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Abstract 
 
The health risks posed by hot weather are growing as increasingly frequent 

extreme weather is brought about by climate change. People spend upwards 

of 80% of time indoors and so human health is largely dependent on the 

internal environment of buildings. In the building industry engineers currently 

design buildings for high-energy performance by maximising heat retention, 

and whilst this may be effective in cold winters, it can lead to unbearable 

indoor conditions in hot summers. Thermal comfort inside buildings is a well-

discussed topic both in industry and academia, but absolute peak thresholds, 

especially for heat stress still require development. In this thesis the outcomes 

of research into the effects of current and future hot weather on the heat 

stress of occupants inside buildings are presented. Hot weather data from the 

current climate and mortality rates are compared and several temperature 

metrics are analysed with respect to health risk forecasting performance, so 

that peak threshold limits for human health indoors are established for the 

building design industry. Reference weather data used in building simulations 

for health assessment is currently chosen based on air temperature alone. In 

this thesis new reference weather data is created for near-extreme and 

extreme weather and for current and future climates, based on the peak 

threshold metric research and future weather analysis. By 2050 hot weather 

reference years currently occurring once every seven years could become an 

annual occurrence, and by 2080 extreme hot weather reference years 

currently occurring once in twenty-one years could become an annual 

occurrence. Computational fluid dynamics is then used to simulate the internal 

heat stress inside a building model, and a surrogate model is created to 
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emulate heat stress levels for full calendar years of future climates for several 

UK locations. It is envisaged that the results presented in this thesis will help 

inform the industry development of new reference data and aid better building 

design. 
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1 Introduction  
 
 

If we knew what it was we were doing,  

it would not be called research.  

Albert Einstein 

 
 
 
 

1.1 Background 
 
In developed countries people spend around 80% of their time indoors. 

Homes, offices and public indoor spaces are all currently designed to keep 

people thermally comfortable based on weather data for today’s climate, yet 

buildings should have a lifespan of at least a century, when climate change 

has long since caused increases in average temperatures, and extreme 

weather such as heat waves are a common occurrence. Overheating in 

buildings is a growing issue as the climate changes and warmer weather is 

predicted. Meanwhile construction methods and materials are being designed 

to increase thermal performance, potentially exacerbating the risk of 

overheating in future summer weather. In the UK the Chartered Institute of 

Building Services Engineers (CIBSE) regulates overheating by setting indoor 

air temperature thresholds, and engineers comply by assessing thermal 

performance at the design stage. Using computer models of buildings, 

engineers use sample reference years of external weather data from the 

closest weather station to the construction site and simulate the thermal effect 
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on the building. Thermal comfort assessments are an essential part of the 

design process in building construction, which in the UK involves using 

summer weather reference data called design summer years (DSYs) in 

building simulation models. However, the DSY creation methodology has 

been shown to be inaccurate, as it is based on air temperature alone, unable 

to account for extreme weather and is unsuitable for future climates. 

 

Building engineers are faced with a difficult problem: how to design habitable 

spaces that conform to planning constraints, building regulations and low 

levels of energy use, whilst at the same time making them comfortable for 

people to live in for current and future climates. The study of thermal comfort 

and heat stress caused by future hot weather is necessary to give architects 

and engineers a clear understanding of the issues they need to overcome in 

designing future buildings, and retrofitting current ones to cope. New 

overheating metrics could take advantage of all the environmental weather 

variables that affect thermal comfort, and that are currently collected at 

weather stations, whilst reference weather files for future conditions could be 

produced, ranked according to new overheating metrics, so that building 

designers could test for overheating in extreme weather and in future 

climates. One of the goals of this thesis is to develop that work.  

 

To fully analyse heat stress in the indoor environment airflow, heat transfer 

and humidity should all be considered, since air temperature alone does not 

provide a fully accounted metric for assessing thermal comfort. Computational 

fluid dynamics can be used to simulate heat and fluid transfer to offer 
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localised internal heat stress levels with high accuracy. CFD simulations are 

computationally costly and are usually restricted to research purposes only, 

so using air temperature as a metric, albeit imperfect, is often deemed 

adequate enough for thermal assessment. This thesis tackles both the issue 

of devising a full description of indoor thermal performance and the CFD 

computational cost hurdles, by creating a surrogate model to emulate CFD 

simulation results of a complete thermal stress parameter within an indoor 

space.  

 
 

1.2 Research Question 
 
Climate change will have a significant impact on building design, energy 

usage and the internal environment, not just in the UK but around the world. 

Current estimates predict that changes in temperature could be large enough 

to cause severe discomfort and have detrimental effects on human health. 

Although climate change projections suggest an alarming rise in global mean 

temperatures the predicted effect on weather is far greater. Most 

assessments of overheating in domestic building design practice only contain 

static statistics such as “percentage of occupants dissatisfied”, which do not 

account for the time-varying nature of the problem and therefore cannot be 

used to assess vulnerability, morbidity or mortality. CIBSE’s TM52 provides a 

maximum acceptable temperature that is related to the comfort temperature, 

but this is not an indicative temperature at which health deterioration occurs.  

In what ways could we develop our understanding of the impact of future 

extreme weather on buildings and their occupants, where it is clear that a 

warming climate will increase the risk of overheating in domestic buildings, 
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and what metrics, guidance and best practice for the building design industry 

could be developed from a scientific approach to learning how human health 

could be impacted by hot conditions inside buildings? This thesis will address 

the above questions with relation to the design of new domestic homes 

without mechanical cooling. 

 

1.3 Thesis Outline 
 
Chapter 2 is an overview of climate change and future climate projections. 

This chapter investigates the radiative forcing methods used by the 

International Panel on Climate Change (IPCC) to evaluate the effect of 

emissions, and then looks at extreme weather and the growth trends of heat 

waves in particular, since hot weather will form a key part of the investigation 

in this thesis of the health impacts of climate change in buildings.  

 

Chapter 3 follows with a study of thermal discomfort and human heat stress. 

Traditional concepts of the effects of hot weather on health are explored, and 

new heat stress metrics are identified, representing the equivalent 

temperature that the human body actually feels. 

 

Chapter 4 continues with a study of the impact on health caused by heat 

waves and hot days from the current climate. Mortality data collected from the 

Office of National Statistics (ONS) is compared with current and historic hot 

weather for different UK locations. Using the heat stress metrics and heat 

wave definitions investigated in chapter 3, the temperature metric that best 
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predicts significant excess deaths in hot weather is identified, and 

temperature thresholds for the indoor environment are established.  

 

Chapter 5 begins with a study of future probabilistic weather. Future weather, 

created from climate projections is analysed for extreme thermal conditions, 

and growth trends in hot weather frequency and intensity are presented. New 

methodologies for creating key reference weather data used in building 

design and thermal performance tests are also studied. Using these methods, 

new reference data for near-extreme and extreme weather conditions in 

current and future climates is created and presented using the heat stress 

metric established in chapters 3 and 4. 

 

Chapter 6 is a computational fluid dynamics (CFD) analysis of the thermal 

response of a building in current and future weather conditions. The heat 

stress metric established in chapter 4 is coded into a CFD solver, and a 

simple, naturally ventilated building model is created. The internal thermal 

environment is simulated, driven by outdoor weather conditions, and a 

surrogate model is created to rapidly emulate internal heat stress conditions 

within the building model for any weather. Finally, plots are shown for the 

actual daily heat stress levels inside a building model for full calendar years of 

future climates in different UK locations. 
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2 Climate change and extreme weather 
 

2.1 Climate change 
 

2.1.1 Climate change projections and atmospheric emissions 

Earth’s future climate and the predicted changes that it will undergo are well 

understood and widely discussed. It is clear that even if human intervention is 

successful enough to mitigate against this change to avert some of the more 

extreme projections, we will still experience a significant shift in future climate 

that cannot be undone. The IPCC uses radiative forcing to measure the 

effects of climate change, which is the difference between incoming solar 

radiation and outgoing infrared radiation, defined as the net irradiance at the 

troposphere [1]. A positive radiative forcing value is given when there is a 

positive net flux of energy entering the system. Radiative forcing is linearly 

related to the mean temperature change at the surface. 

 

∆𝑇# = 𝜆𝑅𝐹 

Equation 2-1 

 

where Ts is the temperature at the Earth’s surface, is the climate sensitivity 

parameter and RF is radiative forcing. 

 

Infrared radiation exiting the Earth’s atmosphere is absorbed by Carbon 

Dioxide (CO2) and other greenhouse gases, and as the concentration of these 

gases increases through emissions, so too does radiative forcing. 

 

λ



 25 

CO2 emissions contribute most to the radiative forcing effect, along with 

methane and nitrous oxide, and therefore climate change action policies 

target CO2 emission reductions in particular. Benchmarks are set for lumped 

greenhouse gas effects through the carbon dioxide equivalent (CO2e) metric, 

which equates concentration levels of all greenhouse gases to the 

concentration of CO2 that results in an equivalent radiative forcing effect [2]. 

Atmospheric CO2 levels have been recorded at weather and climate stations 

globally for decades and historic levels are generally derived from geological 

analysis. Historic concentrations of atmospheric CO2 from 1000–1750AD are 

estimated at approximately 280ppm, whilst current levels are >384ppm [3]. 

Combining these empirical sources, gives a picture of the growth trends in 

atmospheric greenhouse gases shown in Figure	 2-1 [4] and a number of 

studies agree that the increase in levels is likely to be a linked directly to 

human intervention and fossil fuel combustion [5], [6], [7]. 

 

Greenhouse gas emissions are driven by population, the economy, energy 

and land-use, technology and policies on climate. The most recent IPCC 5th 

Assessment features a statistical representation that aims to capture this type 

of data and use it for making projections based on these factors called the 

‘Representative Concentration Pathways’ (RCPs) [8]. Each gas has a 

pathway for its future concentration and these concentrations are reflected in 

the radiative forcing of the scenario. The RCPs describe four different 

pathways of greenhouse gas emissions for the 21st century, which include a 

best-case mitigation scenario (RCP 2.6), two intermediate scenarios (RCP 4.5 

and RCP 6.0), and a high greenhouse gas emissions scenario (RCP 8.5). The 
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best-case scenario (RCP2.6), which is seen as very optimistic, is based on 

keeping global warming to below 2°C above pre-industrial temperatures. The 

RCPs have been developed to input into a wide range of climate model 

simulations to project their consequences for the climate system. 

 

 

 

Figure 2-1: Historic concentrations of atmospheric greenhouse gases 

 

 
 

The IPCC reports regularly on probabilistic global surface temperature rises, 

and its latest findings show that by 2080 we could expect an increase of 

between 2°C and 5°C, following various emissions scenarios (see Figure	2-2) 

[9]. The IPCC warns that a mean temperature rise of >2.5°C, relative to the 
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pre-industrial period, could result in a range of serious global impacts, 

including sea level rises, increases in salinity concentrations and more 

frequent extreme weather events. The human impacts are wide-ranging and 

include risks to drinking water availability, agricultural land use and heat 

stress. However it is possible that even these rather dispiriting IPCC 

emissions scenarios border on the conservative side, since recent empirical 

studies have shown emission levels moving beyond IPCC forecasts [2]. 

 

 

 

Figure 2-2: Projected global temperature rises for different emissions scenarios over 
the 21st century 

 

2.1.2 Climate change in the UK 

In the UK, the Climate Impacts Programme (UKCIP) published their latest 

projections in 2009, which show that by 2050 average air temperatures in 

England could increase by over 3°C and by 2080 as much as 5°C [8]. These 
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projections were created using multiple global climate models and a high-

resolution map of temperature rises plotted using the 50th percentile results 

[10] as shown in Figure	2-3 [11]. These latest UKCIP projections are based 

on similar data and emissions scenarios to the IPCC source data, and so 

research work drawing on these projections can be carried out with 

confidence. 

 

 

 

Figure 2-3: Change in summer mean temperature with 50% probability for 2050 and 
2080. 
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2.2 Extreme weather 
 

2.2.1 Extreme weather in climate change 

Although there is much work being carried out on forecasting climate change, 

the prediction of extreme weather as such is far from extensive. A 

consequence of climate change, however, is an increase in extreme weather 

events such as floods, droughts, storms, cold waves and heat waves [12]. 

Heat waves are expected to become more intense in the future and periods of 

extreme hot weather equivalent to the most severe heat waves currently 

observed will become far more frequent in coming decades [13], [14]. A study 

undertaken by the Met Office suggests that extreme hot summers will be 

normal by the 2050s [11]. A map of projected extreme high temperature days 

is shown in Figure	2-4, with day-time air temperatures over 35°C and night-

time air temperatures over 20°C [15]. 

 

 

Figure 2-4: Projected extreme high temperature days and nights in Europe over the 
21st century. 

 



 30 

2.2.2 Defining heat waves 

Currently heat waves are loosely characterised by meteorologists as a 

‘prolonged period of unusually hot weather’, but to date a standard definition 

of heat waves has not been agreed [16]. Although there is no universal 

definition, what is common around the world is that heat wave definitions 

generally use air temperature alone as a metric, with either static or percentile 

based thresholds. These thresholds are aligned with evaluations of the local 

heat wave impacts on human health, which in turn are used to trigger heat 

wave warnings in extreme weather. Heat wave health alerts are generally 

issued when maximum daytime air temperature reaches a determined 

threshold and these thresholds vary from country to country and even within 

countries in order to account for human acclimatisation. In the UK for instance 

the Met Office advises that if there are at least 2 days of maximum daily air 

temperature exceeding 30˚C, and night-time temperatures exceeding 15˚C 

[12] (these thresholds vary slightly by region, see Table 2-1) then there could 

be a significant risk to health. Public Health England has published a heat 

wave plan using these threshold temperatures annually since 2004 [12]. 

 

Investigating other global heat wave definitions finds that in Brisbane, 

Australia, heat wave definition ‘HWD1' sets maximum air temperature 

thresholds at the 97.5th percentile point [17], equivalent to 33.59˚C and only 

slightly warmer than the London heat wave threshold of 32˚C. In Florida 

researchers have concluded that the heat wave threshold should be revised 

down to 35˚C, owing to the humid climate and the consequent apparent 

temperature people feel [18]. In France researchers have debated the heat 
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wave threshold levels and concluded with ‘...certainty that heat-related 

mortality occurred at temperatures below thresholds.’ [19], [20]. It is possible 

to set the threshold temperature at whatever level is desired, and that will be a 

different level depending on the target of that information, whichever level is 

chosen can dramatically affect the mortality forecasting outcome [21]. What 

can be said for buildings, which is important for this thesis, is that whilst these 

heat wave definitions may be applicable for outdoor conditions, they are not 

applicable for the indoor environment, since indoor conditions are not directly 

equivalent to the weather outside. 

 

 
Table 2-1: Met Office heat wave warning thresholds for maximum air temperature 
 

UK Region Day max (°C) Night min (°C) 
North East England 28 15 

Yorkshire and Humber 29 15 

North West England 30 15 

East Midlands 30 15 

West Midlands 30 15 

East of England 30 15 

Wales 30 15 

Southwest England 30 15 

Southeast England 31 16 

London 32 18 

 
 
 

 

2.3 Chapter summary 
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This concludes the overview on climate change and future climate projections, 

and a look at extreme weather and heat waves. The following chapter 

examines thermal discomfort and human heat stress in hot conditions, and 

identifies new heat stress metrics for representing the equivalent temperature 

that the human body actually feels. 
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3 Hot weather and the effect on human health  
 

3.1 Deaths in hot weather 
 

3.1.1 Extreme weather and mortality  

Extreme weather poses one of the greatest direct risks from climate change, 

and heat waves in particular will become a serious threat to public health in 

the future as the climate changes [21]. To appreciate the scale of the impact 

of hot weather on human health, recent studies have shown that mortality 

rates from heat waves in Europe already cause five times more deaths than 

other extreme events combined, shown in Table 3-1 [15]. For context these 

figures can be compared with deaths caused by cancer, which amount to 

2,660 per 10,000 deaths in Europe, and road traffic accidents which account 

for 140 deaths per 10,000 [22]. With the health impact from heat waves 

already significant, even in today’s climate, this begs the question of how this 

risk may develop as extreme weather events increase.  

 

Table 3-1: Number of people killed due to extreme weather events in different 
European regions from 1980 to 2011 per 10,000 deaths. 

 

 Floods Cold event Heat wave Storm Wildfire 

Eastern Europe 0.81 2.36 1.15 0.17 0.05 

Northern Europe 0.10 0.12 0.34 0.41 0.00 

Southern Europe 1.23 0.13 21.00 0.21 0.15 

Western Europe 0.27 0.06 18.76 0.37 0.02 
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The European heat wave of 2003 is estimated to have caused over 50,000 

premature deaths across Western Europe, including around some 2,000 in 

the UK within a hot period of just two weeks [11].  Remarkably and perhaps 

ominously, that heat wave occurred during a summer in which average air 

temperatures were just 2°C above the 1961-1990 average in the UK; it was 

the high daily maximum temperatures that caused the casualties. Deaths due 

to a cold event are to be compared to deaths caused be a heat wave, or hot 

event. These are direct and sudden deaths, not related to exacerbating 

illnesses that lead on to death some time after the event. 

 

3.1.2 Excess deaths metric 

The health impact of heat waves is often measured by excess deaths, as 

mortality data is readily available. Studies show that the majority of people 

who die in heat waves are elderly [23], [24], to the extent that impacts on age 

groups under 65 years are not even looked at. Those that do die in heat 

waves are often considered to be victims of a heat wave ‘harvesting’ effect, 

whereby impending death is accelerated during a heat wave period, dropping 

thereafter, and stabilising at a point in the future, as shown in Figure 3-1. The 

relative number of deaths attributed to the 2003 heat wave in France is 

counter-balanced by the subsequent fall in deaths thereafter (in the hatched 

area) [19]. This has often prompted discussion around the so-called (and 

arguably ill-judged term) ‘heat wave harvesting effect’ and whether excess 

deaths is a viable metric for measuring the health impact of heat waves [19]. 
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In general though scientists agree that the metric is sound, and especially 

given the challenge of collecting more detailed health and disease data 

beyond mortality rates, excess deaths remains the most reliable way of 

analysing the impact of hot weather on health [25], [26]. 

 

A detailed cohort study of mortality in hot weather is not attempted in this 

thesis, but it is important to mention that the very young and the elderly are 

physiologically more vulnerable to the effects of hot weather. The issue of 

social isolation for older people, particularly for those that live alone, is serious 

during extreme weather, especially given that many periods of hot weather 

occur at times in the summer when families are on holiday and therefore 

unable to look in on older relatives, This social isolation issue was highlighted 

as a major contributing factor to the high number of excess deaths 

experienced during the European 2003 heat wave [27].  
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Figure 3-1: Mortality rate in France during and after the heat wave of 2003 

 

 
 

We will now move on to discussing how hot weather conditions influence the 

indoor environment, and how the subsequent study of thermal comfort and 

the impact on health inside buildings has been treated and modelled in recent 

history. 

  

3.2 Thermal comfort 
 

3.2.1 Modelling thermal comfort  

Thermal comfort has been researched for nearly 200 years, as the emphasis 

on human productivity during the industrial revolution led to a science of 

keeping workers fit and able. The environment in which people work plays a 

vital part in human comfort and productivity, and it was picked up quite early 

on that comfort depended on more than just air temperature. Chrenko’s 
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review of the historical background showed that in 1835 Michael Faraday 

provided evidence to the House of Commons that air temperature alone was 

inadequate in determining optimal thermal conditions [28], and nearly a 

century ago Dufton was investigating thermal conditions using heated black 

copper cylinders to mimic the thermal behaviour of a human body [29]. 

Studies of thermal radiation, air speed and thermal mass were all identified as 

having contributing factors to thermal comfort back in the 19th Century.  The 

legacy of comfort for productivity, serviced by the design of the built 

environment has its roots in this early work, and still today, studies are carried 

out in the physical sciences on human performance [30]. Since then a 

definition has been sought to explain thermal comfort, and the ideal conditions 

that might satisfy it. That search has been attempted across academic 

disciplines, and as Nicol writes, ‘the science of thermal comfort is itself a 

hybrid embodying physics, physiology, behaviour, meteorology and many 

other disciplines’ [31].  

 

The Chartered Institute of Building Services Engineers (CIBSE) and the 

architectural and structural design company Arup suggest that most people 

begin to feel ‘warm’ at 25°C and ‘hot’ at 28°C.  Their report also defines 35°C 

as the internal temperature above which there is a significant danger of heat 

stress [32]. However, overheating is not just a function of high temperature; it 

is a ‘dynamic’ phenomenon and all the contributing factors and their 

interactions are difficult to model with steady state tools.  Furthermore, some 

factors such as air quality may only manifest themselves in particular 
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geographical areas, or at a more localised level, such as in the ‘heat island’ 

effect, which is particular to dense urban areas [33], [34]. 

 

The four main environmental parameters that affect thermal comfort are:  

 

• air temperature  

• relative humidity 

• mean radiant temperature  

• air velocity (or wind) 

 

Further factors of clothing, metabolic rate and air quality are often accounted 

for, and some or all of these are considered when attempting to model 

general thermal comfort [35]. Air quality refers to pollutants, but this 

environmental factor will not be discussed further in this thesis. 

 

The American Society for Heating, Refrigeration and Air-conditioning 

(ASHRAE) expresses comfort as ‘that condition of mind which expresses 

satisfaction with the thermal environment and is assessed by subjective 

evaluation’ [35], and the same definition is used by CIBSE in the UK [36]. 

Since comfort is assessed by subjective evaluation, this gives rise to 

discrepancies between studies. Investigations have also found that different 

cultures express thermal sensation with more acute language than others 

[37]. This obviously makes it difficult to apply a thermal comfort model 

globally, and so although many countries have adopted the ASHRAE 

definition above and its associated comfort criteria, most have also created 
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their own comfort standards. CIBSE’s comfort temperatures for naturally 

ventilated buildings are shown in Table 3-2 [38]. The indoor operative 

temperature values shown in the table are are not considered maximum 

allowable values, but are used by designers in conjunction with duration 

criteria, such as the percentage of hours over a given temperature to assess 

overheating.  

 

Table 3-2: Summer comfort temperatures in naturally ventilated buildings 

Building/room type  

Non air-conditioned buildings 

Summer operative temperature 

for indoor comfort (°C) 

Home living areas 25 

Home bedrooms  23 

Offices 25 

Schools 25 

 

Early studies showed that a person’s thermal comfort was also dependant on 

skin temperature. It was found that in a sedentary state, people were most 

comfortable when their skin registered around 34°C. However, it was 

subsequently found by Fanger that the preferred skin temperature was only 

31°C [39]. The corollary to ASHRAE’s definition of thermal comfort is that, as 

Fanger puts it ‘people are not alike, thermally or otherwise, and it will not be 

possible to satisfy everyone at the same time’ [39]. Fanger therefore set about 

creating a comfort equation, based on heat balance, and a distribution 

function called the Predicted Mean Vote (PMV) to describe group comfort and 

a Percentage of People Dissatisfied (PPD) with a thermal condition.  
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3.2.2 The heat balance equation 

Fanger’s work on thermal comfort using the principles of heat balance, was 

the first to gain international recognition, and has been the basis for all 

standards since. He theorised that there would be two conditions to satisfy in 

order to achieve comfort.  

 

1. A neutral thermal sensation between skin temperature and core 

temperature 

2. Heat production from the metabolism equals heat lost to environment 

from the body 

 

 

As a conceptual function, Fanger expressed human heat balance in Equation	

3-1 [39] 

 

𝐻 − 𝐸) − 𝐸#* − 𝐸+, − 𝐿 = 𝐾 = 𝑅 + C0 

Equation 3-1 

where   

H = Internal heat production in the human body 

Ed = Heat loss by water vapour diffusion through skin 

Esw = Heat loss by evaporation of sweat from skin surface 

Ere = Latent respiration heat loss 

L = Dry respiration heat loss 

K = Heat transfer from skin to outer surface of clothing 
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R = Heat transfer by radiation from clothing surface 

Cl = Heat transfer by convection from clothing surface 

 

Using the empirically-derived mathematical expressions for each of the above 

(4 variables and 2 constants in all), and normalising the output against a 7-

point voting scale shown in Table 3-3, Fanger was able to form a predicted 

distribution of group votes of thermal comfort, at any given set of room 

conditions. 

 
 
Table 3-3: Voting scale for thermal sensation 

 
  
 
 
 
 
 

 

 

 

 

 

 

There have been other attempts to model thermal comfort, though 

examination of these concludes that although there are many empirical and 

theoretical models, Fanger’s thermal comfort model relates variables 

applicable to thermal sensation, and is justifiably used as the primary tool in 

the buildings industry [36], [40]. 

 

Thermal sensation  

Hot +3 

Warm +2 

Slightly warm +1 

Neutral 0 

Slightly cool -1 

Cool -2 

Cold -3 
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A criticism of Fanger’s work though, is that whilst it shows a very scientific 

approach to human heat balance, steady state laboratory results cannot 

accurately predict all actual votes in reality. It is more accurate to assume that 

people will adapt to the surrounding conditions over time by reacting in ways 

that will restore their comfort [31], [41]. For instance, clothing insulation is 

taken as a static value for the duration of a Fanger lab test, yet in reality 

people will adapt to higher temperatures by removing clothing layers. Other 

adaptations such as opening windows and turning on a fan will also be 

expected. In other words, ‘people are not the passive recipients of the thermal 

environment as is often suggested by heat balance diagrams, but active 

participants in the interaction between the building and its inhabitants, as 

comfort becomes a goal which the individual will seek’ [31]. In the UK 

especially, adaptive principles ought to be considered because most buildings 

are naturally ventilated rather than mechanically regulated. Moreover, using a 

static comfort approach, the probability of future overheating will be 5 times 

greater by 2020 than when using an adaptive approach [42]. To get an 

accurate set of predictions for future discomfort requires adaptive thermal 

comfort modelling together with a set of adaptive thermal standards [31], [43]. 

 

3.2.3 Indoor thermal comfort and adaptation 

Fanger’s comfort model is now widely used, including in Europe, USA and 

China, and the PMV index is as close as it comes to a set of global thermal 

standards [44]. The point at which a building fails to provide thermal comfort 

though, will naturally differ across the globe, as that will depend on the 

perception of occupants who have adapted to different climates. In the UK, 
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current CIBSE guidelines describe indoor overheating as 1% of occupied 

hours exceeding an operative temperature of 28°C [45]. European standards 

in Table	 3-4 show the PMV/PPD measure used to establish good working 

practice. The operative temperatures are based on the PMV of a reference 50 

year old man. Naturally these temperatures may result in different PMV 

values when occupants of different gender and age to the reference case are 

selected. For instance vulnerable and elderly occupants require a higher 

operative temperature for comfort as they are physiologically less able to 

adapt through sweating and less able to retain heat due to muscle and fat loss 

[46].   Generally the aim is to keep the percentage of people dissatisfied 

(PPD) at less than 10% to achieve “Class II” levels of satisfaction. In other 

words, 90% of people will feel thermally comfortable [47]. The class system 

(or category system in other documentation) is simply a level of satisfaction. 

So “Class II” simply refers to PPD<10% and is regarded as the highest 

realistically achievable PPD level [48]. The greatest issue for PMV with 

regards to this thesis, is that studies have shown it to be consistently 

unsuccessful at predicting comfort in free-running, naturally ventilated 

buildings [45], [49], and hence metrics using PMV could not be considered in 

this thesis. 
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Table 3-4: Example PMV/PPD temperatures for typical buildings in winter and 
summer [47] 

 

 

 

An attempt to create an adaptive thermal comfort index was developed by 

Nicol, who argued that especially in naturally ventilated, free-running 

buildings, people get used to living in a changing thermal environment, and 

that the temperature they feel thermally comfortable at is dependent on their 

past experience, namely, the past air temperature of the last few days. A 

person’s expected thermal comfort temperature can be predicted from the 

running-mean air temperature given by Equation	3-2: 

 

𝑇+1 = 1 − 𝛼 𝑇+145 + 𝛼𝑇1,2345 

Equation 3-2 

 

where Trm is the running mean daily average outdoor air temperature, Trm-1 is 

the running mean temperature of the previous day, Tmean-1 is the average 

temperature of the previous day and 𝛼 is a constant <1. 
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Nicol argues that the best way to establish indoor temperature thresholds is to 

look at the outdoor temperature. He shows in Figure	 3-2 that as running 

mean temperature increases, so does comfort temperature [45]. What is 

more, people seem to have a much greater tolerance to temperature changes 

in naturally ventilated buildings than buildings that are mechanically heated 

and cooled. This tells us either something about our changing expectations, or 

that our adaptability is somehow dampened when building temperature is 

controlled and serviced. In other words, people become less tolerant and less 

willing to adapt to changes in temperature if heating, ventilation and cooling 

(HVAC) systems do not meet our expectations. Nicol’s relationship, which 

forms the basis for the adaptive comfort model, is shown in Equation	3-3: 

 

𝑇6 = 18.8 + 0.33𝑇+1 

Equation 3-3 

 

where Tc is comfort temperature. 
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Figure 3-2: Predicted indoor comfort temperatures as a function of outdoor running-
mean temperature 

 

 

Heat balance, comfort temperature and adaptive comfort all try to describe 

conditions that satisfy human thermal comfort, yet do so from different angles. 

What these thermal comfort models all share in common is that they 

presuppose that the indoor environment does not reach thermal extremes. 

Such conditions may however be more frequently reached in climate change 

scenarios that bring about extreme weather, and so the exploration of 

extreme conditions within buildings and the health effects of such thermal 

conditions is imperative, since these scenarios will require a different model. 

We will therefore now turn our attention to heat stress modelling.  
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3.3 Heat stress  
 

3.3.1 Heat stress metrics for extreme weather 

Presently thermal comfort in near-extreme weather conditions is the primary 

concern for building engineers, but this thesis will also focus on human heat 

stress effects in extreme conditions, as this is not a factor currently taken into 

consideration at the design stage in building construction, and will become 

increasingly important to address for future climates, as hot weather 

extremes become normal. This requires a detailed review of heat stress 

metrics, created for extreme hot weather conditions. It makes sense, of 

course that thermal comfort models are used to test buildings, since buildings 

are designed not to get too hot or cold. However, given the changing climate 

and weather patterns, the question of what could happen to people indoors 

when buildings are subjected to hot weather and heat waves prompts this 

thesis to investigate what happens to human health in these circumstances. 

Heat stress modelling is usually undertaken by the military, since armed 

forces are often subjected to heat stresses. A physiological strain index (PSI) 

based on rectal temperature was developed by the US Army, given by 

Equation	3-4 [50]. 

 

𝑃𝑆𝐼 =
5(𝑇+, − 𝑇+,X)
(39.5 − 𝑇+,X)

+	
5 𝐻𝑅9 − 𝐻𝑅X
(180 − 𝐻𝑅X)

 

Equation 3-4 

 

where Tre is rectal temperature and HR is heart rate at different active and 

resting times.  
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This military strain index ranges from 1 to 10, with 10 giving a ‘very high’ 

physiological strain. For the purposes of this thesis, heat stress modelling 

needs to account for exposure to heat wave conditions and predict 

physiological heat stress symptoms, rather than focus on internally generated 

stress through heavy activity. The best known of the military strain indices to 

attempt a combination of environmental and physiological parameters is the 

heat strain index (HSI). This index is generally accepted because it combines 

environmental variables and body activity, though has been found to 

seriously under predict or over predict heat strain in several situations. The 

main reason is due to the number and complexity of the interactions between 

the determining factors. 

 

The health impacts of overheating can include an increased risk of illness 

from respiratory and cardiovascular disease, and exposure to hot weather 

can lead to a number of heat stress disorders. The most common are shown 

in Table	3-5 [51], [52]. The most dangerous health outcome is heat stroke, 

which is an acute condition that can lead to death and is triggered when body 

temperature rises above 40.5°C. Heat syncope is less severe and can lead to 

a feeling of sickness and fainting caused by a pooling of blood in dilated 

vessels in the skin. Heat exhaustion can occur after heavy perspiration, and 

since sweating is a primary cooling mechanism activated by a physiological 

response to heat, loss of salts and water from the body can lead to heat 

cramps and dehydration, with body temperature reaching 37.5-38.5°C. Heat 

oedema which mainly takes the form of swollen ankles is another minor 
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illness, as are heat rashes [36]. For the more minor heat related illnesses, 

drinking water and replenishing the body’s salt levels often suffices for a 

return to full health. However, if internal body temperature keeps rising, 

eventually the body's capability to sweat ceases as fluid levels become too 

low. When the internal body temperature passes the 40°C mark, confusion, 

disorientation and convulsions occur, resulting in organ failure, brain damage 

and death. 

 

 
 
Table 3-5: Causes and symptoms of human heat stress 

Condition Cause Symptoms 

Heat stroke  

(Risk of fatality) 

Body temperature 

rising above 40.5°C  

Mental confusion 

Mottled or cyanotic skin 

Loss of consciousness  

Convulsions 

 

Heat syncope 

(Risk of illness) 

 

Pooling of blood in 

dilated vessels of the 

skin / lower 

extremities 

 

Temporary loss of 

consciousness  

 

 

Heat exhaustion  

(Risk of minor 

illness) 

 

Loss of salt or water 

after heavy 

perspiration for 

several hours 

 

Cramps  

Skin eruptions 
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All of the above conditions could constitute a danger to our health, and the 

impact on health services and the loss in productivity would be greatly felt. 

Heat stress, especially in future hot weather needs to be investigated to 

assess the scale of this impact. For a full heat stress impact flow path see 

Figure	3-3 [51]. 

 

 

Figure 3-3: Flow path of illnesses from heat stress  
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3.3.2 The Apparent Temperature (TAPP)  

One attempt to define exposure to heat waves considers both extreme 

daytime and high night-time temperatures. The apparent temperature (TAPP) 

scale is a discomfort index based on air temperature and dew point 

temperature, as shown in Equation	3-5 [53].  

 

 

𝑇277 = 	−2.653 + 0.994	 𝑇28+ + 0.0153	(𝑇),*79)H 

Equation 3-5 

 

 

where 𝑇277  is the apparent temperature (or the sensation temperature), 𝑇28+ is 

air temperature and 𝑇),*79 is the dew point temperature (to introduce a 

humidity factor). 

 

Using this scale, a heat wave is defined as a 

1) period of at least two days with maximum TAPP temperatures exceeding 

90% of the monthly distribution or a 

2) period of at least two days in which 𝑇183 exceeds 90% and maximum 

Tapp > median monthly value 

 

3.3.3 The Universal Thermal Climate Index (UTCI) 

Whilst the TAPP index incorporates air temperature and humidity, the 

Universal Thermal Climate Index (UTCI) is an index which lumps together all 
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meteorological variables that affect the human heat balance equation [54], as 

set out by Fanger [39], [44]. In theory TAPP and UTCI could better identify 

health risks in hot weather, since they account for a multitude of variables that 

affect human heat stress. In the case of UTCI, an equivalent temperature is 

calculated with associated health risks (Table	3-6). With reference to Figure	

3-3, it is important to clarify that any multi-parameter indices such as TAPP or 

UTCI will be limited in their ability to handle dynamic situations. For example 

the frequency with which air speed (for example) will change in value 

compared with the frequency with which air temperature or humidity values 

will change over a given time period will itself vary. It is therefore only sensible 

to take instantaneous values for each parameter to calculate the TAPP or 

UTCI value for that moment in time. With regards to use in building thermal 

modelling, time-averaged values for one hour periods will be taken, which has 

been validated in other works [55]. Use of the UTCI for outdoors is validated 

in its original operational procedure [54], [56], whilst its use for indoor thermal 

comfort has also been validated by the UTCI-Fiala model [57] and in domestic 

buildings [58]. 

 

 

Table 3-6: The UTCI temperature scale and equivalent heat stress on a human body 

UTCI (˚C) Stress Category 

>46 extreme heat stress 

+32 → +46 very strong heat stress 

+26 → +32 strong heat stress 

+13 → +26 moderate heat stress 
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+9 → +13 no thermal stress 

0 → +9 slight cold stress 

-13 → 0 moderate cold stress 

-27 → -13 strong cold stress 

-40 → -27 very strong cold stress  

-46< extreme cold stress 

 

 

The UTCI combines wind speed, radiation, humidity and air temperature, and 

is defined as the air temperature of the indoor reference environment, which 

would produce an equivalent dynamic physiological response. The UTCI was 

developed from testing an advanced multi-node human thermoregulatory 

model [59] in simulated reference weather conditions, generating equivalent 

body temperatures. A polynomial regression model was applied to the body 

temperature outputs in order to generate a numerical equation for use in 

computational code. The UTCI function can be simply described in Equation 

3-6 [56] whilst detailed background on the original development can be found 

on a dedicated UTCI webpage [60]. 

 

 

𝑈𝑇𝐶𝐼 𝑇𝑎, 𝑇𝑟, 𝑣𝑎, 𝑝𝑎 = 𝑇𝑎 + 𝑂𝑓𝑓𝑠𝑒𝑡 𝑇𝑎, 𝑇𝑟, 𝑣𝑎, 𝑝𝑎  

Equation 3-6 

 

where Ta is air temperature, Tr is mean radiant temperature, va is air velocity 

and pa is vapour pressure. The offset to Ta is found by comparing the actual 
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model response to the human physiological response under reference 

conditions.  

 

Studies have shown that the UTCI is potentially more suitable than air 

temperature for measuring the impact of weather on health [61], [62]. The 

UTCI is based on the human physiological response to environmental 

variables and the heat stress that a human body feels, which is a complex 

combination of air temperature, humidity, solar radiation and airflow [50]. 
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3.4 Chapter summary 
 

In this chapter an overview is given on the development of comfort models and 

the differences between these and heat stress models. It has been established 

that for extreme environmental scenarios it is necessary to focus on heat 

stress effects, and the UTCI has been identified as an appropriate index for 

human health. A table detailing the advantages and disadvantages of each 

index is presented below.  

 

Table 3-7: Comparisons of comfort and heat stress metrics  

Metric Advantages Disadvantages 

TA 

(Air temperature) 

Currently used by most 

weather and public 

health organisations for 

heat wave alerts 

(including the UK Met 

Office). 

Does not account for other 

weather variables that affect 

human heat stress (it does 

not account for humidity or 

radiative temperature). 

TAPP 

(Apparent 

Temperature 

Percentile Index) 

Accounts for air 

temperature and humidity 

and has previously been 

used in analyses of heat 

waves health impacts. 

Does not account for all 

weather variables that affect 

human heat stress (it does 

not account for radiative 

temperature). 

UTCI 

(Universal Thermal 

Climate Index) 

Accounts for all weather 

variables that affect 

human heat stress.  

Not particularly dynamic as 

index merges frequently 

varying parameters such as 
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wind speed and relatively 

steady state variables such 

as humidity. 

PMV 

(Predicted Mean 

Vote) 

Physiological-based 

index that includes most 

parameters relating to 

human comfort.  

Broadly unsuccessful at 

predicting thermal comfort in 

naturally ventilated buildings 

PSI (Physiological 

Strain Index) 

Used by the military for 

heat stress assessment 

Based on self-induced 

internal temperature through 

heart rate activity, rather 

than on weather variables. 

HSI  

(Heat Stress Index) 

Used by the military for 

heat stress assessment 

Can seriously under predict 

or over predict heat strain in 

several situations, due to 

the number and complexity 

of the interactions between 

the determining factors. 

 

 

In the next chapter the background of building modelling, design and 

regulations around thermal conditions are explored, and peak thresholds for 

the indoor environment will be established, seeking the most appropriate 

metric for predicting significant excess deaths in hot weather. This will be 

achieved by using various metrics, including the UTCI, to analyse current hot 

days and heat waves alongside mortality rates. 
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4 Establishing peak thresholds for buildings 
 

4.1 Building regulation and modelling 
 

4.1.1 Building regulations 

Given the high proportion of time people spend indoors in developed 

countries; a reduction in overall building energy use is an area of focus in 

many countries to avoid increasing carbon emissions [63]. The built 

environment accounts for a significant proportion of all carbon emissions 

globally, and in the construction phase alone, the cement industry is 

estimated to be responsible for 5% of anthropogenic carbon release [64], 

whilst habitation of buildings pulls greatly on global energy consumption. In 

Europe the Energy Performance of Buildings organisation (EPBD) is 

responsible for targets relating to energy consumption in the built 

environment, and energy use certification. European targets for energy use 

are a reduction of 9% from a 2008 baseline over a 10-year period [65], whilst 

minimum energy performance requirements form part of UK building 

regulations [66], [67]. All new non-domestic buildings should be zero-carbon 

by the end of the decade [68]. The building energy reduction target is clearly 

an integral part of the pledge to reduce emissions, and at the same time albeit 

a beneficial consequence rather than a regulation, energy use reduction 

should aid better indoor thermal comfort. For domestic dwellings the Standard 

Assessment Procedure (SAP) is used for energy performance assessment in 

the UK. SAP is a methodology for calculating energy use, associated running 

costs and CO2 emissions. The overheating test, which is detailed in the SAP 

documentation and applicable to the summer months of June, July and 
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August, gives a likelihood rating of high internal temperatures during hot 

weather. It is not integral to the regulations and does not affect the calculated 

SAP rating or CO2 emissions, and so should be treated as a guide only. The 

overheating calculation is related to factors that contribute to internal 

temperature, such as solar gain (orientation, shading and glazing 

transmission); ventilation (window opening), thermal capacity and mean 

summer temperature for the location of the dwelling. [69] The climatic data 

used in SAP is taken from current regional averages, and as such, 

overheating tests will be relevant to today’s climate only.  

 

4.1.2 Building modelling and thermal simulation 

To maintain a comfortable environment and to minimise energy use, 

architects and engineers model buildings in the pre-construction phase to test 

thermal performance. The first building models prior to computers were 

generated by hand and were reliant on curve response data for their 

prediction of energy and thermal outputs. When computational building 

models were developed, dynamic modelling of multi-zone spaces and discrete 

time-stepping analysis became possible [70]. Steady state models are able to 

perform energy calculations over long time periods and where thermal 

equilibrium is achieved. Dynamic thermal models deal with transient energy 

calculations and can be used for building analysis over short time periods, but 

require detailed data input, such as detailed geometry and real site weather 

data, and simulating at hourly intervals. That is not to say that data inputs will 

be fully accurate, as there is naturally a great deal of uncertainty real 

buildings. Indeed, accurate data inputs rely on sufficient monitoring, an 



 61 

understanding of the building’s thermal performance post construction and 

clever modelling of inhabitant behaviour; accuracy of the latter being the most 

difficult to achieve. Presently dynamic thermal models are rarely used outside 

the non-domestic building sector, but there are calls for this to change to 

include the domestic sector, given the prospect of significant future warming 

[71]. 

 

Current regulations for overheating focus on whether the temperature in a 

whole building is likely to exceed a certain threshold [72], which is either a 

static maximum temperature value, or an adaptive one used in naturally 

ventilated, free-running buildings where human thermal comfort conditions are 

more tolerant. Building engineers often use software packages such as IES, 

ESP-r, TAS, EnergyPlus and DesignBuilder (based on EnergyPlus) to model 

buildings at the design stage, using thermal comfort models and external air 

temperature to test thermal performance [73]–[75]. Values for a range of 

parameters such as building geometry, weather, internal gains and number of 

occupants are input. Some values can be dynamically varied during a thermal 

performance simulation (such as number of occupants), and a projected 

PMV/PPD value, based on Fanger’s model, is calculated. Software packages 

are generally able to calculate air temperatures for any given building model 

for all hours over a yearly simulation. If the temperature is too high, or the 

temperature exceeds a certain threshold for too many hours, the building will 

fail an overheating test. The procedure does not consider any adaptations; 

which occupants will make to attain thermal comfort. The advantages of this 

approach are in its low computational cost and relatively simple modelling set-
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up, and as a consequence can readily and swiftly produce simulations for 

building designers, and for many situations this method will give good results, 

with the final output a measure of human response (see Table	3-3), but the 

question is whether this is the correct approach, or whether a finer method is 

needed.  

 

4.2 Overheating in buildings 
 

4.2.1 Thermal transmittance and heat capacity 

Like all objects, a building is governed by thermodynamic processes. Heat 

balance, or equilibrium point, is naturally never achieved, since the external 

conditions surrounding the building envelope are ever-changing. A building 

will heat up and cool down regularly and this dynamic heat exchange can be 

analysed by looking at thermal transmittance and capacitance. There are 

several ways in which heat can enter a building and several factors of the 

building design that enable a building to store heat or dispel it. Thermal 

transmittance between the building and the external environment is governed 

by a number of processes and drivers. Solar exposure of the building‘s 

envelope, the effective solar heat gain to the building, the rate of conductive 

and convective heat gain from ambient air and natural ventilation and passive 

cooling of the building are the forms of heat exchange between the building 

and its environment. 

 

Conduction will occur when there is a temperature gradient between the 

outside and the inside through the building envelope, which comprises its 
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walls, floors, roofs, doors and windows, and so building material, wall 

thickness, ground and wall thermal capacitance and material resistance are 

all factors of a building that are affected by heat conduction, and hence need 

to be considered at the engineering design stage. Radiative heat transfer 

(both direct and indirect) occurs primarily due to solar radiative effects. Direct 

radiation will occur through glazed areas such as windows, whilst indirect 

radiative heat will cause transmittance of energy to the walls and structure. 

Solar radiative temperatures can typically be upwards of 50°C in summer, and 

so can have a large effect on the addition of heat to the building. Convection 

of air will either heat or cool a building, depending on the temperature 

difference between the air outside and the air inside; this process of heat 

exchange will occur through ventilation, through windows, mechanical 

ventilation and permeability of the building fabric. Internal gains from any 

energetic objects, such as occupants, appliances and services (heating, 

plumbing and electric installations) will increase the internal energy of the 

building and therefore increase heat. In addition to thermal transmittance, the 

heat capacity of the building fabric; its thermal mass, will have an effect on the 

temperature of the internal environment. Energy stored in the building material 

will cause heat to flow into the indoor space when there is a temperature 

gradient (typically at night when the air is cooler).  

 

Key design considerations for both convection and solar radiation gains, other 

than the building shape and material, include the percentage of glazing in the 

building and the orientation of the building, relative to the sun path. All these 

external thermal gains are driven by weather, and weather parameters 
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represent the input conditions into any building physics modelling, and are 

illustrated in Figure	4-1, Figure	4-2 and Figure	4-3 [76].  

 

Building designers need to consider both internal and external heating 

sources. External gains, such as solar radiation, will change the localised 

thermal environment around a window for instance, whereas internal gains, 

such as electronic equipment may be scattered about the building, and will be 

harder to model. In the pursuit of thermal comfort, internal gains need to be 

controlled, since a simple solar shade can limit radiant heat from outside, yet 

unwanted internal heat gains need to be actively expelled. As all electrical 

energy ultimately ends up as heat through processes of radiation and 

convection, it is important to assess the impact on the space heating and 

cooling demands [77].  
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Figure 4-1: Illustration of solar radiative heat transfer and internal gains causing 
internal heating 

 

 

Figure 4-2: An example sun path, and consequent solar heat gains at the building 
surfaces, illustrating the need to factor building orientation into designs  
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Figure 4-3: Illustration of direct solar radiative heat transfer through glazing onto 
internal building surfaces. 

 

4.2.2 Thermal performance and overheating 

Homes in the UK are becoming increasingly well insulated and impermeable, 

and current building design practices are geared towards keeping people 

warm in winter, through the retention of warm air and the capturing of radiant 

solar heat [78]. The current recommended winter operative temperatures for 

homes and offices are shown in Table	4-1.  

 

 

Table 4-1: Indoor operative temperatures for buildings in winter 

Building/room type Winter operative temp °C 
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Homes  

Bathrooms 20-22 

Bedrooms  17-19 

Kitchen 17-19 

Living Rooms 22-23 

Offices  

Conference Room 22-23 

Computer Room 19-21 

Office Space  21-23 

Open Plan Office 21-23 

 

 

As a result of ambitions to design out the need for heating in homes, many 

local planning authorities make the use of low carbon technologies a specific 

planning requirement to achieve reductions in carbon emissions, and the 

following factors are considered as part of standard building design [68]:  

   

• Best orientation to optimise the impact of solar gain 

• Optimisation of glazing 

• Maximum air tightness to reduce infiltration 

• High insulation levels 

• Appropriate use of thermal mass  

 

The drivers for change to design low carbon buildings are fully 

understandable given the current UK climate, and for the most part these low 
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carbon technologies enable year-round thermal comfort. Guidelines prioritise 

better winter efficiency and most buildings have heating systems installed, 

whilst very few domestic homes have mechanical ventilation and cooling 

systems. With a warming climate typical winter heating periods are likely to 

decrease, since in the future it is unlikely people will need to heat their homes 

as much, but the need to cool them in summer will increase, and there will 

come a point when the cost to cool buildings mechanically in summer will be 

greater than heating them in winter. Studies have shown that global energy 

demand for energy use in heating and air conditioning should reach parity by 

around 2070, and that thereafter, energy use for air conditioning increases as 

heating demand decreases (see Figure	4-4) [79].  

 

 
 

Figure 4-4: Predicted global energy demand for heating and for air conditioning in 
21st Century 

 

For the built environment, a key concern for the UK government identified in 

the 2008 Stern Review, is that a likely response to hotter summers will be the 
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installation of air-conditioning, as has been seen in the USA, Australia and 

southern Europe [80], which will severely hamper the UK’s efforts to reduce 

its greenhouse gas emissions to nearly zero by 2050 for all buildings [81]. It is 

up to architects and building engineers to design low carbon retro-fit solutions 

and new building stock that will cope with the effects of future hot weather, 

without deploying air conditioning as the default solution, and thereby 

compounding the problem of increasing carbon emissions, climate change 

and overheating [82], such that during extreme hot weather and heat wave 

conditions the internal environment can become unbearable [83], [61]. The 

greatest impact of overheating will be felt by the existing stock of free-running, 

naturally ventilated buildings without the means to provide mechanical cooling 

[45], and so a focus of this thesis is on the impact of climate change in free-

running buildings, where people spend most time [84].  

 

Overheating is a particular problem in modern flats and apartments, since the 

average one-bedroom home is less than 50m2 and is unlikely to be double 

aspect, since there is no legislation to ensure cross-ventilation [85], resulting 

in city apartment block developments that only have one room orientation, 

without cross-ventilation. Some retro-fit solutions exist such as passive 

cooling methods using blinds and external shading. These measures could 

help people avoid the reliance on air-conditioning and increased energy 

consumption [11], whilst other solutions include increasing mixed-mode 

building stock [86], which not only result in a greater tolerance of thermal 

comfort temperature, but also consume far less energy. When inhabitants are 

given choice as to how they can adapt indoors, for instance by opening 
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windows, they are shown to be more tolerant of greater deviations from the 

comfort temperature, or in other words they are less dissatisfied than 

inhabitants of controlled environments [49]. Whilst retro-fit solutions will be 

essential in adapting buildings, the fundamental design principles at the pre-

construction stage really should account for hot weather conditions to avoid 

overheating pitfalls [87]. 

 

The consequences of overheating can affect people greatly and there are 

recorded instances where serious health issues caused by overheating have 

led to legal action [76]. To prevent a building from overheating, it is first 

important to define the term ‘overheating’, which is generally understood to be 

the ‘accumulation of warmth within a building to an extent where it causes 

discomfort to the occupants’ [44]. It is important not to assume that this will 

occur solely as a result of high air temperatures. There are other factors that 

will add to the feeling of warmth, such as relative humidity and solar gain, as 

we have seen.  There is no statutory maximum internal temperature in UK 

Building Regulations or current health and safety guidance, beyond the SAP 

overheating checks for domestic buildings [31]. Whether there should be or 

not is debatable; clearly there is an argument to say that since the majority of 

domestic buildings are existing stock, it would be terribly complicated and 

contradictory to impose thermal maxima on any works that require building 

regulations approval, given the current importance placed on keeping old and 

leaky homes warm. However, given the findings from this thesis, it would 

certainly be prudent for regulations for upper thermal limits to be in place for 

new domestic buildings, as it is arguably just a case of adding another 
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parameter to a set of design criteria; one which could potentially avoid future 

health problems to inhabitants due to overheating.  

 

The challenge is to derive appropriate overheating criteria for the UK that 

define when a building is too hot for comfort [45]. At present, the CIBSE 

procedure for testing overheating in certain types of buildings is to assess the 

number of hours when the building will be above the discomfort threshold 

temperature of 28°C [45]. If the indoor temperature exceeds 28°C for more 

than 1% of the occupied time, then the building is said to have failed to 

provide thermal comfort. Building regulations in this area are designed to keep 

people safe and protect against thermal discomfort, and there is some 

practical guidance published for dealing with building overheating [88]. For 

instance Building Bulletin 101 (Bb101) issues guidance that for schools there 

should be no more than 120 hours when the air temperature in the classroom 

rises above 28°C, that internal air temperature should not exceed 32°C, and 

that internal to external temperature difference should not exceed 5°C [89], 

whilst subsequent publications have also incorporated adaptive comfort 

standards [31], [42], [90].  

 

 

4.3 Reference weather years in the UK 
 

4.3.1 The test reference weather year (TRY) 

Thermal performance is judged primarily on whether buildings can keep their 

occupants comfortable, providing shelter from the extremes of the outdoors 

and maintaining a comfortable indoor thermal climate [81], and so at the 
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design stage buildings are generally simulated to cope with a typical climate, 

represented by an hourly weather data series [91]. The data needed to run 

these simulations must also be site-specific to take into account the regional 

climate. In order to simulate building performance, architects require 

scientists to develop simple reference weather sets to use as input 

conditions, since the vast amount of data collected by weather stations is 

both overwhelming and costly to purchase. Currently these data sets are 

derived from observations gathered from local weather stations around the 

UK, and are referred to as reference years. In the UK the standard is the Test 

Reference Year (TRY), and is created by piecing together the calendar 

months that have exhibited the closest dry bulb air temperatures, wind speed 

and solar radiation to an average value, typically over a 23 year period 

(1983–2005). The TRY aims to give a good ‘average’ calendar year whilst 

reducing the amount of computing simulation time by a factor of 20 [91]. An 

example of the years selected for the Heathrow TRY is shown in Table	4-2. 

 

 

Table 4-2: Months and years selected to make the months in the Heathrow TRY 

Month Year Selected 

January 1988 

February 2004 

March 2004 

April 1992 

May 2000 

June 2001 
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July 1991 

August 1996 

September 1987 

October 1988 

November 1992 

December 2003 

 

 

4.3.2 The design summer weather year (DSY) 

Whilst the TRY is a good reference on which to base average climate 

conditions, it will fail to describe conditions that would bring about overheating, 

and so to test for that, a new reference year was created: the Design Summer 

Year (DSY). Drawing from the same 23 year baseline period of weather 

records as the TRY, the DSY is created by selecting the third warmest 

summer (April to September), with the aim of creating a reference data set 

that, when applied in building simulation software, will test for building 

overheating during hot summers. Globally, testing for overheating is often 

performed using a threshold air temperature [92], though some countries such 

as Germany and Denmark also use reference weather years as in the UK [93], 

[94].  

 

4.3.3 Issues with the DSY methodology   

Unfortunately the DSY methodology encounters several difficulties [95]; first, in 

some regions of the UK the DSYs have been found to produce less 

overheating than the TRYs, that are used to test building energy use in normal 
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weather conditions [91]. Second, overheating assessments rarely account for 

extreme weather such as heat waves, as current DSYs are only designed to 

represent ‘unusually warm’ weather. Third, the tests are based on air 

temperature alone, ignoring several other weather variables that affect the 

thermal impact on the human body [96]. Fourth, morphed DSYs that are 

currently supplied by CIBSE for future scenarios may not contain warm events, 

since they are based on historic weather that does not necessarily contain 

warm events.  

 

Perhaps the most surprising flaw in the current DSY methodology is that there 

is no guarantee of any hot events, which means that periods of hot weather 

that can cause people heat stress in buildings is entirely possible within the 

current DSY reference years. From the Met Office definition, a heat wave can 

last two days or more, and so given the DSY is formed from a whole summer, 

a heat wave occurring in an otherwise cooler period risks being overlooked. In 

fact there are some locations with TRYs that contain more hours of hot 

weather than their respective DSYs, as shown in Table	 4-3 [95], where the 

thermal performance for an office with glazing on all walls was tested for UK 

locations using both the TRY and DSY. Instances where the building 

simulation results found the TRY overheating hours to be greater than DSY 

overheating hours are underlined in bold, and clearly there are a number of 

locations where this is the case; critically this is how overheating in certain 

buildings is tested in the UK. DEFRA’s report finds that as average 

temperatures increase, so too do the number of hot days, and this relationship 

is not necessarily linear [11]. It is therefore important to investigate the types of 
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events which cause overheating in buildings and to introduce redeveloped 

reference data, suitable for heat stress testing [97].  

 

 

Table 4-3: Comparison of the number of hours above 25°C and 28°C in the 14 
TRY/DSY files. (Data pairs where DSY hrs < TRY hrs are shown in bold underlined) 

Weather Station Hours > 25°C Hours > 28°C 

TRY DSY TRY DSY 

Belfast 0 

71 

13 

6 

0 

51 

106 

56 

18 

56 

50 

3 

46 

49 

8 

109 

18 

10 

11 

178 

267 

52 

6 

35 

25 

36 

26 

66 

0 

14 

0 

0 

0 

2 

28 

8 

1 

8 

0 

0 

7 

4 

0 

27 

0 

0 

0 

58 

63 

14 

0 

1 

3 

9 

0 

4 

Birmingham 

Cardiff 

Edinburgh 

Glasgow 

Leeds 

London Heathrow 

Manchester 

Newcastle 

Norwich 

Nottingham 

Plymouth 

Southampton 

Swindon 
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4.3.4 Using reference weather data for overheating testing 

Since the DSY is currently the only reference weather data used to test 

overheating in buildings, and since there are a number of significant flaws in 

this reference data that have not yet been adequately addressed, the result is 

that buildings are being constructed and passing thermal performance 

assessments using potentially unsuitable standards. In other words, there is 

no telling whether newly constructed buildings will overheat or not. Buildings 

constructed today are expected to have a life span of around 100 years [98]–

[100], and as the climate changes, extreme weather will challenge buildings to 

perform under conditions they are not currently designed for, though they may 

be retrofitted to cope with changing conditions. Recently, probabilistic DSYs 

have been created for London to try and correct some of these issues [101]. 

These new DSY reference years are all based on air temperature as a 

singular metric, and so one of the central aims of this thesis is to extend the 

new DSY methodology to create reference years that are based on more 

weather parameters, tuned with a new temperature metric for health inside 

buildings, and to do so for both current and future climates.  

 

 

4.4 Developing peak threshold metrics for thermal 
performance 

 
 
Building designers need to know the impact of extreme events on the internal 

conditions inside buildings, because one of their primary focuses is to keep 

people thermally comfortable at all times and sheltered from the weather 

outside, filtering the external conditions to attain indoor comfort. This thermal 
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comfort function of buildings generally works well in most conditions, but can 

lead to difficulties in extreme weather. In extreme hot weather the human 

physiological response can quickly turn from a minor illness to morbidity and 

even death [102] [103]. In such weather, buildings should at the very least 

avoid amplifying the external conditions, but ideally should retain an 

environment that is thermally comfortable.  

 

How a building filters external conditions and how the consequent indoor 

environment is reached is dependent on its construction and design, however 

there are countless different buildings types, and thermal performance testing 

at the design stage must be done on a case by case basis. Buildings cannot 

uniformly be tested for thermal impact on inhabitants, so a solution would be 

to seek an index and an accompanying metric that captures mortality for 

many types of buildings. With current overheating in buildings policy reliant on 

external air temperature alone and adaptive comfort modelling, it would be 

prudent to consider the efficacy of indices for the internal environment that 

can lump together weather parameters that affect human health for an 

equivalent indoor temperature, thereby giving a potentially more realistic 

temperature felt by people indoors [104].  

 

The greatest discomfort is found when temperatures increase rapidly from the 

recent average, and whilst adaptive comfort measures are aimed at replacing 

overheating metrics such as the number of hours over a fixed threshold, they 

generally do not address the question of maximum temperature within 

buildings and what that threshold should be to safeguard human health. 
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CIBSE’s TM52 provides a maximum acceptable temperature that is related to 

the comfort temperature, but this is not an indicative temperature at which 

health deterioration occurs. Armstrong finds that across English regions 

excess deaths occur at around the 93rd percentile of maximum daily air 

temperature and suggests that health risks should be monitored using 

percentile based temperature thresholds for that particular region [105]. When 

this is compared to the Met Office heat wave static air temperature thresholds, 

which sit at around the 99.9th percentile for the majority of regions, it is likely 

that excess deaths will occur before health warnings are issued, and that 

current external air temperature thresholds are unsuitable. Percentile based 

thresholds are not uncommon internationally, as has been established in the 

case of the Australian ‘HWD1' heat wave definition, which takes the 97.5th 

percentile external air temperature as a threshold [17]. 

 

Armstrong’s approach shows the need for a percentile based threshold which 

is adaptive for each region. However more work is needed, since high 

external air temperatures alone do not constitute the full risk to health, given 

the apparent temperature that a human body will feel is also dependent on 

humidity and heat gains from solar radiation [50]. Plus a temperature metric is 

needed that reflects an equivalent temperature for the indoor environment. 

For instance inside buildings, solar gains affect the internal temperature, and 

humidity can be high in well-insulated non-permeable structures.  
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4.4.1 Metrics for peak thresholds  

Metrics described with peak thresholds will be analysed for occurrences of 

significant excess deaths in hot periods since 1983, which will allow 

comparative analysis to be undertaken. Establishing a metric and peak 

threshold for indoor health would give the building design industry the 

necessary temperature limits for human safety. The first part of this 

investigation will centre on the association between mortality and fixed 

temperature criteria described in the Bb101 guidance, using Met Office peak 

thresholds. Then more complex metrics such as TAPP and UTCI with 

percentile peak thresholds will be investigated with respect to coincident 

mortality rates. 

 
The impact of hot weather on health indoors is examined by first searching for 

events of peak external conditions and comparing to coincident excess 

deaths, then relating external conditions to a metric for indoor conditions for a 

comparative analysis. Daily mortality data was obtained from the Office of 

National Statistics (ONS), which contained complete regional data sets from 

1978 to 2011. From this data significant excess deaths were calculated by 

filtering the data for all deaths over two standard deviations above each 

region's three year running-mean for each day. Two standard deviations is 

taken in other epidemiological literature as a level of significance [106], [107]. 

Taking the regional running mean helped remove the underlying general trend 

in the gradual decline in death rates over the period, due to improvements in 

healthcare.   
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4.4.2 Creating a reference indoor environment  

This thesis requires a reference building with an appropriate internal 

environment. The response of this building to the external weather depends 

on many factors including the form of the building. It is impossible to define a 

control building that can represent all possible buildings so a simplification 

must be made and a conceptual free-running building is used. CIBSE has 

described a reference conceptual building for use in its treatment of Design 

Summer Years in London, which is free-running and has an operative 

temperature equal to the external temperature [101]. The conceptual building 

in this thesis takes the same design and is similarly equivalent to a building 

with a high ventilation rate, so the internal humidity is equal to the external 

humidity and internal air temperature is equal to the external air temperature. 

The reference building design is a simple box room measuring 5x5𝑚 (width 

and depth) by 2.5m in height. It has one window centrally split with a bottom-

up sliding design, like as a sash window, measuring 2m wide by 1m in height, 

allowing for the simulation of solar radiative effects, with 50% of the solar 

radiation at a given hour transmitted, as is realistic for a double glazed 

building. The air inlet is 0.1m in height and the full width of the 2m window and 

is located at the bottom of the window – this models a slightly ajar window, as 

would be typical of window use in a naturally ventilated building. The air outlet 

is located at the top of the window, with the same dimensions as the inlet, and 

this would be typically found in a vented window design. Airflow is driven by 

external wind conditions. This simple building does not contain any furniture, 

other objects or contents that contribute to internal heat gains. 
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Whilst this conceptual building is a clear simplification, and presupposes 

partial direct exposure to sunlight, it is simple to implement as external 

weather can be processed into the internal environment; other conceptual 

buildings may give different results but such implications are not the focus of 

this work. Capturing data from an increased set of weather parameters, and 

using solar radiative temperature alongside air temperature, humidity and 

wind speed, an attempt will be made to combine these variables so that the 

UTCI temperature can be calculated and used to inform a new heat stress 

metric for indoor use. 

 

4.4.3 Preparing weather data  

Weather data obtained from the British Atmospheric Data Centre (BADC) was 

used to create the internal environment using the conceptual building [108]. 

For some regions gaps in the data sets, due mainly to operational issues at 

weather stations, needed to be filled using interpolation algorithms. Where 

atmospheric weather data was found to be incomplete, algorithms were used 

to interpolate missing data using linear extrapolation for variables such as 

cloud cover and wind speed, whilst cubic spline curves were generated for 

temperature and atmospheric pressure [109], and solar radiation was 

interpolated using average hourly values for the corresponding cloud cover 

and sun path for the time of day [110]. Months with more than 20% missing 

data were not used, as they compromised the accuracy of interpolated data. 

Few weather stations had complete monthly data sets, so three locations with 

broadly complete data, and sited within different ONS regions to give a good 

geographic spread of urban areas were chosen: London, Birmingham and 
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Plymouth. The internal environment at these three locations was then 

compared to the mortality data for the corresponding time period to 

investigate correlations.  

 

4.4.4 Establishing peak temperature threshold metrics  

Aiming for greater correlation between the internal threshold temperature and 

mortality, ten indices were compared with significant excess deaths to find the 

most effective index for forecasting health risks inside buildings. The majority 

of the definitions tested use air temperature alone, whereas TAPP and UTCI 

are empirically derived. As we have seen in chapter 3, the ‘Apparent 

Temperature’ (TAPP) heat wave definition [111], used in the EuroHEAT study 

[53], uses both air temperature and humidity levels to establish the apparent 

temperature that a human body should ‘feel’, described in Equation	 3-5. 

TAPP uses a percentile based threshold, rather than set temperatures. 

Percentile-based definitions potentially have the advantage of being able to 

take into account human adaptation to changes in climate over time [112]. 

 

Using the TAPP scale, a heat wave is defined as a period of at least 2 days 

with maximum daily Tapp  exceeding 97.5th percentile and Tmin  exceeding Met 

Office night thresholds during the period. Thresholds are established at the 

97.5th percentile, and are calculated for each calendar day. From chapter 3, 

the UTCI combines wind speed, radiation, humidity and air temperature, and 

is defined as the air temperature of the indoor reference environment, which 

would produce an equivalent dynamic physiological response. The UTCI 
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function was described in Equation	3-6 [56], and the peak threshold metric 

represents the UTCI exceeding 97.5th percentile, as in the TAPP case.  

 

 

Table 4-4: Ten peak threshold criteria for predicting significant excess deaths in hot 
weather 

 Peak threshold metric description 

1 Met Office: max air temp >32°C  

(daily maximum air temperature and night time temperature exceed 

regional thresholds e.g. 32˚C day, 18˚C night in London) 

2 Tmax >31.5°C   

(daily maximum air temperature exceeds 31.5˚C) 

3 Tmean >24°C  

(24 hour mean air temperature exceeds 24˚C) 

4 Tmax >31°C   

(daily maximum air temperature exceeds 31˚C) 

5 UTCI >97.5%  

(daily maximum UTCI temperature exceeds 97.5th percentile) 

6 TAPP >97.5%  

(daily maximum apparent temperature exceeds 97.5th percentile) 

7 Tmean >97.5%  

(24 hour mean air temperature exceeds 97.5th percentile) 

8 Tmax >97.5%  

(daily maximum air temperature exceeds 97.5th percentile) 

9 Tmean >23.5°C  

(24 hour mean air temperature exceeds 23.5˚C) 

10 Tmax >30°C   

(daily maximum air temperature exceeds 30˚C) 

 

Computer algorithms were written to scan for extreme internal environments 

from 1983 onwards which correspond to events of significant excess deaths. 
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The definitions were selected to give a good range of varying thresholds, and 

reflect international epidemiological research into heat wave mortality effects 

[113]. The ten peak threshold criteria are shown in Table	4-4 and offer a mix 

of fixed peak thresholds similar to those used in the Met Office heat wave 

descriptions and Bb101 overheating guidance; peak percentile thresholds 

based on Armstrong’s work; averaged 24 hour peak thresholds based on 

international thresholds and the inclusion of apparent (TAPP) and equivalent 

(UTCI) peak thresholds. Each of the above criteria are tested as two metrics, 

where peak thresholds were exceeded for one single day and where 

exceeded for two consecutive days (as per the Met Office heat wave 

definition). These metrics are not actual peak thresholds, rather possible 

indices for accounting for excess deaths. For the percentile-based thresholds 

2.5% of all days will exceed the threshold, but it is the quality of coincidence 

of those days with significant excess deaths that will determine the most 

appropriate index. 

 

4.5 Analysing mortality and coincident hot weather  
 

4.5.1 Analysis of extreme hot events and mortality 

The aim is to establish a metric for peak thresholds for internal environments, 

so that a proxy indicator for predicting excess deaths and issuing health 

warnings can be established. Investigation is required into the incidents of 

extreme external weather and coincident mortality. For this analysis fixed 

criteria were used similar to the current recommendations in Bb101 using the 

Met Office heat wave criteria as a benchmark for regional variations. Results 
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for significant excess deaths during extreme weather are shown for the 

regions of London, Birmingham and Plymouth in Table	4-5. The Met Office 

criteria yielded four events in London that would have qualified as a heat 

wave externally since 1983, in Birmingham there were six, whilst in Plymouth 

there were none. To validate the Plymouth results, a manual investigation of 

the hottest summer in Plymouth (1995) revealed a single day when air 

temperature reached 30.2˚C, with overnight temperature hitting 21.9˚C. 

However, air temperature on the following day peaked at 27.3˚C, thereby 

discounting that period as a heat wave under current criteria.  

 

Table 4-5: Number of significant excess deaths and Met Office heat waves externally 
since 1983 in three UK regions, identified using current Met Office heat wave health 
threshold temperatures. 

Location No. days when 
significant 

excess summer 
deaths occurred 

No. of Met 
Office 
heat 

waves 

Years with Met 
Office heat 
waves (and 

number of heat 
waves) 

% Significant 
excess deaths 

occurring during 
Met Office heat 

waves 

Plymouth 
 

52 0 - 0% 

Birming-
ham 

56 6 1989 (1) 
1995 (1) 
1995 (2) 
2003 (1) 
2006 (1) 

8% 

London 44 4 1990 (1) 
1995 (1) 
2003 (1) 
2006 (1) 

24% 
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The hottest consecutive period for the UK was found to be August 2003, and 

the internal environment for that period was analysed with the corresponding 

mortality data, and results are shown for Birmingham (Figure	 4-5), London 

(Figure	 4-6) and Plymouth (Figure	 4-7). In early August 2003 all three 

locations were found to have a clear trend of high excess deaths. In Plymouth 

the temperature of this hot period reached 29.8˚C, but did not pass the 

threshold of 30˚C, and externally was not classed as a heat wave. In 

Birmingham temperatures over the same period exceeded 30˚C on three 

separate days, though none were consecutive. In London, temperatures 

exceeded 32˚C for 3 consecutive days. In London there were 44 days since 

1983 on which significant excess deaths occurred, in Birmingham there were 

56, and in Plymouth there were 52.  

 

 

Figure 4-5: Recorded maximum air temperature and coincident daily mortality in 
Birmingham 
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Figure 4-6: Recorded maximum air temperature and coincident daily mortality in 
London 

 

 

Figure 4-7: Recorded maximum air temperature and coincident daily mortality in 
Plymouth 
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Investigation of all data reveals a highly correlating relationship between 

temperature levels and excess deaths on the following day, indicating a 

potentially associative relationship with a one-day response lag, which has 

also been reported in other research [114]. Investigation of prior-day 

temperatures for all days on which significant excess deaths occurred was 

therefore undertaken. Analysis of the temperatures during these events 

looked at whether they exceeded the respective ten heat wave definitions on 

the same day or on the prior day to those deaths occurring. The full mortality 

plot for London can be seen in Figure	4-8. 

 

 

Figure 4-8: Air temperature and deaths in London 
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Results from extreme external events suggest a possible one day lag 

between high temperatures and an increase in mortality, and analysis of 

extreme internal events will reveal any correlation of this effect.  The ten peak 

criteria definitions outlined in the method are now tested both for their 

accuracy in forecasting significant excess deaths internally, as a proxy for 

occupant dissatisfaction and for false triggers, which are defined as ‘false 

positive’ and ‘false negative’ forecasts. False positives are defined as 

incidents where peak threshold criteria have been met, yet without coincident 

occurrences of significant excess deaths, whilst false negatives are defined as 

incidents where peak threshold criteria have not been met, yet significant 

excess deaths have occurred. A balance is required such that the peak 

threshold criteria is high enough for there to be a significant risk to occupant 

health but not too high such that the impact on occupant health is 

underestimated. Naturally not all cases of significant excess summer deaths 

can be attributed to hot weather, however of all the significant excess deaths 

during the period analysed, 80.6% were found to occur on days where the 

daily maximum external air temperature exceeded 24˚C, which is the 

threshold at which excess deaths are shown to occur [105], [115]. In total, 

17.5% of all days were recorded as having daily maximum air temperature 

exceeding 24˚C.  

 

4.5.2 Analysing mortality with peak temperature threshold metrics 

The mortality forecasting performance of each of the peak criteria metrics are 

shown from 1981-2011, with results for London shown in Figure	4-9, results 
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for Birmingham shown in Figure	 4-10 and results for Plymouth shown in 

Figure	4-11. False triggers are the sum of false positives (not triggering when 

it should have triggered) and false negatives (triggering when it should not 

have triggered), and these percentage values are plotted on the y-axes. The 

percentage of correct forecasts, by which is meant days on which peak 

criteria metric thresholds were exceeded and coincided with significant excess 

deaths, is plotted as a 100-x value for all points on the x-axes of these graphs, 

such that a lower value is better than a higher value; in other words, the 

percentage of correct forecasts that were missed. The reason for this was to 

show a Pareto front for easier evaluation of the best performing metric, hence 

the best performing metrics should lie on the Pareto front. Each graph, plotted 

per region, shows 2 versions of the 10 peak temperature threshold metrics: 

one for same day and one for prior day (labelled as [metric]-1 e.g. Tapp-1). 

 

The most appropriate peak temperature metric during hot weather should be 

the metric with a combination of the lowest percentage values of correct 

forecasts missed and with the lowest percentage of false triggers. In this 

respect, the UTCI metric UTCI>97.5th percentile for same day forecasts 

performed best with 34% correct positive forecasts of days of significant 

excess deaths in London. The regional plots show that the Tmax>30˚C metric, 

equivalent to the Met Office threshold, correctly forecast most frequently, 

along with the Tapp>97.5th percentile metric, albeit with higher values for false 

triggers than UTCI>97.5th percentile. However, for Birmingham and Plymouth 

Tmax>30˚C show very different results, leading to the question of its reliability 

as a metric for use in other UK regions, and compromising its overall mortality 
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forecasting performance. The UTCI>97.5th percentile metric balanced the two 

criteria of correct forecasts and fewest false triggers more consistently than 

the other metrics.	 

 

 

 

	

Figure 4-9: Mortality forecasting performance of temperature metrics at peak 
thresholds in Table 4-4, plotted for % false triggers (lower is better) and % correct 
forecasts that were missed (lower is better) for London 1981-2011. 
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Figure 4-10: Mortality forecasting performance of temperature metrics at peak 
thresholds in Table 4-4, plotted for % false triggers (lower is better) and % correct 
forecasts that were missed (lower is better) for Birmingham 1981-2011. 
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Figure 4-11: Mortality forecasting performance of temperature metrics at peak 
thresholds in Table 4-4, plotted for % false triggers (lower is better) and % correct 
forecasts that were missed (lower is better) for Plymouth 1981-2011. 

 
 

Significant excess deaths of two standard deviations above the mean were 

found to occur at around the 97.5th percentile of daily maximum 

temperatures, after single day breaches in temperature thresholds. The 

majority of all significant excess deaths (80.57%) were found to occur during 

unusually hot weather (>24˚C). Significant excess deaths were found to occur 

on 61 days over the period and five of those days were coincident with Met 

Office heat wave periods and 20 were coincident with UTCI ‘hot days’.  
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On days when significant excess deaths were preceded by these 'strong heat 

stress' UTCI temperatures, they did so with a one day time lag, indicating 

rises in mortality rates follow a day after hot weather, as has been shown in 

other literature [116]. 

 
 

4.5.3 Population cohorts and human health metric considerations 

The mortality data received from the ONS was not filtered for age groups, and 

it should be acknowledged that more detailed results would have been 

achieved if the ability to analyse the effects of hot weather on varying 

population cohorts had been possible, since several studies have shown 

greater mortality rates in elderly cohorts during heat waves [27]. This thesis 

focuses on mortality in heat waves to assess health risk in the indoor 

environment, rather than on hospital admissions in hot weather events, which 

could potentially have provided richer data about the demographic of 

vulnerable hot weather victims. Other works have reported no significant 

increases in admission rates during hot periods [117], and so mortality was 

deemed a better measure of health impact. One further consideration to take 

into account is that weather data is sourced from site-specific weather 

stations, and that the recorded values for the UTCI (air temperature, humidity, 

wind speed and solar radiative temperature) are most accurate at the 

specified weather station location. Therefore there is some regional 

generalisation applied to that weather data in order to perform analysis 

against regional mortality; for instance London weather data is collected at 

Heathrow airport, which is on the geographical fringe of London, and possibly 
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does not give an accurate enough representation of London weather. These 

are limitations to the model and so should be discussed in future work. 

 
 
 

4.6 Adopting the UTCI heat stress metric 
 

4.6.1 Mortality forecasting with the UTCI metric 

From earlier in this chapter we know that buildings are currently tested for 

comfort using benchmark air temperatures in 'unusually warm' weather. One 

of the goals of this thesis was to investigate other indices that could provide a 

regionalised metric for assessing the impact of extreme weather conditions on 

the internal environment and human health within buildings in order to 

establish what the peak threshold should be. The UTCI metric for health in 

buildings, using a 97.5th percentile-based temperature threshold, predicted 

excess mortality with better accuracy than other indices tested.  

 
For context an analysis was conducted into recent weather and mortality for 

London. Since 1983 there have been 2115 significant excess deaths during 

the summer period in London. Using the UTCI metric for this period results in 

peak threshold days that are coincident with 897 significant excess deaths. 

Using the Met Office heat wave threshold there are 4 peak threshold periods 

coincident with 515 significant excess deaths. On days where significant 

deaths did not coincide with UTCI temperatures that exceeded the target 

threshold, UTCI still remained within a range of of 30.5-32.7˚C, which fall into 

the ‘strong to very strong heat stress’ bands on the UTCI scale. High air 

temperature heat wave criteria, such as the Met Office definition, correspond 
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to more deaths during the hottest periods, but are not triggered in conditions 

where air temperatures are slightly lower yet other weather parameters 

combine to produce an environment inside buildings that results in a 

significant health risk. There is a need to balance the number of peak 

threshold days and health risk forecasting accuracy, however, given that there 

are in fact 48 days of significant excess deaths, the most accurate definition 

would register 48 incidents and capture every significant excess death event. 

This is not possible, since not all excess death events can be attributed to hot 

conditions inside buildings, however the definition, which comes closest in this 

respect, uses the UTCI index. Similarly to adaptive comfort this peak 

threshold could be adjusted with respect to the occupant demographic and for 

vulnerable occupants such as in care homes and schools. Internal UTCI 

temperatures on days with significant excess deaths reach an average of 

30.5-32.7˚C, which fall into the ‘strong to very strong heat stress’ bands on the 

UTCI scale. Externally UTCI temperatures in full sun reach 36-42˚C 

(depending on the location), representing equivalent ‘very strong heat stress’ 

on the UTCI scale. In this work, metric testing was conducted against 

mortality. Deaths in hot conditions are generally (but not in all cases) 

attributed to the most vulnerable, and so the peak threshold criteria assessed 

in this work likely apply to the most vulnerable people. 

 

4.6.2 Adapting building thermal performance guidelines 

Maximum air temperature on days with significant excess deaths fell within a 

range of 29-36˚C. If this were the maximum temperature range resulting from 

CIBSE TM52 calculations [72], the running mean temperature is 13–36˚C. 
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Criterion 3 of TM52 states that a building will overheat (and thereby fail an 

assessment of its thermal comfort) if: 

 

∆𝑇 > 4˚C 

Equation 4-1 

where  

∆𝑇 = 	𝑇:7,+298;, − 𝑇12< 

Equation 4-2 

and where  

 

𝑇:7,+298;, = 0.5𝑇28+ + 0.5𝑇#:02+ 

Equation 4-3 

and 

𝑇12< = 0.33𝑇+l3383m	1,23 + 21.8 

Equation 4-4 

 

Results from this thesis show that on days when significant excess deaths 

occurred ∆𝑇 for maximum air temperature averaged 0.5–2.7˚C across the 

regions. This suggests that for criterion 3 of CIBSE TM52 (Equation	 4-1) 

∆𝑇	should be no greater than	3˚C. 

 

CIBSE’s own guidelines were recently revised to broaden overheating criteria 

to include severity and an absolute limit, though thresholds are still based on 

air temperature alone and the absolute limit of 4°C above the indoor adaptive 

comfort temperature, results in practice in temperatures broadly similar to the 

Bb101 indoor limit [72], which are arguably too high, based on the finding that 
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∆𝑇	should be no greater than	3˚C. Current thermal comfort guidance for 

modelling buildings is already moving towards regionalised thresholds as 

given by adaptive comfort models in CIBSE’s recent TM52 guidelines. 

However, a percentile-based criteria incorporating the full set of environmental 

parameters that affect human heat stress has yet to be established for the 

peak threshold. The UTCI metric developed here uses parameters that are 

typically output by building models, so would be straightforward to implement 

for a more appropriate peak threshold for human health in buildings. The use 

of which is similar to the current metric of ‘internal temperatures should not be 

greater than 32˚C’ as in this work there would be significant health risks to 

people if the threshold is exceeded.  

 

4.6.3 Using the UTCI metric for heat wave planning 

The present formulation of a heat wave definition solely based on the air 

temperature index with static thresholds is simplistic. Further work should 

identify the most suitable heat wave or hot day definitions to be used in future 

risk analysis work. Factors to be considered are which weather variables, or 

combination of weather variables should be selected, the threshold 

temperature as either a static or percentile value and the length of time the 

hot weather should last for a warning to be declared. Clearly processes for 

identifying temperature thresholds for health risk are dynamic and dependant 

on multi-variable weather parameters. For temperate climates such as the 

UK, where the UTCI metric shows good results for forecasting heat related 

health risk inside buildings, the UTCI metric could be used in conjunction with 

standard weather reports and national heat policies to give people additional 
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localised information to monitor the indoor environment for potential health 

risks. Since the UTCI uses the Degree Centigrade index, it would be familiar 

and comparable.  

 

Results from this chapter indicate that too few heat wave warnings are 

currently issued compared to the number of days of significant excess 

summer deaths. Single hot days of UTCI temperatures exceeding the 97.5th 

percentile, equivalent to 'strong heat stress' on the UTCI scale, put public 

health at risk. A health warning system using UTCI >97.5th percentile 

threshold most accurately forecasts significant excess deaths in hot weather 

without giving too many false positive warnings. New heat wave definitions 

should be considered to account for the full set of environmental parameters 

that affect human health. A possible UTCI warning system, equivalent to the 

current Met Office heat wave plan is outlined in Figure	4-12.  

 

All weather variables that make up the UTCI are forecast by the Met Office, so 

evaluating the UTCI temperature would be simple to implement, with warnings 

issued similarly to the wind chill index as used in winter. Since the threshold 

temperature is based on a running mean percentile, unlike the current static 

temperature threshold, the warning system would be future proof. Given the 

staggering rise in hot weather conditions we are likely to face, developing 

accurate weather warnings for the future is paramount.  
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Figure 4-12: Possible UTCI heat wave action plan flow path, based on the current 
Met Office heat wave plan [12] 

Level	1:	Green	— Summer	preparedness	and	long-term	planning

This	is	the	minimum	state	of	vigilance	during	the	summer.	During	
this	time	social	and	healthcare	services	will	ensure	that	all	
awareness	and	background	preparedness	work	is	ongoing.

Level	2:	Yellow	— Alert	and	readiness

Triggered	as	soon	as	the	risk	is	60%	or	above	for	maximum	daily	
UTCI	temperatures	to	reach	the	97.5th	percentile	threshold	in	one	
or	more	regions	on	a	future	day.	This	is	an	important	stage	for	
social	and	healthcare	services	who	will	be	working	to	ensure	
readiness	and	swift	action	to	reduce	harm	from	a	potential	
heatwave.

Level	3:	Amber	— Heatwave	action

Triggered	when	the	Met	Office	confirms	the	UTCI	daily	maximum	
temperature	forecast	for	the	next	day	has	a	greater	than	90%	
confidence	level	that	the	97.5th	percentile	threshold	will	be	met	
for	one	of	more	regions.	This	stage	requires	social	and	healthcare	
services	to	target	specific	actions	at	high-risk	groups.

Level	4:	Red	— National	Emergency

Reached	when	a	UTCI	heat	wave	is	so	severe	and/or	prolonged	
that	its	effects	extend	outside	the	health	and	social	care	system.	At	
this	level,	illness	and	death	may	occur	among	the	fit	and	healthy,	
and	not	just	in	high-risk	groups.
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4.7 Chapter summary 
 
In this chapter an overview is given on thermal performance modelling and 

how current building designs have the potential to suffer from overheating in 

hot weather. Hot days and heat waves are analysed alongside mortality rates 

and results show that the UTCI with a 97.5th percentile threshold is the most 

appropriate metric for predicting significant excess deaths in hot weather. 

New temperature thresholds for the indoor environment are also established, 

including a revision of Criterion 3 of CIBSE TM52. The UTCI is shown to be a 

capable metric for determining peak thresholds for the indoor environment. As 

a universal index this work could be extended to other countries, since it has 

the potential to become a useful international tool for both thermal comfort in 

buildings and human biometeorology [62]. The success of such work would 

depend on the availability and accuracy of locally recorded weather data. 

Analysis of future hot weather will be undertaken in the next chapter, in order 

to investigate the trends in frequency and intensity of heat waves to come, 

which will enhance understanding of future risks and help international 

adaptation strategies [73]. The following chapter will explore future climates 

and future weather and use the UTCI metric to scan for near-extreme and 

extreme conditions. The current reference weather years that are used to 

simulate indoor thermal conditions will be updated to include the UTCI for 

current and future climates.   
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5  Overheating in future climates 
 

5.1 Creating future weather 
 
Researching future annual heat wave frequency growth is an important task. 

Not only does this work aid building engineers, but also assists public health 

policy and adaptation strategies [118]. Regarding predictions of future 

extreme weather, studies have thusfar taken current heat wave concepts and 

maximum air temperature metrics, returning growth forecasts of future hot 

weather based on air temperature alone [13], [119], [120]. This chapter 

explores methods for creating future weather and presents results for hot 

weather growth trends for use in building modelling in particular.   

 

5.1.1 Weather generating 

There are two methods of creating future weather. The first is to use a 

weather generator, the second is to use morphing techniques [121]. The 

following examination of both these methods should indicate which technique 

is more suitable for creating weather for heat wave analysis. UKCP09 has a 

stochastic weather generator, which creates hourly and daily weather 

variables at a 5km resolution, based on IPCC climate projections [122]. The 

weather generator uses statistical relationships between observed climatic 

variables, and these relationships are stretched using climate projections to 

produce future time series on a daily and hourly basis. The weather signal, 

which is used to generate this time series, is based on a stochastic rainfall 

model [123], and the rainfall states are used to generate other weather 

variables. The rainfall states considered in the weather generator are: 
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• Dry today / dry yesterday 

• Wet today / wet yesterday 

• Dry today / wet yesterday 

• Wet today / dry yesterday  

• Dry today / dry yesterday / dry day before 

 

The weather generator produces several weather variables for the signal: 

precipitation, maximum air temperature, minimum air temperature, percentage 

of sunshine, vapour pressure, relative humidity, direct solar radiation, diffuse 

solar radiation and potential evapotranspiration. In addition, to create a 

weather file, wind speed, wind direction, air pressure and cloud cover are also 

needed.  

 

5.1.2 Weather morphing  

An alternative to stochastically generated future weather is to take historically 

recorded weather and morph it. An advantage of using morphing is that the 

underlying weather sequences are real rather than modelled weather, with the 

modelling uncertainty only coming in through the average changes. The 

morphing procedure uses the ‘baseline climate’, defined as the averaged 

present-day weather sequence. Weather variables are morphed over weather 

time series of one month, as this time period fits the highest change factor 

resolution in UKCP09, and the morphing technique adjusts the time series to 

produce weather with new values that are aligned with the change factors, 
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whilst retaining comparable short-term variations. There are three types of 

morphing algorithms: ‘simple shift’, ‘simple stretch’ and ‘weighted stretch’ 

[124] [125], The choice of morphing algorithm is dependent on the weather 

variable,   

 

The shift operation changes all values by the same amount, whilst a stretch 

changes a larger value by a proportionally larger amount. The shift operation 

adjusts only the mean of the time series and a stretch operation adjusts both 

the mean and the variance of the time series; this consequently results in an 

adjustment in the relative magnitudes of extremes in the time series. The 

‘simple shift’ algorithm is given by Equation	5-1: 

 

𝑥′1 = 𝑥 + ∆𝑥1 

Equation 5-1 

 

where the adjusted time series x’ is a function of the original time series x and 

∆𝑥1 is the change in the monthly mean of the variable. The shift operation is 

used in climate change scenarios that project an absolute increment in the 

monthly mean value. The ‘simple stretch’ algorithm is given by Equation	5-2: 

 

𝑥o1 = 𝛼1𝑥1 

Equation 5-2 
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where αm is the fractional change in the monthly mean value of the variable. 

A combination of a shift and a stretch is used if an adjustment is required for 

both the mean and the variance, for instance in the daily mean and the 

maximum and minimum daily air temperatures, given by Equation	5-3: 

 

𝑥o1 = 𝑥1 + ∆𝑥1 +	(1 + 𝛼1)(𝑥 − 𝑥1) 

Equation 5-3 

 

For some weather variables it is not appropriate to use just the ‘shift’ or the 

‘stretch’ algorithms. For instance the stretch factor for the ‘simple stretch’ 

algorithm is constant for each month, and it is useful to have a weighted 

stretch factor that is a function of the prevailing weather conditions over time. 

The morphing algorithm created for this case was the ‘weighted stretch’, given 

by Equation 5-4: 

𝑥o = 𝑥 +
𝑇1,23 − 𝑇183
𝑇12< − 𝑇183

	×
𝑇12< − 𝑇183
𝑇1,23 − 𝑇183

− 1 	𝑥1 1 − 𝑥 3 

Equation 5-4 

where m and n are the weighting fractions and T is the external temperature. 

 

Further developments of the morphing algorithms were introduced in TM49, 

and now all variables that can be morphed from UKCP09 use the weighted 

stretch, since the simple shift and stretch algorithms just maintained the 
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changes to the diurnal cycle, rather than accounting for the prevailing weather 

conditions. These variables include dry bulb air temperature, relative humidity 

and cloud cover. Relative humidity is initially derived from wet bulb 

temperature observations, and is then morphed using the weighted stretch, 

this morphed relative humidity value can then be used to derive a new wet 

bulb temperature. Solar radiation for global, direct normal and diffuse values 

is derived using the cloud cover radiation model, since cloud cover is already 

morphed using the weighted stretch [110]. For dry bulb air temperature the 

weighted stretch algorithm is used, with the mean temperature and diurnal 

temperature (Tmax - Tmin) treated as two separate parameters [126]. It is 

important to check for unrealistic maximum temperature values, which can 

occur whilst maintaining the diurnal cycle with temperature. In some cases the 

weighted stretch algorithm is found to produce unfeasible values, for instance 

where new mean values are greater than new maximum values. In these 

scenarios the simple shift algorithm in Equation	 5-1 is used instead. All 

environmental variables calculated from constituent weather variables are 

derived if the constituent variables are found to have changed. 

 

For the purposes of this thesis it is important that the weather extremes are 

preserved as realistically as possible, and this factor primarily informs the 

choice of method for creating future weather. The weather generator takes 

cumulative frequencies of weather observations and uses a statistical signal 

to then stochastically produce future weather based on the change factors. 

The weather generator has a number of advantages, including the ability to 

create wholly new data sets not encumbered by missing data issues from 
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historical weather records, because it uses averaged data. The morphing 

technique also takes cumulative frequencies of weather observations to 

create new weather based on the change factors. Statistically the climate 

should be similar, however, since the weather generator is built to use 

averaged data, and the morphing technique ‘morphs’ each data point, the 

result is that the weather generator is less able to handle the tail-end 

percentiles [121], and since these are where the extremes lie, future weather 

data created in this fashion is unlikely to be suitable for use in testing extreme 

weather effects on buildings and health. Since the morphing technique uses 

data points from observed weather, the extreme values are preserved in line 

with empirical observations, morphed with the change factor adjustments, 

avoiding the potential for anomalous extreme values that could skew and 

invalidate the work in this thesis. It is for this reason that future weather 

created using the morphing technique was chosen as the source data for 

investigating hot weather and the health effects in buildings. Generated 

maximum temperatures were also checked against the maximum 

temperatures reported in UKCP09, and were closely matched. 

 

Using the morphing method with the high emissions scenario, future weather 

files are created from a base empirical data set of weather recordings, 

resulting in a series of possible versions of 30 years of climate data. For each 

future era of the 2030s, 2050s and 2080s 10,000 versions of a full calendar 

year hourly weather data are created, each representing a different yet 

equally likely possible future scenario [73], [127].  
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5.2 Analysing future extreme hot weather 
 
Computer algorithms to detect heat waves were written in MathWorks 

MATLAB [128] and applied to current and future weather data to search for 

two day heat wave events and individual ‘hot days’ using the Met Office 

maximum temperature metric and UTCI metric. For future weather the 

number of annual heat waves was found by division over the 30 sample years 

and a percentile range of annual frequencies was given. Heat wave results 

from the current period, along with the probabilistic heat wave results from 

future projected climates were then plotted together to visualise the trend. 

Statistical uncertainty inherent in any forecasting method means that there is 

greater uncertainty in predicting a series of consecutive hot days constituting 

a heat wave than there is in predicting the frequency of individual hot days 

[129], so an analysis of hot days gives a potentially more accurate 

assessment of the growth trends of extreme conditions. 'Hot days' are defined 

as single days that breach heat wave thresholds and exclude any consecutive 

time conditions or night temperatures. A hot day occurs when daily maximum 

air temperatures exceed 32˚C in London, and when UTCI temperatures 

exceeds the 97.5th percentile of the baseline weather data, (equating to a 

UTCI temperature of 32.4˚C). 

 

5.2.1 Analysing future heat waves and hot days  

Current and future annual heat wave frequencies are shown as a plot in 

Figure	5-1 and Figure	5-2. Future heat wave frequencies are given as a box 
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and whisker plot range, and values are shown for the significant percentile 

points within the probabilistic data ranges (the baseline results from chapter 4 

are shown as established values for the date period labelled ‘2000s’). All 

ranges for both Met Office and UTCI indices had an expected minimum value 

of 0 heat waves per year. Maximum limits based on a 99th percentile of the 

data range gave diverging values as expected in line with the uncertainty in 

the UKCP09 climate projections. There were no significant outlying points in 

the results and values along the percentile range appeared controlled, 

indicating robustness of the model and method.  

 

Mean annual heat wave frequency for both Met Office and UTCI definitions 

showed an upward trend, with Met Office style heat waves predicted to be the 

norm by the 2050s and frequent, between 2 and 3 per year, by the 2080s. 

Based on these figures, this would be an increase of 17.5 times the current 

frequency by 2080. The results of the increasing UTCI heat wave frequency in 

Figure	 5-2 show these are currently experienced at a rate of around one 

every two years, but this could grow to around 2 per year by 2030. There 

could be around 5 hot weather events per year by 2080, which is an increase 

of 10 times the current frequency. The 97.5th percentile UTCI temperature for 

the current climate is 32.3˚C, which is classed as ‘strong heat stress’ on the 

UTCI scale, and by 2080 this could become 36.4˚C; a rise of over 4˚C in the 

threshold temperature over that period, representing ‘very strong heat stress’ 

on the UTCI scale.  
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Figure 5-1: Number of annual Met Office heat waves in London. 2000s, 2030s, 
2050s, 2080s 

 
 

 

Figure 5-2: Number of annual UTCI heat waves in London. 2000s, 2030s, 2050s, 
2080s 
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For the single hot day analysis, plots are shown in Figure 5-3 and Figure 5-4. 

Met Office hot days are currently occurring at less than one per year. By 2030 

there could be around 3 per year. By 2050 approximately 5 hot days could 

occur each year, and by 2080 around 12 per year. Overall growth between 

now and 2080s could be 14 times the current number. The number of UTCI 

hot days currently experienced is just over 2 per year. By 2030 this could rise 

to 7 days per year and approximately 13 per year by 2050. By 2080 around 

23 UTCI hot days could be expected per year. Overall growth of UTCI hot 

days between now and 2080s could be around 10 times the current number. 

 

Studies of heat waves up until this point have generally equated to the study 

of days with high air temperature, and have by and large used incomplete 

weather data sets [17], [130]. The large weather data sets and robust weather 

morphing model used in this study gave results that were well controlled and 

the model exhibited robustness given the context of large climatic uncertainty, 

especially since heat waves appear at the extreme ends of a probabilistic data 

range. Met Office heat waves are predicted to rise by 17.5 times by 2080, and 

single hot days could rise by 14 times. UTCI heat waves and hot days were 

predicted to rise by 10 times by 2080. This means that whilst the UK can 

currently expect 2 or 3 days of weather conditions per year conducive to 

causing human heat stress and health risks, by 2080 this could rise to the 

equivalent of nearly a month per year.  
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Figure 5-3: Number of Met Office hot days per year. 2000s, 2030s, 2050s and 2080s 

 

 

 

Figure 5-4: Number of UTCI hot days per year. 2000s, 2030s, 2050s and 2080s 
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The probabilistic nature of this work means that it is impossible to give precise 

numbers, and that forecasting uncertainty rises the farther into the future one 

looks. However the likelihood is that there will be between 1 and 4 heat waves 

exceeding current thresholds annually by 2080. It is also possible to analyse 

the future equivalent temperatures of a current heat wave or hot day. If 

instead of using current temperature percentiles from today’s climate, future 

temperatures were used to define the running percentile threshold 

temperatures of future heat waves and hot days, then it can be shown that the 

UTCI 97.5th percentile in the 2080s could be expected to exceed 36˚C; well 

into the 'very strong heat stress' band on the UTCI scale.  

 

5.2.2 Implications of future extreme hot weather 

The rapid growth in the number of annual heat waves outlined in the results is 

a cause for concern, especially for health professionals, although this should 

be tempered somewhat by bearing in mind that these future heat wave 

predictions are based on current definitions of a hot weather event, and that 

thermal adaption to future climates will occur to some degree, lessening the 

overall impact. Factors such as climate adaption are not treated in this work, 

since it is difficult to predict the human body’s propensity to adapt to such a 

degree over that time scale, however the figures outlined here show at least a 

worst-case scenario for building overheating and indoor heat stress. The 

question of climatic adaptation and to what extent people are capable of 

adapting is very much a developing research area [75]. It has been argued 

that people possess the ability to adapt to very harsh environments, and will 
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continue to do so even in extreme climate change scenarios [131]. However, 

studies have shown that there is a possible limit to human adaptability [132]. 

Extremely high air temperatures are rarely coupled with high humidity, and so 

many parts of the world considered to have hot climates actually exhibit 

broadly comparable apparent temperature values with other parts of the 

world. This is key to understanding how people can inhabit these places, and 

key to understanding that thermal adaptation, at least with regards to 

apparent temperature has its limits. In other words, regardless of where 

people live or how acclimatised they are, people will not be able to adapt 

indefinitely, and it cannot be understated that however much our bodies 

acclimatise to such conditions in the future, the predicted UTCI heat wave and 

hot day conditions found in this thesis will feel a great deal hotter than they do 

currently. 

 

5.3 Redeveloping the reference weather years 
 
Engineers concur that thermally testing buildings in future climates should be 

carried out and that more weather variables should be used in overheating 

tests [133]. In order to test overheating effectively, building designers will 

need an appropriate temperature metric and suitable reference weather years 

to thermally test building models against current and future near-extreme and 

extreme conditions. They should also be aware of the trends in annual heat 

wave frequency, that have been analysed in this chapter, to understand the 

nature of the extreme weather that buildings will be increasingly exposed to. 
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It is important to recognise that assessing the thermal performance of 

buildings using reference weather data from the current climate will not hold 

as good practice as the climate changes, since a consequence of climate 

change is a divergence in weather patterns from current norms and an 

increase in extreme weather, with heat waves in particular rising in frequency 

[11]. Extreme weather already causes difficulties for the built environment, 

and with the possibility that these conditions could become the norm, 

engineers may need to respond by incorporating this type of weather into their 

building performance simulations. Using present comfort criteria, it is still 

possible for a building to be exposed to heat stress levels of high 

temperatures and still pass a thermal performance test. TM52 criterion 1 

permits a building to overheat by up to 1 K for up to 3% of occupied hours 

(this would represent over 100 hours in a residential home between May-

September); it is quite possible for a dangerous hot event to have a shorter 

duration than this, meaning a building could pass criterion 1 and still pose a 

health risk. TM52 criterion 3 allows for the upper value to be 4 K higher than 

the indoor operative temperature, which has been shown to be higher than 

the point at which heat stress occurs.  The daily weighted exceedance value 

in criterion 2 is likely to be exceeded in an overheating case, so it is quite 

possible for a building design to fail criterion 2, but pass criterion 1 and 

criterion 3, which would mean that it satisfies 2 of 3 of the criterion tests and 

therefore passes the thermal performance assessment overall.      

 

There is clearly a need for investigating the effects of more than just 

temperature on the selection of design hot weather data, and for 
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reformulating reference weather years, so thermal modelling can be carried 

out at the building design stage using both near-extreme and extreme 

weather data. Extreme reference years may need to contain at least one heat 

wave and some longer periods of above-average hot weather, and reference 

weather years may need to be simulated, rather than derived empirically, to 

overcome the problems of missing data.  

 

5.3.1 Probabilistic reference weather years and return periods 

Current methods of assessing overheating are moving toward using 

probabilistic reference weather years in building modeling, and a recent paper 

has proposed new DSYs employing a reformulation method that takes into 

account the return periods of weather with high daily air temperatures to 

correct the inaccuracies for the current climate [101]. Redevelopment of the 

DSY in this form gives building modelers the option of selecting a reference 

year of weather data based on the likely return period of whichever level of 

hot conditions they wish to test. For instance the current DSY is found by 

taking the ‘third hottest’ year for each geographic region from recorded data 

over a 21-year period [134]. A probabilistic ‘third hottest’ DSY would therefore 

have a return period of 1 in 7 years. A benefit of this DSY reformulation is that 

it can be extended to test for more extreme weather, by selecting a reference 

year with a longer return period, and future conditions when applied to 

morphed future weather data. The reformulated DSYs still however only use 

air temperature, and so to address the issue of human heat stress, which is 

one of the focus areas of this thesis, an appropriate temperature metric is 
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required that incorporates the other weather variables: solar temperature, 

humidity and wind.  

 

The idea of taking a 1 in 7 year event as it stands is simplistic, since each 

year is an equally likely event, and the likelihood of extremes in the mean 

temperature is low. It is therefore necessary to apply a distribution estimate to 

the data, such that extreme values are not overlooked [135]. The General 

Extreme Value (GEV) distribution, which is frequently used for modelling 

climate change effects [136] is able to describe the statistics of extreme 

values, and is therefore well-suited to estimating the return periods of extreme 

events. The probability density function (PDF) is given by the GEV 

distribution, and the events (extreme and non-extreme) are fitted using a 

maximum likelihood estimation function. The GEV function is built into 

MATLAB and can be readily employed by fitting the distribution to the sum of 

the metric used in establishing the probabilistic return periods. 

 
5.3.2 The redevelopment of the DSY 

The original DSY reference weather data represented the third hottest year 

per region between 1983-2004. The redevelopment of regional DSYs starts 

by identifying that the baseline weather data is given over a 21-year period, 

and so the new DSY can simply be given as a 1 in 7 year ‘return period’. The 

DSY classification of ‘third hottest year’ just takes into account outdoor 

running-mean air temperature. However, overheating in buildings is defined 

by the experience of thermal discomfort by its occupants, such that the 

internal temperature feels too high to be comfortable. For the internal 
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environment this can be calculated using Equation	5-5, and Trunning-mean can 

be calculated using Equation	3-2 from CIBSE TM52 [72].  

 

𝑇6:1q:+9 = 	0.33𝑇+l3383m41,23 + 18.8 

Equation 5-5 

 

 

One of the simplest overheating metrics can be described as the number of 

hours over which temperatures exceed a static threshold, or put another way, 

the number of hours where forced cooling would be required; cooling degree 

hours (CDH). However, such a metric does not take into account severity, 

thus it would make no difference if the threshold were exceeded by 0.1˚C or 

by 10˚C, which is clearly incorrect. A simple weighting factor can be 

incorporated to rectify this shortcoming, and so the metric used in CIBSE 

TM49 for the new London DSYs is the weighted cooling degree hours 

(WCDH), shown in Equation	5-6 and Equation	5-7. 

 

𝑊𝐶𝐷𝐻 =	 ∆𝑇H
200	t:l+#

 

Equation 5-6 

where  

 

∆𝑇 = 	𝑇:7,+298;, − 𝑇6:1q:+9 

Equation 5-7 

 

where Toperative can be found from Equation	4-3.  



 120 

 

CDH is a base definition of degree hours. WCDH (weighted cooling degree 

hours) can account for severity, since the  ∆𝑇H places a greater weighting on 

larger departures from the threshold temperature.  Using this metric enables a 

more appropriate ranking of the ‘hottest years’ for DSY classification and is 

used in the DSY reformulation paper [137]. This method will also be used to 

create the UTCI-DSYs for heat stress assessment. To distinguish between 

near-extreme and extreme weather, DSYs have a return period of 1 in 7 years 

and 1 in 21 years respectively. This methodology was then replicated for the 

morphed future weather to create DSYs and UTCI-DSYs for 2030s, 2050s 

and 2080s.  

 

5.3.3 Developing the UTCI-DSY 

The task of performing a full assessment of overheating in buildings should be 

grounded in the thermal impact on people. The factors which cause people 

heat stress in the internal environment are sustained high temperatures, such 

as those found in a heat wave, and the combined effect of several weather 

variables, in particular air temperature, the solar radiative temperature, air 

flow and humidity. Given that people spend an average of >80% of their time 

indoors [138], the consequent internal environment in buildings during 

extreme weather conditions should form part of the overheating criteria in 

building assessments. The UTCI appears to perform better at forecasting 

public health risk, which is probably the most important consideration in 

building overheating. Going forward reference weather data for the building 

industry could include this aggregated equivalent temperature 'UTCI', which is 
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a more appropriate index for assessing overheating conditions that result in 

heat stress. 

 

Arguably a full thermal assessment in building simulations requires accurate 

and appropriate reference weather data. Reference data could provide 

broader capability for building models to test for near-extreme and extreme 

weather conditions, for general overheating (DSYs) and heat stress 

assessment (UTCI-DSYs), and for current and future climates. An analysis of 

both Met Office and UTCI heat wave growth trends will also be conducted in 

this thesis to ascertain the frequency of extreme hot weather to which 

buildings will be exposed and aid the development of a more complete health 

risk profile. 

 

5.3.4 Establishing new reference weather data 

Using the methods outlined above, a suite of UTCI-DSY reference years have 

been created for use in heat stress assessment for current and future 

climates, and in near-extreme and extreme weather, presented in the 

following tables. Applying the WCDH metric to current and historic weather 

data gives the ten calendar years with the longest return periods, from which 

the near-extreme DSY (1 in 7 year return period) and extreme DSY (1 in 21 

year return period) can be selected. Taking London for example in current 

weather (see Table	5-1), the near-extreme DSY can be found by selecting the 

year with the closest to a 1 in 7 year return period, which is 1989 for air 

temperature and also 1989, but with a slightly higher return period, for UTCI 

temperature.   
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Table 5-1: Return periods of the ten calendar years for London with the longest 
return periods for air temperature and UTCI temperature. 

 

Year Tair return period 
(WCDH) 

Year UTCI return period 
(WCDH) 

1975 5.1 1975 3.3 

1983 5.4 1983 5.5 

2013 5.9 2013 5.5 

2005 6.5 2005 6.2 

1989 6.8 1989 7.4 

1990 12.5 1990 12.0 

1995 14.8 1995 18.3 

2003 15.5 2003 20.1 

2006 16.0 2006 25.3 

1976 22.2 1976 46.6 

 

For current near-extreme weather conditions (with 1 in 7 year return periods), 

DSYs and UTCI-DSYs using the new methodology are shown in Table 5-2 for 

all 14 UK locations, whilst return periods for extreme weather conditions are 

shown in Table 5-3. Overheating is generally not triggered in Belfast and 

Edinburgh. In these locations the GEV distribution is dominated by too many 

years with no incidences to fit a near-extreme return period, and so no values 

were returned. With the exception of London and Swindon, all other locations 

would use a different weather reference year for their respective UTCI-DSYs 

as opposed to the standard DSY. This is an important finding as it could have 
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an impact on the way thermal performance is treated by the building industry. 

For instance, if the UTCI metric were adopted for overheating testing, 

especially for buildings housing vulnerable occupants, where heat stress is 

likely to cause illnesses and serious health risks, building designers would 

need to use a different reference weather year in thermal performance 

simulations. Similarly for testing thermal performance of buildings with the 

UTCI metric in extreme weather, potentially looking at the impact of heat wave 

type weather, the selected reference weather years for each location would 

also be different to those based on air temperature (Table 5-2). 

 

 

 

 

 

 

 

Table 5-2: Return periods, selected year and the number of WCDH for near-extreme 
weather years for all locations using air temperature and UTCI temperature 
 

Location 
Air Temperature UTCI 

Year Return 
Period WCDH Year Return 

Period WCDH 

Belfast - - - 1970 6.6 620 

Birmingham 2005 6.7 809 1975 7.1 3040 

Cardiff 1989 6.3 205 2013 5.4 1390 
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Edinburgh - - - 1982 7.0 779 

Glasgow 1983 7.1 316 1977 7.0 1079 

Leeds 2000 6.5 591 2013 6.8 2126 

London 1989 6.8 1816 2013 6.9 4426 

Manchester 1983 8.2 511 1970 7.4 1929 

Newcastle 1975 7.4 164 1997 6.9 790 

Norwich 1996 5.3 837 1989 7.4 3643 

Nottingham 2003 6.1 706 1970 6.7 2972 

Plymouth 1983 7.8 248 2006 6.7 1341 

Southampton 1989 7.4 650 1975 6.3 3245 

Swindon 1989 7.2 1042 2005 6.5 2793 

 

 

 
Table 5-3: Return periods, selected year and the number of WCDH for extreme 
weather years for all locations using air temperature and UTCI temperature 
 

Location 
Air Temperature  UTCI 

Year Return 
Period WCDH Year Return 

Period WCDH 

Belfast - - - 1995 16.7 1224 

Birmingham 1976 19.6 2105 2006 26.4 5587 
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Cardiff 1990 22.0 759 2003 20.9 2773 

Edinburgh - - - 2006 16.6 1488 

Glasgow 1995 8.4 459 1995 17.5 1774 

Leeds 1990 16.5 1364 2006 21.0 2958 

London 1976 22.2 3530 1995 21.1 6679 

Manchester 1976 22.8 1280 1976 22.6 3135 

Newcastle 1990 17.6 517 1990 15.0 1128 

Norwich 1995 21.9 1519 1975 21.8 4693 

Nottingham 1995 21.1 2023 1975 20.3 4955 

Plymouth 1976 11.1 532 2003 24.0 3259 

Southampton 1995 24.3 2067 1995 20.1 6693 

Swindon 1995 19.5 2328 1995 19.9 4904 

 

 

5.3.5 Creating new reference years for future climates 

For the creation of future reference weather years, focus is returned to the 

three locations chosen in chapter 4 representing a good UK geographical 

spread: London, Birmingham and Plymouth. The morphed DSYs and UTCI-

DSYs for near-extreme weather conditions in a probabilistic 2080s future 

climate are shown in Table	 5-4. The morphed DSYs and UTCI-DSYs for 
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extreme weather conditions (1 in 21 year return periods) for the 2080 climate 

are shown in Table	5-5. 

 
 
Table 5-4: Future near-extreme DSY return periods 

 Future Near-Extreme (2080s morphed) 

Air DSY (overheating) UTCI-DSY (heat stress) 

Location Year Return  WCDH Year Return  WCDH 

London 1985 6.5 13399 1989 7.3 17214 

Birmingham 1989 6.8 7568 1989 7.0 14860 

Plymouth 1984 6.0 2422 1990 6.9 2963 

 

 

Table 5-5: Future extreme DSY return periods 

 Future Extreme (2080s morphed) 

Air DSY (overheating) UTCI-DSY (heat stress) 

Location Year Return  WCDH Year Return  WCDH 

London 1986 20.7 18876 1995 20.8 22009 

Birmingham 1995 20.2 12626 2006 18.5 20701 

Plymouth 1995 19.6 4760 2003 15.3 5077 

 

For each of the 10,000 morphed weather scenarios a near-extreme and 

extreme DSY and UTCI-DSY was generated. Selecting the DSY and UTCI-

DSY year was done by taking the modal year from the 10,000 years for each 

location. The WCDH value for that year was then calculated as the mean 

WCDH value for that modal DSY / UTCI-DSY year. The impact of morphing 
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has actually changed the year that would be selected, and is not just the 

current year morphed. Changing the metric has also changed the year, both 

in respect to comparing the air temperature DSY with the UTCI-DSY, and in 

respect to the historic DSY version. These findings are an interesting feature 

of the change in climate.    

 

The predicted growth in Weighted Cooling Degree Hours (WCDH) for 

buildings for 2000s, 2030s, 2050s, 2080s for air temperature is shown in 

Figure	5-5 and for UTCI temperature in Figure	5-6.  

 

 

Figure 5-5: Predicted growth in London air temperature WCDH values for 2000s, 
2030s, 2050s, 2080s 
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Figure 5-6: Predicted growth in London UTCI temperature WCDH values for 2000s, 
2030s, 2050s, 2080s 

 

Building on the new DSY reformulation methodology, this thesis has further 

developed reference weather data for the built environment industry by 

introducing the UTCI-DSY, which adds extra environmental parameters that 

affect the thermal sensation of the human body. This work has focussed on 

three developments in particular to create a suite of reference years that can 

be used in the following scenarios: 

 

• Heat stress overheating assessment 

• Extreme weather 

• Future climates 
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5.3.6 Analysing the new weather reference years  

The calendar years for both air temperature and UTCI temperature shown in 

Table	5-1 followed the same ten spot ranking. In both cases results confirm 

the near-extreme reference year (the standard DSY with a 1 in 7 year return 

period) should remain unchanged from current CIBSE guidelines as 1989. 

However, for extreme weather (1 in 21 year return period), the ‘extreme DSY’ 

becomes 1976 if using air temperature for general overheating, meanwhile 

the ‘extreme UTCI-DSY’ becomes 2003. Both years are recognised as two of 

the hottest years on record, yet interestingly 2003 was the year of the extreme 

heat wave that caused around 50,000 deaths across Europe [53]. By 

selecting 2003 as the ‘extreme UTCI-DSY’, engineers would be testing their 

building designs against hot weather conditions that are known to cause 

human heat stress and serious health risks.  

 

The set of DSYs shown in Table	5-4 and Table	5-5 show the years selected 

for general overheating DSYs and heat stress UTCI-DSYs in near-extreme 

and extreme weather scenarios. UTCI-DSYs give greater overheating in 

general, which is to be expected since they are specifically addressing heat 

stress weather scenarios. In principle, results from the work presented in this 

thesis indicate that the reformulated DSYs are adequate for use in 

overheating tests for standard use buildings, whilst UTCI-DSYs could be used 

for assessing buildings housing vulnerable inhabitants such as hospitals, 

schools or care homes, since the UTCI metric is better tuned for human heat 

stress.  
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Analysing the WCDH values shows that the current near-extreme London 

DSY (1 in 7 year return period) has a WCDH value of 1,816 rising to 13,339 

by 2080 – an increase factor of 7.3, indicating longer and more severe periods 

of overheating. For the extreme London DSY (1 in 21 year return period) 

WCDH values rise from 3,530 to 18,876; an increase of a factor of 5.3. The 

figures for the UTCI-DSY years show a larger increase over time with the 

current near-extreme London DSY holding a WCDH value of 3,930, rising to a 

possible 17,214 by 2080 (an increase of a factor of 4.4). For the extreme 

UTCI-DSY, the current WCDH value of 5,657 could rise to 22,009 (an 

increase of a factor of 3.9). Results illustrated in Figure	 5-6 show the 

projected growth of the UTCI temperature WCDH percentile values from 

current to future climates. The current WCDH value representing an extreme 

UTCI-DSY weather year in London is 5,657. From Figure	5-6 it can be seen 

that the 50th percentile point of the 2080 WCDH value exceeds 10,000. This 

indicates that the kind of hot weather described by the current extreme UTCI-

DSY, could possibly become at least normal by 2080. Attention should briefly 

be drawn to the current extreme DSY for Plymouth; the results are shown in 

brackets, since the return period of 10.7 years is clearly too far from the 1 in 

21 year return period needed to define an extreme year, and this result must 

be discounted. Results show a slight disparity between the growth curve of air 

temperature based WCDH compared to UTCI-based WCDH, and this could 

be explored in further studies. However, what can be concluded is the 

importance of choosing the appropriate DSY and overheating metric for the 

given building assessment.  
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5.4 Chapter summary 
 
This concludes the chapter on future indoor conditions and reference weather 

years. Future hot days and heat waves have been analysed using Met Office 

air temperature thresholds and UTCI 97.5th percentile thresholds, and growth 

trends and frequency forecasts have been predicted. New UTCI-DSYs, 

appropriate for the assessment of human heat stress levels in buildings have 

also been established. The suite of UTCI-DSYs are particularly relevant for 

thermally assessing buildings that accommodate vulnerable occupants, and 

can be used in near-extreme and extreme conditions, for current and future 

climates. The next chapter will investigate the localised internal heat stress 

within a building using computational fluid dynamics and the UTCI metric. A 

surrogate model will be developed to rapidly calculate internal heat stress 

levels for current and future climates. 
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6 Analysing indoor heat stress for current and future 
climates 

 

6.1 CFD and building modelling 

 
As expedient as bulk building models are, such as those described at the 

beginning of chapter 4, the question of what happens locally within the indoor 

space, and particularly what heat stresses are occurring on a human body, 

cannot be answered using this bulk model approach. In order to understand 

the heat stresses on a human body, it is necessary to look inside the indoor 

space. A technique that gives a finer analysis is computation fluid dynamics 

(CFD), which offers a detailed view of all the above parameters within the 

space itself. Using CFD provides localised values for environmental 

parameters for a fuller picture of the heat stress index, provided the input data 

is of sufficient quality.  The human bodily thermal sensation is affected by a 

combination of environmental variables, which contribute to an equivalent 

temperature that people feel, and all need accounting for to fully represent 

thermal effects on the human body. The UTCI specifically accounts for air 

temperature, humidity, solar radiation and air flow (or wind), providing a 

complete human heat stress metric in degrees centigrade [56], [61]. The main 

difference between the UTCI and indices such as PMV is that PMV is a non-

thermal index with discrete outputs that gives a subjective comfort value 

rather than a continuous linear temperature value, and PMV deals particularly 

with comfort rather than heat stress. The advantage of using PMV is that it is 

possible to factor human activity within the building to assess comfort, giving a 
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contextual parameter to building use (for instance, if the building were a gym 

or a manual labour factory rather or an office, then clothing and metabolic 

activity would be quite different, and comfort levels would be different). In this 

thesis the focus is on finding the internal building response temperature to the 

external weather parameters using a finely graduated, continuous index rather 

than discrete value on a 7-point scale. The UTCI provides the response 

temperature in ˚C, and accounts for what the inhabitant is wearing based on 

wind speed [55].  

 

It is well understood that localised internal environmental parameters affect 

how the human body feels thermally, yet it is common practice for thermal 

comfort assessments in the design of habitable spaces to use bulk models for 

determining overheating levels in indoor environments. This is mainly borne of 

the need to simplify construction design processes, since fluid flow and heat 

transfer modelling (CFD) can be a lengthy and expensive exercise, and a 

simple bulk analysis for building zones can give a reasonable thermal account 

of an indoor space. Yet CFD simulations can provide the kind of localised 

detail that enables more accurate thermal comfort assessments by outputting 

a full description of the localised internal conditions. In the building design 

industry this will become more important as the climate changes and the 

requirement to engineer adaptable buildings gathers momentum, whilst in the 

automotive and aviation industry it is arguably an immediate interest, given 

that in such internal environments thermal comfort can be more controlled 

[139], [140]. The following sections contain a background of CFD and its use 

in buildings.  
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6.1.1 Fundamentals of CFD 

The basis for all computational fluid dynamics is the set of Navier-Stokes 

equations for describing the flow of a viscous fluid, which represent the 

conservation of mass and momentum in the fluid. For a compressible fluid, 

the law of conservation of mass can be expressed in the form of the mass 

continuity equation Equation	6-1: 

 

𝜕𝜌
𝜕𝑡 + 𝛻. 𝜌𝒖 = 0 

Equation 6-1 

 

If the fluid is incompressible, i.e. the density 𝜌 is constant, then this can be 

simplified as Equation	6-2: 

 

𝛻. 𝒖 = 0 

Equation 6-2 

 

The conservation of momentum represents the application of Newton’s 

second law of motion to a fluid including viscous and pressure terms and can 

be written as Equation	6-3: 

 

𝜌
𝐷𝑢8
𝐷𝑡 = −𝛻𝑝 + 𝜌𝒈 + 𝜇𝛻H𝒖  

Equation 6-3 
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The conservation of energy equation represents the application of the first law 

of thermodynamics. The conservation of energy in relation to fluid dynamics 

can be described as such: the rate of change of energy inside the fluid 

element is equal to the net flux of energy into the element plus the rate of 

work done on the element due to body and surface forces.  

 

𝜌
𝐷𝑒
𝐷𝑡 = 𝜌

𝜕𝑒
𝜕𝑡 + 𝜌∇ ∙ 𝑒𝑽 	

Equation 6-4 

 

6.1.2 Background to the habitable environment 

In order to drive a building design software package it is necessary to provide 

a reference weather file such as the TRY or DSY containing weather 

parameter values. It is also necessary to provide a building design, typically 

as a CAD file. These elements are sufficient for providing surface 

temperatures that can be used as input boundary conditions to model heat 

and fluid flow inside a building, using a CFD software package. This can and 

has been used to analyse the internal environment for specific boundary 

conditions [104], [141]–[143].  

 

6.1.3 Considerations for using CFD in building design 

Buildings are difficult to design because they have so many parameters and 

variables. For instance resizing a window can make the difference between a 

building passing a thermal comfort test or not passing. If the analysis is done 

with CFD, then adjusting parameters slightly in a design tweak can end up 
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costing a designer weeks in computer time to re-run the CFD a task. It would 

be better to create an emulator model that could simulate the results of a CFD 

run. To do this requires many actual CFD runs in order to create the emulator 

in the first place, so it is not without its difficulty, however when the emulator is 

created, it is then possible to emulate CFD outputs within seconds for that 

building, rather than weeks of running another CFD a simulation. In this thesis 

a surrogate model is created to emulate the CFD outputs for thermal comfort 

in a standard office room. Variables were chosen for temperature at the 

boundary conditions, air speed flux in and humidity. I show that it is possible 

to get within 1% of the actual CFD result using the emulator, and suggest that 

this method in its current form could be applied to large building projects that 

warrant the time spent creating the emulator in the first place, but that lessons 

could be learnt in creating faster CFD training sets for next generation 

emulators in the future. 

 

6.1.4 Turbulence and buoyancy 

For CFD simulation of built environment cases there are two further issues to 

be considered; the presence of turbulence, and the modelling of thermal 

buoyancy. Thermal flows are partly (or sometimes, wholly) driven by 

buoyancy effects caused by differences in density related to temperature 

differences in disparate parts of the flow. For large contrasts in temperature, 

the effects of variable density have to be considered directly through the use 

of a compressible solver; for lower temperature differences, as here, 

buoyancy can be simulated through the commonly-used Boussinesq 

approach, in which the air is considered incompressible but a temperature-
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dependent body force included in the momentum equation to force the 

convection. Turbulence is a complex state of fluid flow characterised by 

random motions over a range of length scales. For buoyancy-driven flow in a 

room as considered here, typical Reynolds numbers for the flow are in the 

range ≳ 1×10~ and therefore the presence of turbulence has to be accounted 

for [143]. Including turbulence modelling in the simulations for this thesis 

means that the Navier-Stokes equations for velocity and pressure in fluid flow 

have to be treated as having both mean and fluctuating parts to the flow; what 

this entails after averaging the equations is the inclusion of a Reynolds stress 

term for the fluctuating flow and a Reynolds-averaged Navier Stokes (RANS) 

equation to govern the mean flow. However, the Reynolds stress term, which 

can be likened to stresses in other materials, deals with the viscosity and 

density of the fluid and cannot be reconciled with the RANS equations for 

velocity and pressure. To solve this, Boussinesq introduced the idea of eddy 

viscosity, which he proposed could relate the turbulence stress to the mean 

flow velocity. By including an eddy viscosity term, the equations for mean flow 

and turbulent flow could be solved.  The eddy viscosity model (EVM) is shown 

in Equation	6-5. 

 

−𝑣�o𝑣�o = 𝑣9
𝜕𝑣�
𝜕𝑥�

+
𝜕𝑣�
𝜕𝑥�

−
2
3
𝜕𝑣�
𝜕𝑥�

𝜕8� −
2
3𝐾𝜕8� 

Equation 6-5 

 

As a basic user of OpenFOAM, and since turbulence modelling often uses the 

RANS approach for the reasons given above and in other literature [144], I 

have used the RANS model and the standard 𝑘𝜖 model, also following 
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common practice [144]. The 𝑘𝜖 model represents the effects of the turbulence 

by solving for two statistical parameters, the turbulent kinetic energy 𝑘 and 

dissipation 𝜖. More advanced models are not necessary for built environment 

cases since the time scales over which steady state solutions are achieved 

are relatively long in comparison to the turbulence time scales. The transport 

equations for these variables are shown in Equation	6-6 and Equation	6-7. 

 

 

𝜕
𝜕𝑡 𝜌𝑘 +

𝜕
𝜕𝑥8

𝜌𝑘𝑢8 =
𝜕
𝜕𝑥�

𝜇 +
𝜇9
𝜎�

𝜕𝑘
𝜕𝑥�

+ 𝑃� + 𝑃B − 𝜌𝜖 − 𝑌� + 𝑆� 

Equation 6-6 

 

𝜕
𝜕𝑡 𝜌𝜖 +

𝜕
𝜕𝑥8

𝜌𝜖𝑢8 =
𝜕
𝜕𝑥�

𝜇 +
𝜇9
𝜎�

𝜕𝜖
𝜕𝑥�

+ 𝐶5�
𝜖
𝑘 𝑃� + 𝐶��𝑃B − 𝐶H�𝜌

𝜖H

𝑘 + 𝑆� 

Equation 6-7 

 

Aside from the constants, the key terms are turbulent viscosity 𝜇9 and the 

buoyancy term 𝑃B, which itself is governed by the Prandtl number and the 

coefficient of thermal expansion. 

 

In 3D building modelling CFD studies generally use the finite volume method 

(FVM) for heat transfer and fluid flow calculations, in which the integral form of 

the governing equations is used (Equation	6-8). 

 

𝛿
𝛿𝑡 𝑄 𝑑𝑉 + 𝐹 𝑑𝐴 = 0 

Equation 6-8 
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Where 𝑄 is the vector of conserved variables, 𝐹 is the vector of fluxes, 𝑉 is 

the volume of the control volume element, and 𝐴 is the surface area of the 

control volume element. Integral equations can be formulated of all the 

governing equations (continuity, momentum and the turbulence model 

equations) by integration over the volume of a single small volume of space 

referred to as a control volume or cell, providing a difference equation relating 

the change in the dependent variables in the cell to the fluxes across the cell 

boundary. Dividing the whole space of interest into N non-overlapping cells 

(forming a mesh) creates a set of N simultaneous equations which can then 

be solved through matrix inversion to advance the solution through one 

computational step. 

 

6.1.5 Surrogate modelling 

Running a CFD analysis for every design iteration is far too computationally 

costly even for a single set of weather conditions, let alone for dynamic 

combinations of weather parameters and building surface temperatures. The 

objective of the current work is to demonstrate the construction of a simplified 

‘surrogate' model from a limited number of CFD calculations which can then 

be used to explore the internal environment for a wide range of possible 

boundary conditions. 

 

Surrogate modelling, or emulation, has generally been driven by a need for 

expediency in generating results for real-world applications. It is employed 

when an outcome of an experiment or another model is difficult to obtain or 
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process, and when large numbers of outcomes are required [145]. 

Computational surrogate modelling was primarily developed in the late 1990s, 

though the theory predates this, and generally surrogate model construction 

methods involve statistical regression. There are various techniques for doing 

this, though they broadly follow the same methodology, namely to take 

empirical data or results from another model, and to use that data as a set of 

fixed points with which to train a new model. This new surrogate model should 

be capable of emulating the output of the original model as closely as possible 

for any values of the initial parameters that were used to create the training 

data points.   

 

There are several techniques for creating surrogate models such as 

polynomial regression [146] Random Forest (RF) method [147], MARS [148], 

Support Vector Machines (SVMs) [149], Artificial Neural Networks (ANNs) 

[150] and Gaussian Process Emulation (GPE) methods [151]. The most 

frequently used, and best performing surrogate modelling technique is the 

Gaussian process emulator [145], [152], also called the Kriging model [153]. 

The Kriging process is widely used as it gives both a mean fit to the data 

being modelled together with an estimate of the expected variance for 

untested output combinations, and is relatively computationally cheap to 

construct [154], and for these reasons this GPE/Kriging method will used to 

create the surrogate model. This thesis seeks to overcome both the issues of 

full thermal comfort assessment and the computational cost barrier to using 

CFD for this purpose by implementing surrogate modelling at the building 

design stage. 
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6.2 Methods for simulating fluid flow in buildings 
 

6.2.1 Developing the CFD and surrogate modelling process 

The following section describes a method of creating a surrogate model to 

emulate full CFD simulations of thermal stress within a habitable space. By 

simulating heat and fluid transfer of the environmental parameters using 

Computational Fluid Dynamics, and creating a surrogate model that could 

emulate the results of these CFD simulations, a rapid human heat stress 

analysis can be provided for any given environment. In the end, the surrogate 

model should be able to emulate the internal heat stress within the building 

and therefore be capable of utilising standard building design software output 

values for any weather (current and future) and for any location and rapidly 

return the heat stress results of a steady state fluid flow and heat transfer 

simulation. In essence the surrogate model is being trained to return, as 

accurately as possible, the same results of a single output from a CFD 

simulation. To carry out this work the following ten-step process was used: 

 

1. Create the building model 

2. Set up the CFD code and solver 

3. Mesh the building model ready for CFD application 

4. Create the boundary conditions for the model using building software  

5. Run a separate CFD case for each of the boundary conditions 

6. Process the CFD output and return the value needed for the emulator 

7. Create the surrogate model and refine it 
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8. Validate the emulated model 

9. Use parameters from future weather files to create surface conditions for 

the building in this thesis, using building design software 

10. Use the surrogate model to translate the building surface conditions and 

external weather parameters to an internal equivalent temperature for 

human heat stress 

 

6.2.2 Creating the building model 

The building design (Figure	6-1) is a simple box room measuring 5x5𝑚 (width 

and depth) by 2.5m in height. It has one window centrally split with a bottom-

up sliding design, like as a sash window, measuring 2m wide by 1m in height, 

allowing for the simulation of solar radiative effects. The room is simulated 

with direct sunlight, dampened by the glass in the window, incident on the 

floor. The elevated temperature caused by this solar thermal gain is averaged 

evenly over all the cells on the surface to provide a boundary condition, 

driving buoyant flow. The spatial variation is only accounted for in the 

temperature boundary condition of the floor and the building is modelled as 

though solar radiation is solely incident on the floor surface. Further work 

would include a solar ray path for radiant energy, dynamically changing the 

cell boundary conditions for the room surfaces, depending on where the rays 

intersect the walls, then solve with respect to the movement of the sun.  The 

air inlet is 0.1m in height and the full width of the 2m window and is located at 

the bottom of the window – this models a slightly ajar window, as would be 

typical of window use in a naturally ventilated building. The air outlet is located 

at the top of the window, with the same dimensions as the inlet, and this 
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would be typically found in a vented window design. Airflow is driven by 

external wind conditions. This simple building does not contain any furniture, 

other objects or contents that contribute to internal heat gains. This building 

could of course be adapted to include furniture, doors or other elements, but 

in this case the geometry simple for expediency. The building was created 

using the open-sourced CAD programme OpenSCAD and exported as a 

Stereoscopic Lithography (STL) file for meshing. The mesh was created using 

the snappyHexMesh tool found within the OpenFOAM library.  

 

 

Figure 6-1: OpenSCAD graphic of building model, showing window inlet and outlet 

 

6.2.3 Setting up the CFD model 

The open-source CFD package OpenFOAM v2.1 was used to conduct the 

CFD simulations as it is freely available and its code can be adapted to create 

new solvers and parameters. Air flow and heat transfer in this habitable space 

is buoyancy driven, and the adapted CFD solver used here is based on the 
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buoyantBoussinesqSimpleFoam solver found in the OpenFOAM library, which 

uses the Boussinesq approximation for solving buoyancy driven flow. The 

pressure-linked Simple algorithm is used in this thesis since our CFD cases 

are steady-state. The pressure gradients in the CFD cases are relatively 

small, and so turbulence is solved using the 𝑘𝜖 model. 

 

Turbulence modelling was needed based on assessment of the average 

Reynolds number. For the naturally ventilated habitable space considered in 

this thesis average air inlet velocity is 1 to 5 𝑚𝑠45, the window has a length 

scale of 2𝑚 and the room has a length scale of 5𝑚, resulting in an estimated 

Reynolds number of between 1×10� and 1×10�. In this case ℜ ≳ 1×10~ 

indicated a turbulent flow regime, and the standard 𝑘𝜖 turbulence model was 

selected. The solver itself was not altered and its capabilities remain the same 

as the original, however it was extended to include weather parameters and 

the calculated UTCI heat stress parameter using functionObjects, UTCIEqn 

and makeUTCI files to link the UTCI function with the solver. As an index the 

UTCI has been shown to be an accurate measure of a person’s physiological 

thermal sensation, and represents an appropriate way of gauging thermal 

comfort [57].  

 

The adapted solver was validated by applying it to a known CFD case 

involving heat transfer and ventilation in an office room and comparing results 

[155]. The Loomans study was an investigation into using CFD to model 

ventilation based on laboratory collected data. The Loomans room case was 

recreated and the same boundary conditions were applied so that the adapted 
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solver could be tested. The results of this test indicated an airflow profile 

matching Loomans’ original simulations, whilst better taking account the 

experimental data, especially in the room height region of 1 to 2m, which was 

to be expected given advancements in CFD over the intervening years 

(Figure	6-2). This validation confirmed the applicability and accuracy of our 

solver. 

 

 

 

Figure 6-2: Airflow profile from the middle of the original Loomans building case. 
KEY: black line represents results from this thesis; grey line represents Loomans’ 
simulated results; dashed line represents Loomans’ experimental data. 
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6.2.4 Constructing the geometry mesh 

The building was meshed using 3 mesh sizes to find the most appropriate 

number of cells. Meshes with 1 million, 2.5 million and 5 million cells were 

created using the blockMesh utility in OpenFOAM and combining these with 

the STL files for the window vents created in OpenSCAD. The block mesh 

and STL window files were combined into single meshes using the 

snappyHexMesh tool, also available in the OpenFOAM release. The mesh 

with 1 million cells contained areas around the window vents with high non-

orthogonality, whilst this was not the case with the higher resolution meshes. 

The 5 million cell mesh and the 2.5 million cell mesh gave broadly similar 

results and so the 2.5 million cell mesh was chosen for its shorter run times 

and faster convergence.  

 

6.2.5 Setting boundary conditions for the CFD cases 

In total five parameters with value ranges were chosen from outputs of a 

typical building model application, including humidity, air speed (wind), air 

temperature and internal building surface temperatures (Table	 6-1). These 

parameters would provide the boundary conditions for the CFD model. A 

more detailed model would treat each surface temperature as a separate 

parameter, however the building model was simplified in this thesis by treating 

the floor as the surface receiving full incident solar radiation, and ignoring 

diffuse solar radiation that may affect other surfaces. This simplification was 

done to avoid excessive numbers of variables, which would in turn require a 

much larger number of CFD simulations for constructing an emulated model, 

and would affect the quality of the emulator. Once the parameters were 



 148 

chosen, the range of values for each variable were selected based on the 

validity conditions specified by the UTCI code documentation. This ensured 

that the UTCI temperature calculations in the CFD simulations would be valid. 

The temperature range was chosen so that building’s thermal response could 

potentially be tested in cold weather, since the UTCI metric can accommodate 

both heat and cold stress testing. The air speed is the external wind speed 

which is arriving perpendicular to the window. The window is modelled as 

slightly ajar to allow for an airflow at the inlet, and so the air speed through the 

inlet in the window is equivalent (at the boundary) to the external wind speed. 

At the outlet the air speed boundary condition was initialized at 0 𝑚𝑠45, which 

not the case in reality, but is acceptable for buoyancy driven simulations. 

Ensuring better emulator accuracy could have been achieved by selecting 

narrower value ranges for each parameter, however the ranges must 

accommodate all possible hitherto unknown weather variable combinations 

for the future, so the humidity range could have been bounded at 10% to 

90%, but that range would expose the model to the possibility of crashing if 

any weather parameter value outside that range was input. I deemed the 

potential slight gains to be had were not worth the risk of a limited model.   

 

 

Table 6-1: Weather parameters and value ranges for input into the CFD building 
model 

Variable Range 

 External air temperature -12˚C to 58˚C 

Wall temperature -12˚C to 58˚C 
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Floor temperature -12˚C to 58˚C 

Air speed (wind) 0-5 𝑚𝑠45 

Humidity 0-100% 

 

 

The emulator requires ten outputs per variable for an accurate model to be 

constructed. With five parameters, a total of at least 50 CFD runs with 

different boundary conditions are required in order to gain 50 outputs. 

Selecting the 50 different sets of boundary conditions was performed using a 

Latin-Hypercube sampling technique, which ensures well-spaced parameter 

selection. By using a sample of boundary conditions taken from various 

weather conditions and running these as separate CFD cases on the same 

building model, the average internal heat stress temperature for the building 

for a wide range of weather conditions could be found. This was achieved by 

taking the cell-weighted average value over all cells in the mesh. 

 

6.2.6 Running the CFD building model cases 

Once the boundary conditions were generated and the desired output chosen, 

this information was used to create and run the CFD cases and solved using 

the custom buoyancy solver. The calculations were performed on a linux-

based 64 core machine with and 128GB RAM, and with each of the 'fat' nodes 

running on quad Intel Xeon E5-4620 processors. 1 core was utilised per CFD 

case, thus each of the cases were run simultaneously. CFD simulations are 

solved iteratively and the solution is achieved once the value of the solution 

has converged to within a defined variance from the previous iteration: the 
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convergence criteria. The convergence criteria for the cases were set to 

1×104~ and each individual CFD simulation took between 300-800 hours to 

converge.  

 

A graphic of the air velocity glyphs and temperature ranges from one of the 

CFD runs is shown in Figure	6-3. Glyphs simply represent vectors, but are 

represented visually by size according to the magnitude of the vector (i.e. a 

visually large glyph for air velocity would have a larger velocity than a visually 

small glyph) It is possible to see the inlet airflow and outlet vent, as well as 

some of the flow characteristics toward the back of the building. 

 

 



 151 

 

Figure 6-3: Airflow and UTCI temperature distribution within the building model 

 

 

6.3 Creating the surrogate model 
 

6.3.1 The need for surrogate modelling 

Buildings are difficult to design because they have so many parameters and 

variables. For instance resizing a window can make the difference between a 

building passing a thermal comfort test or not passing. If the analysis is done 

with CFD, then adjusting parameters slightly in a design tweak can end up 

costing a designer weeks in computer time to re-run the CFD task. It is 

therefore sensible to create a surrogate model to emulate CFD results. Once 

the surrogate model is created it is possible to emulate CFD outputs for that 

building within seconds. In this model the reference building is a single 
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geometry and the weather parameters make up the input variables. An 

extension of the thesis would be to model the input weather conditions on 

multiple building geometries, which would include variable window sizing. 

 

6.3.2 Design of experiments 

Selecting an appropriate output from the CFD results to use in the surrogate 

model construction process requires careful consideration. The construction 

process requires a well-distributed range of input values and it is therefore 

important that the input space is sampled as efficiently as possible. 

 

The most common method for creating the training set is to use a maxi-min 

Latin Hypercube. It has been shown though previous research that the size of 

the training set should be 10𝑑, where 𝑑 is the number of input parameters 

[156]. Since the CFD model in this thesis has 5 parameter inputs, the R 

package lhs (Latin Hypercube Sampling package) was used to generate 50 

input samples, D [157]. The CFD model was then executed for each of the 

scenarios in D to determine f(D) and used this data to create the emulator. 

Gaussian Process Emulators provide an estimation of the simulator output 

𝑓 𝑥  for a given function, 𝑓 𝑥  (Equation	6-9) such that: 

 

𝑓 𝑥 = 𝑁 𝑚 𝑥 , 𝜎H𝑐 𝑥, 𝑥  

Equation 6-9 

 

Where 𝑚 𝑥  is the mean of x and 𝜎H𝑐 𝑥, 𝑥  is the covariance of x Modelling 

the output of the simulator in this way is useful because, for each of the 
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unknown output (i.e. 𝑓 𝑥 𝑥 ∉ 𝑫 ), the emulator provides a mean and 

variance for its predictions from the functions 𝑚 𝑥  and 𝜎H𝑐 𝑥, 𝑥  respectively. 

For points where 𝑥 ∈ 𝑫, the covariance function 𝑐 𝑥, 𝑥 = 0 and 𝑚 𝑥 = 𝑓(x) 

and therefore 𝑓 𝑫 = 𝑓 𝑫 ).  

 

The accuracy of the emulator outputs increases rapidly with only a few 

additional training points, and as a rule of thumb, an accurate emulator 

requires at least ten data points per parameter emulated. The emulators make 

estimations of smoothness of the curve. For multidimensional emulators, the 

smoothness is estimated by determining the ‘most-likely’ smoothness in each 

dimension. This estimation of smoothness is based on the data provided by 

the training points and is the most computationally expensive task involved in 

creating the emulator [158]–[160]. 

 

6.3.3 Defining the output of the simulations 

Several outputs from the CFD simulation results were assessed for their 

suitability to create a working surrogate model. A discrete output was 

attempted by taking the ‘percentage of cells within the building whose UTCI 

value exceeded a given threshold temperature’ as an output. This resulted in 

a range of output values that did not follow a well-distributed continuous 

pattern and consequently produced a poor emulator. This can be seen in 

Figure	 6-4 where a significant number of outputs had zero values because 

the respective CFD simulations, with particular combinations of variables, 

produced no cells with UTCI temperatures that exceeded the threshold 

temperature. An effective surrogate model could not be produced from such a 
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range of outputs. The output which gave a good distribution of continuous 

values was defined as the average UTCI temperature value taken over the 

whole cell array. This output provided a continuous range of values 

appropriate for constructing a surrogate model.  

 

 

Figure 6-4: Distribution of discrete and continuous input values 

 

 

6.3.4 Kriging 

The surrogate model was created using the km function in DiceKriging [161] 

and RStudio [162]. The emulator uses the exponential structure for the 

correlation function (Equation	6-10): 

 

𝑐 𝑥, 𝑥’ = 𝑒
4t
�  

Equation 6-10 
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where ℎ = 𝑥 − 𝑥′  and θ is the range parameter which controls the 

smoothness of the output in each of the 𝑑 input dimensions. A linear trend 

was used for the mean function. 

 

6.3.5 Validating the surrogate model 

The surrogate model was cross-validated using the ‘leave one out’ principle 

[163]. Since there were 50 CFD cases, the first validation emulator was 

created using the results from cases 1:49 and validated against case 50. The 

second emulator was created using the results from cases 1:48 and case 50, 

then validated against the result of case 49, and so on… This method of 

validation is widely used in emulation research work and is a fast and effective 

technique. It also has the benefit of providing a full class of separate validation 

results. The results of this validation technique can be seen in Figure	 6-5, 

which shows that all but two of the 50 emulated solutions resided within 95% 

confidence bands for each of the corresponding CFD simulations.  
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Figure 6-5: Cross-validation of the surrogate model using the ‘leave one out’ 
principle 

 

 

6.3.6 Running the building design software 

Typical reference weather files from current climates in three UK cities: 

London, Birmingham and Plymouth were selected for input into building 

design software to calculate surface temperatures, to use with the surrogate 

model for emulating the internal UTCI heat stress values. The building design 

software used is EnergyPlus, which is a well-used and long established open-

source building energy package developed by the American government. The 

open-source package OpenStudio, used in conjunction with SketchUp was 

utilised in this thesis to run the building model for use in EnergyPlus, 

delivering output variables for humidity, wind speed and surface temperatures 

for each calendar day.  
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In an actual dynamic thermal model, windows would open and close more in 

response to changing internal conditions. For example, designing a 

rectangular window in EnergyPlus that is 1m2 in area, with a 1ms-1 air speed 

gives a vent rate of 1m3s-1. A half open window of that size results in a vent 

rate is 0.5m3s-1, whilst the inlet air speed remains at 1ms-1. It is not possible to 

account for this in CFD without dynamically changing the geometry during the 

simulation, which could be done using a dynamic mesh. However, this would 

still require coupling the dynamic mesh around the window with a threshold 

cell value to trigger a change in mesh geometry. In this simple buoyancy 

simulation for a reference building, the risk of destabilizing the convergence of 

the CFD simulations would have been high, resulting in failed solutions. The 

aim of this thesis was to construct an emulator that could test a single building 

geometry’s response to any possible type of weather we might encounter in 

the future, not necessarily to model human behaviour that would include 

opening and closing windows. EnergyPlus was used to supply the boundary 

conditions for the building for the CFD runs, which required keeping the 

EnergyPlus building model static, and to the same specifications as the CFD 

mesh. 

 

6.3.7 Analysing future internal heat stress 

The EnergyPlus output values were input to the emulator, which produced an 

internal UTCI heat stress temperature value for each day. This process was 

then repeated using future reference weather data, morphed using the high 

emissions scenario [73], and results for the internal environment were 

generated from the surrogate model for three UK locations. Results for 
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Birmingham are shown in Figure	6-6, results for London are shown in Figure	

6-7 and results for Plymouth are shown in Figure	6-8. 

 

 

Figure 6-6: Daily UTCI temperatures within the building model for Birmingham in 
2010 compared with UTCI temperatures generated using the surrogate model for 
2080s using 
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Figure 6-7: Daily UTCI temperatures within the building model for London in 2010 
compared with UTCI temperatures generated using the surrogate model for 2080s 

 

 

Figure 6-8: Daily UTCI temperatures within the building model for Plymouth in 2010 
compared with UTCI temperatures generated using the surrogate model for 2080s 
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These plots reveal for the UTCI temperature of the internal environment of a 

building in probabilistic future weather based on climate change projections. 

The findings are significant, for they show a number of interesting features, 

which are broadly coherent across all locations. First that by 2080 it is 

possible that far more spikes in indoor UTCI temperatures will occur 

throughout the year than at present. Second that for several months in the 

summer, sustained high UTCI temperatures representing ‘strong or very 

strong heat stress’ (>26˚C) compared to today are possible. Third, that there 

is an underlying increase of mean UTCI temperatures of 4.2˚C in Birmingham, 

3.8˚C in London and 4.4˚C in Plymouth.  

 

The methods and results presented in this thesis show that it is possible to 

generate an accurate, working surrogate model to use in place of on-going 

CFD calculations performed to explore the outcomes of varying the input 

boundary conditions on a given geometry. Using the methodology outlined 

here it was possible to take outputs from CFD calculations on a building 

model and successfully produce a surrogate model, giving the ability to 

emulate heat stress results for analysing the effect of future weather on a 

habitable space. The emulator swiftly processed an entire calendar year’s 

worth of input parameters and analysis was conducted on the heat stress 

within the building. 
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6.3.8 Comparing the Emulator and EnergyPlus 

One criticism of the above process is that it may be possible to simply 

estimate the UTCI temperature from EnergyPlus. This can be done by taking 

output values from an EnergyPlus simulation and an assumed low air speed 

(one can make the assumption that the air speed is a low constant in the 

room, set to 0.15ms-1). If the values were only marginally different, then it may 

demonstrate that using the DSM could give similar results for less effort. 

However, comparing the EnergyPlus outputs to the CFD emulator outputs 

reveals a difference between the values, as shown in the three regional plots 

Figure	 6-9, Figure	 6-10, Figure	 6-11. This indicates that it is indeed worth 

going through the CFD and emulator process.	

 

	

Figure 6-9: Daily UTCI temperatures generated by EnergyPlus are compared with 
UTCI temperatures generated using the surrogate model for Birmingham for 2080s 
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Figure 6-10: Daily UTCI temperatures generated by EnergyPlus are compared with 
UTCI temperatures generated using the surrogate model for London for 2080s 

 

	

Figure 6-11: Daily UTCI temperatures generated by EnergyPlus are compared with 
UTCI temperatures generated using the surrogate model for Plymouth for 2080s 
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6.4 Surrogate model considerations 
 

6.4.1 Further development of the surrogate model 

At present the model is restricted to the specified geometry, and whilst setting 

up and running a spread of models with different boundary conditions is 

relatively straightforward (if time-consuming), introducing geometric design 

parameters into the mix would make the process significantly more 

complicated. The surrogate model creation process requires a significant 

number of CFD runs to be carried out in order to produce the output values to 

train the emulator. Once created, the model is independent of the mesh but 

valid for that geometry alone. Full CFD simulations could be undertaken for 

case specific parameters, and a surrogate model could be created to emulate 

CFD results, when it is desirable to have a model for a specific building which 

can be investigated for a range of climatic parameters. To take full advantage 

of surrogate modelling, the generation process could be automated or 

generalised to cover particular variations in the building. Once the emulation 

process is automated, then full outputs from the CFD simulations could be 

inputted into the emulator. By doing this, it could then be possible to extract 

spatial information from the CFD data. For instance, single cell-averaged 

UTCI values for multiple localised regions within the space could each be 

inputted and processed by separate emulators, resulting in a spread of UTCI 

values within the space. 5 points per room dimension would give 5x5x5 = 125 

equally spaced temperature values per room, which would allow surface 

plotting and richer analysis of the temperature differences or ‘hot spots’. This 
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would certainly mark an advancement of the surrogate model process, and 

indeed give even more justification for utilising CFD in thermal building 

analysis. 

 

6.4.2 Considerations for surrogate modelling in building design 

Perhaps one of the most appropriate uses for surrogate modelling of internal 

heat stress is in the design of habitable spaces that have relatively fixed 

geometries. This would include specific structures such as offices, public 

spaces such as concert halls or shopping malls, where the initial setup could 

be justified. Other applications could include HVAC applications in the 

automotive and aerospace sectors. For instance the number of different 

aeroplane geometries is relatively low, and the internal cabin geometry of 

most vehicles does not vary greatly. If a surrogate model of internal heat 

stress could be produced for these cases, with perhaps the number of 

occupants being a given parameter, then this would serve a useful tool for 

internal thermal comfort. This thesis has shown that if a case warrants the 

time and resources spending on it, it is possible to explore a full range of 

climatic parameters and their effect on the internal environment at the design 

stage. 

 

A surrogate model is not able to achieve full accuracy and the trade-off for 

expediency is adding another step to the modelling process and a degree of 

inaccuracy. CFD run times of thermal heat stress calculations in the building 

model took hundreds of hours to converge to a solution, whereas the 

surrogate model, once created, took just seconds. Whether the time-
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consuming surrogate creation set-up is worth it depends on how essential it is 

to explore the outcomes of the various input parameter combinations. For a 

high-cost habitable space it may be the case that engineers would want to 

check all potential overheating outcomes before embarking on construction of 

a potentially flawed design, and deem the surrogate generation expense 

worthwhile given the model’s ability to explore the entire parameter space. 

Arguably the technique is worth the trade-off, especially since accuracy can 

be maintained at >90%. 

 

 

6.5 Chapter summary 
 
This concludes the chapter on localised internal heat stress. A method was 

developed using CFD to simulate heat transfer and fluid flow inside a building 

in a variety of weather conditions. A surrogate model was developed to 

emulate internal heat stress results from the CFD simulations, so that any 

combination of the environmental parameters could be rapidly assessed for 

thermal impact on the internal conditions. With a successfully created 

surrogate model, future weather conditions could be passed through a 

building model and thermal testing could be applied to analyse the predicted 

internal heat stress, based on climate projections.    
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7 Summary 
 

All of physics is either impossible or trivial.  

It is impossible until you understand it,  

and then it becomes trivial. 

Ernest Rutherford  

 

7.1 Conclusions  
 

Heat wave conditions in the UK are currently described as two days of 

maximum daily air temperatures exceeding 30-32˚C, with a minimum 

intervening night-time temperature. If these hot weather conditions are met, 

then public health warnings are issued. I have found a more accurate metric 

to predict health risks in hot weather is the Universal Thermal Climate Index 

(UTCI>97.5th percentile) (see Figure	4-10). If the maximum UTCI temperature 

exceeds the 97.5th percentile on a given hot day, there is a strong correlation 

with significant excess deaths on the following day. This one-day time lag 

between high temperatures and high mortality rates was also found in Figure	

4-5, Figure	 4-6 and Figure	 4-7, backed up by other studies, suggesting a 

need to reconsider how heat waves are defined, and whether individual hot 

days suffice for triggering health risk warnings. 

 

The move away from air temperature toward UTCI temperature would be 

significant, but makes sense. In hot weather conditions, with low airflow, 

strong solar radiative temperature and a humidity component, the equivalent 
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temperature the human body feels is approximately 2˚C warmer than the air 

temperature. The fact that we feel warmer in such conditions than the 

temperature on a dry bulb thermometer may explain why results indicate 

significant excess deaths are occurring at 2˚C below the Met Office heat wave 

thresholds. The greatest risk of using UTCI to issue public health warnings is 

that the additional weather parameters, such as air speed and solar radiative 

temperature, would need to be closely aligned to the forecast location. At 

present this is not possible, due to the lack of sites where these parameters 

are measured. However, it may be possible in the future to deduce values for 

some of these parameters using satellite data. For instance, technical 

researchers at the Met Office, with whom I have met, have verbally confirmed 

that they are attempting to gain solar radiative data this way, for the purpose 

of improving the current heat wave warning process.  

 

It has also become evident in this thesis that since people spend the majority 

of time indoors, the quality of the indoor environment is fundamental to human 

health. The internal environment is directly linked to the outdoor weather 

conditions, and the UTCI metric can be used reliably for setting peak 

threshold limits indoors, since it better represents the equivalent temperature 

that the human body feels given environmental weather parameters. The 

reference building used in the process is designed to be a room measuring 

5x5m with a single, slightly ajar window. This is similar in many respects to a 

main room in a city apartment, and this is the type of building that many 

people who became heat stress victims in the European 2003 heat wave 

inhabited. UTCI temperatures could potentially be higher in a real building 
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scenario, and so the reference building, which provides a proof of concept for 

this UTCI peak threshold work, certainly needs adapting for application in 

actual building scenarios. For instance, ventilation modelling would need to be 

included, since if the ventilation rates are lower, for instance in an apartment 

where windows cannot be opened, UTCI temperatures would probably be 

higher. New peak temperature thresholds have been established for the built 

environment, but this thesis suggests that if air temperature is retained as the 

main building overheating metric in criterion 3 of CIBSE TM52 ∆𝑇	should be 

no greater than 3˚C. This means that the temperature difference between the 

indoor operative temperature and the maximum temperature threshold for 

thermal comfort should be revised down. This is not altogether surprising; 

given that we have seen throughout the findings in this thesis that threshold 

temperatures for health are consistently higher than they ought to be. 

Consequently, this finding adds weight to the argument for using the UTCI 

metric to test for overheating in buildings.  

 

The current method of modelling thermal performance in the building design 

industry, using software packages such as IES and EnergyPlus, with current 

DSY reference weather data and treating indoor conditions with bulk 

parameters is inaccurate. To address these issues, first; new DSY reference 

weather data has been developed using the probabilistic return period 

methodology, and now includes a suite of reference weather data that can be 

used to test for heat stress using new UTCI-DSYs in near extreme and 

extreme weather conditions and in future climates. Second; CFD simulations 

of indoor heat stress have been calculated for a simple building model, and a 
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surrogate model has been created to rapidly test for indoor heat stress in any 

weather conditions, current and future. The findings in this thesis show that in 

the future we could possibly expect more spikes in indoor UTCI temperatures 

throughout the year than we do at present, and that we could see several 

months of sustained high UTCI temperatures representing ‘strong or very 

strong heat stress’ (>26˚C) compared to today. The challenge for the building 

industry is whether engineers can adapt designs for new buildings with these 

possible future internal conditions in mind. 

 

There is still clearly a great deal of research to do in the field of thermal 

comfort and heat stress, to aid the development of building design. Buildings 

can last for centuries, and designing them to keep us healthy and comfortable 

for future climates, together with a common will to neutralise carbon 

emissions, must surely be one of the most fundamental challenges facing the 

building profession. As scientists, our role is to give building professionals the 

data, standards and tools to aid them in this task. 

 

7.2 Further work 
 

7.2.1 Distinctions between thermal comfort and heat stress 

There is a grey area between thermal comfort and heat stress that needs 

investigating to help define the health risks for the future, and a study should 

look at the differences in health effects between simulations using an adaptive 

heat balance equation, and heat stress models. The focus of this thesis was 

researching the threat to human health inside buildings in hot weather, and to 
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investigate the health effects in a changing climate. As a result, research was 

concentrated on heat stress and establishing peak temperature thresholds for 

buildings; however an area that would benefit from more extensive 

investigation is thermal comfort. Thermal comfort has partly been addressed 

in this thesis, namely in the background research and in the reformulated 

near-extreme DSYs in chapter 5, though it is evident that the building industry 

could incorporate adaptive thermal comfort models and allow user-

controllable boundary conditions, rather than using default input parameters in 

building modelling software. Further work might identify that overheating 

criteria may require greater emphasis on people’s adaptability to control their 

own thermal comfort. 

 

7.2.2 Health metric considerations for extreme weather 

In this thesis research has focussed on mortality as the primary health impact 

metric. Further work should also consider other health metrics such as heat 

related diseases to develop peak threshold temperatures. Another potentially 

useful metric would be a productivity-based measure. Productivity is already 

an important measure in the building industry, because the clients funding 

commercial constructions are property developers and employers will demand 

comfortable conditions for their staff and customers, so that productivity is not 

compromised. A recent study for instance indicated that productivity can fall 

by 3.6% for every 1˚C over 22˚C [164]. Further work could also be carried out 

on the effects of night-time temperatures on health, for these were not 

analysed in this thesis. The physiological effects of high temperatures on the 

human body at night are accentuated by a person's inability to actively adapt 
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whilst sleeping, and this should be investigated in particular. The other 

consideration especially relevant to night-time temperature is the 'Urban Heat 

Island' (UHI) effect, where energy stored in the thermal mass of concrete and 

building material during the day in a city centre is released overnight when 

there is a greater environmental temperature gradient, resulting in increased 

night time air temperatures. This effect may however not be an issue in this 

thesis, where the heat stress effects of single day extremes have been 

established and two-day events were not the focus. 

 

Another area that could be further investigated is the development of 

threshold metrics for other types of extreme events. In this thesis the research 

focus was directed toward extreme hot events, as the health impacts from hot 

weather were found to be the most severe in chapter 3. However, there is no 

reason why the method developed to analyse hot weather in chapter 5 could 

not be employed to create annual frequency forecasts of other weather 

events, such as floods, storms and cold events, and a suite of extreme 

weather definitions could be developed with corresponding peak threshold 

metrics, be they health-related or otherwise, to cover all risks.  

 

7.2.3 Developing the CFD and surrogate models 

The building model described in chapter 6 of this thesis is a simple one-room 

construction, with a single window and a small inlet and outlet for ventilation. 

This geometry was chosen for its simplicity, since its purpose was a proof of 

concept. For CFD modelling it is possible to create any required geometry, to 

add objects to the space and include dynamically coupled elements such as 
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human bodies with interactive thermo-regulatory properties; although due 

consideration must be paid to keeping the number of parameter variables to a 

manageable number for the surrogate model construction.  

 

In essence the method outlined in this thesis has a number of applications 

and further research could be undertaken to benefit from these techniques. 

Future development of this work could include creating surrogate models that 

emulate CFD simulations of thermal comfort in different building geometry 

types. It could also include applying the technique to thermal comfort analysis 

in the automotive and aviation industries. In vehicles and aircraft, geometric 

developments to the designs are fairly minimal and incremental, so CFD 

calculations could be focussed on performance parameters of a given mesh 

under external environmental conditions. Outputs from CFD models could 

then be passed through a surrogate modelling process and performance of 

the mesh could be rapidly tested against any number of environmental 

permutations. If this were achieved then simple software applications could be 

developed for design engineers in many industries to perform in-depth 

analysis on chosen parameter performance. Users could select a geometry 

from an application menu, along with the parameters they wish to test, as well 

as the desired output, such as heat stress as used in this thesis, air flow or 

particulate dispersion for example.   

 

7.2.4 Coupling human body models with indoor environments 

Further research could also extend the CFD and surrogate modelling methods 

to coupled models between human bodies and indoor environments. For 
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human health indoors it may be helpful to ascertain the heat distribution 

around a human being in a hot indoor environment, thereby simulating the 

heat stresses that a person could be exposed to. CFD can be employed to 

map out the thermal distribution in an indoor space and examine the localised 

physiological conditions that prompt peoples’ perceptions of discomfort, by 

looking at indoor conditions that limit the thermal impact on particular parts of 

the body. Results could then be simulated based on adaptive thermal comfort 

principles in naturally ventilated buildings, such as opening windows and 

removing layers of clothing, to show if it is possible for a person to adapt to 

internal conditions and remain thermally comfortable. The multi-node Fiala-

human model has already been coupled to an indoor space for CFD analysis 

[40], and the FORTRAN code and the CFD work performed using ANSYS 

Fluent could be translated for use in OpenFOAM and subsequent surrogate 

modelling. Such work could look at localised UTCI temperatures around the 

human body in particular, allowing the effects of heat stress around the body 

to be simulated in hot weather conditions, such as those considered in this 

thesis. This would also allow further analysis of localized discomfort. For 

instance, the UTCI value used as the primary metric in this thesis gives the 

heat stress equivalent for the cell-averaged internal environment, yet the 

output could be adapted from the CFD simulation results to focus on hot spots 

or temperature gradients, or if there are areas in the building where a person 

would be exposed to large differences in heat stress, which could lead to 

localized thermal discomfort. This research could be valuable in attaining a 

complete view of how overheating affects people’s health, since the American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 
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not only emphasises the need for general macro comfort conditions, but also 

that people should feel ‘no local discomfort at any part of the human body due 

to, for example, asymmetric thermal radiation, draughts, warm or cold floors, 

or vertical air temperature differences’ [21]. CFD would facilitate a detailed 

look at localised heat effects, needed to qualify ASHRAE’s local comfort 

criteria above, and to dynamically model heat stress parameters; something 

not currently possible in standard building software packages such as IES and 

EnergyPlus.  
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