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Abstract7

We employ laboratory methods to study the stability of competitive equilibrium in Scarf’s8

economy (International Economic Review, 1960). Tatonnement theory predicts that9

prices are globally unstable for this economy, i.e. unless prices start at the competitive10

equilibrium they oscillate without converging. Anderson et al. (Journal of Economic11

Theory, 2004) report that in laboratory double auction markets, prices in the Scarf econ-12

omy do indeed oscillate with no clear sign of convergence. We replicate their experiments13

and confirm that tatonnement theory predicts the direction of price changes remarkably14

well. Prices are globally unstable with adverse effects for the economy’s efficiency and15

the equitable distribution of the gains from trade.16

We also introduce a novel market mechanism where participants submit demand17

schedules and prices are computed using Smale’s global Newtonian dynamic (American18

Economic Review, 1976). If the submitted schedules are competitive - sets of quantities19

that maximize utility taking prices as given - the resulting outcome is the unique com-20

petitive equilibrium of Scarf’s economy. In experiments using the schedule market, prices21

converge quickly to the competitive equilibrium. Besides stabilizing prices, the schedule22

market is more efficient and results in highly egalitarian outcomes.23
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1. Introduction24

This paper investigates how the design of the market influences price dynamics and25

trading volumes in Scarf’s (1960) economy. In Scarf’s economy, the tatonnement model26
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predicts that prices cycle along a closed orbit around the equilibrium without ever con-1

verging. In a series of fascinating experiments, Anderson et al. (2004) implemented2

a version of Scarf’s economy in the laboratory to study how prices evolve in the com-3

monly used double auction market. While the double auction is itself a distinctively4

non-tatonnement institution, Anderson et al. found strong support for the Walrasian5

tatonnement hypothesis that price dynamics are largely driven by a market’s excess de-6

mand.1 Average trade prices in the experiments cycled along a closed orbit around the7

unique competitive equilibrium with no clear sign of convergence.28

A consequence of out of equilibrium price cycling is that an efficient allocation of9

resources may never be realized. This motivates our market design question: is there a10

market mechanism that stabilizes prices in Scarf’s economy and leads to higher welfare?11

The main idea behind our proposed solution is to exploit the price-taking behavior that12

causes instability in the double auction market, as observed by Anderson et al. (2004).13

Such price-taking behavior has also been observed in other experimental studies, e.g.14

Friedman and Ostroy (1995).3 The proposed mechanism is a call market where agents15

submit demand schedules, which are aggregated to yield an excess demand function.416

A Newtonian process suggested by Smale (1976b) is then used to find market clearing17

prices. Whether this schedule market produces desirable outcomes obviously depends18

on the types of schedules that get submitted. But if every agent submits a competitive19

schedule, i.e. a set of quantities that are utility maximizing taking prices as given, then20

the mechanism produces prices and quantities corresponding to the unique competitive21

equilibrium of the Scarf economy.22

We ran two series of experiments. The first series was devoted to replicating Anderson23

et al.’s (2004) experiments. One of the major strengths of laboratory experimentation24

for investigating general equilibrium is control, as the Anderson et al. study exemplifies.25

By inducing carefully selected demand parameters and initial endowments, the exper-26

imenters were able to create a version of Scarf’s economy in the laboratory to study27

its equilibration properties. Another major strength of experimentation is replicability28

and the importance of Anderson et al’s findings motivated our study. Furthermore, we29

extend the theoretical analysis of Anderson et al. by developing a model of out of equi-30

librium trading in the double auction, which allows us to model not just prices but also31

1We use tatonnement model and Walrasian hypothesis interchangeably to refer to a model that
predicts prices adjust in proportion to excess demand. We use tatonnement institution to refer to a
market institution where prices are centrally adjusted according to excess demand and trade only occurs
at equilibrium prices. There have been several other experimental tests of the Walrasian hypothesis.
Smith (1962) finds some support for it although the “excess rent” hypothesis he introduces does better.
Crockett et al. (2011) find support for the Walrasian hypothesis in an experimental study of Gale’s
(1963) economy.

2While the Scarf economy is an idealized example whose conditions are unlikely to be met in practice,
this type of disequilibrium behavior is akin to price cycles observed in some important commodity
markets, see for example Cashin and McDermott (2002).

3A large market is not a necessary condition for price-taking behavior to be optimal, see e.g. Ostroy
(1980).

4Submitting demand schedules is a common feature of electricity markets, IPOs, and treasury auc-
tions. Furthermore, this procedure is used prior to the start of the New York Stock Exchange to provide
the opening prices for the day. Schedule markets are understudied compared to the double auction
market, but an early laboratory test is reported by Smith et al. (1982) who consider a single-commodity
market for which stability is not an issue. They find that a schedule market produces efficiency levels
similar to those observed in the double auction market.
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quantities traded and hence welfare. It is based on Hahn and Negishi’s (1962) model of1

price adjustment with centralized price setting but trading at non-equilibrium prices. A2

set of prices is called and then trade occurs such that if there is excess demand for a3

certain good before trading, after trading no one is left holding more of that good than4

they demand (and vice-versa if there is excess supply). After trading, prices are adjusted5

according to excess demand.5 We show that the model predicts behavior in the double6

auction market experiments remarkably well.7

The second series of experiments tested our newly designed schedule market in the8

same controlled environment. This “engineering” approach, which combines institutional9

design with laboratory “wind tunnel” testing, has, to the best of our knowledge, not10

previously been applied to enhance the stability of several interconnected markets. In-11

terestingly, price taking behavior, submitting a competitive schedule, is actually a weakly12

dominant strategy in the Scarf economy. Furthermore, when others submit competitive13

schedules, the supply curve that each agent faces is “flat.” This non-generic feature14

follows from the specific parametrization of the Scarf economy.615

It is natural to wonder if experimental testing is even necessary, given that submitting16

a competitive schedule is a weakly dominant strategy. First, the experiments let us test17

whether the mechanism works when schedules are generated by eliciting quantities with18

a relatively coarse price grid and are then interpolated to create a continuous function.19

More importantly, however, there are a number of reasons to be cautious about assuming20

people will necessarily play weakly dominant strategies. It is not clear that subjects in21

the experiments will be able to identify the weakly dominant strategy by reasoning,22

much like they are not able to find the competitive equilibrium by reasoning in the23

double auction market. Furthermore, previous studies have found that people do not24

always play weakly dominant strategies. In individual decision making tasks where the25

weakly dominant strategy may appear obvious, subjects often do not behave optimally26

(Cason and Plott, 2014). In second-price auctions, subjects typically overbid relative to27

their values. In call markets, subjects are often insensitive to whether sincere bidding28

is a weakly dominant strategy and tend to initially bid further from their true value29

than optimal (Cason and Friedman, 1997). Instead of assuming that weakly dominant30

strategies are necessarily played, we consider the assumption that subjects use a myopic31

strategy of submitting a schedule that is a best response to the previously observed price32

but more elastic or more inelastic than the competitive schedule. We prove that under33

5There are some other notable models with trading at non-equilibrium prices. Keisler (1995; 1996)
introduces a model with decentralized price setting. There is a single market maker who holds an
inventory and sets prices. Agents are randomly selected to trade with the market maker. The market
maker adjusts prices in such a way that his inventory remains approximately constant over time. Crockett
et al. (2008) augment the zero-intelligence trading model with a learning rule that directs convergence
to competitive equilibrium. They consider an infinite-horizon model where, in each period, out-of-
equilibrium trade yields an allocation in the contract set. The utility gradient at that allocation is then
interpreted as a price vector that is used to redistribute wealth to generate a new starting allocation for
the next period. The model is a globally stable alternative to Walras’ tatonnement. See also Crockett
(2008) for an experimental test of the model.

6Indeed, there is a large literature on supply function equilibria that studies oligopolistic markets
where firms choose supply schedules and do not necessarily face a flat residual demand curve, see for
instance, Klemperer and Meyer (1989). Importantly, however, in large economies, the supply curve faced
by each agent is approximately flat for arbitrary specifications of preferences and endowments. As a
result, submitting competitive schedules is optimal more generally when the economy grows large.
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stationary repetition, prices gradually converge to the competitive equilibrium.1

1.1. Organization2

The next section briefly reviews the tatonnement adjustment process and shows that3

it is unstable in Scarf’s (1960) economy. Section 3 describes the issues in designing a4

stable market mechanism and puts forth a specific proposal. Section 4 describes the5

design of an experiment that compares this novel mechanism to the standard double6

auction market. The results are reported in Section 5. Section 6 concludes. Appendices7

A and B contain additional theoretical results and proofs. Appendix C provides a detailed8

comparison with the Anderson et al. (2004) study, which employed only the continuous9

double auction market.10

2. Background11

2.1. Walrasian dynamics in Scarf ’s economy12

Scarf (1960) proposes a simple economy with three goods, call them apples (A),13

bananas (B), and coconuts (C), and three types of agents whose preferences and endow-14

ments can be summarized as follows:15

type A type B type C

utility min(qA, qB) min(qB , qC) min(qC , qA)

endowment 1 Apple 1 Banana 1 Coconut

Consider a typeA agent who is endowed with one apple and has utility function min(qA, qB).16

For given prices pA and pB this agent’s demands for apples and bananas are qA = qB =17

pA

pA+pB
. Notice that there are income effects, i.e. agent A’s demands for both apples and18

bananas rise (fall) when the price of apples (bananas) goes up. The demands for type19

B and C agents can be derived similarly, and it is readily verified that the equilibrium20

prices for which demand equals supply satisfy pA = pB = pC . Without loss of generality21

we can single out coconuts to be the numeraire good and fix its price to pC = 1. Then22

the competitive equilibrium price of each of the goods is one.23

How does the economy arrive at competitive equilibrium prices? Consider any set of24

prices pA and pB for apples and bananas respectively expressed in terms of the numeraire25

pC = 1. In Walras’ tatonnement process, the change of price of each good is equal to its26

excess demand. In vector notation, dp(t)/dt = z(p), or written out in components27

dpA
dt

= n
( 1

1 + pA
− pB

pA + pB

)
dpB
dt

= n
( pA
pA + pB

− 1

1 + pB

)
where n ≥ 1 is the number of replicas of each type of agent in the economy. In the28

first line, the first term between parentheses on the right-hand side is the demand for29
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apples by type C and the second term is the net supply of apples by type A. Likewise,1

in the second line, the first term between parentheses represents the demand for bananas2

by agent A and the second term is the net supply of bananas by type B. The price of3

coconuts is fixed at 1 so there is no price adjustment equation for pC .4

Proposition 1. In a Scarf economy with n ≥ 1 agents of each type, the tatonnement5

process is globally unstable.6

Proof. Consider the Lyapunov function7

L(pA, pB) = 1− pApB exp
(
1− 1

2p
2
A − 1

2p
2
B

)
It is readily verified that 0 ≤ L ≤ 1 with L = 0 if and only if pA = pB = 1. Moreover,8

using the tatonnement equations of motion we have9

d log(1− L)

dt
=

dpA
dt

( 1

pA
− pA

)
+

dpB
dt

( 1

pB
− pB

)
= 0

In other words, the Lyapunov function is constant over time. The combination of prices10

that yield the same Lyapunov value form closed orbits in (pA, pB)-space, see the left11

panel of Figure 1. So if the process starts with a function value L ̸= 0, then the prices12

cannot converge to the competitive equilibrium where the Lyapunov function takes the13

value 0. Instead, prices cycle in a counter-clockwise manner along the orbit indexed by14

the value of the Lyapunov function at time zero. �15

2.2. Newtonian dynamics in Scarf ’s economy16

Smale (1976a, 1976b) proposes to replace theWalrasian tatonnement process, dp(t)/dt =17

z(p), by the Newtonian dynamic:7,818

dp

dt
= −

(
∇z(p)

)−1
z(p)

with ∇z(p) the matrix of partial derivatives of z(p) with respect to p.919

Proposition 2. In a Scarf economy with n ≥ 1 agents of each type, the Newtonian20

dynamic is globally stable.21

7Newton’s method for solving f(x) = 0 for some f : R → R can be recovered by taking a discrete
approximation: xn+1 − xn = −f(xn)/f ′(xn).

8In writing down the global Newton dynamic we assumed that ∇z(p) is everywhere non-singular,
which is true for the Scarf example. Smale (1976b) discusses a more general form of the Newtonian
dynamic that applies also when ∇z(p) is singular.

9Written out in components, (∇z(p))ij = ∂zi(p)/∂pj .
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Figure 1. Predicted price patterns under the tatonnement dynamic (a) and the global Newto-

nian dynamic (b) in the Scarf economy. For the tatonnement model, prices cycle in a counter-

clockwise manner without converging. In contrast, for the Newtonian dynamic, prices converge

exponentially fast to the unique equilibrium (pA, pB) = (1, 1).

Proof. Consider the Lyapunov function1

L(pA, pB) =
( 1

1 + pA
− 1

1 + pA/pB

)2

+
( 1

1 + pB
− 1

1 + pB/pA

)2

Note that 0 ≤ L ≤ 1 and L = 0 if and only if pA = pB = 1. The Newtonian laws of2

motion for the Scarf economy3

dpA
dt

=
pA(1− p2A)(1 + p2B)

(pA + pB)(1− pA)(1− pB) + 4pApB

dpB
dt

=
pB(1− p2B)(1 + p2A)

(pA + pB)(1− pA)(1− pB) + 4pApB

can be used to verify that4

d log(L)

dt
= −2

Hence, the Lyapunov function decreases exponentially over time to its limit value of zero,5

corresponding to the competitive equilibrium (see the right panel of Figure 1). �6

Remark 1. While Proposition 2 is limited to the Scarf economy, a similar argument7

applies to more general economies. Define L = ||z(p)||2 then under the Newtonian8
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dynamic dL/dt = −2L, i.e. the Lyapunov function is exponentially decreasing. As noted1

by Smale (1976b,a) this observation can be used to prove existence of a competitive2

equilibrium for general environments without having to resort to methods of algebraic3

topology.4

3. Designing a new market mechanism5

Before we turn to the question of how the Newtonian dynamic can be implemented to6

stabilize Scarf’s economy, it is worth briefly discussing why some alternative mechanisms7

do not work. The continuous double auction market has typically been used as the8

standard against which other mechanisms are compared. This is partly because of its9

practical relevance, i.e. most contemporary financial and commodity markets are run10

this way, and partly because of its ability to generate competitive equilibrium outcomes11

in single-commodity markets.10 The experiments of Anderson et al. (2004), however,12

demonstrate that for the multi-market Scarf economy the double auction market does13

not lead to convergence.14

The double auction market is a non-tatonnement institution where trade can occur15

at prices that do not clear the market. Other mechanisms often use some kind of it-16

erative procedure to find prices such that demand equals supply. For example, many17

valuable public assets (e.g. spectrum that can be used for telecommunication services)18

are nowadays sold in some type of ascending English auction. This is a tatonnement-like19

mechanism in that prices increment upwards until there is a unique winner for each item20

(demand equals supply) at which point the items are assigned (trade occurs). Of course,21

prices could also start high and decrement downwards as in the multi-unit Dutch auction22

used to sell flowers in the Netherlands. One could imagine a combination of ascending23

and descending prices. As we explain next, however, none of these tatonnement-like24

mechanisms can be expected to stabilize Scarf’s economy.25

First, consider the tatonnement institution where a Walrasian auctioneer announces26

a set of prices and participants truthfully announce their demands at these prices. If27

there is no excess demand, the participants trade and the process terminates. If there is28

excess demand, the auctioneer adjusts the price of each good in proportion to the excess29

demand for the good and the process continues. For the reasons described in Section30

2.1, prices will not converge to the unique competitive equilibrium of the Scarf economy31

but instead will cycle as shown in Figure 2a.11 Now consider the price adjustment rule32

where the price of a good is increased by a fixed increment if and only if excess demand33

for the good is strictly positive. In such an institution, prices will not converge to the34

competitive equilibrium as illustrated in Figure 2b. Similarly, when the price of a good35

is decreased by a fixed amount if and only if excess demand for the good is strictly36

negative, prices will not converge to the competitive equilibrium as illustrated in Figure37

2c. Finally, for the price adjustment rule where the price of a good is increased by a38

fixed increment if excess demand for the good is strictly positive and decreased by a fixed39

10Convergence in single-commodity markets occurs under a wide variety of conditions, see e.g. Smith
(1962), Friedman (1984), and Smith (2010).

11See Smith et al. (1982) and Plott and George (1992) for experimental evidence on the Walrasian
auctioneer mechanism.
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Figure 2. Predicted price dynamics in the Scarf economy under various tatonnement-like

institutions: (a) the Walrasian auctioneer, (b) the ascending English auction, (c) the descending

Dutch auction, and (d) a combination of the Dutch and English auction. The prices of A and

B are plotted in terms of the numeraire PC = 1. The competitive equilibrium is labelled ‘CE’.

Each plot is divided into four quadrants. The indicator arrows show the effect of excess demand

on price in each quadrant.
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amount if excess demand for the good is strictly negative, prices will also not converge1

as illustrated in Figure 2d.2

To summarize, commonly used market institutions do not guarantee convergence3

in Scarf’s economy. Our novel design is motivated by the work of the mathematician4

Stephen Smale on “global Newton” methods. Smale (1976a; 1976b) proposes an alterna-5

tive to the tatonnement dynamic that is convergent under general conditions, including6

those defined by the Scarf economy. The main question is how to design a market where7

prices converge.12 One could introduce a “Newtonian auctioneer” who (i) announces8

prices, (ii) elicits agents’ demands, and (iii) adjusts prices given reported excess de-9

mands according to the global Newton method.13 One complication is that the Newton10

method requires information not only about excess demands but also about their deriva-11

tives. In addition, an iterative procedure is potentially time consuming and strategically12

complex. We solve both issues by letting agents submit demand schedules, i.e. a list of13

quantities demanded at various prices, and then determine the terms of trade by running14

an automated version of the iterative process (i)–(iii). There are a range of optimization15

procedures, including the Newtonian dynamic, that could be used to find market clearing16

prices providing they have the required stability properties.14 Because submitting entire17

schedules is more complex and more time consuming than submitting single orders, we18

consider a call market that is cleared at prespecified times rather than continuously.1519

3.1. The schedule market20

In general terms, the schedule market works as follows. Each participant i reports21

their excess demand as a function of price zi(p). Reported demands are aggregated to22

produce an excess demand function z(p) = Σizi(p). Prices p∗ are computed such that23

supply equals demand for all goods.1624

To ensure uniqueness of the market clearing prices, some restrictions are placed on25

the admissible demand schedules. Recall that in Scarf’s economy each type of agent26

derives utility from two of the three goods and is endowed with one of the goods they27

like. As shown in Table 1, if a type needs good X and has good Y , they submit a28

schedule specifying the quantity of X demanded at various prices of X relative to Y . Let29

the demand schedule be denoted by DXY : R+ 7→ R+, which is a mapping from strictly30

12The global instability observed in the experiments conducted by Anderson et al. (2004) indicates
that the Newtonian dynamic is not at play in the double auction market institution. In a related set
of double auction market experiments, Hirota et al. 2005 report that they find no support for the
Newtonian model.

13Newton’s classical method of iteration corresponds to a discrete approximation to Smale’s adjustment
process.

14Notice that a Walraisan Clearing House (Friedman and Rust, 1993, p. 9) where traders submit
demand schedules but a tatonnement dynamic is applied to the resultant aggregate demand function
would not help. Eliciting demand using schedules rather than iteratively does not solve the instability
problem.

15McCabe et al. (1990) found that call market based institutions can be highly efficient. Friedman
(1993) compares the continuous double auction to a call market institution and finds they produce similar
efficiency levels.

16In the experiment, participants only report demand at a finite set of prices and interpolation is used
to estimate demand at intermediate prices. The interpolation method is described in Section 4.2.
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positive prices to strictly positive quantities. The following restrictions are applied to1

the submitted demand schedules.172

(D) If p1 < p2 then DXY (p1) ≥ DXY (p2).3

(I) If p1 < p2 then p1 DXY (p1) < p2 DXY (p2).4

The first restriction states that demand schedules are non-increasing. The second re-5

striction states that demand is inelastic, i.e. the amount spent on a good rises with its6

price. We say a schedule is admissible if it satisfies properties (D) and (I). It is readily7

verified that admissibility is preserved under aggregation. In particular, let A be any set8

of admissible demand schedules and let DA : R+ 7→ R+ denote the aggregate demand9

schedule DA(p) =
∑

D∈A D(p). Then DA satisfies (D) and (I).10

Define SYX(q) = qD−1
XY (q) where DXY is admissible. One can think of SYX(q) as the11

amount of Y being supplied when q number of units of X are demanded. Since DXY is12

admissible, SYX(q) is a decreasing function.18 Consider the aggregate demand schedules13

of the three types of agents, DBA, DCB , and DAC , with associated supply functions,14

SAB , SBC , and SCA.15

Proposition 3. If the schedules submitted to the schedule market are admissible, then16

the amount of each good traded is uniquely determined. If trade occurs, then the price of17

each good is also uniquely determined.18

Proof. Define SA(q) = SAB(SBC(SCA(q))). Admissibility implies each of the supply19

functions is decreasing, so SA(x) is decreasing. Hence, if SA has a fixed point, S(qA) = qA,20

it is unique. This fixed point corresponds to the quantity of A traded. (If SA has no21

fixed point, no trade occurs.) The amount of C being traded equals qC = SCA(qA) since22

qC = SCA(qA) = SCA(SA(qA)) = SCA(SAB(SBC(SCA(qA)))) = SC(SCA(qA)) = SC(qC),23

i.e. qC is the unique fixed point of SC . A similar logic shows that the amount of B24

traded equals qB = SBC(qC). Finally, if positive amounts of the goods are traded, prices25

are pA = qC/qA and pB = qC/qB . �26

What constitutes an optimal admissible schedule given the schedules submitted by oth-27

ers? If an agent who demands X and supplies Y takes the relative price p = pX/pY as28

given, the optimal schedule is1929

DXY (p) =
1

1 + p

17One might think a unique equilibrium could be achieved by restricting demand to be a decreasing
function and supply to be an increasing function. Unfortunately, this would not allow traders to express
their true preferences, because income effects in the Scarf economy result in downward sloping supply
curves. The (D) and (I) admissiblity restrictions allow traders to express their true preferences while
ruling out multiple equilibria.

18Evaluating S′
YX(q) at q = DXY (p) where p = pX/pY yields p+DXY (p)/D′

XY (p), which is negative
by the assumption of inelastic downward sloping demand.

19Maximizing min(qX , qY ) over the budget set pqX + qY ≤ 1 yields q∗X = q∗Y = 1/(1 + p).
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Type utility supplies demands submits schedule
A min(qA, qB) A B DBA(pB/pA)
B min(qB , qC) B C DCB(1/pB)
C min(qC , qA) C A DAC(pA)

Table 1. The three types of agents in Scarf’s economy and the types of schedules they can

submit.

which is admissible. Call this the competitive schedule. The associated supply function1

is SYX(q) = 1− q, which is intuitive since if 1− q units of Y are supplied for q units of X2

then the agent ends up with equal amounts of X and Y thus maximizing min(qX , qY ).3

Given the market-clearing price generally depends on the schedules submitted, is4

submitting a competitive schedule a best response? We find, surprisingly, it is a weakly5

dominant strategy. To explore this further consider an example of the Scarf economy6

with only one agent of each type.7

Example 1. Suppose the type-B and type-C agents submit schedules DCB(p) =8

DAC(p) = p−α, which are non-competitive but admissible if 0 < α < 1. It is readily9

verified that SBC(q) = SCA(q) = q(α−1)/α so that the supply function that the type-A10

agent faces is given by11

SBA(q) = q(
α−1
α )2

which is increasing. If the type-A agent submits a competitive schedule she will end up12

with equal quantities qA = qB = q∗ where q∗ is the unique equilibrium quantity that13

solves 1 − q = SBA(q). If she submits a schedule that gives her qB < q∗ in equilibrium14

then she is obviously worse off. Suppose she submits a schedule that gives her qB > q∗15

in equilibrium. Then she is better off only if also qA > q∗, i.e. if she has to supply less16

than 1− q∗ units of A. But since SBA(q) is increasing, others supply more B only if they17

get more A. Hence, for a type-A agent to get more than q∗ units of B she would have18

to supply more than 1− q∗ units of A. It is thus optimal for the type-A agent to submit19

a competitive schedule even though others submit non-competitive schedules. �20

Remark 2. In the example, the supply function SBA(q) represents the amount of B21

others are willing to give if they get q units of A. Writing the supply of B as a function22

of the amount of A taken simplifies the argument for why a competitive schedule is23

optimal. But the supply function can also easily be expressed in terms of the relative24

price, p = pB/pA. From pBSBA(qA) = pAqA it follows that qA = pα
2/(2α−1) so25

SBA(p) = p
(α−1)2

2α−1

which is increasing for α > 1
2 , flat for α = 1

2 , and decreasing when α < 1
2 . The argument26

that submitting a competitive schedule is optimal now follows from the fact that the27

elasticity of supply is less than −1 when it is decreasing. This implies that when the28

type-A agent submits a schedule that gives her more B, she will have to pay more units29

of A for it. �30
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In Example 1, the argument that a competitive schedule is optimal for the type-A agent1

does not depend on the particular functional form of others’ schedules but only on the2

fact that others’ supply is increasing, which is more generally true if we impose admissi-3

bility.4

Proposition 4. In a Scarf economy with n ≥ 1 agents of each type, submitting a compet-5

itive schedule is a weakly dominant strategy when schedules are restricted to be admissible.6

Proof. Label the type-A agents by i = 1, . . . , n. Suppose there is a schedule D′
BA(p) ̸=7

(1+p)−1 that gives some type-A agent, denoted i, a higher utility than submitting a com-8

petitive schedule. Admissibility implies that the supply function SBA(q) = SBC(SCA(q))9

is increasing. When agent i submits a competitive schedule she will end up with equal10

quantities of A and B. By assumption, when agent i submits D′
BA she has a higher11

utility, so agent i must end up with more A and more B. This means that agent i must12

have given less A and taken more B, so the price of A in terms of B was higher. Since13

other type-A agents all face the same price, this implies that they must also have taken14

more B and given less A. But this contradicts the fact that SBA is increasing. Analogous15

arguments apply to agents of other types. �16

Without the admissibility restriction, the result does not hold; however all agents sub-17

mitting competitive schedules is a Nash equilibrium (see Appendix A).18

The fact that each agent faces a flat supply curve is due to the specific parametrization19

of the Scarf economy. However, in large economies this would be the case for arbitrary20

specifications of preferences and endowments. In this sense, Proposition 4 applies more21

generally when the economy grows large.22

To explore the robustness of the mechanism, we consider a repeated market setting23

where agents submit schedules that are best responses to the previously observed prices24

but not necessarily best responses to all possible prices. Denote the previous observed25

prices as pt−1. Consider the following schedule where α ∈ [0,∞]:26

D̂XY (pt−1, p) =
pt−1 + α

p+ α
× 1

1 + pt−1

Notice that D̂XY (pt−1, pt−1) = 1
1+pt−1

for all values of α. Hence, the schedule is a best27

response to the previously observed price pt−1. When α = 1, D̂XY (pt−1, p) corresponds28

to the competitive schedule. When α = 0, D̂XY (pt−1, p) is the “flattest” admissible29

schedule that is a best response to pt−1 while D̂XY (pt−1, p) limits to the vertical sched-30

ule that is a best response to pt−1 when α → ∞. The next proposition shows that when31

agents submit such best response schedules, prices converge to the unique competitive32

equilibrium for any α ≥ 0, see Appendix B for a proof.33

Proposition 5. In a repeated Scarf economy with any value of α and starting from any34

prices p0, if agents of type A, B, and C submit schedules D̂BA(pt−1, p), D̂CB(pt−1, p),35

and D̂AC(pt−1, p) respectively, then prices will converge to the unique competitive equi-36

librium of the economy over successive periods.37
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Original Scarf economy Experimental economy
Type Utility Endowment Utility Endowment
A min(qA, qB) (1, 0, 0) 40min(qA/10, qB/20) (10, 0, 0)
B min(qB , qC) (0, 1, 0) 40min(qB/20, qC/400) (0, 20, 0)
C min(qC , qA) (0, 0, 1) 40min(qC/400, qA/10) (0, 0, 400)

Table 2. Adaptation of Scarf’s original economy for the experiment.

This result shows that the schedule market is somewhat forgiving to deviations from1

submitting competitive schedules and that convergence to the unique competitive equi-2

librium of the Scarf economy over successive periods can occur even with myopic behavior.3

4. Experimental design and procedures4

Since one of the goals of the experiment is to replicate Anderson et al.’s (2004)5

results, we use their (treatment I) parametrization for the Scarf economy. The utility6

functions and endowments are adapted from those originally used by Scarf as shown in7

Table 2 below. In Scarf’s economy, each agent is endowed with a single unit. In the8

experiment, this single unit is replaced with multiple units and the utility functions are9

scaled accordingly. The most numerous good, C, was used as a numeraire and was called10

“cash” in the experiment. After scaling, the competitive equilibrium prices in terms of11

cash are 40 for good A and 20 for good B.12

There were two treatments: the continuous double auction and the schedule market.13

A total of 180 subjects participated in the experiment. There were 12 sessions with14

one group of 15 subjects per session and six sessions per treatment. In a group, five15

subjects were assigned to each of the three types. Subjects were given the endowments16

and utility functions shown in Table 2 and were told that they would be paid the value of17

their holdings after trading, where the value was calculated using their utility functions.18

There were three unpaid practice periods and 15 paid periods.20 At the start of each19

period, endowments were refreshed, no goods were carried over from one period to the20

next.21

At the beginning of the experiment, the instructions were presented using PowerPoint22

and a paper handout. The instructions included worked examples with Leontief prefer-23

ences to help subjects understand the induced preferences, and were followed up with a24

short comprehension test. During the experiment, payoff calculations were performed by25

the software so that subjects could focus on trading.21 During the three unpaid practice26

periods subjects were encouraged to ask questions. An exchange rate of 0.15 Swiss Francs27

per util was used. The mean payment was 48.74 Francs including a 10 Franc showup fee.28

The experiment took around 1.5 hours to complete.29

20The double auction market Session 2 lasted for only ten periods because of a computer crash.
21The user interface for both market mechanisms was tailored to Leontief preferences, but it could

easily be adjusted to accommodate more general preferences over a pair of goods. For instance, if
constant elasticity of substitution utility functions were used, the ‘Unused’ columns could be replaced
by columns showing the marginal utility of each good.
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4.1. Continuous double auction implementation1

A screenshot of the continuous double auction interface is shown in Figure 3. The left-2

hand side of the screen shows the subject’s utility function, current holdings, and current3

pay-off. It is also used to construct orders. The right-hand side shows a list of submitted4

orders, some of which have already transacted. Subjects could submit limit orders to buy5

and sell the commodities A and B with cash used as the medium of exchange. The price6

of the last transaction was displayed but subjects could submit orders with any price.7

As subjects entered figures specifying terms of the order, the payoff consequences of the8

order were displayed. Transactions occurred as soon as a set of compatible orders had9

been submitted. Partial filling of orders was allowed. Subjects could cancel or amend10

orders that had been submitted but had not yet transacted. There was no constraint on11

the number of orders submitted or the number of transactions. However, subjects could12

not offer to trade more than they had available. After four minutes had elapsed, the13

period ended. Subjects were shown a ‘results screen’ with their earnings for the period,14

a list of the trades they made, and their total earnings from all completed periods.15

Figure 3. User interface for the continuous double auction market. The screen is from the

point of view of a type-C agent who was endowed with cash and needs cash and good A. On the

top left of the screen, the text beginning ‘Payoff Formula’ shows the subject’s utility function

and the value of the current holdings. Below this is a table with labeled rows for each of the

goods. The column headed ‘Price’ shows the last trade price, ‘Holdings’ are the current holdings,

‘Available’ are current holdings which the subject is not currently offering to trade, ‘Unused’ are

the current holdings that are not contributing towards earnings, and ‘Excess’ indicates similar

information in words (in the screen shot, the subject has too much cash and not enough of good

A, so can increase earnings by trading cash for good A). The columns ‘I give’ and ‘I take’ are

used to construct orders. This is done by entering numbers in the columns. As numbers are

entered, the ‘Added Value’ number automatically updates to show how earnings will change if

the order transacts. The table on the right hand side shows the orders that have been submitted.

There are currently two active orders. Trader 1 is offering to sell good B at a price of 25. Trader

2 (labeled ‘Me’) is offering to buy good A at a price of 45. There has been one transaction, the

current subject bought three units of good A.

14



4.2. Schedule market implementation1

A screenshot of the schedule market interface is shown in Figure 4a. Subjects con-2

structed a schedule by specifying how much they wanted to trade at each of a range of3

prices. The range of prices was pre-determined and constant throughout the experiment.4

The admissability restrictions were enforced automatically. When the subject changed5

their demand at one price, if the restrictions were not satisfied, the computer adjusted6

demands at other prices to satisfy the restrictions. For example, if demand was initially7

zero at every price and the subject set demand at the highest price to one, the computer8

would automatically set the demand at all lower prices to one to satisfy admissibility.9

Interpolation was used to produce a continuous demand function from the quantities10

specified by subjects at each of the pre-specified prices. Suppose a subject is endowed11

with good A and demands good B. They specify their demand for B at pre-specified12

prices, giving a list of (p, qB) pairs. This is converted to a list of (p, qA) pairs where13

qA = qBp. Then the following interpolation is performed. Given two price-supply points14

(p1, qA1) and (p2, qA2), intermediate points are (p1α+p2(1−α), qA1α+qA2(1−α)) where15

α ∈ [0, 1]. Interpolation is carried out using price-supply pairs rather than price demand16

pairs so that intermediate points satisfy the admissibility conditions that ensures a unique17

equilibrium. The interpolation was performed as subjects were entering the schedule and18

subjects could see the interpolated points on the graphical representation of the schedule19

before they submitted it. Although subjects could not directly specify demand at every20

possible price, they could do so indirectly. For example, suppose a subject wanted to21

demand a certain quantity at price 7, but the nearest pre-specified prices were 5 and 10.22

By suitable adjustment of the quantities demanded at 5 and 10, they could specify the23

desired quantity at price 7.24

A period ended if all schedules had been submitted or if four minutes had elapsed.25

The submitted schedules were summed to produce an aggregate demand function. A26

numerical optimization procedure was applied to the aggregate demand function to find27

the market clearing prices. Trade occurred at these prices with each agent trading the28

quantities specified by their submitted schedule. Figure 4b shows the ‘results screen’ from29

the schedule market shown after the period ended. Subjects were shown the demand30

schedule they had submitted and the residual supply that they faced (the combinations31

of price and quantity taken by the subject that would equalize supply and demand in all32

markets).33
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Figure 4a. User interface for the schedule market. The left-hand side of the screen shows the
subject’s endowment, utility function, and a table that can be used to create demand schedules.
The first column of the table is a fixed list of possible prices of the commodity that the subject
needs in terms of the commodity with which the subject is endowed. In this case, the subject
needs commodity A and has cash, so the price column shows the price of A measured in cash.
The subject’s task is to fill in numbers in the ‘Take’ column, representing their demand at each
of the prices. As subjects enter numbers, the displayed graph and the relevant numbers in the
table (the columns labeled ‘Give’, ‘Holdings’, ‘Unused’, and ‘Value’) are automatically updated
to reflect their choices. The ‘Give’ column indicates how much subjects will give up for what
they want to take at the specified price. The ‘Holdings’ column shows holdings after trading at
each price. The ‘Unused’ column indicates whether any of the holdings will be unused, i.e. not
contribute towards the subject’s payoff. The ‘Value’ column shows the utility of the holdings at
each price. The ‘Undo’ button lets subjects revert to previous states of the schedule, making it
easy to correct mistakes and to experiment with different configurations. Once the subject had
finished editing the schedule, they pressed ‘Submit’. Once submitted, schedules could no longer
be altered.

The right-hand side of the screen shows a graphical representation of the schedule being con-

structed. It shows the quantities chosen at each of the listed prices and the interpolated quan-

tities at intermediate prices. The green dot indicates the point being edited on the left-hand

side (currently p = 4.44 and q = 7.25). The dotted curved grid lines represent the admissibility

constraint. For a schedule to be admissible, as q increases, a schedule can only go to a lower

grid line.
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Figure 4b. Results screen for the schedule market. The curve labeled ‘Demand’ is the demand

schedule submitted by the subject. The curve labeled ‘Supply’ is the residual supply the subject

faces. At each point on the residual supply curve, excess demand is zero in all markets. The

intersection of the demand and supply curves yields the market equilibrium for the submitted

schedules. The text on the left shows prices, quantities traded, holdings after trading, and

payoffs. Subjects could also see what would have happened if they had submitted a different

schedule. They could do this by moving the mouse pointer to any location in the graph. The

text on the top right would then be automatically updated to show the potential payoffs at the

position of the mouse pointer.

5. Results1

We compare the two market institutions in terms of price stability (Section 5.1),2

as well as in terms of efficiency (Section 5.2) and equality (Section 5.3). A detailed3

comparison of the price dynamics observed in our double auction experiments to those4

of the Anderson et al. (2004) study can be found in the Appendix.5

5.1. Price dynamics in the two market institutions6

The between-period prices observed in our double auction market experiments are7

shown in the top six panels of Figure 5, where each panel corresponds to a different8

session. In each session, prices start in the lower-left corner in the first period of the9

experiment and then cycle in a counter-clockwise pattern without any obvious tendency10

for convergence. We thus replicate this main finding of the Anderson et al. (2004) paper,11

see their Figure 4. Besides counter-clockwise cycling, the observed price paths confirm12

other features of the tatonnement predictions in Figure 1a. For instance, the further the13

price of good B falls below its equilibrium level the further the price for good A shoots14

17



α1 α2 α3 α4 α5 α6 β
D.A 0.68∗∗ 0.84∗∗∗ 0.88∗∗ −0.80∗∗∗ 0.81∗∗∗ 0.31 0.041

(0.23) (0.16) (0.20) (0.18) (0.18) (0.19) (0.021)

Schedule −2.13∗∗∗ −2.30∗∗∗ −2.79∗∗∗ −2.70∗∗∗ −2.56∗∗∗ −2.59∗∗∗ −0.034∗∗

(0.08) (0.15) (0.13) (0.22) (0.21) (0.13) (0.011)

Table 3. Estimating the time dependence of the Lyapunov function. Values of the Lyapunov

function were calculated with prices normalized so that the competitive equilibrium is (1, 1). A

negative/zero/positive β corresponds to prices converging/cycling/diverging. The estimated β is

not significantly different from 0 for the double auction market, which indicates that prices cycle.

For the schedule market the estimated β is negative, which indicates convergence. Standard

errors (robust and without clustering) are in parentheses; ∗ indicates p < 0.05, ∗∗ indicates

p < 0.01, ∗∗∗ indicates p < 0.001,

out and the less the price path looks like a circle. Compare, for instance, the first and1

fourth double auction sessions in Figure 5.2

Result 1. Prices in the double auction market do not converge to their3

competitive equilibrium levels.4

Support. To test whether prices are converging to equilibrium we evaluate the Lyapunov5

function of Section 2.1 along the observed price paths. Consider a simple regression model6

of the form7

L = Φ(αs + β(period− 1) + ε) (1)

where L is the Lyapunov function and Φ(·) is the standard normal cumulative distri-8

bution.22 The session-specific constant αs corresponds to the path’s starting point (i.e.9

the trade price in the first period). The parameter β measures stability: β < 0 implies10

convergence, β > 0 implies divergence, and β = 0 means that the prices are cycling11

along a closed path. The estimation results for the double auction market are shown in12

the top row of Table 3. The estimated β coefficient is not significantly different from 0,13

indicating that there is no convergence to equilibrium but that, on average, prices cycle14

along a closed path as the tatonnement model predicts for the Scarf economy. �15

The price patterns observed in the schedule market sessions are shown in the bottom six16

panels of Figure 5. The most striking difference is the absence of any cycling tenden-17

cies. The introduction of schedules has stabilized prices, which are close to competitive18

equilibrium levels.19

Result 2. Prices in the schedule market converge to their competitive equi-20

librium levels.21

Support. We apply the regression in (Equation 1) to the Lyapunov function in Section22

2.2. The estimated β coefficient is significantly negative for the schedule market, see23

22We introduce this transformation because the Lyapunov function is bounded between 0 and 1 so a
simple linear regression would not be appropriate.
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lines. Prices in the double auction market oscillate with substantial intra-period variation. In

contrast, prices in the schedule market are steady and close to their competitive equilibrium
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the bottom row of Table 3. Note, however, that the coefficient is rather small. The1

reason is that even in the first period of the experiment, prices are in the vicinity of2

the equilibrium so there is limited scope for further convergence. Notice that the values3

for α are lower in the schedules treatments indicating different initial conditions across4

treatments. Another measure of convergence is provided by Anderson et al. (2004) who5

define prices to be close to equilibrium if they fall in the range (pA, pB) ∈ [36.5, 43.5] ×6

[16.5, 23.5]. Taking averages over all 15 periods in each of the six sessions that used7

the schedule market, the observed average prices for good A are: 43.6(1.1), 39.5(1.7),8

38.6(0.6), 41.2(1.5), 41.3(2.3), 39.2(1.1), with the standard error in parentheses, and for9

good B they are: 28.2(1.1), 22.4 (1.4), 20.3(0.7), 21.0(0.8), 20.6(0.8), 20.5(0.9). Except10

for the first session, observed average prices are all close to the equilibrium. The overall11

price averages over all six sessions are pA = 40.6(0.6) and pB = 22.2(0.5). �12

The stark difference in price evolution under the two different market mechanisms is13

illustrated in Figure 6. The top panel shows the observed trade prices in one of the14

sessions that used the double auction market. Trade prices for all 15 periods are shown,15

where each period lasted four minutes as indicated by the thin vertical lines, for a total16

time of 60 minutes. The trade prices oscillate with substantial intra-period variation.17

The pattern of the oscillations suggests that when one price crosses its equilibrium value18

the other price is furthest from its equilibrium value, as the tatonnement model predicts19

(see Figure 1a). The bottom panel shows observed trade prices in the schedule market,20

using the same scale for the axes to emphasize the lack of price variability under this21

mechanism. Trade prices start close to their equilibrium values and remain close for the22

entire duration of the experiment.23

The tatonnement model makes more specific predictions than the non-convergence24

Result 1. For instance, it predicts that prices move along a closed orbit in a counter-25

clockwise manner. More specifically, for any pair of prices, the tatonnement model26

makes a precise prediction for the direction of price changes. An alternative prediction27

is that prices converge along a straight path to the competitive equilibrium. Figure 728

shows how well these two alternatives predict the actual direction of price changes for29

the double auction (top two panels) and schedule market (bottom two panels). The30

histograms are based on the difference between the predicted and observed angles of31

price changes.23 There is a big spike at 0 degrees for the tatonnement model in the32

double auction market, and a similar spike at 0 degrees for the convergence model in33

the schedule market. Applying the convergence model to the double auction market, or34

the tatonnement model to the schedule market, results in spikes at ±90 degrees in line35

with the counter-clockwise cycling behavior predicted by the tatonnement model and36

observed in the double auction market.37

Result 3. The direction of price changes in the double auction market is well38

predicted by the tatonnement model. In the schedule market, prices converge39

to the competitive equilibrium along a straight path.40

23Angles were calculated using prices normalized so that the competitive equilibrium is (1, 1). Errors
are measured in the clockwise direction. If the predicted direction is north and the observed direction
is north east, the error is +45 degrees. If the predicted direction is north and the observed direction is
west, the error is -90 degrees.
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Figure 7. Prediction errors for the simple convergence model (left panels) and the tatonnement

model (right panels) in the double auction market (top panels) and the schedule market (bottom

panels). For the double auction market, the tatonnement model produces a big spike at zero

degrees (no error) while the simple convergence model does the same for the schedule market.

Support. Consider the following simple regression, which explains price movements in1

the A and B markets in terms of excess demand, as the tatonnement model predicts,2

and straight convergence:3

pA(t+ 1)− pA(t) = βtat zA(pA(t), pB(t)) + βconv(p
∗
A − pA(t)) + εA

pB(t+ 1)− pB(t) = βtat zB(pA(t), pB(t)) + βconv(p
∗
B − pB(t)) + εB

The results are shown in Table 4. Note that only βtat is different from 0 in the double4

auction market while only βconv is different from 0 in the schedule market. �5

For additional analysis concerning price dynamics in the double auction market we refer6

the reader to the Appendix, which compares our results to those of the Anderson et al.7

(2004) study who used only the double auction market. As discussed in the Appendix,8

we replicate all the findings that pertain to their “cycling ” treatment I that we used9

for our double auction market experiments. Our main interest is in comparing the two10

market institutions, in particular, how price (in)stability affects outcomes in terms of11

efficiency and equality.12
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βtat βconv

Double Auction 0.564∗∗∗ 0.021
(0.067) (0.013)

Schedule −0.183 0.681∗∗∗

(0.205) (0.079)

Table 4. Explaining the direction of price changes using the tatonnement model and a model

of straight convergence. In the double auction market, price changes are driven only by excess

demands as the tatonnement model predicts. Prices in the schedule market are not affected by

excess demands but instead converge along a straight line to the equilibrium. Prices are normal-

ized so that the competitive equilibrium is (1, 1) and excess demand for a good is normalized by

dividing by the total quantity of that good in the economy. Standard errors are in parentheses;
∗∗∗ indicates p < 0.001.

5.2. The effects of price (in)stability on market performance1

This section models the allocations and hence welfare that results from trading at non-2

equilibrium prices. In a tatonnement institution, an auctioneer adjusts prices in response3

to reported demands and no trade takes place until market-clearing prices are found. For4

the Scarf economy this implies that no trade ever takes place. Our double auction market5

experiments, however, show that there is substantial trade at non-equilibrium prices. A6

variant of the model proposed by Hahn and Negishi (1962) can be used to model out-7

of-equilibrium trade. Assume that traders are price-takers and exchange goods in fixed8

ratios determined by the prices until they hold equal proportions of the goods they want.9

Of course, if prices are out of equilibrium, not all traders are able to achieve a balanced10

portfolio of the goods they want. The market does not clear and some traders are left11

with “unused” goods. However, traders of at least one type will have goods in the desired12

proportions, making the outcome Pareto optimal and hence no further trade possible.13

To derive predictions for the price-taking model, consider the original Scarf economy14

of Section 2. Let (pA, pB , pC = 1) denote the price vector and let (qA, qB , qC) denote the15

quantities traded at these prices.16

Proposition 6. For the original Scarf economy, the price-taking model predicts that the17

quantities traded are18

qA = min
( supply︷ ︸︸ ︷

pB
pA + pB

,

demand︷ ︸︸ ︷
1

1 + pA

)

qB = min
( demand︷ ︸︸ ︷

pA
pA + pB

,

supply︷ ︸︸ ︷
pA

pB + pApB
,

cash︷ ︸︸ ︷
1

1 + pB

)
(2)

and the resulting welfare is19

W = qB +min (1− qB , qApA) + qA
23



Welfare is maximized at the competitive equilibrium prices, pA = pB = 1.1

In the market for A, type A sells good A to type C. Type C pays using cash from their2

endowment. When prices are taken as given, there are two constraints on the quantity3

of A traded: type A’s demand and type C’s supply. In the market for B, type B sells4

good B to type A. Type A has no cash in their endowment so must use cash from sales5

in market A to fund purchases in market B. When prices are taken as given, there are6

three constraints on the quantity of B traded: type A’s demand, type B’s supply, and7

type A’s cash receipts from market A. The quantity of cash traded in each market can8

be simply calculated using the prices and quantities. 24
9

Welfare is taken to be the sum of each type’s utility. The motivation for this for-10

mulation, given that in the Scarf economy preferences are not quasi linear, is as follows.11

First, given the symmetry between agent’s utility functions it seems natural to give the12

utilities of different types equal weight. Second, it corresponds with subject’s earnings13

in the experiment. The utilities are calculated as follows. Type A’s utility is simply the14

quantity of good B traded. Type B’s utility is the minimum of B’s holdings of good B15

after trading and the amount of cash type B can receive from selling good B. Finally,16

type C’s utility is the quantity of good A traded.17

We define market efficiency as the fraction of the total gains from trade that are18

realized:19

efficiency =
Wobserved

Wmax

The two panels of Figure 8 show (a) the observed quantities traded and (b) the observed20

efficiency levels for the double auction market sessions against the predictions of the21

price taking model. The predictions are based on Proposition 6 using the opening prices22

for the period: in the first period the opening prices are (pA = 20, pB = 10), i.e. half23

the equilibrium prices, and in later periods the opening prices are equal to the average24

trading prices in the prior period. For the efficiency levels, the small diamonds correspond25

to period averages and the large diamonds to session averages. The price-taking model26

predicts efficiency levels remarkably well.25 This is especially true for the six session27

averages, which are all very close to the 45-degree line.2628

Observed efficiency levels in the double auction market range from 65% to 91% with29

more observations towards the lower end. The lower bound should come as no surprise30

since even if prices are completely off the predicted welfare is Wmin = 1, see Proposition31

6, corresponding to an efficiency level of 67%.2732

24The predictions of the model can be thought of as the rest point of a dynamic system where each
agent attempts the locally optimal trade taking prices as given. This is similar to the Local Marshallian
Equilibrium theory proposed by Asparouhova et al. (2011) but with prices fixed. That is, agent i with
utility function ui, and a vector of holdings ωi attempts to trade in the direction defined by the vector
di that solves argmax

di ∇ui(ωi) ·di subject to di ·p = 0 and di+ωi being a feasible allocation. When
starting from the Scarf economy endowments, there is one agent supplying and demanding each of the
goods and trade can continue until one agent achieves goods in the desired proportions.

25The coefficient for correlation between the predicted and observed period averages is 0.770 (p <
0.0001).

26Two sessions resulted in almost identical and observed efficiency levels, which is why it appears as
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Figure 8. Observed and predicted quantities traded and efficiency levels in the double auction

market. The predictions are based on a model of optimizing behavior taking prices as given,

with the prices being equal to the opening prices for the period. The opening prices are set to

half the equilibrium prices in the first period and to the average trade prices of the previous

period in later periods.

Result 4. In the double auction market, observed efficiency is 77%. In the1

schedule market, observed efficiency is significantly higher: 95%.2

Support. Efficiency levels for the six schedule market sessions are 89.6%, 92.8%, 96.4%,3

97.6%, 97.7%, 96.6%, and for the double auction market sessions they are 77.1%, 73.5%,4

72.0%, 86.6%, 71.7%, 81.5%. Note that all six efficiency levels for the schedule market5

are higher, so the null hypothesis that efficiency levels are the same can be rejected6

(p = 0.0022, Median test). �7

We next determine how the total gains from trade are divided among the different types8

of agents.9

5.3. The effects of price (in)stability on equality10

Using the price-taking model of Proposition 6 together with the opening prices for the11

period we can predict the gains from trade by agent type in the double auction market.12

if there are only five large filled diamonds.
27If all goods are randomly assigned to one type of trader, predicted efficiency is Wmin = 1. A stricter

definition of efficiency that corrects for this baseline level would be

normalized efficiency =
Wobserved −Wmin

Wmax −Wmin

The normalized efficiency of the double auction market is 31% and that of the schedule market 85%.
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Figure 9. Observed and predicted gains for each agent type in the double auction market. The

predictions are based on a model of optimizing behavior taking prices as given and equal to the

opening prices for the period. The opening prices are half the equilibrium prices in the first

period and the average trade prices of the previous period in later periods.

Figure 9 compares these predictions (horizontal axis) with the observed gains (vertical1

axis). The price-taking model also does a good job at predicting gains by agent type,2

although the observed gains for the type-A agent are somewhat lower than predicted3

while the gains for the type-C agent are somewhat higher than predicted.4

To explain this discrepancy, note that the outcomes in Proposition 6 are derived5

without taking into account the precise details of the trading institution. It is as if the6

type-A and type-C agents can exchange good A, type-A and type-B agents exchange7

good B, and type-B and type-C agents exchange good C. As a result, the type-A agent,8

for instance, would never be left with any excess cash. But in the double auction market,9

the type-A agent first has to trade with the type-C agent to acquire cash with which10

she can then buy good B from the type-B agent. And if the type-A agent overestimates11

how much of good B will be supplied she may be left with excess cash at the end of the12

period. Note that the other two agent types do not face this problem since they only13

trade one type of good. The type-B and type-C agents can simply keep trading until14

(i) they have as much of the good they demand as the good they are endowed with, in15

which case they have no unused goods or (ii) they hit the limit of the supply of the good16

they demand, in which case they are left with unused units of the good they are endowed17

with.18

This intuition is confirmed by Figure 10, which shows for each agent type the amount19

of unused goods (normalized by the total quantity of the good in the economy) averaged20
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Figure 10. Unused units of each of the three goods by agent type (normalized by the total

amount of each good in the economy). The bars show the mean and its standard error. The

type-B and type-C agents have unused units only of the goods they demand while the type-A

agent has unused units of all three goods.

over all periods and sessions that used the double auction market. The type-B and1

type-C agents have unused units only of the good they demand while the type-A agent2

has unused units of all three goods. Because the type-A agent must first trade with the3

type-C agent to get cash not knowing how much of good B she will be able to buy with4

that cash, she faces the most uncertainty and, hence, the most difficult task in achieving5

a balanced portfolio, especially since prices fluctuate within a period. This explains why6

the type-A agent’s gains are somewhat lower then predicted (as indicated by the circles7

in Figure 9). The tendency of type-A agents to stock up on too much cash benefits8

the type-C agent, which explains why their observed gains are somewhat higher than9

predicted (as indicated by the squares in Figure 9).10

Notwithstanding these small discrepancies, Figure 9 does a remarkable job at ex-11

plaining the division of the total gains from trade. The most striking feature of Figure 9,12

however, is the large variation of gains across agent types. The shares that the type-B13

agents get (indicated by the squares) are all in the lower-left corner while the shares for14

the type-A agents (diamonds) are in the upper-right corner and the shares of the type-C15

agents (circles) are somewhere in the middle. The degree of inequality in the double16

auction markets is even more clear from Figure 11, which shows the shares by agent type17

over time in the double auction market sessions (top six panels) and the schedule market18

sessions (bottom six panels).28 The white space at the top of each panel indicates the19

degree to which there was a loss in efficiency.20

Result 5. The double auction market results in large inequalities. In con-21

trast, the schedule market results in approximately equal payoffs.22

Support. The division of the total gains from trade among the three types of agent23

28Recall that in the double auction market Session 2 there were only 10 periods due to a computer
crash.
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Figure 11. Earnings by agent type in the double auction market sessions (top six panels) and

the schedule market sessions (bottom six panels). The white space at the top of each panel

indicates the degree to which there was a loss in efficiency. (Recall that double auction market

Session 2 lasted for only 10 periods.) There are large inequalities in the double auction markets

where shares fluctuate over time. In contrast, the schedule markets result in more equal and

stable outcomes.
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is roughly even (32.3%, 35.5%, 31.2%) in the schedule markets while it is very uneven1

(51.1%,20.5%,28.4%) in the double auction markets.29 Moreover, Figure 11 shows that2

the division of surplus by agent type is constant over time in the schedule market. In3

contrast, the shares earned by the different types fluctuate over time in the double auction4

market and in some instances the outcome is extreme inequality. See, for instance, double5

auction market Sessions 3 and 5. �6

6. Conclusion7

General equilibrium theory is one of the triumphs of modern economic analysis. It8

provides a complete account of entire economies, predicting the exchanges required to9

arrive at Pareto efficient allocations as well as the prices that define the terms of exchange.10

The assumptions underlying the theory are that agents maximize their utility at given11

prices, i.e. price-taking behavior, and that prices are such that no good is in excess12

demand or supply, i.e. prices are market clearing.13

Despite its powerful mathematical structure and broad applicability, general equilib-14

rium theory is a static theory that does not address how market clearing prices come15

about. Walras posited a centralized price adjustment process, where a fictitious auction-16

eer adjusts prices in response to reported demands until market clearing prices are found17

after which trade occurs. While this “tatonnement” process converges for economies sat-18

isfying gross substitutability, Scarf’s (1960) simple example demonstrates that without19

this strong assumption, prices may cycle forever thus precluding trade from occurring.20

In other words, prices are globally unstable in Scarf’s economy, which is perpetually out21

of equilibrium.22

This prediction suggests that the Scarf economy forms an ideal test for general equi-23

librium theory. And laboratory experiments are the perfect tool to perform such a test.24

For all the quibbles about representativeness, selection effects, external validity, and25

lab-field generalizability, one might almost forget about the enormous potential for con-26

trolled laboratory experimentation to address questions of basic science. In a pioneering27

study, Anderson et al. (2004) capitalize on this potential by testing the Scarf economy28

in a series of double auction market experiments. Their results are fascinating. While29

the double auction is a non-tatonnement institution, average trade prices in the experi-30

ments cycle along a closed orbit around the unique competitive equilibrium with no clear31

sign of convergence just as the tatonnement model predicts. This is a profound finding32

that reveals the limits with which general equilibrium models can be applied to predict33

economic outcomes. Moreover, it has repercussions for the performance of naturally oc-34

curring markets, since most contemporary financial and commodity markets employ the35

double auction institution.36

In this paper we replicate the findings of the Anderson et al. (2004) study. Our37

double auction market experiments confirm that the tatonnement model predicts the38

29The 95 percent confidence intervals for the division of gains among the three types are (31.7-33.0%,
33.5-37.5%, 30.5-33.8%) for the schedule market and (44.2-58.0%, 12.8-28.1%, 24.8-32.1%) in the double
auction. The confidence intervals were calculated using bootstrapping with clustering on groups. The
Gini coefficients for the double auction and schedule markets are 0.28 and 0.05 respectively.
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direction of price changes remarkably well and that prices are globally unstable as a1

result. We then ask two important questions that go beyond replication of the Anderson2

et al. study. First, since competitive equilibrium is never reached in the double auction3

market, the tatonnement model predicts no trade. But out-of-equilibrium trades occur4

all the time in the experiment, which raises the question “what model explains out-of-5

equilibrium trading?” Second, we demonstrate the negative impact of price instability6

for the economy’s performance, in terms of efficiency and equality (see Figure 11), and7

ask the market design question “how can the economy be fixed, i.e. what institution8

stabilizes prices and delivers efficient and equitable outcomes?”9

With regards to the first question, we provide clear evidence of price-taking behavior10

in the absence of market clearing. Within a period, traders exchange goods in fixed ratios11

determined by the prices until they hold equal proportions of the goods. Because prices12

are out of equilibrium, not all traders can achieve a balanced portfolio resulting in some13

unused units. These imbalances put upward or downward pressures on prices, which then14

adjust according to the tatonnement model. The simple price-taking model predicts the15

allocations of the goods and the division of the total gains from trade extraordinarily16

well (see Figures 8 and 9).17

With regards to the second question, we provide clear evidence that a call market18

where traders submit demand schedules fixes the Scarf economy. Our proposal is inspired19

by Smale’s (1976a; 1976b) work on Newtonian methods and his desire to “Extend the20

mathematical model of general equilibrium theory to include price adjustments,” which21

he deemed to be one of the great problems for the 21st century (Smale, 1998). Specifically,22

our proposed solution is to let agents submit demand schedules, i.e. a list of quantities23

demanded at various prices, and then an automated market mechanism based on the24

global Newton method is run to determine the terms of trade.25

In the schedule market, price-taking behavior takes the form of submitting a “com-26

petitive schedule,” i.e. a set of quantities that are utility maximizing taking prices as27

given. We prove that price-taking behavior is a weakly dominant strategy (see Propo-28

sition 4). While the proof relies on the specific parametrization of the Scarf economy,29

the results are more generally true in large economies where agents face supply curves30

that are approximately flat. As a consequence, submitting a competitive schedule is31

optimal for arbitrary specifications of preferences and endowments when the economy32

grows large.33

We also test the schedule market in the laboratory and find that it performs ex-34

tremely well. In most periods, prices are close to the competitive equilibrium values and35

between periods converge quickly to the competitive equilibrium (see Figures 5 and 6).36

Importantly, the schedule market is able to translate price stability into improved per-37

formance: observed efficiency is 95% (compared to 77% in the double auction market)38

and outcomes are highly egalitarian (see Figure 11). Besides the desirable theoretical39

properties and the excellent performance in our empirical tests, schedule markets are also40

practical. Electricity markets and treasury auctions allow for schedules, which are also41

used to determine opening prices for the day on the New York Stock Exchange.42

Our results thus have implications for market design that extend beyond the Scarf43

economy. Nowadays, variants of the tatonnement institution are frequently used in auc-44

tions to privatize major public assets. For instance, in the FCC’s simultaneous ascending45
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auction, the price of items for which demand exceeds supply is increased until there is1

no more excess demand. Submitting demand schedules could be an alternative to the2

iterative adjustment of prices. Univariate functions can be used for schedules in cases3

(like our experiment) where each trader desires to exchange one type of good for another.4

Vector functions can be used in cases where traders demand a number of different goods.5

Our experimental results demonstrate that in settings with complementarities and in-6

come effects, an institution whose price adjustments approximate tatonnement dynamics7

does not necessarily result in competitive equilibrium outcomes while a call market that8

admits schedules does.9

Appendix A. The schedule market without the admissibility restriction10

Without the admissibility restriction, submitting a competitive schedule is optimal11

when others behave competitively. In other words, all agents submitting competitive12

schedules constitutes a Nash equilibrium even when we drop the admissibility restric-13

tion.14

Proposition A1. In a Scarf economy with n ≥ 1 agents of each type, it is a Nash15

equilibrium for all agents to submit a competitive schedule.16

Proof. Consider the type-A agents. When the type-B and type-C agents submit com-17

petitive schedules the supply of B in terms of A will be one-to-one, i.e. for every q units18

of B supplied q units of A are demanded. This implies that the relative price of the19

two goods has to be one, i.e. when others submit competitive schedules then the supply20

curve the type-A agents face is “flat” at a relative price of 1. A similar logic holds for21

the other agent types. Hence, no agent can do better by submitting a non-competitive22

schedule. �23

Appendix B. Proof of Proposition 524

Proposition 5. In a repeated Scarf economy with any value of α and starting from25

any prices p0, if agents of type A, B, and C submit schedules D̂BA(pt−1, p), D̂CB(pt−1, p),26

and D̂AC(pt−1, p) respectively, then prices will converge to the unique competitive equi-27

librium of the economy over successive periods.28

Proof. The supply schedule ŜYX(pt−1, q) = qD̂−1
XY (pt−1, q) is readily calculated as29

ŜYX(pt−1, q) =
α+ pt−1

1 + pt−1
− αq

The amount of A traded, qA, as a function of past prices pAt−1 and pBt−1, follows by30

solving qA = SAB(p
B
t−1/p

A
t−1, SBC(1/p

B
t−1, SCA(p

A
t−1, q

A))). Analogous expressions apply31

to qB and qC . Period t prices are then given by pAt = qC(pAt−1, p
B
t−1)/q

A(pAt−1, p
B
t−1) and32
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Figure B1. The left panel shows the phase portrait for the dynamical system (Equation B.1)

when α = 5 together with a typical price path. The right panel shows the same for the reciprocal

value α = 1
5
.

pBt = qC(pAt−1, p
B
t−1)/q

B(pAt−1, p
B
t−1). This yields the following discrete dynamical system1

( pAt

pBt

)
=

( 1

1

)
+
( g(pAt−1, p

B
t−1, α)

g(pBt−1, p
A
t−1,

1
α )

)
(B.1)

where2

g(p, q, α) = (1− α2)
(p2 − q)(1 + q) + α(p+ q)(1− pq)

α2p(α+ p) + q2(1 + p− α2(1− α)) + (1 + p)q(1− α(1− p) + α3)

It is readily verified that pA = pB = 1 is the unique rest point, or equilibrium, of the3

system (Equation B.1). Note that for α = 1, prices converge to equilibrium in one4

iteration and that the dynamical system for α > 1 is identical to that for 1/α < 1 with5

pAt and pBt interchanged. In other words, the price paths that occur for 1/α are obtained6

by mirroring the price paths for α in the 45-degree line. Hence, we can focus on the case7

α > 1.8

The left panel of Figure B1 shows a typical phase portrait for the system (Equation9

B.1) when α > 1. The upward sloping thin curve corresponds to price pairs where pA10

does not change and the downward sloping thin curve corresponds to price pairs where pB11

does not change. Their unique intersection corresponds to the equilibrium point (1, 1).12

The arrows indicate the direction of price changes in each of the four regions. The type of13

price dynamics that is consistent with this phase portrait is (i) convergence to the unique14

equilibrium, (ii) a limit cycle around the unique equilibrium, or (iii) divergence of prices.15
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In the latter two cases, the unique equilibrium has to be locally unstable. But a direct1

computation shows that the eigenvalues of the linearized system around (pA, pB) = (1, 1)2

have squared norm equal to3

3

4

(1− α)2

α+ (1− α)2
< 1

So the unique equilibrium is locally stable, and, hence, the phase portrait implies that4

only (i) can occur, i.e. the system is globally stable. The black piecewise linear curve5

in the left panel shows an example of a price path that starts at (pA, pB) = ( 14 , 1) and6

cycles inwards to the unique equilibrium in a clockwise fashion.7

The right panel of Figure A1 shows the phase portrait, the curves that define no8

change, and a price path starting at (pA, pB) = (1, 1
4 ) for the reciprocal value of α = 1

5 .9

Note that the right panel can be simply obtained by mirroring the left panel in the 45-10

degree line. Also in this case, prices converge to the unique equilibrium but now in a11

counter-clockwise fashion. �12

Appendix C. Replication of Anderson et al. (2004)13

In this appendix we discuss in detail Results 1, 2, and 4 from the Anderson et al.14

(2004) study. These three results pertain to their “cycling” treatment I, which we used15

for our experiments. Anderson et al. also consider other treatments, which we did16

not replicate. In this appendix we only consider data from our double auction market17

sessions.18

The first result concerns changes in average prices between periods.19

Anderson et al. (2004) Result 1. Changes in price have the same sign20

as own-market excess demand.21

We replicate this result. Following Anderson et al, the excess demand in each market22

was computed using the average prices in period t. The sign of the excess demand was23

compared to the sign of the change in average prices in each market between period t24

and period t+1. Data from the markets for good A and good B were pooled. Of the 17025

price changes, 131 (77.1%) had the same sign as excess demand. The p-value of a one-26

tailed sign test of the null hypothesis that the direction of price changes is independent27

of excess demand is less than 10−6. �28

The second result concerns whether prices converge to the competitive equilibrium prices.29

Anderson et al. (2004) Result 2. In treatments in which the Scarf model30

predicts orbits: (i) average prices near the end of the experimental sessions are31

not close to the equilibrium prices; (ii) prices exhibit no movement toward32

the equilibrium; (iii) average prices not close to the equilibrium prices are33

observed moving in the direction predicted by the orbiting model.34

We replicate these results. (i) Average prices are said to be close to equilibrium if the35

prices are in the range (pA, pB) ∈ [36.5, 43.5]× [16.5, 23.5]. Attention is restricted to the36
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Group 1 2 3 4 5 6 Pooled
βA
A 0.54 1.64 0.73∗∗ 1.77∗∗ 1.08∗∗ 1.26∗ 0.76∗∗

(0.29) (0.81) (0.24) (0.25) (0.24) (0.51) (0.17)

βB
A -1.58∗∗ 2.03 2.80∗∗ -0.02 2.00∗ -0.16 0.28

(0.28) (1.45) (0.81) (0.24) (0.84) (0.53) (0.32)

# Obs 15 10 15 15 15 15 85
βA
B -0.09 0.21∗ 0.05 0.70∗ -0.04∗ 0.07 0.06

(0.18) (0.06) (0.03) (0.28) (0.02) (0.05) (0.03)

βB
B 0.60∗∗ 0.83∗∗ 0.50∗∗ 0.89∗∗ 0.42∗∗ 0.51∗∗ 0.59∗∗

(0.18) (0.12) (0.12) (0.27) (0.08) (0.05) (0.06)

# Obs 15 10 15 15 15 15 85

Table C1. Estimating a more general price adjustment model using between-period price

changes. Prices are normalized so that the competitive equilibrium is (1, 1) and excess demand

for a good is normalized by dividing by the total quantity of that good in the economy. Standard

errors are in parentheses; ∗ indicates p < 0.05, ∗∗ indicates p < 0.01.

last seven periods of each experimental session. In none of these 42 final seven periods are1

average prices close to the Walrasian equilibrium. (ii) This is our Result 1, and support2

for this result is discussed in Section 5.1. Anderson et al. (2004) consider a slightly3

more general price adjustment model that allows for different speeds of adjustment in4

the markets for good A and good B. To analyze whether this makes a difference we5

estimate6

pt+1
A − ptA = βA

AEA(p
t
A, p

t
B) + βB

AEB(p
t
A, p

t
B) + ϵ

pt+1
B − ptB = βA

BEA(p
t
A, p

t
B) + βB

BEB(p
t
A, p

t
B) + ϵ

The results are shown in Table C1. First, the speed of adjustments βA
A and βB

B are not7

significantly different. Second, in both markets, price adjustments depend only on the8

excess demand in that market, i.e. βB
A and βA

B are not significantly different from 0. (iii)9

The clock-hand test and the quadrant test can be used to test whether the observed price10

paths are consistent with orbiting. Pooling all periods, in 79 of the 85 periods, the clock-11

hand direction of the price change was in the direction predicted by the orbiting model12

(p < 10−6 under the null hypothesis that clockwise and counter-clockwise movements13

are equally likely). Similarly, using the quadrant test, in 48 of the 85 periods, the price14

change was in the quadrant predicted by the orbiting model (p < 10−6 under the null15

hypothesis that movements into each of the four quadrants are equally likely). �16

The next result pertaining to the cycling treatment concerns price changes within periods17

rather than between periods and compares three models of price adjustment.18

Anderson et al. (2004) Result 4. In the orbiting treatments, trade-to-19

trade price movements (i) are not more consistent with simple convergence20

than with the Scarf model; (ii) are not more consistent with simple conver-21

gence than responding proportional to instantaneous excess demand; and (iii)22

are not more consistent with responding to instantaneous excess demand than23

with excess demand calculated at initial endowments (the Scarf model).24
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Market A Market B
(I) Price Changes

#price changes/#transactions 1121/1679 1892/2863
(66.8%) (66.1%)

(II) Correctly predicted sign of price change

Convergent model 525/1121∗ 884 /1892∗∗

(46.7%) (46.7%)
Scarf model 748/1121∗∗∗ 1096 /1892∗∗∗

(66.7%) (57.9%)
Instantaneous excess demand model 766/1121∗∗∗ 1114/1892∗∗∗

(68.3%) (58.9%)
(III) Comparing Models

Scarf vs. Convergent 429/649∗∗∗ 698/1227∗∗∗

(66.1%) (56.9%)
Instantaneous excess demand vs. Convergent 419/609∗∗∗ 647/1107∗∗∗

(68.9%) (58.4%)
Instantaneous excess demand vs. Scarf 31/45∗ 100/182

(68.9%) (54.9%)

Table C2. Trade-to-trade sign test results based on within-period prices. For parts (II) and

(III), the null hypothesis that the sign of the price change is correctly predicted with probability

0.5 is tested against a two-sided alternative. ∗ indicates p < 0.05, ∗∗ indicates p < 0.01, ∗∗∗

indicates p < 0.001.

We replicate a slightly stronger versions of these results. We find that the simple con-1

vergence model predicts the sign of price changes considerably worse than the other two2

models and that the instantaneous excess demand model does slightly better than the3

Scarf model. The results of a series of sign tests are reported in Table C2. Part (I) of the4

table shows that the price changed after approximately two thirds of the transactions5

in both markets. Part (II) considers the transactions where the price did change and6

reports the number of times each of the three models correctly predicts the sign of the7

price change. Part (III) compares pairs of models. Attention is restricted to transactions8

where the price changed and two models predict different signs for the price change. The9

number of times the first named model of the pair correctly predicts the price change10

is reported. In both markets, the simple convergence model does worst. The Scarf and11

instantaneous excess demand models perform similarly, with the instantaneous excess12

demand model doing slightly better. �13
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