
Predicting sea waves in the presence of pink noise
Jacqueline Christmas

Computer Science Department, University of Exeter, Exeter, EX4 4QF, UK
Email: J.T.Christmas@exeter.ac.uk

Abstract—It has been shown that the power output of some
wave energy converters can be greatly increased if they respond
to very short-term predictions of the shapes of the waves.
Observations of sea waves are traditionally made using buoys
carrying GPS and accelerometers. The recent development of
low-cost MEMS devices has led to cheaper devices, but also
to a renewed interest in the effects of pink (1/f ) noise and
signal processing methods for mitigating its effects. Bandpass
filtering reduces the effects of this noise, but its remaining
influence disrupts, in particular, the phase of the signal, which has
significant consequences for prediction. We introduce a Bayesian
model that promotes the smooth theoretical spectral shapes of
the signal and the pink noise and estimates the true signal
from one or more sets of observations recorded in parallel. The
signal we are aiming to discover is the profile of sea waves at a
fixed location; the spectral shape is determined by the Pierson-
Moskowitz model. We demonstrate the model on synthetic data
and give some preliminary results for the prediction of real sea
waves.

I. INTRODUCTION

It has been known for some time that a number of maritime
operations can benefit from short-term knowledge of the sea
surface shape. In particular, if wave energy converters of
the point absorber type are able to alter their characteristics
according to very short-term forecasts (a few tens of seconds)
then their power output can be increased by a factor of the
order of two [1]–[3]. Observations of wave profiles have been
made using commercially available buoys that were originally
designed to gather wave statistics, but we have noted that these
can be prone to suffer from significant amplitudes of low-
frequency noise, known variously as 1/f noise (where f is
the frequency), pink noise, or, in electrical systems, as flicker
noise.

The simplest way to reduce the effects of this noise is
to bandpass filter the signal, cutting off frequencies below
and above the range of interest. However, where there is an
overlap between 1/f noise and signal, the remaining noise
has a significant effect on the phase of the signal. In many
applications this does not matter as only the amplitudes or the
shape of the power spectrum are of interest. However, in our
case we are interested in prediction and for this the correct
estimation of the phase is vital [4].

In [5] we introduce a Bayesian spectral analysis model
that assumes the noise to be white with occasional outliers.
In this paper we extend this to explicitly model both white
and 1/f noise contributions, without outliers. The 1/f noise
is assumed to have a smooth spectral shape as described by
(1) below. In the case of the measurements in which we
are interested, the signal also has a smooth spectral shape,

allowing us to infer the amplitudes of the signal even where
it is overpowered by the low frequency noise. On its own
this does not enable us to extract the true phases from this
overlap region. This is achieved by learning the signal from
two (or more) parallel sets of observations where the noise is
assumed to be independent. This shared signal, independent
noise model is similar in concept to probabilistic Canonical
Correlation Analysis (CCA) [6], though in this case we control
the shape of both signal and 1/f noise and the observations are
ordered in time. The new model learns posterior distributions
for the noise variables, as well as the amplitudes and phases
of the signal’s component sinusoids. The frequencies of the
components are treated as parameters which we specify, as
are the timestamps associated with each of the observations.

1/f noise is a random process whose power spectrum is
proportional to the inverse of the frequency, f , taking the form
(for a one-dimensional signal)

S(f) ∝ 1/fγ (1)

where 0 < γ < 2 and γ is usually close to 1 (a value
of 0 gives white noise, while a value of 2 gives a random
walk). This type of noise occurs widely in natural time series
data found everywhere from climatology [7] to ecology [8],
and in man-made systems ranging from music [9] to traffic
[10]. It was first recognized in vacuum tubes by [11] and
has since been recognised in all manner of electrical and
electronic systems [12], including in graphene devices [13].
The recent development of low-cost MEMS devices for use in,
for example, inertial navigation systems, has led to a renewed
interest in the effects of this type of noise and signal processing
methods for mitigating its effects on the true signals of interest
(see, for example, [14]).

Figure 1 shows the power spectra from three different
devices measuring the height of sea waves at a fixed location
over time. The solid line is that from an expensive, low-
noise, motion sensor and exhibits approximately the shape we
expect of sea waves, while the black and grey dots represent
the spectra of the altitude above mean sea level measured by
Global Positioning System (GPS) devices. Notice that at low
frequencies the GPS observations show high-amplitude noise,
characterised by the dashed line. In this case the 1/f noise is
relatively benign; with some devices it swamps the signal. At
the high frequency end of the spectrum both the signal and
the 1/f noise tend to be dominated by white noise, which has
a flat spectrum.

Wavelet denoising [15] applies a basis function (a wavelet)
to the signal at different scales and time offsets within the
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Figure 1 The power spectra from three different devices measuring
the height of sea waves at a fixed location over time. The solid line
is that from an expensive, low-noise, motion sensor and exhibits
approximately the shape we expect of sea waves. The black and
grey dots represent the spectra of the altitude above mean sea level
measured by GPS devices. The dashed line characterises the shape
of the estimated 1/f noise in the GPS observations.

signal. The wavelet transform is a correlation analysis; the
output is expected to be maximal where the noisy signal most
resembles the wavelet. The Fourier transform uses a sinusoidal
basis function which, conveniently for this application, repre-
sents the shape of a single frequency swell wave in the sea.
In general, Wavelets with small coefficients are considered
to be noise and removed, which can remove both high and
low frequency noise, but, like bandpass filtering based on the
Fourier transform, it can also remove components of the signal
[14].

[16] use a fast orthogonal search algorithm [17] to model
the low frequency range of the spectrum and conclude that
it performs better than wavelet denoising. But they assume
that the signal will have higher power than the noise at low
frequencies and in our data this is not generally the case.

Allan variance [18], used by [19], provides a means of
identifying and quantifying different noise contributions and
depends on being able to record the noise where no signal is
present. This method, along with autocorrelation and autore-
gression [20], is useful for determining which types of noise
may be present, though for low frequency noise the number
of autoregression coefficients required might be very large.

A Bayesian model allows us to incorporate any prior
knowledge we may have regarding the likely distributions
of the model variables and avoids the overfitting known to
arise in maximum likelihood estimation by evaluating over all
possible values of those variables. In this case the integrals
required to perform exact Bayesian inference are intractable,
so we use variational approximation to estimate the posterior
distributions (for tutorials see [21,22] and [23, chapter 10]).

In section II we introduce the model and in section III
demonstrate its utility on synthetic data. Some preliminary
results with real sea data are shown in the conclusions section
(IV).
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Figure 2 Examples of Pierson-Moskowitz amplitude spectra for a
selection of wind speeds with 1,000 observations at 1Hz.

II. THE MODEL

The model assumes that each set of observations (for one or
more sets) is made up of two parts: a signal that is common
to all observation sets, and added noise that is unique to a
particular set and independent between sets. For one set of
observations consisting of N , one-dimensional measurements,
we assume that each observation, yn, is composed of signal
and 1/f noise contributions at C component frequencies with
a white noise term εn:

yn=

C∑
c=1

[
Ac cos (φc − ωctn) +Bc cos (ψc − ωctn)

]
+ εn

(2)

where ωc is the angular frequency of the cth component, Ac
and φc are the amplitude and phase of the signal at that
frequency, Bc and ψc are the amplitude and phase of the
1/f noise at that frequency, and tn is the timestamp associated
with the nth observation. In this paper the time intervals
between observations are assumed to be equal, but this does
not need to be the case [24].

We assume that the white noise is Gaussian distributed with
zero mean and precision (inverse variance) λ, which leads to
the following Gaussian likelihood:

p(yn |A,φ,B,ψ, λ;ω, tn) (3)

= N
(
yn |AT cos(φ− ωtn) + B cos(ψ − ωtn), λ−1

)
The εn term not only accounts for the white noise, but when
the model is trained on only a subset of the Fourier frequencies
it also absorbs the effects of the missing frequencies [24].

A. Smooth spectra

As previously mentioned, the theoretical spectra for the
signal and the 1/f are both smooth and of defined shapes.

1) Signal: The sea-shape of the signal spectrum is con-
trolled by a single variable, U . Sea swell is caused by wind
constantly blowing over the surface of the water for a period
of several hours. During that time the waves build until an
equilibrium is reached between the energy being input by
the wind and that being dissipated by breaking and non-
linear wave-wave interactions. A fully developed sea is one
in which this equilibrium has been reached [25]. Based on
observations of the North Atlantic, Pierson and Moskowitz
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Figure 3 A graphical representation of the model variables and their
dependencies. The variable yn denotes the nth observation from one
of the observation sets. All variables to the left of yn (hexagons) are
components of the signal that are shared across all observation sets.
All other variables are components of the noise that is specific to one
particular observation set.

[26] formulate a mathematical model for the power spectrum
of a fully developed sea:

S(ωc) =

√√√√0.0081g2

ω5
c

exp

(
−5

4

(
ω0

ωc

)4
)

(4)

where g is the gravitational constant and ω0 is the modal
frequency of the wind, given as a function of the wind speed
at an altitude of 19.5 m, U :

ω0 = 0.87g/U (5)

For a set of N observations we may express (4) in terms
of the amplitudes of the wave components:

Ac = 4
√
S(ωc)/N (6)

Figure 2 shows examples of these smooth Pierson-Moskowitz
spectra for a selection of wind speeds.

2) Pink noise: The shape of the 1/f noise power spectrum
(1) is controlled by two variables: a scale, corresponding to
the proportionality, and a shape, corresponding to γ (1). In
this paper we will assume that γ = 1, leaving us with just
a scale variable, ς . Let us redefine the shape of the spectrum
in terms of amplitude Bc, rather than power, at a particular
angular frequency ωc and for a set of N observations:

Bc = ς
2π

ωc
√
N

(7)

B. Priors

A graphical representation of the model variables and their
dependencies is shown in figure 3.

1) Signal priors: We specify a Gaussian prior for the signal
amplitudes Ac that is dependent on the wind speed U :

p(Ac | δc) = N (Ac | f(ωc, U), δ−1c ) (8)

where f(ωc, U) is the right-hand side of the Pierson-Moskowitz
equation (6), and specify a Gamma distribution1 for U :

p(U) = G(U | aU , bU ) (9)

and a conjugate Gamma prior for the precision δc:

p(δc) = G(δc | aδ, bδ) (10)

With no prior information about the component phases φc, we
model each of them with a Uniform distribution over the full
range of values, i.e. any 2π range; we choose −π to π:

p(φc) = U(φc | −π, π) (11)

Were prior information available we would instead specify a
von Mises distribution for each phase. The Uniform distribu-
tion is a special case of the von Mises and we use it here to
maintain the clarity of the implementation of the model by
minimising the number of parameters.

2) Noise priors: The precision of the white noise Gaussian
distribution for each observation set, λ, is assigned a conjugate
Gamma prior:

p(λ) = G(λ | aλ, bλ) (12)

As for the φc, the phases ψc are modelled with a Uniform
distribution over the full range of values:

p(ψc) = U(ψc | −π, π) (13)

For the 1/f noise scale variable ς (7) we assume a Gaussian
prior:

p(ς |mς , pς) = N (ς |mς , p
−1
ς ) (14)

Finally, we specify a Gaussian prior for the amplitudes Bc that
is dependent on the 1/f noise variable (from the right-hand side
of (7)):

p(bc | ς, τc) = N (bc | ς2π/(ωc
√
N), τ−1c ) (15)

and specify a conjugate Gamma distribution for its precision:

p(τc) = G(τc | aτ , bτ ) (16)

3) Summary: Thus the model consists of two parameters,
the C-dimensional ω and the N -dimensional t, and the
variables A, δ, φ, B and ψ (all C-dimensional), and U , γ
and λ. For the variables we aim to calculate their posterior
distributions, which provide us with both estimates of their
values and a measure of the uncertainty in those estimates.

C. Posteriors

In an exact Bayesian model we would need to calculate the
evidence by integrating the product of the likelihood and all
the priors by all of the variables. As is often the case, this is
intractable, so we resort to an approximation scheme. Rather
than using a computationally expensive Monte Carlo method,
we use the factorised version [27] of variational approximation
[21]–[23]. To maintain the clarity of this paper, we assume a

1defined as G(x | a, b) = ba

Γ(a)
xa−1 exp(−bx)



full factorisation of the approximate posteriors.With S obser-
vation sets and (s) denoting a variable associated with the sth
set, we define, for convenience:

uc,n = cos(φc − ωctn) (17)

v(s)c,n = cos(ψ(s)
c − ωctn) (18)

and the residuals

ỹ(s)n = y(s)n −
C∑
c=1

B(s)
c cos(ψ(s)

c − ωctn) (19)

ŷ(s)n = y(s)n −
C∑
c=1

Ac cos(φc − ωctn) (20)

which are the observations minus the estimated 1/f noise and
the observations minus the estimated signal respectively.

1) Signal posteriors: We now use the factorised variational
approximation technique [27] for each variable in turn, starting
with each Ac, the amplitude of the cth component sinusoid.
With q(·) denoting an approximate posterior and 〈·〉 the
posterior expectation, we end up with q(Ac) as the Gaussian
q(Ac) = N (Ac |µc, σ2

c ), where

σ2
c =

(
〈δc〉+

S∑
s=1

〈λ(s)〉
N∑
n=1

〈u2c,n〉
)−1

(21)

µc = σ2
c

(
〈δc〉〈f(ωc, U)〉+ (22)

S∑
s=1

〈λ(s)〉
N∑
n=1

〈uc,n〉
( C∑
i=1
i 6=c

ỹ(s)n − 〈Ai〉〈ui,n〉
))

For the precision of each amplitude, δc, we obtain the Gamma
posterior q(δc) = G(δc |αδc , βδc), where

αδc = aδ + 1/2 (23)

βδc = bδ +
1

2

(
〈A2

c〉〈f(ωc, U)2〉 − 2〈Ac〉〈f(ωc, U)〉
)

(24)

For the wind speed U we end up with

log(q(U)) ∝ (aU − 1) log(U)− bUU

− 1

2

C∑
c=1

〈δc〉
(
f(ωc, U)2 − 2〈Ac〉f(ωc, U)

)
(25)

This does not represent a standard probability distribution, but
we may use numerical methods to estimate the expectation and
variance of U . Based on the posterior q(U), we approximate
〈f(ωc, U)〉 and 〈f(ωc, U)2〉 (required in (22) and (24)) by
importance sampling (e.g. [28]).

For each phase we obtain a circular Von Mises distribution,
q(φc) = M (φc |αc, βc) (this is an approximation to a

Generalised von Mises distribution of order 2; see [5] for
details), where:

αc,1 = 〈Ac〉
S∑
s=1

〈λ(s)〉
N∑
n=1

cos(ωctn)〈q(s)c,n〉 (26)

βc,1 = 〈Ac〉
S∑
s=1

〈λ(s)〉
N∑
n=1

sin(ωctn)〈q(s)c,n〉 (27)

with 〈q(s)c,n〉 = ỹ(s)n −
C∑
i=1
i 6=c

〈Ai〉〈ui,n〉 (28)

2) Noise posteriors: For each white noise precision λ(s)

we get the Gamma q(λ(s)) = G(λ(s) |αλ, β(s)
λ ), where

αλ = aλ +N/2 (29)

β
(s)
λ = bλ +

1

2

N∑
n=1

[

y(s)2n − 2

C∑
c=1

(
y(s)n 〈Ac〉〈uc,n〉+ ŷ(s)n 〈B(s)

c 〉〈v(s)c,n〉
)

+

C∑
c=1

(
〈A2

c〉〈u2c,n〉+ 〈B(s)2
c 〉〈v(s)2c,n 〉

+
(
〈Ac〉〈uc,n〉+ 〈B(s)

c 〉〈v(s)c,n〉
)
.

C∑
i=1
i 6=c

(
〈Ai〉〈ui,n〉+ 〈B(s)

i 〉〈v
(s)
i,n〉
))]

(30)

For each 1/f noise amplitude we end up with q(B
(s)
c ) as the

Gaussian q(B
(s)
c ) = N (B

(s)
c |µ(s)

c , σ
(s)2
c ), where

σ(s)2
c =

(
〈τ (s)c 〉+ 〈λ(s)〉

N∑
n=1

〈v(s)2c,n 〉
)−1

(31)

µ(s)
c = σ(s)2

c

(
〈τc〉〈ς(s)〉

2π

ωc
√
N

+ (32)

〈λ(s)〉
N∑
n=1

〈v(s)c,n〉
( C∑
i=1
i 6=c

ŷ(s)n − 〈B
(s)
i 〉〈v

(s)
i,n〉
))

Following a similar procedure for the precision of each
amplitude, τ (s)c , we obtain the Gamma posterior q(τ

(s)
c ) =

G(τ
(s)
c |ατ , βτ(s)

c
), where

ατ = aτ + 1/2 (33)

β
τ
(s)
c

= bτ +
1

2

(
〈B(s)2

c 〉+
4π2〈ς(s)2〉
ω2
cN

− 4π〈B(s)
c 〉〈ς(s)〉
ωc
√
N

)
(34)

For each phase ψ(s)
c we obtain a circular Von Mises distribu-

tion, q(ψ
(s)
c ) =M

(
ψc |α(s)

c , β
(s)
c

)
(see comments regarding

φc above), where:

α(s)
c = 〈B(s)

c 〉〈λ(s)〉
N∑
n=1

cos(ωctn)〈q(s)c,n〉 (35)



β(s)
c = 〈B(s)

c 〉〈λ(s)〉
N∑
n=1

sin(ωctn)〈q(s)c,n〉 (36)

with 〈q(s)c,n〉 = ŷ(s)n −
C∑
i=1
i 6=c

〈B(s)
i 〉〈v

(s)
i,n〉 (37)

Finally, for each 1/f noise scale variable ς(s) we end up with
q(α

(s)
1 ) as the Gaussian q(ς(s)) = N (ς(s) |µ(s)

ς , σ
(s)2
ς ), where

σ(s)2
ς =

(
pς +

C∑
c=1

〈τ (s)c 〉
4π2

ω2
cN

)−1
(38)

µ(s)
ς = σ(s)2

ς

(
mςpς +

C∑
c=1

〈τ (s)c 〉〈b(s)c 〉
2π

ωc
√
N

)
(39)

Thus we end up with a set of expressions that define the
approximate posteriors for each of the model variables, but
each is dependent on the expected values of one or more
of the other variables. Each of the expressions is reassessed
iteratively until convergence.

By simple trigonometry, the expectation 〈u2c,n〉 (and simi-
larly for the 〈v(s)2c,n 〉) may be written as

〈u2c,n〉 =
1

2

(
1 + 〈cos(2φc − 2ωctn)〉

)
(40)

For the iterative procedure we do not need the expectation
〈φc〉, only 〈cos(φc − ωctn)〉 and 〈cos(2φc − 2ωctn)〉, which
we calculate numerically. Once the algorithm has converged
we may calculate 〈φc〉 by rewriting the posterior von Mises
in its alternative form:

M(φc | kc, µc) ∝ exp

(
kc cos(φc − µc)

)
(41)

where µc = atan2(βc/αc) (42)
kc = αc/ cos(µc) (43)

In this form 〈φc〉 = µc, and kc is a concentration parameter
that acts like a precision; when kc is large the variable is tightly
distributed around the expected value; as it becomes smaller
the distribution becomes flatter, tending towards the Uniform
distribution U(−π, π) as kc tends to zero. A similar process
is followed for the noise phases in ψc.

D. Summary of algorithm

A summary of the processing is shown in algorithm 1.
With ∆t as the interval between each of the N observations,
we calculate integer(N/2) + 1 angular frequencies uniformly
distributed across the range 0 to π/∆t (the Nyquist frequency)
inclusive, and then remove the 0 value, giving the vector ω
and the number of components C. Theoretically the amplitude
of 1/f noise at a frequency of 0 is infinite, so we avoid the
problem by mean-centring the observations and removing the 0
frequency. The time vector t is the vector of elapsed time since
the first observation. The expected values of the amplitudes
are initialised to the theoretical smooth shapes obtained from
the prior expectations 〈U〉 and 〈ς〉, the phases are initialised
to random values within appropriate ranges and the prior

Algorithm 1 Process for estimating the posterior distributions.
define the frequencies, ω, and prior hyperparameters
initialise the values of each variable
while not converged do

update the signal posteriors using (21–27)
for each observation set, s do

update the posteriors for B(s)
c and τ (s)c using (31–34)

update the posterior for ς(s) using (38–39)
update the posteriors for each ψ(s)

c using (35–36)
update the posterior for λ(s) using (29–30)

end for
end while
calculate means & concentrations of φc and ψc (41–43)

hyperparameters for the observation noise are set. The process
then iteratively recalculates the posterior distributions for each
variable in turn, until they converge. Finally the mean and
concentration parameters for each of the phases are calculated.

The amplitude distributions are Gaussian, which admits the
possibility of negative values. This is not in itself a problem
as a component with amplitude −a and phase φ is equivalent
to a component with amplitude +a and phase φ+π. However,
amplitudes with small magnitudes may oscillate between neg-
ative and positive values during the iterative process, causing
big jumps in their associated phases and the model does not
converge properly. To prevent this we use the absolute value
of 〈Ac〉 in place of 〈Ac〉 (and similarly for the B(s)

c ) in each
of the posterior expressions.

We have chosen to initialise the variables randomly to
demonstrate that the model converges to a good solution.
We could converge more quickly if we chose to initialise
the amplitudes and phases from the results of a Fast Fourier
Transform (FFT).

III. ILLUSTRATION: SYNTHETIC DATA

In this section we describe results obtained from synthetic
data for which we know the actual values of each of the
variables. In the first test the angular frequencies used to train
the model are identical to those used to generate the test data,
so that we may compare the estimated phases with the truth.
The second test is more realistic, with the model frequencies
being a small subset of the true frequencies.

A. Test 1

For the first test, in each case there are 200 observations, at
1 Hz, giving the set of 101 Fourier angular frequencies ω in
the range 0 to π. We start with 1,000 signals each generated
from sea-shape spectra with wind speed values drawn from
U ∼ U(0, 50) (0 to 112 mph) and phases from φc ∼ U(−π, π).
Each signal is used to generate two sets of observations by
adding 1/f noise with scale value drawn from ς(∗)∼ U(0, 2)

and phase from ψ
(∗)
c ∼ U(−π, π), and white noise with

variance drawn from 1/λ(∗) ∼ U(0, 2). Although the model
assumes that the 1/f noise shape value (the γ in (1)) is 1, the
synthetic data are generated with γ drawn from U(0.9, 1.1).
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(a) Test 1: 2-set runs
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(b) Test 1: 1-set runs
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Figure 4 Wind speed. (a) and (b) show two-dimensional histograms from test 1, showing the actual vs estimated values of the wind speed
variable U for the 2-set and 1-set runs respectively. (c) shows a plot of the actual vs estimated U from test 2, with black dots marking the
2-set runs and grey crosses the 1-set runs. The prior for U gives a mean value of 30.

Uninformative priors are used for the white noise precision
and 1/f noise scale variable, with

aλ = bλ = mς = pς = 10−6 (44)

To promote adherence of the estimated signal and 1/f noise
spectra to the desired shapes, tighter, more informative priors
are used for the amplitude precisions:

aδ = aτ = 1000 bδ = bτ = 1 (45)

and the wind speed is assigned a mildly informative prior:

aU = 3 bU = 0.1 (46)

For each test case the model is run twice, once with a single
set of observations (“1-set”) and once with both sets of parallel
observations (“2-set”). In figure 4, (a) and (b) show histograms
of actual vs estimated values of the wind speed variable U
across the 1,000 synthetic datasets. For both the 1-set and the
2-set runs, below a true value for U of about 10 m/s the noise
is dominating the signal and the estimate is poor, but above
this there is generally good correspondence. The effect of the
prior over U , which has a mean of 30, can be seen in both runs,
with U tending to be underestimated above this true value, but
the 1-set runs are more prone to underestimating U .

Figure 5 shows histograms of actual vs estimated values of
the signal phase φc, comparing the 2-set and 1-set runs with
the results from standard FFT. Only phases where the actual
amplitude is greater than 0.1m are shown; if the amplitude is
zero then the phase is arbitrary. The impact of noise is clearly
seen in the FFT result, where there is no correspondence
between actual and estimated values. The model is clearly
capturing approximately the correct phases in both cases; the
cleaner, more clearly-defined diagonal in (a) indicates that
basing the model on two sets of parallel observations gives
a better result than basing it on only one.

B. Test 2

So far the model has been trained on the same set of
frequencies that the observations were generated from. In the
second, more realistic, sea-like test, 100 signals are generated,
each of 100,000 data points, from 50,000 angular frequencies
(not including 0), and each signal perturbed by two different
sets of noise to generate pairs of observation sets. The model
is trained on the first 1,000 observations, with just 500
frequencies, or 1% of the true number.

Figure 4c is a plot of actual vs estimated wind speed values
U . As before, U is well estimated once the signal emerges
from the noise at about 10 m/s. The 1-set model has a greater
tendency to overestimate U when the signal is dominated by
noise and to underestimate it where the wind speed is higher.
This may be because the 1-set model has less evidence on
which to base a deviation from the prior.

Figure 6 compares the true signal and noise spectra (grey
lines; scaled to take account of the different number of
frequencies) with the signal spectrum estimated by the model
(black dots) and the amplitudes resulting from standard FFT
(grey dots) for one of the 2-set test runs. Although the noise
dominates the signal, the model is closely approximating the
true signal.

IV. REAL DATA

The model has been demonstrated on both single sets of
observations and parallel pairs of observations, but there is
nothing to prevent its use in the more general case where
there are multiple parallel sets of observations. Clearly in its
current form it will never be able to compete with FFT in
terms of speed, but it provides a basis for estimating signals
where the theoretical spectra are smooth and of a known shape,
and the observations are contaminated with pink and/or white
noise. The Bayesian method of combining an observation
with prior information points to its potential for processing
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Figure 5 Test 1. Two-dimensional histograms showing the actual vs estimated values of the signal phase, φc, for all contributions where the
actual signal amplitude is greater than 0.1m, from (a) the 2-set runs, (b) the 1-set runs, and (c) a standard FFT.
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Figure 6 Test 2. A comparison of the true spectra (scaled to take
account of the different number of frequencies) and those estimated
by FFT and the model. The inset is a close-up of the critical region.
The true signal and true noise spectra are shown as grey lines.
Overlaid are the spectra obtained from FFT (grey dots) and the
model (black dots). The true value of U is 15.5896; the value of
〈U〉 estimated by the model is 16.0628.

observations one at a time, as they are received. For our needs
an observation rate of 1 Hz is sufficient.

Testing this model in real sea conditions requires a single
measurement device (for example, a buoy) containing three
independent wave profile sensors, one low-noise (these tend
to be expensive) and a pair exhibiting the effects of pink
noise. Feeding the observations from the latter into the model
results in an estimate of the underlying signal that can then
be verified against the low-noise sensor’s observations. An
alternative method is to construct a buoy that contains the
noisy sensors, train the model as before and use the estimated
signal to predict the motion of the low-noise sensor using the
method described in [4]. The danger with placing both noisy

sensors within the same device is that the noise may no longer
be independent between the two.

We have a small amount of data (776 observations recorded
at 2 Hz) recorded from two separate sensor buoys together
in a small, rigid-hulled boat at some distance from a ship
carrying a low-noise sensor. Apart from the small number
of observations, there are two reasons why these data are
not ideal. The first is that the waves were coming from two
sources, travelling in two slightly different directions, each
producing a small spread of wave directions. This means
that the true wave spectrum is a mixture of slightly different
Pierson-Moskowitz spectra while the model assumes only one.
The second is that the boat was moving; this leads to encounter
phase shifts in the component waves which are not represented
in the model. The relatively small size of the boat and ship
relative to the amplitude/period of the waves means that a third
potential source of error, due to the assumption that they act
as single points bobbing on the sea’s surface, is unlikely to
cause appreciable effects.

The model was trained on the parallel observations of
noisy GPS altitudes recorded by the two buoys. The first
250 s of estimated signal were used to predict the motion at
the ship’s motion sensor for the subsequent 30 s. The 250 s
window was then advanced by 0.5 s (one observation) and
a second set of predictions obtained. This sliding window
process resulted in 217 sets of predictions based on the model’s
estimate of the signal. The same process was followed using
one buoy’s bandpass filtered inertial sensor measurements (the
accepted output from these buoys). Thus we may compare
the quality of predictions from the model and the filtered
observations. Figure 7 shows the linear correlations achieved
by each method between the predictions and the ship’s sensor
observations. As in [4] the quality varies over time, but in
general the model has provided the better predictive quality.

Figure 8 shows a period of truth from the low-noise sen-
sor overlaid with the multiple predictions obtained from the
moving-window method based on (top) the model’s estimate
of the signal and (bottom) the buoy’s filtered observations.
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Figure 7 Real data. A comparison of the prediction quality of the
model (black) and bandpass filtered observations (grey). These are
the linear correlations between predictions and truth for the 217
predictions obtained using the moving-window method (see text).
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Figure 8 Real data. A comparison of the predictions obtained from
(top) the model and (bottom) bandpass filtered observations for a
section of the data, using the moving-window method (see text).

This is a region of particularly good prediction quality and
we can see that the predictions based on the model’s estimated
signal is, in this case, better than those based on the filtered
observations.

These results are not presented as a confirmation of the
model as the prediction process is a current area of research,
but they show the potential for the model to benefit the
prediction of sea waves.
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