribution parameters in Fig. 7.

FIG. 5. Calibration pathways: 1) change factor and 2) bias

correction.

FIG. 6. Assessment of calibration pathways from the 36-km

model to obtain the 12-km future estimates. Filled circles represent

fitted control model parameters; squares represent fitted future

model parameters; stars represent bias correction estimates; di-

amonds represent change factor estimates; hatched ellipse depicts

the 95% confidence region for the Weibull parameters estimated

for the 12-km future simulation.
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The recalibrated scale parameters for each calibration

pathway from the 36-km simulations are close to the

comparative 12-km estimates. There is a wider differ-

ence between the scale parameter estimates obtained

from the two calibration pathways for the 36-km simu-

lations than those from the 12-km simulations, possibly

reflecting the difference in sample sizes (refer to Table

1). It is likely that for both grid resolutions the bias

correction pathway has overestimated the scale param-

eter, and underestimated it from the change factor

pathway. The results are sufficiently close to suggest that

this downscaling technique reduces some of the need for

higher-resolution simulations for maximum wind speed

analyses, provided uncertainty is fully acknowledged.

The confidence ellipses for both calibration pathways

and both model resolutions overlap substantially, with

the largest confidence ellipses derived from the bias

correction pathway. Larger-scale parameter estimates

are derived from the bias correction pathway than from

the change factor pathway due to the power-law trans-

formation; the ratio of observed and model simulated

shape parameters raises the scale parameters to a higher

power than that obtained from the ratio of control and

future simulated shape parameters. However, all scale

parameter estimates are within an acceptable range for

maximum wind speeds. Other research indicates that

TC ymax will increase in the future (e.g., Knutson et al.

2013; Bender et al. 2010), which suggests that the scale

parameter will increase, possibly beyond the confidence

interval for the observations. Shape parameter estimates

for both model resolutions fall within the same confi-

dence interval as the observations. The slightly higher

shape parameter estimate for the 36-km distribution is

likely due to the large difference in shape parameters

between the control and future simulations, leading to

a lighter-tailed distribution and underestimates of the

most extreme wind speeds.

The different probability density functions (pdfs) of the

future wind speed obtained from the two recalibration

pathways for 12-km and 36-km simulations are shown

in Fig. 8, and compared with the observations. The

truncation threshold (17m s21) is indicated as a solid

gray vertical line, below which the pdfs are faded out;

Saffir–Simpson scales for hurricanes andwinds thresholds

(Simpson 1981) are dot-dashed vertical gray lines, 36-km

recalibrations are shown in red, 12-km recalibrations

are shown in blue, observations are in black; bias cor-

rection is shown with solid lines and change factor with

dashed lines.

All recalibrated future projections of TC ymax indicate

a decrease in the proportion of tropical storms (,30ms21)

and increases in the proportion of the highest wind

speeds (.50ms21). Bias correction reparameterizations

for both simulation resolutions indicate larger changes,

both increases and decreases, in the proportions of

tropical cyclones exceeding each of the Saffir–Simpson

scale categories. Estimates of the proportion of TCs

exceeding the three highest thresholds (49.4, 57.8, and

69.8m s21) are shown in Table 3, comparing the ob-

servations for 1950–2010 and for 1995–2005 to the

recalibrated wind speeds from 12-km and 36-km sim-

ulations for 2045–55. The 95% confidence intervals were

estimated from 1000 bootstrap samples from left-truncated

Weibull distributions with recalibrated shape and scale

parameters.

While both recalibration pathways show increases in

the proportion of wind speeds exceeding categories 3, 4,

and 5, the two methods give very different estimates of

possible TC ymax. Increases are greatest between the

bias-corrected future estimates and current observa-

tions. Similarly, larger increases were obtained from the

12-km simulations than from 36-km simulations. How-

ever, the uncertainty arising from the recalibrated dis-

tributions is more substantial than differences between

either model resolution or different calibration path-

ways. There is insufficient evidence to select one cali-

bration pathway in preference to the other; these results

highlight the importance of using both calibration

pathways to quantify the uncertainty in the likely range

of future tropical cyclone maximum wind speeds.

TABLE 2. Transformed parameter estimates for the future dis-

tribution of ‘‘observed’’ maximum wind speeds calculated from

bias correction and change factor calibration methods.

Scale (a) m s21 Shape (b)

Bias correction 36-km model 45.40 (66.9) 2.24 (60.6)

Change factor 36-km model 40.34 (62.9) 2.24 (60.6)

Bias correction 12-km model 42.56 (65.1) 2.06 (60.37)

Change factor 12-km model 40.28 (64.5) 2.06 (60.37)

FIG. 7. Fitted and recalibrated left-truncated Weibull distribu-

tion parameters for the observations (black circle), 12-km simula-

tions (blue), and 36-km simulations (red). Symbols are as in Fig. 6.
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5. Conclusions

The probability density function of model-simulated

tropical cyclone maximum wind speeds is much more

peaked and less J-shaped than from that for observed

maximum wind speeds. This study investigates probable

explanations for the difference in distribution shape,

concluding that model-simulated wind speeds are more

peaked (i.e., have a larger shape parameter) because the

orthogonal velocity components are more constrained

than normally distributed variables and have lower

variance. This arises from the low resolution of climate

models with respect to the scale on which physical pro-

cesses generate tropical cyclones in reality.

Weibull distributions provide a good fit to the observed

andmodel-simulatedwind speeds.A powerful property of

the Weibull distribution is that a simple power transform

can be used to translate between twoWeibull distributions

with different parameters. Reparameterizing the model

wind speeds as a Weibull distribution, with shape pa-

rameter approaching 2, is a simple and effectivemethod of

transformingmodelwind speeds tomore closely represent

observations. This relationship leads to two distinct cali-

bration pathways to estimate future projections of TC

maximumwind speeds: bias correction and change factor.

The two calibration pathways give very similar esti-

mates of the projected future wind speeds. Validation of

the recalibration method using 12-km simulated wind

speeds as a proxy for ‘‘reality’’ indicates that neither

calibration pathway is more accurate in estimating the

changed scale parameter. The recalibrated scale pa-

rameters from the two calibration pathways encompass

the true scale parameter; both calibration methods are

required to quantify the uncertainty in future estimates

of tropical cyclonemaximumwind speeds. The recalibrated

shape parameter is overestimated, likely due to the differ-

ences in shape parameter for the 36-km control and future

simulations, indicating that increases in the frequency of

the highest wind speeds will be underestimated. As no

higher-resolution future period simulations exist with

these model runs, it is not possible to test the influence

of model resolution on the relative changes in pre-

dicted tropical cyclones here. However, other datasets

(e.g., Bender et al. 2010) exist that also have high-

resolution model results available that would permit

sensitivity testing in the future.

Both calibration pathways indicate an increase in the

proportion of tropical cyclones exceeding 49.4m s21;

this increase is greater for the bias correction pathway

and for 12-km simulations. However, uncertainty in the

estimates is greater than the differences between either

the calibration pathways or model resolutions. Until one

method can be demonstrated as more appropriate, it is

important to present both sets of recalibration estimates

to give a better representation of the uncertainty in fu-

ture estimates (Katz et al. 2013).

Done et al. (2014) also found that the changes in TC

ymax represented a shift in the distribution toward the

right, with lower probability densities for category 1 and

2 storms. However, weather systems are limited by en-

ergy constraints that impose an upper limit to the max-

imum wind speed; this limit is changing at a slower rate

than the overall distribution of wind speeds. As a result,

not only is the distribution shifting toward the right, it is

also transiting to a bimodal distribution of at the upper

tail (Holland and Bruyère 2014). This additional feature
is being investigated in an ongoing study. Furthermore,

the recalibration approach assumes a single distribution

for a given time period (e.g., 1950–2010 for the obser-

vations) with no temporal variability. Another approach

could allow the Weibull distribution parameters to shift

over time, using a generalized linear model.

An additional limitation lies in the probability that the

model truncation will affect cyclones of different sizes

differently. That is, a small cyclone will map to a much

weaker intensity due to model truncation than a large

one of the same intensity. The impact of this limitation

on the approach presented here will require de-

velopment of a dataset of model results with resolution

down to a few kilometers (e.g., Knutson et al. 2013).

Knutson et al. (2010) observed that some conflicting

projections are due to model differences; however, the

largest discrepancies arise between different downscaling

approaches with decreases in maximum wind speeds

more often reported from statistical–dynamical down-

scaling. Another explanation for differences in published

estimates of future wind speeds is the nature of the sta-

tistical downscaling technique—for example, using some

FIG. 8. Probability density functions for bias correction (solid

lines) and change factor (dashed lines) transformations of future

tropical cyclone maximum wind speeds for observations (black),

12-km simulations (blue), and 36-km simulations (red). The x axis

is curtailed approximately where the distribution tails tend to zero.
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form of linear modeling to incorporate sea surface tem-

perature (SST) dependence (Elsner et al. 2008).

The benefit of employing a parametric recalibration

approach is the ability to increase the sample size beyond

the limited scope of climate models output in a less

computationally expensive manner (Done et al. 2014).

This further allows some estimation of the most extreme

wind speeds that are physically possible but have not yet

been observed.However, some cautionmust be applied in

extrapolating the Weibull beyond the scope of observed

wind speeds given the tendency to overestimate the most

extreme wind speeds (Jagger et al. 2001). Extreme value

distributions may improve the representation of these

very high tails by avoiding unrepresentative extrapolation,

but further limiting the sample size to complywith extreme

value distribution assumptions (Coles 2001) is a serious

limitation where the data are already scarce and where the

distribution may tend toward a bimodal shape (Holland

and Bruyère 2014). Furthermore, any reparameterization

will be subject to the same conflict of two potentially op-

posing calibration pathways described here.

A possible alternative is to adopt a semiparametric

recalibration approach developed from the model repre-

sentation of the orthogonal velocity components. Initial

results presented in section 3 indicated that the model

shape parameter can be recalibrated close to the observed

shape parameter by adding appropriate amounts of

subgrid-scale Gaussian noise to the model orthogonal ve-

locity components. That is, a simple Gaussian stochastic

parameterization scheme on the wind speed components

appears to rectify problems in the model-simulated wind

speed and alleviate any further need for calibration. Work

is progressing on this alternative recalibration method and

to determine how theGaussian noise variance depends on

model grid resolution. If the subgrid-scale noise in the

wind components is uncorrelated, the Gaussian noise will

scale as the area of the model grid cell. Thus, a Gaussian

process to represent the stochastic variation of the un-

resolved subgrid scale in the velocity components may

present a more robust recalibration technique.
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APPENDIX A

R Code for Estimating Left-Truncated Weibull
Distribution Parameters

# Left-truncated Weibull log likelihood
function

ll.tweib <- function(pars, vec, u, n) {
logalpha <- pars[1]
logb <- pars[2]
pars <- exp(pars)
alpha <- pars[1]
beta <- pars[2]
l1 <- n *(logb–beta *logalpha)
l2 <- (beta–1) * sum(log(vec))
l3 <- (alpha (̂-beta)) * sum(vec^k)
return(- l1–l2 + l3–n *(u / alpha)̂ beta)
}

# Function to fit left-truncated Weibull
distribution

fit.tweib <- function(vec, trunc.pt,
inits) {

id.u <- vec > trunc.pt
vec.u <- vec[id.u]
out <- optim(log(inits), ll.tweib, vec =
vec.u,
u = trunc.pt, n = sum(id.u))

ests <- exp(out$par)
names(ests) <- c(“scale”, “shape”)
return(ests)
}

# Function to invert left-truncated
Weibull CDF

TABLE 3. Comparison of exceedance probabilities for Saffir–Simpson category 3, 4, and 5 TCs using change factor or bias correction

transformations to estimate future distribution parameters. Confidence intervals in parentheses.

.Category 3 .Category 4 .Category 5

Observations (1950–2010) 24.7% (68.2%) 11.6% (66.4%) 2.8 (60.2%)

Observations (1995–2005) 21.3% (67.2%) 9.1% (65.6%) 1.6% (60.4%)

Change factor 36 km (2045–2055) 26.5% (68.0%) 12.3% (66.7%) 2.8% (60.5%)

Bias correction 36 km (2045–2055) 36.5% (67.9%) 21.2% (66.7%) 7.2% (64.6%)

Change factor 12 km (2045–2055) 31.9% (67.8%) 17.1% (68.0%) 5.2% (64.7%)

Bias correction 12 km (2045–2055) 36.8% (67.6%) 23.3% (66.3%) 9.8% (64.0%)
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qweib <- function(x, lambda, k) lambda *
(-log(1–x))̂(1 / k)

# Left-truncated Weibull density function
dtweib <- function(x, u, alpha, beta) {

k *(alphâ (-beta))*(x (̂beta–1)) *
exp(- (x / alpha)̂ beta) * exp((u / alpha)
^beta)}

APPENDIX B

Change Factor and Bias Correction Parameter
Adjustments

Consider that wind speeds are distributed as aWeibull

with X;Wei(a, b) and x. 0, a. 0, and b. 0; then

the cumulative distribution function and associated

quantile function for p is

F(x)5Pr(X# x)5 12 exp(2x/a)b 5 p,

x5a[2ln(12 p)]1/b 5F21(p),

F 0(x)5
dF

dx
5

b

a

�x
a

�(b21)
e(2x/a)b .

Consider also that the transformation ofX;Wei(a, b)

has an exponential distribution Z, such that

Z5 (X/a)b ;Wei(1, 1)5Exp(1) and F(z)5 12 e2z.

Let X represent current climate observations, Y rep-

resent control climate model simulations, and Y0 rep-
resent future climate model simulations; X0 are the

unknown future climate observations.

All of the distributions are related through the Z trans-

formation ofWei(1, 1), thus relationships can be derived to

find the distribution of X0 from X, Y, and Y0 through

change factors (Y / Y0) or bias correction (X /Y).

a. Change factor

Assume a relationship between the future ‘‘observa-

tions’’ X 0 and future model simulations Y0 through the

control simulations Y and transfer function Z:

X 05 g(X),

Y 05 g(X),

Z5

�
Y

aY

�b
Y
/b

Y0
,

[ X 05aY 0

�
X

aY

�b
Y

bY 0 5aY 0

 
aXZ

1/b
X

aY

!b
Y
/b

Y0

5aY 0

�
aX

aY

�b
Y
/b

Y0
Zb

Y
/b

X
b
Y0 .

ThenX0 must equal theZ transformX5aZ1/b, which

can be rearranged to derive expressions for the scale and

shape as

bX 0 5
bXbY 0

bY

and

aX 0 5aY 0

�
aX

aY

�b
Y
/b

Y0
.

b. Bias correction

Assume a relationship between the current observa-

tions X and the future ‘‘observations’’ X0 through the

transfer function for the control simulation Y whereby

X5 g(Y) and Z5

�
Y

aY

�b
Y

,

X 05 g(Y 0) and Z5

�
X

ax

�b
X

,

then

X5aXZ
1/b

X 5ax

�
Y

aY

�b
Y
/b

X

,

X 05aX

�
Y 0

aY

�b
Y
/b

X

,

Y 05aY 0Z
1/b

Y0 ,

and so it follows that

X 0 5ax

 
aY 0Z

1/b
Y0

aY

!b
Y
/b

X

and then the expressions for shape and scale can be

derived as before, with the same relationship for shape

as for the change factor.
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