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Abstract  

Flooding is an important concern for the UK, as evidenced by the many extreme 

flooding events in the last decade. Improved flood risk intervention strategies are 

therefore highly desirable. The application of hydroinformatics tools, and 

optimisation algorithms in particular, which could provide guidance towards 

improved intervention strategies, is hindered by the necessity of performing flood 

modelling in the process of evaluating solutions. Flood modelling is a 

computationally demanding task; reducing its impact upon the optimisation 

process would therefore be a significant achievement and of considerable benefit 

to this research area. In this thesis sophisticated multi-objective optimisation 

algorithms have been utilised in combination with cutting-edge flood-risk 

assessment models to identify least-cost and most-benefit flood risk interventions 

that can be made on a drainage network. Software analysis and optimisation has 

improved the flood risk model performance. Additionally, artificial neural networks 

used as feature detectors have been employed as part of a novel development 

of an optimisation algorithm. This has alleviated the computational time-demands 

caused by using extremely complex models. The results from testing indicate that 

the developed algorithm with feature detectors outperforms (given limited 

computational resources available) a base multi-objective genetic algorithm. It 

does so in terms of both dominated hypervolume and a modified convergence 

metric, at each iteration. This indicates both that a shorter run of the algorithm 

produces a more optimal result than a similar length run of a chosen base 

algorithm, and also that a full run to complete convergence takes fewer iterations 

(and therefore less time) with the new algorithm.
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1. Introduction  

1.1 General Introduction 

Flooding is a natural disaster that can have extreme consequences on 

communities and the people within them. In the UK, there is a risk of flooding 

from rivers, the sea, groundwater, reservoirs and surface water (Environment 

Agency, 2009), which can all have a devastating impact on individuals and 

communities. The UK has experienced widespread flooding in recent years, most 

notably 2007, 2009, 2012 and 2014 (Centre for Ecology & Hydrology, 2014; JBA 

Risk Management Limited and Met Office UK, 2012; Marsh and Hannaford, 2007; 

Smythe, 2013). 

Climate change, ageing flood-prevention infrastructure and methodologies, and 

socio-economic circumstances have all played a part in these events and how 

they have impacted the UK. Additionally, the majority of the UK drainage 

networks are still combined systems, handling both waste water and storm water 

(Marsalek et al., 1998). This leads to massive additional pressure on drainage 

systems during rainfall events. Looking to the future, and taking into account the 

trend across the time-scale of this research, it seems likely that more extreme 

weather events will become a fact of life and the UK, therefore, must adopt a pro-

active approach to improving the way in which it manages the risks of flooding. 

One of the key areas of flood risk management is the identification of intervention 

strategies that can be applied to drainage networks, in order to reduce the flood 

risk associated with those networks. Inevitably, the bodies concerned with 
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applying these intervention strategies to the networks will be interested in 

ensuring that they maximise the return on their investment or in other words, 

achieve the maximum reduction of risk of flooding for the amount of money they 

are investing. Additionally, they will be keen to ensure that they make informed 

and justifiable choices in terms of identifying the optimal investment point to 

target. 

The main method of achieving these goals to date has been with the aid of human 

engineers who invest a great deal of time into providing information to decision 

makers and making sure that they can have confidence in the information they 

have provided. The problem solving approach can involve computational 

modelling (Marsalek et al., 1998), examination of previous approaches used in 

situations that are related in some way, and a considerable amount of 

engineering experience and knowledge being applied. This thesis aims to 

advance the development of flood risk intervention strategies for urban drainage 

networks.  

As computers lack human intuition for what makes a “good” or “bad” solution, the 

only way to truly solve a problem for computers is to perform an exhaustive 

analysis of every possible solution. In situations where this is not possible (due 

to time or computing power constraints), heuristic algorithms are generally used, 

which are aimed at producing a “good enough” solutions. One such type of 

heuristic algorithm is a “genetic algorithm” (see section 2.3.2). 

As an example of the computing power/time issue, if a genetic algorithm were 

applied to the problem in some way, assuming a run of twenty thousand 
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iterations, and a population of two hundred possible solutions, there would be 

four million total analyses involved. If each of those analyses took an average of 

only two minutes, the complete run time would be in excess of fifteen years. 

In order to solve these problems, this thesis has utilised multi-objective 

optimisation techniques. These techniques develop a Pareto front allowing an 

expert user to give guidance, as to prime investment points, and the improvement 

in (reduction of) flood risk potentially available at each investment point. In order 

to allow these techniques to complete within a reasonable period, it has been 

necessary to investigate heuristic methods of decreasing the computational cost 

of the necessary objective functions. A problem with these methods is the 

reduction in accuracy that is necessarily a part of the way they operate. Care 

must be taken in their application to ensure that as little as possible accuracy is 

lost in the process. 

In order to gain the benefits that these technologies can supply, this thesis 

describes and demonstrates the application of an object oriented software 

solution utilising these methods, which could guide engineers in the process of 

developing investment options and advising their clients/decision-makers as to 

the appropriate investment points available to them. 

It should be noted that all experimentation carried out as part of this thesis was 

performed on a modern desktop computer system, comprising an Intel i5 750 four 

core central processing unit (CPU) with 8 gigabytes of RAM and a 7500 RPM 

hard disk drive. Any time estimates, where given, are based on this computer 

system. 
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1.2 Aims and Objectives of Research 

The main aim of this thesis is to describe the development of a new methodology 

for drainage system flood risk management, which will aid in the identification of 

optimal investment points, as well as the maximum potential reduction in risk for 

a given investment. Broken down into a list of individual objectives this comprise: 

1. Identification of a multi-objective optimisation algorithm to use as a starting 

and comparison point for the process of developing an improved 

optimisation algorithm targeted at complex flood risk analysis objectives. 

The algorithm and the objectives for the algorithm were to be custom-

developed rather than used from a library, as they had to be suitable for 

usage within other applications in the wider HR Wallingford software 

domain. Algorithms from a library could have had licensing issues, and 

would not have been as well integrated as a custom developed algorithm. 

Due to this custom development, it would have been prohibitively time-

consuming to try several as part of this thesis, so literature on similar 

optimisation problems has been examined to identify a suitable base 

algorithm. 

2. The development and testing of a benchmark multi-objective algorithm to 

ensure best-performance on extremely complex, NP-hard problems. Due 

to the interactions of surface-flow and drainage system flow, as well as the 

complexities of drainage system flow analysis, drainage system flood risk 

problems fit within this category of problem. Additionally, this had to be 

implemented through an object-oriented structured software engineering 
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approach with a suitable user-interface, as one of the requirements for this 

EngD is software that can be further utilised in practice. 

3. To formulate the overall optimisation problem for the multi-objective 

optimisation algorithm. Including, objectives that best described the 

drainage system flood risk management problem based on expected 

annual damage and capital cost of intervention strategy; constraints that 

sensibly limited proposed solutions; and the decision variables that made 

up these proposed solutions. 

4. To improve the computational efficiency of the optimisation process. 

Initially this involved testing the performance of the multi-objective genetic 

algorithm and investigating methods for reducing the computational 

burden of the optimisation. Heuristic methods, such as classifier-based 

meta-models, for improving the computational efficiency of an objective 

function within an optimisation were then investigated. One or more of 

these heuristic methods was then to be developed and tested thoroughly 

with regard to computational efficiency, and the impact on accuracy of 

results. 

5. To test and verify computational efficiency and effectiveness of the new 

methodology on a real case study involving drainage system flood risk 

optimisation.  

1.3 Structure of Thesis 

This thesis contains seven chapters including this introductory chapter. This 

chapter identifies the purpose of the research being undertaken and gives a brief 
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overview of the nature of the problems being investigated and the structure of the 

rest of the thesis. 

In chapter two, a review of literature is undertaken. This review covers flood risk 

management techniques, optimisation algorithms, multiple-objective versions of 

optimisation algorithms and finally machine learning techniques. 

In chapter three, a pre-existing flood risk analysis system is described. This 

system will form the foundations of the flood risk analysis software solution being 

developed for this thesis. Optimisations can be performed to the original 

implementation of this flood risk analysis system. Testing of said optimisations to 

ensure improved efficiency with no drop in accuracy will then be described. 

In chapter four, the implementation of optimisation algorithms and machine 

learning techniques for the purposes of this thesis is examined. Improvements 

made to the existing tool set are identified, and the performance gains examined. 

The structure of the optimisation tool set and the manner in which different 

segments of it are constructed is then examined. Finally, the methodology behind 

the optimisation process, including the selection of a reduced rainfall set to 

decrease expected annual damage (EAD) calculation time is examined and 

discussed. 

In chapter five, several test cases are examined. These are water distribution 

system problems on which several optimisation algorithms have been run. The 

results from these optimisation algorithms have been combined and analysed to 

give estimated Pareto fronts (Wang et al., 2014). These Pareto fronts are 

intended for use as reference fronts for the purposes of analysing and comparing 
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optimisation algorithm performance. These test cases were selected as they are 

fairly similar to drainage design problems in terms of variables required and 

suitable measurements of system performance, less computationally intensive 

and therefore considerably less time consuming to optimise upon. 

In chapter six, a fully functioning drainage system model of a real-world 

catchment is analysed utilising the techniques and methodologies that have been 

so far identified, implemented and tested. The performance of the techniques and 

methodologies developed during this thesis can therefore be shown to have 

suitability to real-world problems and models. 

In chapter seven, the findings of this thesis are identified and discussed, any 

conclusions that can be drawn from those findings are likewise identified and 

examined, and any future work that could be carried out to further progress 

knowledge in this area is identified. 
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2. Literature Review 

2.1 Introduction 

Urban flooding is estimated to cost two hundred and seventy million pounds per 

year in England and Wales combined, with eighty thousand homes at risk 

(Parliamentary Office of Science and Technology, 2007). It is usually caused by 

rainfall overwhelming combined drainage systems, rivers overflowing due to 

excessive surface run off, or a combination of the two. In addition to these 

monetary costs, flooding presents various health risks (Fewtrell and Kay, 2008), 

which strongly affect the quality of life of individuals even after the flooding event 

has itself passed. Looking at these facts, it is clear that there is a need to develop 

improved methods for identifying the most suitable intervention strategies for 

flood risk reduction in given urban areas. 

The modelling of urban flood risk is a highly computationally intensive problem, 

due to the complex nature of urban flood plains and hydrology. Any intervention 

strategy identified must be accurate in terms of the benefits it proposes. At the 

same time, any algorithm that purports to develop these intervention strategies 

to reduce flood risk must be efficient enough to allow for risk analysis and options 

appraisal within a reasonable time frame. 

HR Wallingford has previously developed the System-based Analysis and 

Management of urban flood risks software (DTI-SAM) in partnership with the 

Department for Business, Enterprise, and Regulatory Reform (previously the 

Department of Trade and Industry) along with several other interested parties and 
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completed in 2009 (Kellagher et al., 2009). This project’s goal was to develop a 

risk-based methodology and tool set for assessing the average flood damage per 

year that is likely to be incurred within a given area in terms of Expected Annual 

Damage (EAD), which is a cost measure, based on pounds sterling in this project. 

Additionally, this tool set and methodology would identify what proportion of this 

EAD value was due to each drainage asset within the catchment area. As of 

project completion, these goals were successfully achieved. 

This thesis builds upon this previous project by refining, optimising and improving 

the developed tool set, using optimisation techniques to identify a range of Pareto 

optimal intervention strategies based on the estimated cost (in terms of 

implementing the changes from the original drainage network) and the EAD 

values of the assessed intervention strategies. 

2.2 Flood Risk Management 

2.2.1 Introduction 

As previously mentioned (see section 2.1) flooding has a substantial economic 

impact (Parliamentary Office of Science and Technology, 2007) and is associated 

with extensive health risks (Fewtrell and Kay, 2008). Flood risk assessment 

serves as an important tool for ensuring actions taken minimise flood risk insofar 

as it is possible to do so, within the constraints applicable to a given situation. 

In England and Wales, flood risk assessment is highly important for insurance 

purposes for buildings, developments and for maintenance planning. Wherever 

a planning application is submitted, a flood risk assessment is also required if the 
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land in question is within a zone of flood risk (flood zones 2 or 3) and/or is greater 

than one hectare of land (Department for Communities and Local Government, 

2010). 

Flood risk assessments are usually carried out utilising a design storm approach 

(Hromadka and Whitley, 1988), which means that the drainage systems are 

designed to have the capacity to successfully stand up to the largest rainfall event 

expected within a given number of years, without incurring flooding events. This 

approach has limitations in that the method of assessment of performance 

involves no analysis of how well the drainage system performs, but is a test of 

whether or not the system meets a certain criterion, and thus does not lend itself 

to being utilised as part of an optimisation process. The latter requires an 

objective function that can identify how good a solution is, as opposed to simply 

whether or not it meets certain criteria. 

In recent years, the focus has moved towards risk-based flood risk assessment 

(Kellagher et al., 2008; Sayers et al., 2002). The key elements of a risk-based 

approach are as follows: 

• Under a risk-based approach, the system being analysed is evaluated in 

terms of the consequences of the failure of that system, rather than in 

terms of the severity of the rainfall event on which failure is likely to start 

occurring. 

• A risk-based approach allows comparison of intervention options based 

upon how well those options mitigate the consequences of flooding, 

should flooding occur. Merely optimising on whether flooding has 
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occurred is not an easily differentiable problem, i.e. there is no way to tell 

if there is a difference between two solutions which both cause flooding. 

This is a problem as a solution that results in a few inches of flooding and 

minimal damage would clearly be preferable to one that results in six foot 

of water and extensive harm to infrastructure. 

• When utilising a risk-based approach, all events can be analysed 

regardless of the likelihood of their occurrence. In a design storm 

approach, the system is analysed with regard to one specific system load. 

2.2.2 Urban Flood Risk Analysis 

Urban flooding is a particularly challenging problem to analyse, due to the 

complex nature of urban flood plains and rainfall. Urban flood plains are 

effectively a series of highly complex, interconnected channels at varying levels, 

with the impermeable nature of various elements of urban terrain and buildings 

further complicating analysis. A huge amount of research has been performed in 

this field in recent years (Ashley et al., 2008; Bach et al., 2014; Chen et al., 2012a, 

2012b; Djordjević et al., 1999; Fedeski and Gwilliam, 2007; Garcìa et al., 2015; 

Ghimire et al., 2013; Gires et al., 2012; Kubal et al., 2009; Leandro et al., 2011; 

Maksimović and Prodanović, 2001; Rodríguez et al., 2013) and knowledge of the 

area is rapidly improving although there remains much research to be done. 

A conceptually similar project to the one undertaken in this thesis was recently 

completed (Woodward, 2012; Woodward et al., 2013a, 2013b). The techniques 

proved extremely useful when applied to the problems within this thesis. 

Particularly, the identification of a reduced rainfall set in order to improve the 
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computational efficiency of an objective being utilised in a multi-objective 

optimisation algorithm. 

As mentioned in section 2.1 the work in this thesis is based upon a previous 

project, which succeeded in its goal of producing a methodology and supporting 

computer tool set to perform risk-based flood risk assessment on large catchment 

areas (Kellagher et al., 2009). A substantial amount of tool development was 

involved in this thesis, built partially upon this tool set, as the developed tool set 

was extremely computationally intensive to run and unsuitable for inclusion within 

a multi-objective optimisation algorithm. Additionally, the multi-objective algorithm 

itself had to be developed and build, plus additional components on top of that to 

improve efficiency and maintain accuracy. Finally, this software all had to be 

developed in such a way that it was suitable for inclusions in other projects, could 

support decision making, and was generally fit for purpose.  

The finalised tool set for DTI-SAM included, SAM-Risk 1 and 2 (Kellagher et al., 

2009), SAM-UMC (Wills, 2013), Rapid Flood Spreading Model (RFSM) (Lhomme 

et al., 2008), Infoworks CS, and a set of design-storm or time-series based rainfall 

data that allows for drainage system simulations to be run within Infoworks 

(Kellagher et al., 2009). This software formed the basis of core aspects of the 

software developed during this thesis. 
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Figure 1 - DTI SAM toolset structure (Kellagher et al., 2009) 

SAM Risk (see Figure 1) 1 and 2 are the user-interface and controller for the tool 

set, building the scenarios for SAM-UMC to process. SAM Risk 1 assumes full 

system functionality (no blocked or collapsed drains), whereas, SAM Risk 2 

allows for the possibility of parts of the drainage system collapsing, or becoming 

blocked. The chance of a drain collapsing, or blocking, is calculated using an 

empirical equation (Long, 2008) for calculating pipe-failure probability. SAM-UMC 

then functions as an interface to the Infoworks CS COM object (Innovyze, 2007), 

which allows for the loading and running of simulations, from which the results 

can then be exported and collected. The rapid flood-spreading model distributes 

the excess water at each manhole (identified during the Infoworks CS run) over 

the terrain model.  

This project uses the SAM Risk 1 model, without taking into account the potential 

for drainage system collapse and blockage. SAM Risk 2 has a far larger demand 

on computational time, but produces very similar results to SAM Risk 1 on most 

networks (Kellagher, 2010). Further information on the function of the DTI-SAM 

tool set and calculation of risk can be found in chapter 3. 
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2.2.3 Flood Risk Management Summary 

In summary, risk-based methods of assessing flood risk are becoming more 

mainstream, and allow for a consequence-based evaluation of a flooding event, 

which gives a useful scale to measure how good a given drainage system is, 

compared to another. The DTI-SAM project previously completed at HR 

Wallingford has produced a useful tool set and methodology, which this project 

can build upon and incorporate in order to optimise flood-risk interventions. 

2.3 Optimisation Algorithms 

2.3.1 Introduction 

There are many kinds of optimisation algorithm, including: linear programming 

(Schrijver, 1998), integer programming (Schrijver, 1998), non-linear programming 

(Bertsekas, 1999), gradient descent algorithms (Baldi, 1995), evolutionary 

algorithms (Back, 1996) and swarm algorithms (Brownlee, 2012). In this chapter 

search algorithms are the main focus, which encompass some of the 

aforementioned types of algorithm. Search algorithms are designed to identify a 

desirable item, or items, amongst a superset of items. 

There are two main forms of search algorithm, deterministic algorithms, which 

are effective at solving simple problems and non-deterministic algorithms which 

are less efficient on simple problems. Non-deterministic algorithms can, however, 

solve considerably more complex problems that deterministic algorithms would 

either not converge on, or would not converge within a reasonable time. 

Deterministic algorithms encompass hill climbing or gradient descent algorithms 
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(Burges et al., 2005), the A* search algorithm (Liu and Gong, 2011) and TABU 

search (de Werra and Hertz, 1989; Gendreau and Potvin, 2005; Glover et al., 

1993; Glover and Laguna, 1997; Hertz and de Werra, 1991; Soriano and 

Gendreau, 1996) amongst others. Non-deterministic algorithms encompass 

genetic algorithms (De Jong, 1975; Holland, 1975, 1962; Schaffer, 1985), 

simulated annealing (Kirkpatrick et al., 1983), and ant-colony optimisation (Dorigo 

et al., 1997; Dorigo and Blum, 2005; Dorigo and Stutzle, 2004; Gutjahr, 2000) 

amongst, again, a multitude of others. 

The problem this project is attempting to solve is highly complex and based on 

literature consulted, it is likely that deterministic algorithms would fail to converge 

to a good answer on the problem which this thesis  solves in a reasonable time. 

This is because that problem is a non-linear, combinatorial, NP-hard problem, 

which are all characteristics of problems which deterministic algorithms do not 

solve well (Garey and Johnson, 1979). Therefore, deterministic algorithms will be 

ignored entirely, and only a brief overview of single-objective non-deterministic 

algorithms follows to set the scene, followed by an examination of the 

development and application of the powerful multi-objective techniques that 

would have a chance of obtaining a reasonably good answer to this project's 

problem within a sensible time frame. 

2.3.2 Genetic Algorithms 

Genetic algorithms are based loosely upon Darwin’s theory of natural selection 

(Darwin, 1859), which suggests (to simplify greatly) that organisms evolve based 

on the more useful elements of an organism enabling that organism to breed 
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more, thus passing on those elements to some or all of its offspring, who will, 

again, breed more. Eventually the organisms with the useful traits will either 

supplant or exist alongside the original organisms. These useful elements would 

initially be produced by a mutation of existing elements, before being passed 

down parent to child in this manner. Genetic algorithms are immensely popular 

optimisation algorithms due to their suitability for non-linear, non-convex, multi-

modal and discrete problems with which traditional gradient descent derived 

algorithms may perform poorly in comparison (Nicklow et al., 2010).  

The process of a genetic algorithm can be separated into four distinct sub-

processes: generation, selection, crossover and mutation. Generation involves 

building an initial population of potential solutions either by random creation or 

some other method. Selection is where the population is evaluated, and then a 

subset of that population is selected by one of many possible selection algorithms 

(e.g., fitness proportionate (Back, 1996), stochastic universal sampling (Ghimire 

et al., 2013), tournament selection (Miller and Shaw, 1996; Nicklow et al., 2010) 

etc.) for the generation of a child population via the next stages of crossover and 

mutation. Most modern implementations use either truncation or tournament 

selection (Nicklow et al., 2010) as these are scaling invariant and inherently elitist, 

which has been shown (Bayer and Finkel, 2004; Reed et al., 2000; Yoon and 

Shoemaker, 2001) to enhance the effectiveness of the genetic algorithm. 

Crossover is the process of generating new chromosomes by combining aspects 

from previous solutions chosen by the selection algorithm via one of several 

possible crossover algorithms (single-point, multi-point, uniform, partially mapped 

crossover, etc.) in the hope of producing a “child” chromosome more fit then 
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either of its “parent” chromosomes. Mutation involves introducing a chance of 

making random changes to the chromosomes, which helps to prevent premature 

convergence and allow a fuller exploration of the search space by including genes 

that were not present in the initial random population. A final process that is not 

essential to the function of the algorithm, but which vastly improves its efficiency 

and effectiveness, is called “elitism”. Elitism ensures that the best scoring 

chromosomes from each population make the transition from parent to child 

population intact. This ensures that promising search areas are not lost to the 

algorithm part way through iteration. 

Genetic algorithms have been around since the 1960’s (Holland, 1962). However, 

they only began to gain wider acceptance as an effective and efficient 

optimisation strategy in 1975. This was due to both the publication of “Adaptation 

in Natural and Artificial Systems” (Holland, 1975) and the thesis entitled “An 

analysis of the behaviour of a class of genetic adaptive systems” (De Jong, 1975). 

Holland (1975) presented the concept of adaptive algorithms utilising the 

concepts of mutation, selection and crossover, and De Jong (1975) showed that 

genetic algorithms could perform exceptionally well on discontinuous and noisy 

data that is challenging for many other optimisation techniques. Genetic 

algorithms have been utilised on many and varied problems since their 

development (Goldberg and Wang, 1997; Huang et al., 2009; Montana and 

Davis, 1989; Santarelli et al., 2006; Scully and Brown, 2009) with good success 

rates. 
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2.3.3 Simulated Annealing 

The annealing process in metalworking inspired the simulated annealing 

algorithm. Annealing is the process of heat-treating metal to achieve desired 

properties within the material by heating it up and then allowing it to cool very 

slowly. Annealing occurs because over time, the atoms within the metal align 

themselves towards the equilibrium state when the bonds between atoms have 

been broken (hence the heat). 

Simulated annealing (Kirkpatrick et al., 1983) is a computational emulation of this 

process, in order to apply it to optimisation problems. A temperature is tracked 

within the algorithm, beginning at a high level and gradually decreasing 

throughout the execution of the algorithm. The algorithm usually halts when the 

temperature reaches a pre-determined level. Initially, one solution to the problem 

in question is generated and the score obtained through the objective function 

represents the “energy” of that particular state. At each cycle of the algorithm, this 

state is altered to generate a new state. This new state is then evaluated and if 

its energy is lower, it replaces the current state. If the energy of the new state is 

higher, then it still may replace the current state, but that is based upon chance 

influenced by the current temperature and the difference in energy. As the 

temperature lowers, the chance of inferior solutions replacing the main solution 

drops swiftly (Smith and Savić, 2006). 

It has been proven (Geman and Geman, 1984) that with a sufficiently drawn out 

cooling schedule the simulated annealing algorithm will always converge to the 

best possible solution. Most implementations of simulated annealing are, 
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however, on far faster cooling schedules in order to be of use in providing an 

answer within a reasonable time frame. Simulated annealing does generally 

perform well over shorter intervals, however, and has proven to be an extremely 

effective solution for single objective optimisation problems. 

2.3.4 Ant-Colony Optimisation 

Ant-colony optimisation is a relative newcomer to the field of optimisation 

algorithms, having been first introduced in the early 1990’s by M. Dorigo and his 

colleagues in Italy (Dorigo, 1992; Dorigo et al., 1997, 1991) as an algorithm for 

solving combinatorial optimisation problems. Like evolutionary algorithms, ant-

colony optimisation is a meta-heuristic algorithm inspired by nature. In this case, 

by the methods that ants in the natural world use to guide other members of their 

colony to discovered food sources, i.e., pheromone trails. 

When ants are exploring an area around their nest for food, they initially explore 

in a wholly random manner. When an individual ant discovers a food source, it 

evaluates the quantity and quality of this food source, and then carries a portion 

back to the colony’s nest leaving a pheromone trail behind it. The pheromone trail 

varies depending upon the quantity and quality of the food source. Other ants are 

attracted to follow this trail and will then discover the food and leave their own 

pheromone trail. The pheromones laid to mark these trails evaporate over time, 

so over time longer trails will become weaker than shorter ones and attract fewer 

ants in consequence. In this manner, although no direct communication has taken 

place, greater quantities of ants will be drawn towards the best food sources, the 

shortest distance from the nest (Dorigo and Blum, 2005). 
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Ant-colony optimisation has been applied to various problems successfully 

(Dorigo and Stutzle, 2004) since it was developed. A proof of convergence 

focusing on a particular implementation of ant-colony optimisation, called “Graph 

Based Ant System (GBAS)” to an optimum solution was published in 2000 

(Gutjahr, 2000). This was followed by a more generalised proof of convergence 

to any optimal solution in 2002 (Gutjahr, 2002). Practical applications of GBAS 

have, however, been rare (Dorigo and Blum, 2005) and work continued on 

proving convergence of more commonly used ant-colony algorithms with an 

included positive lower bound. This has finally been completed with a proof for 

convergence in value and solution (Dorigo and Stutzle, 2004, 2002). 

Ant-colony optimisations main advantage over evolutionary algorithms, or other 

optimisation techniques, lies in its ability to be run on-line and swiftly compensate 

for live alterations to the problem being solved. It can be used with great effect 

for route planning, network planning, and similar problems, due to these 

capabilities. Evolutionary algorithms do, however, have a longer record of 

accomplishment and are considered a safer option, particularly where the 

problem has no element of volatility and does not have to be solved on-line. 

2.3.5 Multi-Objective Optimisation 

The vast majority of optimisation algorithms are designed around the idea of a 

single objective; therefore, there is a proliferation of highly efficient, accurate 

algorithms to deal with single-objective problems that are highly documented (De 

Jong, 1975; Dorigo, 1992; Dorigo et al., 1997; Holland, 1975, 1962; Kirkpatrick et 

al., 1983). The field of multi-objective optimisation is more challenging and more 
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useful. Most real-world problems do not involve simply trying to find the most 

optimal approach to a problem to achieve one fixed solution. They are a matter 

of weighing different options against each other, based on several separate 

criteria, and attempting to select the approach with the most usable balance. 

Multi-objective optimisation algorithms are designed to work with more than one 

objective function. The algorithm works to minimise or maximise each of the 

objectives simultaneously. The objective functions are usually in conflict with 

each other, as if there was no conflict between the two objective functions it would 

be more efficient and possibly more accurate to develop a number of single-

objective optimisation algorithms and find the optimum value for each objective 

in this way (Coello, 1999). 

The issue of multi-objective optimisation is defined by (Coello, 1999) as finding 

the vector described in equation 1 where 2 and 3 are satisfied, the vector function 

in 4 is optimised, and the decision variable vector is as shown in 5. 
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In words, multi-objective optimisation is the problem of finding from a given set, 

which satisfies the constraints listed in 2 and 3, the sub-set that is composed of 

the optimum values of all objective functions. This set is known as a “Pareto set” 

(Pareto, 1896), the non-inferior or non-dominated sets, which contain Pareto 

optimal solutions. A point is considered Pareto optimal if no vector exists which 

would improve the score of one criterion without causing a simultaneous 

deterioration in some other criterion. 

2.3.6 Multi-Objective Evolutionary Algorithms 

The first mention of the concept of a truly functional multi-objective genetic 

algorithm (i.e., a genetic algorithm that could handle multiple objectives without 

resorting to objective function aggregation) dates back to the 1960’s (Rosenberg, 
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1967). However, no multi-objective genetic algorithm was developed at that time. 

An attempt was made in 1983 (Ito et al., 1983) to develop a multi-objective 

genetic algorithm, but usually credit is given to Schaffer with his Vector Evaluated 

Genetic Algorithm (VEGA) for developing the first fully functioning multi-objective 

genetic algorithm (Schaffer, 1985, 1984). VEGA offered a credible multi-objective 

genetic algorithm, but it failed to include a mechanism for multi-objective elitism. 

This dramatically affects the speed at which an algorithm converges to good 

solutions, as promising solutions may be lost throughout the process. 

After the development of VEGA, the most popular approaches for multi-objective 

genetic algorithms were aggregating functions. The most commonly used 

versions of these were the weighted-sum approach (Coello, 1999; Jones et al., 

1993; Liu et al., 1998; Syswerda and Palmucci, 1991; Wilson and Macleod, 1993; 

Yang and Gen, 1994), goal programming (Charnes and Cooper, 1961; Coello, 

1999; Ijirii, 1965; Sandgren, 1994; Wienke et al., 1992), goal attainment (Coello, 

1999; Wilson and Macleod, 1993), s-constraint (Coello, 1999; Quagliarella and 

Vicini, 1997; Ranjithan et al., 1992; Ritzel et al., 1994). 

These aggregating functions had several common problems, including a difficulty 

in working well on non-convex search spaces. Furthermore, where weights were 

used within the algorithm a very good knowledge of the objective functions in 

question was required for the values of those weights to be decided. So the need 

for improvement in the field was still very obvious. 

The initial ideas of including the concept of pareto-optimality in multi-objective 

algorithms arose in Goldberg’s book in 1989 (Goldberg, 1989). Whilst criticising 
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VEGA, he suggested that the use of non-dominated ranking of solutions with 

selection could move a population towards the Pareto front. There was no 

implementation of this idea for an algorithm supplied, but the majority of multi-

objective algorithms developed after the publication of this book drew in a large 

part upon his ideas and suggestions (Coello, 2005), most notable the non-

dominated sorting genetic algorithm (NSGA) (Srinivas and Deb, 1994), the 

niched Pareto genetic algorithm (Horn et al., 1994), and the multi-objective 

genetic algorithm (MOGA) (Fonseca and Fleming, 1993). Additionally, in 1992 a 

method was developed (Tanaka and Tanino, 1992) to incorporate user 

preferences into a multi-objective evolutionary algorithm. 

From this point onwards, a focus shift occurred. The problem of building effective 

algorithms had been solved, and the goal was now to produce ever more effective 

and efficient algorithms (Coello, 2005). One of the main initial steps moving 

towards efficiency and effectiveness was the introduction of elitism to the multi-

objective evolutionary algorithm playing field. Elitism involves artificially 

preserving the most optimal chromosomes produced at each point where 

chromosomes may be lost from the algorithm process, to ensure that promising 

solutions are not lost. Although early studies hinted at the possibility of application 

of elitism to multi-objective evolutionary algorithms, the formal introduction of this 

concept to the subject is usually credited to Echart Zitzler (Zitzler and Thiele, 

1999) and his strength Pareto evolutionary algorithm (SPEA). After the 

publication of Zitzler’s paper the majority of multi-objective evolutionary 

algorithms implemented some form of elitism (Coello, 2005). The most common 

form of elitism within a multi-objective evolutionary algorithm involves an external 
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population comprised of all generated non-dominated solutions. Every solution 

entered into the external population must be non-dominated with regard to that 

population, and replaces any solution that it dominates within it. 

The most popular current multi-objective evolutionary algorithms are SPEA 

(Zitzler and Thiele, 1999, 1998), SPEA2 (the second iteration of SPEA) (Zitzler 

et al., 2002), the pareto-archived evolution strategy (PAES) (Knowles and Corne, 

2000), and NSGA II (the second iteration of NSGA) (Deb et al., 2002, 2000).  

2.3.7 Multi-Objective Simulated Annealing 

Although attempts have been made to convert simulated annealing to multiple 

objective optimisation due to its effectiveness as a single objective algorithm 

(Bandyopadhyay et al., 2008; Smith and Savić, 2006), it does not lend itself to 

the concept in the same way as evolutionary algorithms do, with their large 

population based approach. Attempts have generally revolved around objective 

function aggregation, similar to earlier multiple-objective evolutionary algorithm 

attempts (Smith and Savić, 2006).  

2.3.8 Multi-Objective Ant-Colony Optimisation 

Similarly, to multi-objective simulated annealing, attempts have been made to 

develop multi-objective ant-colony optimisation algorithms (López-Ibáñez et al., 

2004; López-Ibáñez and Stützle, 2012; López-Ibáñez and Stutzle, 2010). Ant-

colony optimisation does not, however, lend itself so conveniently to multi-

objective optimisation and finding Pareto sets as evolutionary algorithms do. 

Additionally, ant-colony optimisation is a fairly recent algorithm and does not have 
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a comparable body of published applications to some other algorithms to back up 

its effectiveness. 

2.3.9 Optimisation Algorithms Summary 

In summary, there are an extremely large amount of optimisation algorithms 

available, even when discussing multi-objective optimisation. Genetic algorithms 

in general have been used for many applications, and are particularly suited for 

adaptation to multi-objective optimisation, due to population-based manner in 

which they operate. Ant-colony optimisation methods have the same benefit but 

have fewer real-world successful applications to date. NSGA-II has a proven 

track-record of published applications to various problems (Behzadian et al., 

2009; Bekele and Nicklow, 2007; Kannan et al., 2009). It has also been applied 

successfully to water-distribution problems (which have some similarities to 

drainage problems) as the base of promising heuristic optimisation algorithms 

(Behzadian et al., 2009; di Pierro et al., 2009; Fu and Kapelan, 2010; Jourdan et 

al., 2005, 2004).   

2.4 Machine Learning 

2.4.1 Introduction 

Machine learning is a branch of artificial intelligence techniques dealing with 

algorithms that can learn from data. The most common usage is for data mining, 

and they can be used to great effect for classification of data (Kotsiantis, 2007). 

There are two main types of learning undertaken by machine learning algorithms, 
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commonly referred to as “supervised” and “unsupervised” learning (Kotsiantis, 

2007). 

Data sets for training machine learning algorithms may be continuous, 

categorical, or binary. Where instances within the data set are provided with 

known labels (i.e. the correct outputs) the training process is known as a 

“supervised” process (Kotsiantis, 2007). Where there are no known labels, the 

process is known as “unsupervised” (Kotsiantis, 2007). Algorithms designed to 

undertake unsupervised learning generally work with clustering techniques such 

as Bayesian techniques (Neal, 1995). Clustering techniques are methods of 

identifying similarities between data instances. Those instances are then given 

(often varying degrees of) membership of “clusters” in an attempt to identify 

unknown but potentially useful classifications of data. These have been used on 

such diverse problems as road sign recognition (Prieto and Allen, 2009), water 

resources (Kalteh et al., 2008) and text detection with character recognition 

(Coates et al., 2011). 

In this thesis the concentration is on classification algorithms, specifically artificial 

neural networks, and supervised training. This is because part of the work 

performed will be following on from previous work on developing neural network 

meta-models for multi-objective optimisation (Behzadian et al., 2009). 

Additionally, the second area where machine-learning techniques are utilised is 

within the LEMMO (Learning Evolution Model for Multiple-objective Optimisation) 

algorithm (Jourdan et al., 2005). The LEMMO algorithm is designed in the same 

way as the LEM algorithm that it was built upon (Michalski et al., 2000) to utilise 
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any machine-learning algorithm. Artificial neural network (ANN) code was already 

implemented, so ANNs will be utilised for the machine learning part of this 

algorithm to minimise development time. 

2.4.2 Artificial Neural Networks 

The first neural network model which featured digital neurons was developed as 

early as 1943, although in this model no capability for learning was initially 

included (McCulloch and Pitts, 1943), limiting the usefulness of the model. In 

1958 Frank Rosenblatt developed the “Perceptron” model (Rosenblatt, 1958), 

however Rosenblatt was unable to identify a reliable mathematically accurate 

mechanism for allowing multi-layer perceptrons to learn. The next major advance 

in artificial neural networks occurred in 1974, when Werbos (1974) succeeded in 

discovering the back-propagation algorithm, which was also independently re-

discovered in 1982 (Parker, 1982). The application of neural networks to varied 

and complex problems is, today, a common occurrence (Behzadian et al., 2009; 

Biswajeet et al., 2010; Rowley et al., 1998). 

There are two methods of training an artificial neural network – supervised and 

unsupervised (Kotsiantis, 2007). Supervised learning requires a set of training 

data that is pre-processed such that, along with each instance of data, there is 

an included expected output for the artificial neural network. The most common 

model for supervised-learning neural networks architecture is a feed forward 

network (see Figure 2). This is an arrangement of different layers of “nodes”, most 

commonly an input layer, a “hidden” layer, and an output layer. Each layer within 
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this arrangement has connections to the outputs of nodes of the previous layer, 

and each of these connections has an associated weight (Lippman, 1987). 

 

Data then enters into the network at the “input” points (see Figure 2) and 

proceeds through the network node by node. At each connection it is multiplied 

by the value of the weight attached to that connection. At each node it is 

processed by a function – usually a differentiable function to facilitate training, of 

which the most popular are the logistic function (sigmoid function, see equation 

6), and the Gaussian function (see equation 7). Artificial neural networks using 

Figure 2 - Feed forward artificial neural network structure using a sigmoid activation 

function 
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sigmoid or Gaussian functions have been shown to be capable of approximating 

any arbitrary continuous function on a limited size domain, with varying accuracy 

depending on the number of neurons in the network (Cybenko, 1989; Hartman et 

al., 1990; Hornik et al., 1989; Park and Sandberg, 1991). Indeed, it has been 

shown (Hornik, 1991) that the choice of activation function is not as critical in 

allowing for the potential of universal approximation as the feed-forward 

architecture. 
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Training of feed forward artificial neural networks is accomplished by modifying 

the weights within the network to move them closer to achieving a desired output. 

The most commonly used algorithm to achieve this is the back-propagation 

algorithm (Parker, 1982; Rumelhart et al., 1986; Werbos, 1974). Back-

propagation is a supervised learning technique that involves propagating error 

backwards through the network. It is a gradient descent method and because of 

this in its pure form it will be trapped at any localised optima that occur in the 

search space. A nearly ubiquitous addition to back-propagation in order to avoid 

this effect is “momentum” (Rumelhart et al., 1986). Momentum allows the back-

propagation algorithm to be influenced by recent trends in the error surface, 
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reducing the likelihood of, but not eliminating, the possibility of being stuck in local 

optima. 

Back-propagation can be viewed as a simple gradient descent algorithm 

optimising the weights with the error from the artificial neural network performing 

the role of an objective function to be minimised. Taking this viewpoint makes it 

clear that any optimisation algorithm could be utilised to the same purpose. 

Genetic algorithms (see 2.3.2), simulated annealing (see 2.3.3), ant-colony 

optimisation (see 2.3.4) or any other optimisation algorithm can also be utilised, 

therefore, as part of the training process of an artificial neural network (Montana 

and Davis, 1989). This is also true for other versions of error propagation 

algorithms (Heaton, 2014; Igel and Hüsken, 2000). 

2.4.3 Bayesian Belief Networks 

Bayes’ rule is a mathematical rule, which identifies the way in which existing 

beliefs should be altered, given a set of evidence previously unavailable. This can 

be simply illustrated with an example utilising white/black marbles as measures 

of belief. If it is imagined that a new-born baby sees the sun set, and wonders 

whether it will rise again. As the child has no prior knowledge, it assigns a fifty-

fifty chance that the sun will rise again the next morning, and represents this by 

placing a white marble and a black marble into a bag. The following day, the sun 

does rise. The child, therefore, places another white marble into the bag to 

represent his increase in belief that the sun will rise. The probability that a random 

marble selected from the bag will be white (i.e. the child’s belief that the sun will 

rise), has gone from 50% to 66.67%. As time passes and the bag becomes nearly 
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entirely full of white marbles, the child becomes increasingly convinced that 

sunrise will come each day (Anonymous, 2000). 

Mathematically, this can be represented as in equation 9 (Bayes and Price, 1763; 

Laplace, 1986) where equation 8 denotes the probability that a random variable 

‘R’ has the value ‘r’ given that the evidence is equal to ‘e’. 

D E = F|<  ( 8 ) 
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D <
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A Bayesian belief network is a model that reflects the states of something, and 

how those states are described by probabilities. A Bayesian belief network can 

be utilised to model almost anything – with all possible states of a model 

representing all possible ways the states of that model can be configured. It works 

on the principle that some states are more likely to be true, when other states are 

also true. For example, if a person had a model of their body, they are more likely 

to have a sore throat if they also have a blocked nose. They are more likely to 

have sore eyes, if their eyes are watering. 

Although Bayesian belief networks have many applications and are extremely 

effective when applied to the correct problems, for the purpose of this thesis a 
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neural network is more easily utilisable and therefore is the approach that has 

been selected. 

2.4.4 Machine Learning Techniques Summary 

In summary, there are a large number of machine learning techniques available. 

One of the most flexible, with a huge amount of successful applications, is the 

artificial neural network (Behzadian et al., 2009; Lippman, 1987; Rowley et al., 

1998) which has been proven to be a universal approximator (Cybenko, 1989; 

Hartman et al., 1990; Hornik, 1991; Hornik et al., 1989; Park and Sandberg, 1991) 

when structured as a feed-forward network. ANN’s have also been successfully 

applied to water distribution problems (Behzadian et al., 2009) specifically, which 

are similar in many ways to flood risk problems. 

2.5 Multi-Objective Optimisation with Machine Learning 

2.5.1 Introduction 

Multi-objective optimisation, by the nature of the way in which the algorithms 

function has an exponential increase in objective function calls as objectives are 

added. As multi-objective functions are generally utilised in an attempt to solve 

real world problems, which are typically extremely complex or even completely 

intractable (see section 2.3.5), the resulting implementations can be very 

computationally demanding. 

There are a number of approaches to reducing the impact of this in some way – 

often involving some form of Meta modelling (Behzadian et al., 2009; Broad et 
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al., 2005; Magnier and Haghighat, 2010; Morimoto et al., 1993; Zhou and 

Haghighat, 2009). An alternative approach is to use machine-learning techniques 

to guide population generation based on the characteristics of well-performing 

solutions from previous generations (di Pierro et al., 2009; Jourdan et al., 2005; 

Michalski et al., 2000). 

Meta modelling is the practice of substituting a simplified objective function that 

is still accurate enough to be of use, for the real function. This may require 

adjustments in the way the algorithms run in order to avoid losing too much 

accuracy in final results, and usually the real function is only partially replaced, 

but is in general a very useful approach. 

One of the most common meta-models used is the artificial neural network (see 

section 2.4.2). The concept has been around since the early 1990’s (Morimoto et 

al., 1993) and has started to see increased uptake recently, as computer 

hardware and technology potential has caught up with algorithm development. 

Meta-modelling with a neural network has been applied with some success to 

problems of building design (Magnier and Haghighat, 2010), ventilation system 

design and operation (Zhou and Haghighat, 2009) and water distribution system 

design (Behzadian et al., 2009; Broad et al., 2005).  

A slightly different approach exists in LEM (Michalski et al., 2000; Wojtusiak and 

Michalski, 2006) which is a single-objective approach, using a machine learning 

technique to guide generation of new populations. LEMMO (di Pierro et al., 2009; 

Jourdan et al., 2005, 2004) is a multi-objective version of this algorithm using 
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decision trees to identify rules that characterise promising solutions. LEMMO has 

been successfully applied to water distribution system optimisation (di Pierro et 

al., 2009; Jourdan et al., 2005). 

Of the numerous methods available, and out of the approaches mentioned above, 

two have been successfully applied to water distribution systems optimisation. 

This kind of problem is similar to the problem detailed in this thesis, both in terms 

of the kinds of variables being considered (discrete pipe sizes within a complex 

network) and in terms of the kinds of objectives (costs, some measure of 

performance of the system). Therefore, these two approaches warrant further in-

depth examination, which can be found below in sections 2.5.2 and 2.5.3. 

2.5.2 Multi-Objective Genetic Algorithm with Adaptive Neural 

Networks (MOGA-ANN) 

This algorithm, presented by Behzadian et al. (2009) involves the use of an 

adaptive neural network. Initially the algorithm is run for a number of iterations 

with no neural network in place. During these initial iterations the data from each 

objective function evaluation is collected. This data is then used after a fixed 

number of iterations to construct a training set for an initial training cycle for the 

neural network. The function is then altered so that the neural network first 

evaluates all solutions produced by the genetic algorithm. The solutions that rank 

above a specified cut-off after this first evaluation are then re-evaluated for 

accuracy by the full objective function. All of the data from these re-evaluations 

is stored and every 'n' iterations the neural network undergoes a further training 

cycle using this new data. 
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The goal of this process is to initially train a neural network, which can then be 

used as a kind of “filter”, to remove the poor solutions from the set before using 

the computationally intensive full objective function on the remaining solutions. 

The re-training should make this network progressively more accurate, 

particularly for solutions that more closely match the Pareto front (as the solutions 

the network is being trained on should be moving closer to the Pareto front with 

each training cycle) (Behzadian et al., 2009). 

This approach has been successfully applied to a sampling design (Kapelan et 

al., 2005) approach (Behzadian et al., 2009). In the test cases described the 

MOGA-ANN (multi-objective genetic algorithm with adaptive neural networks) 

approach performs almost as well as a standard MOGA approach. It does so with 

far fewer evaluations of solutions with the computationally costly objective 

functions, thus increasing performance by around twenty-five times with only a 

very minor effect on Pareto front accuracy. 

2.5.3 LEMMO  

The LEMMO algorithm (di Pierro et al., 2009; Jourdan et al., 2005, 2004) is based 

on the LEM (Learning Evolution Model) single-objective algorithm (Michalski et 

al., 2000). The LEMMO algorithm involves a decision tree classifier within the 

NSGA-II algorithm which is used as a feature identifier for characteristics of 

solutions which perform well. 

At a high level the algorithm works by performing a number of iterations of a 

standard NSGA-II (Deb et al., 2002) algorithm and storing data on which of the 
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generated solutions are “good” solutions and which are “poor” solutions. It then 

uses this data to train a machine-learning algorithm to distinguish between good 

and bad functions, and uses the outcome of this training in some fashion to 

generate new solutions, which, according to the trained machine-learning model, 

are “good” solutions. These are then integrated with the main population and the 

algorithm continues with further iterations based on pure NSGA-II and further 

iterations of machine learning. 

There are five variants of this algorithm that have been tested (Jourdan et al., 

2005), and these are described briefly below. 

• Variant 'LEMMO-1' 

o Learning is run when there has been no change to the population 

for two successive iterations. 

• Variant 'LEMMO-Fix1' 

o Every ten full iterations a learning iteration is entered, utilising the 

initial population of the previous evolution phase as the “bad” set 

and the final population of that phase as the “good” set. 

• Variant 'LEMMO-Fix2' 

o A learning iteration is run every ten iterations, using the twenty 

individuals most recently inserted into the Pareto set as the “good” 

set and the remaining individuals as the “bad” set. 

• Variant 'LEMMO-Fix3' 

o Every ten generations, a learning iteration is run, with random 

individuals from the current approximation of the Pareto set as the 
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“good” set and the remaining individuals of the current population 

as the “bad” set. 

• Variant 'LEMMO-Fix4' 

o Run a learning iteration every ten generations using the best 30% 

of the individual solutions found so far on one of the objectives 

(randomly chosen at each learning phase) as the “good” set, and 

the worst 30% of those solutions as the “bad” set. 

2.6 Chapter Summary 

Throughout this chapter the past of urban flood risk analysis has been 

investigated and various techniques and algorithms for artificial intelligence 

applications examined.  

Urban flood risk analysis is a growing research sector for which new models are 

appearing with some regularity. This is in part caused by the capabilities of the 

technology having caught up with the ambitions of the modellers. It would be good 

to use these models in conjunction with optimisation techniques. The technology 

is not currently, and probably will not be within any reasonable time-frame, 

capable of performing these kind of optimisations at a useful speed. This is 

because urban flood risk models are such hugely intractable and complex NP-

hard problems. 

New approaches are being explored in many other fields in an attempt to apply 

optimisation algorithms combined with machine-learning heuristics to similarly 

complex real-world engineering problems.  
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These algorithms can be combined and used together in various ways to achieve 

a given end. One area that shows significant promise is the combination of 

classifier algorithms with genetic algorithms, which can be applied to either single 

or multiple objective genetic algorithms. Two such combinations have been 

examined above (sections 2.5.2 and 2.5.3). 

 MOGA-ANN effectively uses a neural network classifier as a filter, to distinguish 

between promising and non-promising solutions. LEMMO on the other hand, 

uses a decision tree classifier to learn the features that determine whether a 

solution is “good” or “bad”, and then generate new solutions that match the 

features of the “good” solutions. Both of the examined combinations show 

promise.  

In terms of standard algorithms, NSGA-II is one of the most widely used 

algorithms, and would be a good benchmark for comparison against the two 

performance improvement methods detailed (2.5.2 and 2.5.3) because both 

those approaches build from NSGA-II. Additionally, there is a large body of 

previous research utilising NSGA-II (Bekele and Nicklow, 2007; Deb et al., 2002, 

2000; Kannan et al., 2009), showing it can be applied widely with good success, 

and meaning there is good availability of test data and problems.  

The literature surveyed shows that there is a lack of research involving 

optimisation techniques being applied successfully to flood risk problems. 

Additionally, applying optimisation techniques to these problems will require the 

application of techniques to reduce objective function calls, whether this is by 

replacing them with calls to meta-models, or reducing the number necessary by 
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improving solution generation. There is a knowledge gap where this is concerned 

also. There may be considerable scope in terms of optimising these techniques 

and algorithms for a flood risk problem, and also in terms of altering the existing 

tools for flood risk analysis to better fit the requirements of optimisation 

algorithms. 

Based on this literature review, this thesis aims to close the knowledge gap 

existing with regard to the application of optimisation algorithms to flood risk 

problems. It does so by taking two identified promising approaches and testing 

them for suitability to application to the area of flood risk intervention optimisation. 

The more promising of the two is then compared to  a base  algorithm (an 

algorithm without the heuristic improvements) and it’s performance on the 

problem is improved by further modification.
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3. Urban Flood Risk Assessment 

3.1 Introduction 

Analysis methods for understanding the behaviour of drainage networks have 

evolved over the last 50 years, from relying on local knowledge of the drainage 

system, through to the ability now present of being able to predict frequency, 

depth and location of flooding events. The development of computer-based flood 

modelling has led to the ability to model fairly accurately the impact of extreme 

rainfall events on drainage systems, given the necessary data to build a 

sufficiently accurate model of the system. Building on these capabilities, risk-

based approaches for flood risk evaluation have started to be promoted by key 

organisations within the field (Boelee and Kellagher, 2015; Kellagher et al., 2009).  

One of the approaches to this issue has been the development of the “DTI-SAM” 

risk-based tool set and methodology as part of a previous research project at the 

sponsoring company for this thesis (Kellagher et al., 2009). The work that has 

been performed as part of the research project being described by this thesis is 

in a large extent built upon work completed as part of this previous research 

project, particularly in terms of the tools development. Because of this, a 

description of the work completed during this previous project comprises this 

chapter. 
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3.2 Risk-based Approach 

When considering urban flooding in a risk-based fashion there is a complex 

system to analyse, as the physical flooding event must be included, along with 

the inhabitants of the areas to be flooded, human infrastructure present on any 

affected flood plains, the ecosystem present, and private personnel who will 

either influence or be influenced by the flooding and flood impacts. 

The benefit of a risk-based approach over a more traditional approach is that a 

risk-based approach allows the evaluation of a system in terms of the 

consequences of the failure of that system, rather than in terms of the 

performance of that system. This allows for a decision to be made based on the 

consequences of system failure. In this thesis we focus on the economic 

consequences, however almost any consequence could be used as a measure. 

Generally, risk based analysis involves modifying variables that describe the 

flood system in terms of pipe diameters and storage node volumes, then 

analysing the results of those changes on the flood model and the effect they 

have had on the risks of flooding occurring. 

3.3 Flood Risk Analysis Toolset 

The work in this thesis has been based upon the project that was undertaken by 

a research consortium to develop a risk-based methodology and tool set for 

evaluating drainage systems in terms of their flood-risk, and to improve 

knowledge in this area of research (Kellagher et al., 2009). 
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Figure 3 - Simplified DTI SAM overall diagram, separate components described in later 

sections of this chapter. Both risk tools contain the same subcomponents but are distinct 

(Kellagher et al., 2009).  

Although in general terms the modelling tools existed at the project onset to apply 

a risk analysis, it was necessary for the project to involve a large amount of tools 

development. This was in order to automate the process further, allowing multiple 

runs with subsequent run scenarios based off the results of prior runs. 

Additionally, tools had to be developed for the calculation of ‘risk’ defined in terms 

of “Expected Annual Damage” or “EAD”, which is a monetary measure of the 

amount of damage caused by flooding. In this work all EAD figures are presented 

in monetary terms (i.e., pounds sterling (£)) but altering the data the software 

utilises for pricing would allow these costs to be presented in whatever currency 

was most suitable. 
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3.4 Risk Assessment Framework 

Although the flood risk assessment framework this thesis is based on (SAM-Risk) 

has two versions, one dealing with fully functional drainage systems and the other 

attempting to incorporate the chance of the systems failure, in this thesis only the 

former is considered. The reason for this is that the difference in generated EAD 

between the two versions is generally small, and when taking systems failure into 

account, the software takes longer to run and is more complex. 

A flood risk assessment run consists of the following steps: 

• Initialise flood model (Infoworks CS) 

• Build scenario 

o Selected rainfall and network 

o Prepare input file for scenario 

• Launch flood risk assessment with pre-generated input file 

• Extract the results from previous step 

• Determines next scenario (rainfall and network) according to the results 

• Manages outputs – tracks the convergence of the results, and uses this 

convergence parameter as well as other parameters, as “stop criteria”. 

The flood risk assessment tool can receive inputs from both design storms and 

time-series rainfall with the choice between the inputs being up to the user. 
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Design storms are widely available and easy to find – if time-series data is 

available it tends to produce more accurate EAD estimation than design storms.  

3.4.1 Design Storm Risk Assessment 

The classic risk calculation is based on magnitude of the probability and the 

damage that would be caused if that probability occurred. This can be expressed 

as risk (R) being equal to probability of an event (P) multiplied by damage caused 

(D) by that event (see equation 10) (Kellagher et al., 2009). 

E = D×J ( 10 ) 

 

In order to find the probability of the event in question not occurring, 1-P, can then 

be used, as the sum of all possible outcomes must have a value of one. Since a 

design-storm has a specific probability, the probability of non-exceedance of the 

threshold can be found via the equation below (equation 11) (Kellagher et al., 

2009). 

# = 1 −
1

)×E+

 ( 11 ) 

 

Where ‘n’ represents the number of events in one year. Although the main 

purpose of applying a risk-based methodology is to evaluate the damages for a 

given flood event, these do vary for any given location during the same return 

period, depending on the duration of the storm event used. It is important that 

damage associated with each probability of non-exceedance is based on the 
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critical duration for each manhole. The critical duration is the duration with which 

the maximum flood volume at a given node is associated. At the top of a drainage 

system, therefore, the critical duration will be fairly short, whereas at the bottom 

end of a large network it will be considerably longer (Kellagher et al., 2009). 

There is also a desire to associate the flood damage with the assets that initially 

flooded during some analyses. In order to achieve this, the total damages 

occurring at all impact events must be proportionally distributed to the manholes 

based on the damage of the critical duration event (see equation 12 where ‘D’ is 

equal to damage at a manhole, ‘d’ is equal to the damage at an impact zone, ‘m’ 

is the total number of manholes, ‘i’ is the current manhole and ‘I’ is the total 

number of impact zones) (Kellagher et al., 2009). Impact zones are identified 

within pre-processing of the flood plain in RFSM and represent topographical 

depressions where water will collect in case of flooding (Lhomme et al., 2008). 

J+ =
J+

J+K

× C+

L

 ( 12 ) 

 

This ensures consistency when associating damages at IZ’s with the manholes 

that initially flooded (see equation 13) (Kellagher et al., 2009). 

J+

K

= CM

L

 ( 13 ) 

 

The EAD (expected annual damage) is the integration of the risk due to every 

probability of non-exceedance. The simple trapezoidal integration method is 
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used, and as a consequence the expected annual damage for every impact zone 

and manhole can be written as a function of the probabilities DNOP  and damages 

associated	 JNOP  with every return period	 ED+ 	as shown in equation 14 

(Kellagher et al., 2009). 

QRJ = J+×D+ +

JNOP
+ JNOP=4

2
× DNOP

− DNOP=4

7NO

+

 ( 14 ) 

 

 

When the modelling system is being run, expected annual damage evaluates 

shortest return periods first, and then continues through all return periods in 

ascending order until convergence is achieved. 

In order to avoid an overestimation of damages, the return period threshold of 

every manhole/impact zone must be found. This is the return period at which 

flooding first occurs at this manhole/impact zone (Kellagher et al., 2009). 

This means that D1 (the damage of the shortest return period event) is a very 

small value (zero or close to zero) and P1 is an event for which flooding occurs. 

When this process (see Figure 5) is plotted, EAD can be seen to increase 

asymptotically (see Figure 4) (Kellagher et al., 2009). 
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Figure 4 – Asymptotic increase of expected annual damage using a design-storm event 

approach.   
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Figure 5 - Methodology for analysis of hydraulic failure using design rainfall events 

3.5 Risk Assessment Framework Software Components 

3.5.1 Component Object Model Interface Module 

The component object model interface (Innovyze, 2007) module within this 

framework is known as SAM-UMC. This module facilitates interaction between 

Infoworks CS, RFSM and the drainage system calculations. Whilst the module 

allows for multiple simulation runs, they need to be set up very specifically, with 

a set number of runs to perform and a set number of scenarios to perform these 
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runs on. It was in order to overcome these limitations that further tools (SAM-

Risk) were developed. These tools do, however, rely upon the original software 

module and build upon its functionality rather than replace it. 

3.5.2 Infoworks Collection Systems Drainage Model 

The Infoworks Collection Systems (Innovyze, 2007, 2011) run is initiated by the 

flood risk assessment (Wills, 2013) module, and consists of the following steps: 

• Make any necessary changes to the attributes of nodes/conduits. 

• Specify the set of rainfall data and waste water data 

• Specify any other parameters as necessary 

• Run the simulation 

• Extract results from the simulation (in terms of volume lost from manhole 

nodes). 

3.5.3 Rapid Flood Spreading Model Module 

The RFSM (Rapid Flood-Spreading Model) (Lhomme et al., 2008) performs the 

function of spreading volumes of water over a specified flood area. RFSM acts 

as a simplified hydraulic model that produces answers to an acceptable level of 

accuracy, but produces them considerably faster than more accurate and less 

simplified methods (Lhomme et al., 2008). 

3.5.4 Depth-Damage Model Module 

The water level in each impact zone is then used to assess the depth of flooding 

against a national property database provided by the environment agency and 
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information gleaned from the Middlesex multi-coloured manual on flood damage 

(Penning-Rowsell et al., 2005). The damage assessment tool includes average 

property valuations, based on information from the land registry office, floor space 

and rateable values, flood damage curves for residential and non-residential 

areas, and varied codes associated with the multi-coloured manual (Wallingford, 

2009). 

3.6 Software Implementation Issues 

The major performance problem with this framework involves the runtime of the 

Infoworks CS (Innovyze, 2007, 2011) model within this risk assessment 

framework. The process of evaluating expected annual damage is the most 

computationally intensive task involved in the optimisation algorithm. A significant 

proportion of that computational effort is involved in setting up and initialising 

Infoworks simulation runs. This is because for each expected annual damage 

assessment a selection of rainfall events with different return periods (two, five, 

and ten, then steps of ten to three hundred, five hundred, seven hundred and fifty 

and one thousand years) and different durations (thirty, sixty, ninety, then steps 

of thirty minutes all the way to six hundred) have to be run as Infoworks 

simulations. This totals seven hundred Infoworks simulation runs. With each of 

those runs of seven hundred rainfall events taking approximately five hours 

(depending on computational performance), this is not a tractable problem. In a 

genetic algorithm, which might have a population of one hundred, to be run for 

one thousand iterations (conservatively), the total runtime would be in excess of 

fifty-five years. To a certain extent that could be mitigated by running on a more 
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modern machine than the testing machine but even with a desktop machine at 

the forefront of modern consumer technology, the run-time could not be expected 

to be reduced to a usable time-frame (i.e. weeks or months, rather than years).  

3.7 Chapter Summary 

There has been a substantial body of work carried out on the direct predecessors 

to this current project. All of this work combines to culminate in a methodology 

and algorithm for producing an expected annual damage estimate based on a set 

of rainfall data and an urban drainage system model developed in Infoworks CS. 

This methodology and algorithm has been utilised as an objective function in the 

multi-objective algorithm that is one outcome of this research project, but 

performance improvements were required. This is because the associated 

algorithm is completely intractable with regard to being utilised as part of an 

optimisation algorithm. Therefore, methods of decreasing the impact that this 

algorithm has on these computational resources had to be explored. 
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4. Optimisation for Urban Flood Risk Management 

4.1 Introduction 

In order to utilise an optimisation approach on the problem of flood risk, the main 

barrier is the computational efficiency of the flood risk algorithm. It is, therefore, 

sensible where such an algorithm has been developed and supplied outside the 

bounds of the project and therefore with separate priorities and goals, to examine 

whether that computational efficiency can be improved upon. Additionally, a 

costing model had to be developed, in order to provide the capital cost of making 

changes to the drainage network. This is in line with objective 3 (see section 1.2) 

and is necessary in order to give a good baseline for objective 4, and aid towards 

achieving good results in objective 5. 

Additionally, one of the goals of the development associated with this thesis is to 

produce a tool, which can be utilised by flood risk engineers. In order to facilitate 

that, a user interface is required which allows control of the optimisation 

parameters, without demanding an excessive amount of specialist knowledge. 

This is most of objective 1 and part of objective 2 (see section 1.2). 

Finally, it is necessary to develop and test optimisation approaches that can 

provide the “back-end” of this user interface, and utilise the above mentioned 

flood risk algorithm as an objective. This is a broad goal which fits in with almost 

all of the objectives in some way. The results of the testing of the algorithm are 

described in chapters 5 and 6. 
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This section covers these three points and how they have been approached, and 

achieved. 

4.2 Development of the Costing Model 

The second intended objective of the multi-objective algorithm is “cost”. In this 

case it means the cost of the proposed changes to the network (I.e. a network 

that matches the original network, is zero cost). These changes will take the form 

of alterations to pipe diameters, and storage node volumes. The constants in the 

cost calculation are all customizable (they are constant in the sense that they 

should not change during the algorithm run), and sensible defaults are provided 

to give a “rough idea”. These defaults are based upon work undertaken by HR 

Wallingford and Mouchel consulting as part of the project on which this thesis is 

based (Kellagher et al., 2009). This work also formed the basis for the cost model 

developed here. It would be expected that for a given flood risk scenario, 

constants for these cost calculations would be modified to be in line with the real 

figures for that particular scenario. These defaults have been used for testing 

purposes for all experiments described in this paper, they are: Mobilization Cost 

(M) of £50,000 for making any change to a network; Pipe Intervention Cost (I) of 

£1,000 per metre of pipe replaced; Storage Intervention Cost (S) of £500 per 

metres cubed; and Storage Base Cost (b) of £10,000 for making any change to 

a storage node.  
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All cost calculations initially determine whether a network has been modified at 

all, or whether it is identical to the original network. All modified networks cost 

calculations include an initial sum to reflect the “mobilization” costs – i.e. the costs 

of hiring contractors, getting them and their equipment on site, and other 

associated costs with initially beginning a task of this nature. The pipe alteration 

costs are then estimated by multiplying the product of a constant “Intervention 

Cost” value (I) to represent costs of piping purchase, excavation, etc. and the 

length of pipe (L) in question by the cross-section area (c) of the pipe. Storage 

alteration costs are estimated by adding the product of an “Intervention Cost” 

constant (S) signifying cost of materials, etc., and the area of the storage node in 

meters squared (a), to a second “Base Cost” constant (b) that represents the 

costs associated with excavation, removal of existing storage node if necessary, 

etc. All non-modified pipes or storage nodes result in zero cost. Orifices are 

included in the cost model and have a flat cost (o) associated with any change to 

their original setting. 

Therefore, the total cost of a network is the mobilization cost (M), plus the cost of 

each modified pipe in the network, plus the cost of each modified storage node 

in the network, plus the cost of each modified orifice in the network. 
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4.3 Improvements to EAD Calculation Tool Set 

Before taking the route of applying cutting edge artificial intelligence techniques 

and heuristics in order to reduce runtime of the full optimisation process, the 

possibilities of improving the efficiency of EAD generation should be investigated. 

Multiple approaches should be investigated and considered towards achieving 

this indispensable objective. 

4.3.1 Identifying Reduced Rainfall Dataset 

Due to the large number of EAD calculations necessary during a multi-objective 

optimisation scenario, it is important that every EAD calculation takes place using 

the minimal computing resources possible. The standard set of design-storms 

previously utilised (during the DTI-SAM project) provides a very good 

approximation of EAD. This set of design storms was not, however, designed to 

be part of an optimisation algorithm and so was not subject to the sort of time 

considerations that are common in that scenario. 

The standard set of rainfall files used during the DTI-SAM project consists of 700 

complete rainfall events. These rainfall events comprise 20 durations for each 

return period, starting from 30 minutes, progressing to 600 minutes at steps of 30 

minutes. There are a total of 35 return periods, which are 2, 5, 10 then steps of 

10 up to 300, then 500, 750, and 1,000. 

A return period is an estimate of the time interval between events of a similar 

nature occurring, and can be used as a measure of the likelihood of a given event 

occurring. For example, a given rainfall intensity may have a return period of 20 
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years. It is important to note that this does not mean that an event of that kind will 

occur within 20 years, or will definitely occur only once within twenty years. A 

rainfall duration is simply the amount of time that a rainfall event continues, in 

minutes. 

Within the internals of an optimisation algorithm it is allowable to a certain extent 

to lose accuracy, provided that the change in EAD remains proportionate or close 

to proportionate across intervention strategies, thus allowing sufficient 

differentiation between higher and lower quality solutions. A possible approach, 

therefore, to improving the computational efficiency of producing EAD 

estimations is to reduce the number of return periods or durations of rainfall that 

are evaluated during EAD estimations. 

Previous studies (Ward et al., 2011; Woodward, 2012) have shown that reducing 

resolution of the problem space being evaluated can result in significantly lowered 

model run time. It does, however, affect accuracy of results. In one study in 

particular (Woodward, 2012) it was found that significant performance 

improvements can be obtained whilst retaining sufficient accuracy for the test 

results to be useful as part of a multi-objective optimisation algorithm. 

Initially, it is important that testing is performed on more than one network, 

therefore a minor, but important, first step is the generation of twenty separate 

testing networks from the initial network. The layout of these separate networks 

can be seen in Figure 7, showing the included elements, although the pipe 

diameters and storage node volumes will vary per network. Once this was 

accomplished, a full EAD estimate could be generated for each of these 
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networks. Tests were performed with a range of different durations initially (in an 

attempt to identify a subset of durations that gave results as close as possible to 

the original EAD estimation), followed by tests utilising these durations with a 

subset of return periods. This gives us a combination of return periods and 

durations which when run, give a reasonable approximation of the EAD for a 

given network that maintains or nearly maintains the relative variance in EAD 

between different alternative solutions. 

As mentioned, it is critical that any solution proposed is effective across more 

than one drainage system – as the NSGA-II algorithm will be generating many 

variants of the original drainage system in order to identify the optimal flood risk 

intervention. 

In order to ensure this is the case, a number of drainage systems are needed to 

perform testing on. Twenty different networks have been generated for use as 

test networks. Three rainfall events that fit the following criteria were selected to 

generate these networks: 

• One reasonably short and fairly unlikely storm (return period thirty years & 

duration thirty minutes, run A). 

• One fairly lengthy and very unlikely storm (return period one hundred and 

seventy years & duration three hundred minutes, run B). 

• One very long & very unlikely storm (return period one thousand years & 

duration six hundred minutes, run C). 
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The NSGA-II algorithm was then run three times; with each run evaluating EAD 

via one of these rainfall files alone. This is not expected to give a good 

approximate EAD value, but gives the algorithm a value to work towards 

improving. Essentially one optimisation run is extremely biased towards reducing 

damage from regularly occurring storm intensities, one towards rare storm 

intensities, and one towards very extreme storm intensities. Each run was 

performed for fifty iterations with a population size of twenty. Each algorithm run 

produces twenty networks in it’s final iteration. This gives a total of sixty (three 

sets of twenty) alternative network solutions to choose from once the algorithm 

had run its course. From each set a spread of networks (seven from run 'A', six 

from run 'B', and seven from run 'C', for a total of twenty) was taken which 

attempted to maximise the separation between EAD scores by eye. A total of 

twenty was aimed for in order to give a reasonably sized test set, without it being 

overly large. The three types of network should have produced networks with 

different characteristics, a larger number of results (seven) was picked from the 

two extremes (A & C), and a slightly smaller number (six) from the centre set (B). 

These twenty networks then formed the testing set. 

For each of the twenty selected networks in the testing set, a full EAD evaluation 

was then run so that a base figure to compare the runs with fewer return periods 

and durations could be identified.  
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Each run produces a curve as the return periods are iterated through, as shown 

below in 

 

Figure 6, which is the curve for “Net 5”. The final results of these runs are shown 

in Table 1, Table 2 and Table 3. 

Once these initial tests were completed and base figures for EAD gained, tests 

were initially run with fewer rainfall durations. Tests were performed with various 

combinations of duration, however, on all twenty networks a single duration of six 

hundred minutes (i.e. the most extreme duration) produced the same or very 

close to the same EAD score as the base figure on all networks (see Table 4, 

Table 5 and Table 6). The mean error of runs using only six-hundred-minute 

duration rainfall versus using all rainfall was £15 which given the estimated nature 

of EAD and the size of the sums in question, is considered small and acceptable. 

The decision was taken to proceed with utilising six-hundred-minute duration 
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rainfall files, and to continue with attempting to reduce the number of return 

periods being analysed. 

One single duration being a good match is somewhat surprising, however a 

possible explanation is that the section of the drainage network being optimised 

is at the extreme lower end of the actual catchment. The shorter durations may, 

therefore, have less effect as the volume of water is passing fairly quickly to the 

drainage network outflow, with little chance to build up within the system. In a 

larger drainage system there exists many more opportunities for flatter regions of 

pipe to be encountered and there is more chance for friction within pipes and 

storage to have an effect. 

 

Figure 6 - Example of EAD curve (Net 5). 
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Figure 7 - Network diagram of reduced rainfall set networks (pipe diameters and storage 

node volumes will vary per network). 
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Net 1 
(£) 

Net 2 
(£) 

Net 3 
(£) 

Net 4 
(£) 

Net 5 
(£) 

Net 6 
(£) 

Net 7 
(£) 

2,969 4,949 11,765 12,181 19,861 1,540 1,939 

Table 1: Full EAD figures from networks 1-7 

Net 8 
(£) 

Net 9 
(£) 

Net 10 
(£) 

Net 11 
(£) 

Net 12 
(£) 

Net 13 
(£) 

11,045 12,407 12,429 12,440 15,363 15,706 

Table 2: Full EAD figures from networks 8-13 

Net 14 
(£) 

Net 15 
(£) 

Net 16 
(£) 

Net 17 
(£) 

Net 18 
(£) 

Net 19 
(£) 

Net 20 
(£) 

15,304 16,384 17,619 17,773 17,977 17,985 18,356 

Table 3: Full EAD figures from networks 14-20 

Net 1 
(£) 

Net 2 
(£) 

Net 3 
(£) 

Net 4 
(£) 

Net 5 
(£) 

Net 6 
(£) 

Net 7 
(£) 

2,692 4,949 11,765 12,181 19,858 1,540 1,939 

Table 4: EAD values from runs using 600 durations only, networks 1-7 

Net 8 
(£) 

Net 9 
(£) 

Net 10 
(£) 

Net 11 
(£) 

Net 12 
(£) 

Net 13 
(£) 

11,045 12,407 12,429 12,440 15,363 15,706 

Table 5: EAD values from runs using 600 durations only, networks 8-13 

Net 14 
(£) 

Net 15 
(£) 

Net 16 
(£) 

Net 17 
(£) 

Net 18 
(£) 

Net 19 
(£) 

Net 20 
(£) 

15,303 16,383 17,617 17,771 17,976 17,983 18,355 

Table 6: EAD values from runs using 600 durations only, networks 14-20  
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Initially, a good spread of return periods was selected, with the goal of narrowing 

down which area of the spectrum requires the most focus. Previous work, where 

this kind of reduction in return periods has been accomplished (Woodward, 2012) 

with minimal impact on accuracy, suggests the use of seven return periods. 

Therefore, the initial number of return periods chosen was similar, with eight 

return periods (2, 10, 100, 200, 300, 500, 750 and 1,000 years) selected as being 

a fairly evenly spaced set (over our full set of return periods) and, therefore, 

probably a good starting point to narrow down from. It incorporates: 

• Two of the very lowest return periods in our set (in order to capture a 0 

damage rainfall event) 

• The four most extreme return periods (as the distribution of RP’s at more 

extreme values is fairly sparse in our set), which will definitely be damage-

causing events 

• Two evenly-spaced rainfall events to link these two sets together. 

The selection of these rainfall events isn’t crucially important, as they merely 

serve as a starting point for the continuing process.  

Analysis of this initial test produced a mean absolute error of £4,846. 

Comparisons of the EAD curves generated versus the correct EAD curves 

suggested that the resolution of the data was too low at the bottom of the range. 

This is where inaccuracy in identifying the return periods at which flooding begins 

has a large effect on the rest of the EAD curve (Kellagher et al., 2009). 
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With the previous results in mind, a second test was undertaken with only seven 

return periods but with more of those at the lower end of the range (return periods 

used were 2, 20, 40, 80, 160, 750, and 1000). The results from this second test 

(mean absolute error of £2,220) matched the full EAD curve better than the first 

test at the lower end of the range, but generally diverged (either high or low) 

towards the middle of the EAD curve. 

A third test (utilising return periods 2, 20, 40, 80, 160, 300, 500, 750 and 1000 

years) was then run. This was in an attempt to compensate for the high/low 

divergence by providing better resolution of data at critical points along the EAD 

curve. This third test performed better (mean absolute error of £1,570), but there 

was still a lack of resolution at the low end for some networks, although it was 

generally better across the middle range. 

A fourth test was performed with fewer of the low-end return periods, but focusing 

more on the low-mid range (return periods 2, 80, 160, 300, 500, 750 and 1000 

years), in an attempt to cut down on the total number of return periods whilst 

maintaining accuracy. However, this test produced further inaccuracies, resulting 

in a mean absolute error of over £13,000, the highest of all tests. The decision 

was therefore made, for the purposes of testing, to proceed using the 

rainfall/duration measures from the third set as it was the best match for the full 

EAD curve. 

It is important to note that this process of return period/duration selection would 

need to be run as a “pre-processing” step for each new network that an 

optimisation was to be performed upon. The duration/return period selection 
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identified will be biased towards the behaviour of the network in question and will 

not be generalizable to other networks (Sayers et al., 2014). 

It is also worth remembering that as this step is not time-consuming, a second 

(or third, or fourth etc.) set of rainfall files could be identified using a network or 

networks, produced by the first optimisation run. Also, a second (or any 

subsequent) optimisation run could then be undertaken, using the identified set 

of rainfall that is more closely matched to the optimised network. 

An alternate method of reducing the number of durations required is to use 

mathematical techniques, such as the alternating block hyetograph (TxDOT, 

2014) to compress durations by building an artificial rainfall file. This involves 

determining an interval for the design rainfall file end product, then taking the 

average rainfall intensity from each rainfall duration file. The cumulative depth 

and the incremental depth are then calculated (TxDOT, 2014), where the 

incremental depth is the increase in depth over the previous cumulative depth, 

with a starting point of zero. 

Once these figures are identified, the rainfall is re-ordered within the file. It is 

ordered so that the most intense period of rainfall is within the centre of the rainfall 

event, with subsequent intensities positioned on alternating sides in order of 

intensity. This process is demonstrated in Table 7 & Figure 8 (TxDOT, 2014) 

The issue with utilising this approach for this specific test-problem is that the error 

when using only the highest duration present in the rainfall files available is 

negligible. Therefore, the extra time that would be taken in converting each of the 
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return periods into an alternating block hyetograph is not worth spending. 

However, if with a different catchment it was more difficult to identify a single 

duration with a negligible change in results, this technique could be extremely 

valuable to combine durations, and indeed has been put into practice by third 

party engineers at HR Wallingford when utilising the software developed in this 

thesis (Boelee and Kellagher, 2015). 

Duration 
(Min) 

Intensity 
(mm/Hr) 

Cumulative Depth 
(mm) 

Incremental 
Depth 
(mm) 

10 105.61 17.60 17.60 
20 76.25 25.65 7.82 
30 59.87 29.92 4.52 
40 49.35 32.92 2.97 
50 42.03 35.03 2.13 
60 36.65 36.65 1.60 
70 32.49 37.90 1.27 
80 29.18 38.86 1.02 
90 26.52 39.78 0.84 

100 24.28 40.49 0.71 
110 22.43 41.10 0.61 
120 20.83 41.63 0.53 

Table 7: Calculation of alternating block hyetograph values 
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Figure 8 - Alternating block hyetograph 
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4.3.2 SAM-UMC Modifications 

4.3.2.1 Caching of Existing Exported Network 

Within the original (DTI-SAM) tool set, whenever the SAM-UMC module is called 

to initialise an Infoworks CS simulation run as part of the damage calculation, the 

Infoworks CS network is exported to the Infoworks CS working directory as CSV 

files, and then imported back into Infoworks. 

The reason for this is that the tool set being used as a basis for ADAPT was 

developed alongside a second tool set which functions differently. This second 

toolset attempts to take into account drainage system blockages. In order to do 

that it has to make changes to the drainage network model in Infoworks between 

simulations. 

In this project, however, there is no need for changes to be made between every 

single Infoworks CS simulation, because of the way in which the software is being 

used. The software was, therefore, re-written to track when changes have been 

made to the network, and only re-export the Infoworks network when those occur. 

This gives a minor performance saving with a small testing network, but 

dramatically improves its worth as network size increases, and the number of 

simulation runs without a network change increases.  

It can be seen in Figure 9, that when each and every rainfall test involves the 

network being completely exported, the runtime increases exponentially, as the 

number of rainfall files goes up. When rainfall files are only exported if the network 

is altered, whilst the network is unaltered the run time increase for extra rainfall 
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files is linear. Therefore, the improvement in performance is greater, the larger 

the amount of rainfall files being used on each network. 

 

Figure 9 - Exporting drainage network vs. utilising the existing export 

4.3.2.2 Software Performance Optimisation 

As part of this project, optimisations and improvements to the source code 

developed originally for SAM-Risk were undertaken. These consisted of 

refactoring loops, utilising internal caching of numerical figures rather than re-

calculation, and re-writing code to take advantage of C# language features 

introduced after the release of SAM-Risk. This work was completed by the author. 
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Key areas of the software for this optimisation effort to focus on were identified 

by means of analysis of which functions the software was spending most of its 

time performing. A full re-write would probably achieve even more in terms of 

performance benefits, but would be impractical and too large a time investment 

when it is impossible to guarantee the performance improvements achievable. 

On the testing network, an improvement of 15.11% of time taken was shown 

through using this new code, i.e. a run which previously took around 6 hours, had 

been reduced to approximately 5 hours. 

This is a considerable improvement in runtime, especially when considered that 

it was achieved without any loss in accuracy. 

4.4 Optimisation Solution 

The optimisation methodology and the tool set utilised during this project have 

been developed entirely during the project, in the C# programming language. The 

requirements of the sponsoring company, HR Wallingford, also had an influence 

on the software solution, as they had specific requirements they wished satisfied. 

The broad goal of the software was to have a decision support application, with 

a graphical user interface, that would run under Microsoft Windows and use the 

industry standard drainage system modelling software (Infoworks CS, developed 

by Innovyze®) as its drainage model, as did DTI-SAM before it (see section 3.3) 

provided Infoworks was suitable for inclusion. Developed as part of this solution 

was a multi-objective optimisation algorithm, to optimise cost versus EAD. This 

multi-objective optimisation algorithm has been built in a loosely linked modular 
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fashion, to allow utilisation of modules by other future software, and to improve 

flexibility. Some innovation has also been necessary to allow the implemented 

multi-objective optimisation algorithm to converge in a realistic time frame. This 

is not a trivial undertaking as the search space of even a modest drainage 

network would be too large to expect an unmodified multi-objective algorithm to 

converge to a useful solution in a reasonable time-period. The following sections 

describe how this solution was developed. 

4.4.1 Development Language and Framework 

The software for this thesis is developed entirely in C#, which is typically run on 

the .NET platform under Microsoft™ Windows ®.  

C# is an object-oriented language, which means that the software can be 

structured in terms of a series of interacting objects. In C# these objects consist 

of: classes, which are groupings of methods and data for those methods to act 

upon, and interfaces, which are contractual obligations for a class to implement 

a certain set of functionality. 

Classes can inherit from each other (i.e. a class of type “Motorcycle” may inherit 

from a class of type “Vehicle”) but only single inheritance is allowed in C#, i.e. a 

class can only have a single parent. A class can also implement interfaces, and 

can implement as many interfaces as the developer desires. 

An assembly refers to a single file to be executed or linked with. I.e. a single *.exe 

or *.dll, when referring to .NET assemblies. 
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4.4.2 Optimisation Specific Performance Enhancements 

In terms of specific enhancements with optimisation algorithms in mind, the 

software has been developed to cache EAD and results from specific solutions. 

Each solution currently present in the population of solutions within the 

optimisation algorithm, tracks whether it has been altered since it was last 

evaluated for EAD / Cost. If it has, then when EAD / Cost is requested, it triggers 

a re-calculation of these values, including the Infoworks CS model being 

launched and a flood risk analysis undertaken to identify the EAD figure. If it has 

not, then cached values for EAD / Cost are returned. 

As the optimisation progresses, a large amount of the population at any given 

stage is likely to be already evaluated with the results cached. Saving time by not 

re-evaluating these solutions should give a significant performance benefit.  

As an example, if each EAD calculation takes around 40 seconds, and in a 

population of 100 solutions, an average of half of the solutions EAD values was 

cached at each iteration of the algorithm, over 5,000 iterations 115 days’ worth of 

computation time would be saved. 

4.4.3 Pipe Modelling for Optimisation 

4.4.3.1 Non-Circular Pipes 

Not all of the pipes within Infoworks CS are circular pipes – a reasonable number 

are egg-shaped pipes or other types, such as open channels. In combined sewer 

systems, like the ones prevalent in the United Kingdom, pipe capacities must be 
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relatively larger than in a separated system designed for the same catchment 

area, as combined systems require the capacity to deal with storm water, as well 

as wastewater (Butler and Davies, 2010). 

As Egg-shaped pipes have a smaller diameter in the lower part of the cross-

section, this will be used during low-flow drier periods, whilst maintaining a large 

cross-section above that, which will come into play when storm flows take place. 

Egg shaped sewers are common in older drainage systems (Butler and Davies, 

2010). 

When dealing with circular pipes in Infoworks CS, it is enough to simply change 

the width of the pipe – the software is intelligently designed enough that it will 

automatically adjust the pipe as it is aware that the circular profile means that the 

height should be the same as the width. 

When dealing with pipes that are not circular, simply changing the width will result 

in an altered pipe profile, as the height will remain the same, resulting in an altered 

pipe profile and potentially affecting the flow rates within the pipe. 

One solution considered was to simply convert all non-circular pipes within the 

Infoworks model to equivalent circular pipes, and test to see whether the EAD 

figures generated were substantially altered. It was decided to retain this as a 

potential fall back and instead, add the capability to the software to adjust the 

height of pipes.  
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Once this capability was added, the solution followed was to alter the height in 

proportion with the width, so that the profile would remain the same, regardless 

of how the width is altered. 

4.4.3.2 Pipe Groups 

The unit relating to pipes that the implemented optimisation algorithm deals with 

is a “pipe group”. These pipe groups contain one or more pipes, and when the 

size of any pipe within the group is altered, all other pipes are modified to the 

same size. 

This feature is designed so that pipes within the model which flow from one to 

another in sequence, could potentially be grouped together where, logically, there 

would be little point in changing one pipe by itself.  

This would require an in depth analysis of the drainage model being used, and 

would limit the optimisation algorithm in terms of the potential solutions. However, 

it could be worthwhile, particularly if there was a circumstance where a pipe is 

represented in the model as several separate pipes, but is actually effectively one 

long section of pipe where the sub-sections could not be replaced individually. 

4.4.3.3 Original Pipe widths and Restricting Size Alterations 

Two additional improvements were made to the modelling of pipes within the 

optimisation algorithm, the first is the tracking of the original pipe widths within 

the pipe group, so that when a costing is requested from a pipe group object, it 

knows when to return £0. 
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A second improvement, based upon the first, is that it is possible to restrict a pipe 

group object from setting the pipes within it to anything smaller than their original 

size. This could be an important engineering consideration (as it may be known 

that the flow rate away from a certain part of the catchment should not be 

decreased) and will have the added benefit of reducing the size of the search 

space. 

4.4.4 Storage Modelling for Optimisation 

Modelling the storage nodes for use within the optimisation process proved to be 

less complex than modelling pipes. In a similar manner to pipes, storage nodes 

track their original size (and return £0 cost if they have not been altered from their 

original, or if they are altered back to their original), and can be set to only grow 

and never shrink. 

There is no need for grouping of storage nodes in the same manner as is required 

for pipes, and as storage node area is set directly in terms of metres cubed, there 

is no need for any calculation of width/height etc. 

It is also possible to set minimum/maximum values for the storage node area, 

below/above which the storage area will not be considered. This is necessary, as 

there may only be space available for up to a given amount of storage space. 

Storage nodes consist of both a chamber area, and a shaft area, which are 

summed to give the total storage node area for the cost calculation. 
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4.4.5 Orifice Modelling for Optimisation 

An orifice is a construct within a pipe network that forces the flow within a pipe to 

pass through an area less than that of the pipe. An orifice usually either creates 

a smaller circular area, or sections off a portion of the top of the pipe (Butler and 

Davies, 2010). The purpose of an orifice is to use Bernoulli’s principle, which 

states that as fluid flows faster, the pressure is decreased (Batchelor, 1967). An 

orifice plate within a pipe causes fluid to flow faster, decreasing pressure. Orifices 

are also modelled within the optimisation process, although they are again 

simpler than pipes in terms of how they are represented to the optimisation 

algorithm. 

Orifices within the optimisation process have a discharge minimum, a discharge 

maximum, and a definition of how much each “step” is between the minimum and 

the maximum. Together these three pieces of information identify the exact 

values that it’s possible for an orifice to be set to. Cost for modifying an orifice is 

a flat figure (as any modification will cost the same as any other) and is returned 

if the orifice has been altered from its original state, which it tracks in the same 

manner as pipes and storage nodes. If it is still in its original state, cost associated 

is £0. 

4.4.6 Cost Groups 

All types of decision variables (Pipes, Orifices and Storage) can be assigned to 

cost groups in their various setup files. Each cost group has its own predefined 

set of constants for cost algorithms. Therefore, separate variables which have 
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varying costs can be grouped together and the appropriate constants applied. 

This can be seen in Appendix III – SAM-Risk Settings. 

4.4.7 NSGA-II 

The NSGA-II implementation follows the algorithm detailed in Deb's paper (2002) 

(see Figure 10). It is implemented in a modular fashion, to allow further 

development and use of the algorithm in other work, as well as to allow the 

integration of meta-modelling techniques as part of this project. 

A simplified class diagram for the NSGA-II implementation used in this work can 

be seen in Appendix I – Software Diagrams. In words, the NSGA-II main class 

and the chromosome class between them handle most of the functionality of the 

algorithm, with customisable elements (such as population creation) specified via 

a supplied class, which must implement the NSGA2Adaptor interface. This can 

be supplied from an external assembly and need not be present within the 

NSGA2 assembly, provided it implements the correct interfaces.  
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Figure 10 - NSGA-II flowchart 

A population consists of a collection of chromosome objects, which are defined 

in the aforementioned chromosome class. Individual genes within a chromosome 

class are defined by the algorithm user, but must implement the “IGene” interface, 

and again can come from an external assembly. 

The calculation of objective functions should be handled entirely within the 

NSGA-II adaptor class. The type of this class should be given to the NSGA-II 

class during instantiation and it will then be instantiated internally to that class. 
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4.4.8 NSGA-II and Machine Learning 

There are various ways that NSGA-II could theoretically be combined with meta-

modelling techniques in order to decrease the computational impact of objective 

function evaluation and therefore increase the speed and possible accuracy with 

which a reasonable Pareto front can be achieved. 

These various techniques are covered in (2.5). The main technique implemented 

in this research project is the LEMMO technique (Jourdan et al., 2005) although 

other techniques were investigated, notably MOGA-ANN (Behzadian et al., 

2009).  

Issues were encountered using the MOGA-ANN approach detailed in Behzadian 

et al. ((2009). The approach used was to attempt to train an ANN to estimate 

EAD, with enough accuracy to allow the optimisation algorithm to discern 

between poor and promising solutions. 

The MOGA-ANN approach involves recording the data in and out of the objective 

function to be supplanted, or partially supplanted (in this case EAD), by the 

artificial neural network, for a number of generations. This results in a collection 

of training data for the neural network meta-model. Once this data collection 

phase is complete, the neural network is initially trained on this data, to attempt 

to approximate the output of the objective function. After this initial training phase, 

all potential solutions are evaluated by the neural network and ranked according 

to non-dominance (Deb et al., 2002). After they have been ranked, a specified 
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number of ranks from the first rank upwards is re-evaluated utilising the full model 

(the original objective function) in order to maintain full accuracy.  

The data (input and output) from each run is stored and added to the training data 

pool. Periodically (every 'n' generations) the neural network is re-trained using all 

data that has been collected since the last training event. In this way, the neural 

network is effectively being utilised as a filter, to remove poor solutions from 

consideration before expending computing resources doing a full analysis. 

Additionally, the extra training should result in the neural network becoming 

increasingly more accurate with regards to higher quality solutions as the 

algorithm progresses. 

The ANN appeared, however, to struggle to estimate the EAD figure with enough 

accuracy. The learning algorithm appeared to be running to as many iterations 

as was allowed on every training iteration, and many of the networks returned 

identical expected annual damage figures that proved inaccurate when the 

network was re-tested without the ANN. 

As, at this point, LEMMO was returning promising results from its testing, the 

decision was made to continue and focus on LEMMO, although it is possible with 

enough improvement to the ANN structure that accuracy could have been 

improved enough to allow the algorithm to work as effectively as it has in previous 

studies. 

The normal approach when trying to utilise meta-models as part of an 

optimisation process is to substitute them for part of the algorithm. Typically, this 
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involves replacing the costly objective function or functions, reducing the number 

of objective function evaluations that would be required per iteration, or a 

combination of the two (Behzadian et al., 2009; Broad et al., 2005). 

4.4.8.1 Artificial Neural Networks 

A popular form of meta-model is the ANN or artificial neural network (see section 

2.4.2). An ANN can be thought of in this context as a function approximator, which 

is capable of approximating any given function to any required degree of 

accuracy, provided enough data exists to train it. An additional requirement is that 

the ANN is structured appropriately.  

An ANN needs to have enough nodes that it is capable of forming a reasonable 

approximation to the problem. However, it is important not to have too many 

nodes, or there is a risk of the network being prone to over-training, at which point 

it will solve the specific problems it has been trained on well, but will not 

generalise out to other problems. Most applications of neural networks rely on the 

network generalising well to problems different from the specific examples it has 

been trained on, so this is something to be wary of. 

In order to save development time a third-party machine-learning library was 

utilised, called Accord. The Accord library is very well documented (Souza, 2015) 

and incorporates the functionality of generating many different kinds of machine 

learning algorithm that can be utilised with impressive flexibility.  

The artificial neural network used in this project by way of the Accord library is a 

feed-forward neural network trained by means of a resilient propagation algorithm 
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(RPROP) (see section 2.4.2) (Igel and Hüsken, 2000; Riedmiller and Braun, 

1993). A feed-forward neural network was selected as this type of network is 

robustly proven to be a universal approximator (Cybenko, 1989; Hartman et al., 

1990; Hornik, 1991; Hornik et al., 1989; Park and Sandberg, 1991). The function 

of the network, where a given number of inputs are associated with a specified 

output and the weights are altered to give an input/output mapping for the 

problem fits well into the context of being used within another algorithm. Multilayer 

feed forward artificial neural networks degrade in performance gracefully, as the 

amount of noise in the input increases (Svozil et al., 1997). ANN’s also cope well 

with being trained online, which is important for the applications detailed in this 

thesis. 

The Accord library was used after trialling and comparing two other libraries – 

FANN (Nissen, 2012, 2011) and Encog ((Heaton, 2014). FANN caused issues 

because of a hard to debug memory leak – which was present either within the 

FANN code itself or possibly within the managed to unmanaged interface. The 

effect of this memory leak was that when included within a large optimisation 

algorithm such as being described in this thesis, the computer system running 

the algorithm would crash after somewhere between 100 and 300 iterations. 

Encog had no major issues of that sort, but did not support the same variety of 

algorithms as Accord. In particular, Accord supports decision tree classifiers, 

which was something that potentially could have been used as part of the 

LEMMO algorithm, although that did not end up being the case. 
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RPROP was chosen as it is a fast and effective alternative to standard back 

propagation – due to the way in which the various approaches integrate the 

artificial neural network, having a large or complex training algorithm is likely to 

have a significant impact on performance, so something relatively simple, but 

proven and effective (Igel and Hüsken, 2000; Riedmiller and Braun, 1993) was 

required.  

4.4.8.2 Development of LEMMO with ANN 

Two main approaches were followed when testing the combination of neural 

network meta-models and NSGA-II, the MOGA-ANN approach (Behzadian et al., 

2009) and the LEMMO approach (Jourdan et al., 2005).  

Learnable evolution models (LEM) have been used successfully on single 

objective optimisations (Michalski et al., 2000). A LEM approach to optimisation 

consists of normal evolutionary algorithm execution, interspersed with “Learning 

phases” (Michalski et al., 2000). During a learning phase, data collected within 

the evolution phase is used to train a machine-learning algorithm to differentiate 

between more and less optimal solutions. 

The machine learning algorithms used in previous implementations of LEMMO 

are decision tree classifiers. In this case the machine-learning algorithm is an 

artificial neural network, which necessitated some development of the algorithm. 

This machine-learning algorithm is then utilised to generate a new population for 

the next evolution phase to use as a starting point. This functionality had to be 

adapted somewhat to make it applicable to multiple-objective optimisation. 
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Five variants were examined in Jourdan's (2005) paper, referred to as LEMMO-

1, LEMMO-fix1, LEMMO-fix2, LEMMO-fix3 and LEMMO-fix4. These are 

described in section 2.5.3. 

An approach based upon LEMMO-Fix4 has been used as this was recommended 

in Jourdan et al.  (2005) and testing in di Pierro et al.  (2009) led to that study also 

following this recommendation. Unfortunately, due to memory constraints it is not 

possible to maintain a full list of all individual solutions found so far. 

This problem might be surmountable by modifying the code to maintain a 

database of found solutions, or by altering the architecture of the program to allow 

access to a larger amount of memory. As neither of those approaches was 

available to this project, all found solutions between the last LEMMO iteration and 

the current iteration (i.e. ten iterations worth of solutions) were stored. The 

approach taken can be seen in Figure 11. 
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Figure 11 - Process to create a new LEMMO population using ANN 

The feed-forward artificial neural network was trained using RPROP with the best 

thirty percent of these solutions from the last ten generations as the “good” set 

and the worst thirty percent as the “bad” set. In order to generate solutions that 

match the “good” set and do not match the “bad”, solutions are generated for 

each of the population members in turn. These solutions are then mutated and 
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evaluated (by the ANN), discarding poor mutations and retaining the mutations 

that improve the solution. At this stage, no solution can enter the population if a 

solution already exists with the same characteristics. Once either an iteration 

hard-limit has been reached, or the solution matches the “good” and doesn’t 

match the “bad” solutions with a certain degree of accuracy, the solution is 

retained. Once this procedure has finished for all population members, the 

population is combined with the original population, and the best 50% retained.  

At this stage, no solution can be entered into the population that already exists 

there. Finally, this newly generated population is treated as a new child population 

within the NSGA2 algorithm. This means that a conglomerated population of the 

current solutions, plus these newly generated solutions is created, evaluated, 

ranked, analysed for crowding distance, sorted by rank then crowding distance, 

and the best 50% retained for the next iteration of NSGA2. In this way it is ensured 

that only improved solutions generated by LEMMO will persist into the NSGA-II 

population, the rest will be discarded. 

This is a novel development, as LEMMO has previously been used only with 

classifiers where it is easier to extract rules upon which the classification is being 

based. Research into this area, such as has been performed here, is therefore of 

high value. 

How effective this algorithm is when applied to flood risk optimisation problems 

will be shown in chapters 5 and 6 
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4.5 Optimisation Assessment 

4.5.1 Introduction 

In this section the approach that has been used to assess the previously 

described algorithms will be covered. These algorithms needed to be analysed in 

two ways, firstly, the effectiveness of each algorithm in relation to the others at 

approximating the true Pareto front. Secondly, their relative efficiencies in doing 

so, i.e., can some approaches produce a better or equal approximation with fewer 

objective function calls. Finally, how well the identified most effective algorithm 

optimises using a real test case. 

4.5.2 Optimisation Set Up 

A selection of test problems and associated Pareto fronts specifically designed 

to be utilised as a benchmark for the testing of optimisation algorithms have 

recently been published by the Centre for Water Systems at Exeter University 

(Wang et al., 2014).  

These test problems are an extremely good candidate for testing LEMMO with 

ANN’s and comparing it to NSGA-II. There are marked similarities between these 

water distribution system problems and flood risk problems, in terms of the 

variables that control them (pipe sizes, and arrangement) and the non-linear 

complexity of the problem. Additionally, they have been very thoroughly 

researched (Wang et al., 2014) and a reasonable estimated Pareto front found 

for each of them. 
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Testing the developed algorithm on these problems gives a very good indication 

as to whether it converges to a reasonable Pareto front estimation (see chapter 

5) and how well it works on complex combinatorial non-linear problems. No 

surface runoff needs to be analysed for these problems, plus these problem 

setups are developed with optimisation algorithms in mind, using software 

models it is easy to interact with and that runs quickly, EPANET2 (Rossman, 

2000). 

A subset of these tests has been utilised and repeated with the algorithms 

developed for this thesis, in order to test their capability to converge to a 

reasonable approximation of the true Pareto front. The tests have also been 

analysed to determine how efficiently and effectively they converge before any 

attempt to utilise them on a real test case. This testing has been performed by 

the author. 

Once the algorithms are converging to a reasonable approximation of a Pareto 

front, and it is known which algorithm is achieving this most efficiently and 

effectively, this algorithm can be utilised with a real test-case and a reduced 

rainfall set (as described in section 4.3.2). The results generated by this algorithm 

and the real test case were then analysed for EAD using the original SAM-RISK 

approach and a full set of rainfall files. 

For the purposes of this thesis, several collections of settings are required for the 

various tests that have been utilised to analyse performance of the various 

algorithms and how well they are matching a Pareto front. These can be 

separated into two distinct groups, one comprising several collections of settings, 
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and one containing only one. These groups are, artificial test case settings, and 

ADAPT optimisation settings. 

The settings of the artificial test cases described in chapter 5 have been arrived 

at by initially using similar settings to those used in the paper Wang et al. (2014). 

Where settings are unique to the specific implementation being described in this 

thesis, sensible seeming defaults have been selected. This combination of 

settings based on previous experiments and sensible defaults will then be 

iteratively improved by trial and error, until the final combinations are arrived at. 

4.5.3 Estimating Pareto Front Accuracy 

Estimating the accuracy of the Pareto front is challenging because it is impossible 

to know with certainty what a completely perfect Pareto front looks like for any 

problem which is too large to exhaustively evaluate in a reasonable time-period. 

An exhaustive evaluation of any of the reasonably sized problems available would 

take a prohibitively long time to complete under any circumstances.  

It is necessary, because of this limitation, that the final output of the algorithm is 

evaluated without any prior knowledge of the optimal output. In the case of the 

chosen test problems, as previously mentioned, several Pareto fronts have been 

generated by means of running a number of algorithms a number of times, then 

performing a non-dominated sort on the combined output to achieve a super 

Pareto front as reported by Wang et al. (2014). Where the optimal Pareto front is 

known for these test problems (i.e. where the problems are trivial enough that 

they can be exhaustively computed) the Pareto fronts generated by this technique 
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correlate very well and all fronts appear to be high quality results. This work was 

intended to produce a “reference set” of Pareto fronts for several problems. 

The research generated Pareto fronts using these test problems and newly 

developed algorithms. The results were compared to the Pareto fronts that form 

the “reference set”. The Pareto fronts were then compared visually, in order to 

check for reasonable correlation, then in terms of diversity of the Pareto front, in 

terms of convergence to the “reference” fronts and in terms of the Hypervolume 

metric (Fonseca et al., 2006). These tests were performed using both the 

standard NSGA-II algorithm, and with the adapted NSGA-II with the LEMMO 

algorithm included. This allowed the comparison of the performance of these two 

algorithms, as well as confirmed that both algorithms were performing as 

expected. 

The performance of the two approaches was, therefore, firstly compared in order 

to confirm which of the two was the better performing. Once this had been 

determined, the better performing algorithm was applied to the Dalmarnock 

model (see chapter 6). This is in order to confirm that the algorithm continues to 

perform well and converges when applied to a drainage network model via the 

expected annual damage optimisation objective. 

4.5.4 Diversity Metric 

The first of the three selected performance metrics is the diversity measure 

described by Deb et al. (2002). This measure involves calculating the Euclidean 

distance between each member of the generated Pareto front and its neighbour. 
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The extreme solutions are then calculated in Deb’s implementation by fitting a 

curve parallel to that of the true Pareto-optimal front. The extreme solutions are 

found by calculating the values of both objectives for the problem in question for 

two cases. The first case being where all pipes and storage nodes are the 

maximum allowed size, and the second case being where all pipes and storage 

nodes are their initial size (i.e. cost will be 0, EAD will be at its starting value). 

In equation 16 the process for calculating the diversity metric is described, where 

“df” and “dl” are the Euclidean distances between the extreme solutions and the 

boundary solutions of the non-dominated set. Meanwhile “d” represents the 

average of all distances for the non-dominated set. 

∆=
C\ + C] + C+ − C

^=4

+Y4

C\ + C] + _ − 1 C
 ( 16 ) 

 

With this measure, lower numbers are better, as they indicate a more uniform 

spread of solutions along the estimated Pareto front, covering larger areas of the 

estimated Pareto front. This measure has a benefit in that it can be applied to 

problems where the true Pareto front is unknown provided one can calculate the 

extreme end-points of the true Pareto front (Deb et al., 2002). 

4.5.5 Convergence Metric 

This metric involves measuring how close the various points in a non-dominated 

set are to another set of coordinates (representing either a true Pareto front, or 

another estimated Pareto front which is believed to be a superior approximation). 

It is based upon the measure described in Deb’s (2002) paper on NSGA-II. In 
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Deb’s original metric a set of 500 uniformly spaced solutions is selected from the 

superior front. For each calculated solution to be compared, the minimum 

Euclidean distance of that point from the chosen solutions in the superior front is 

then computed. The average of all these distances is used as the metric. 

Therefore, the lower the average of these distances, the better the score. 

The issue encountered with Deb’s metric is that in a situation where there are 

fewer solutions on the estimated Pareto front than the true Pareto front a very low 

value can be obtained. This could give a false impression as to how close to 

matching the Pareto front an estimated front may be.  

A modification has, therefore, been made by the author to overcome this problem. 

The solutions on the best-known front are taken and for each of those solutions 

the minimum Euclidean distance to a member of the set of algorithmically 

generated solutions is identified. The average of those distances is then taken.  

The difference can be seen in Table 8, Table 9, Table 10 and Figure 12. These 

tables and figure contain unitless example data, simply to demonstrate the 

mathematics (units in a real world application would depend upon the parameters 

being measures). Table 8 contains the coordinates for data section ‘A’, as well 

as the minimum Euclidean distance from each of these points to the points in the 

Pareto front. The average of these points is 1.21. 

Table 9 contains the coordinates for data section ‘B’ from Figure 12 and, again, 

the minimum Euclidean distances for these points to the points in the Pareto front. 

These distances average to 0.35. 
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The data in these two tables, combined with a visual check on Figure 12, 

indicates that dataset ‘B’ is a poorer fit than dataset ‘A”. However, because of the 

different numbers of data points in each dataset, dataset ‘B’ achieves a better 

convergence value than dataset ‘A’. 

On the other hand, looking at Table 10 (in the final two columns) the figures for 

the minimum distances from each data point in the Pareto front, to the data points 

in ‘A’ and ‘B’, can be seen. These figures average to 1.04 and 2.47 respectively, 

giving a better estimation of how far from matching the true Pareto front these 

two datasets are. Much like the original measure, if there is a perfect match 

(including identical data-points being found) this measure will produce zero. 

Therefore, the lower the number, the closer the estimated front is to the true 

Pareto front. 

The mathematical expression for this metric can be seen in equation 17 where ‘x’ 

and ‘y’ are the coordinates for the Pareto front and accented ‘x’ and ‘y’ are the 

coordinates for the estimated Pareto front. 

A 
X Y Distances 
7 0 2.00 
6 1 1.41 
5 2 1.41 
3 3 1.00 
3 4 1.41 
1 4 0.00 

Average distance: 1.21 

Table 8 - Convergence metric example data 'A' 
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B 
X Y Distances 
4 1 0.00 

5.5 0.5 0.71 
Average distance: 0.35 

Table 9 - Convergence metric example data 'B' 

Pareto Front 
X Y A Distances B Distances 
5 0 1.41 0.71 
4 1 1.41 0.00 
3 2 1.00 1.41 
2 3 1.00 2.83 
1 4 0.00 4.24 
0 5 1.41 5.66 

Average distances: 1.04 2.47 

Table 10 - Convergence metric example data "Pareto Front" 

 

Figure 12 - Convergence metric example data 
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4.5.6 Dominated Hypervolume Metric 

The dominated hypervolume or “S-Metric” is a measure of the Hypervolume 

dominated by the estimated front (Zitzler and Thiele, 1998). Given a reference 

point, the volume of space dominated by the estimated Pareto front can be 

calculated, resulting in a measure by which to compare different estimated fronts. 

The larger the volume of dominated space (i.e. the higher the numerical value of 

the metric) the better the estimation of the Pareto front. This can be seen in Figure 

13, where the dominated region is indicated by shading. 

The reference has to be in such a position that it will encompass the entire Pareto 

front to be measured. Additionally, the reference point must be the same between 

separate tests, if they are intended to be compared. Differing reference points 

could result in wildly different results. Finally, in the given example (see Figure 

13) both objectives are being minimized – whereas in our test networks, one 

objective (resiliency) is being maximised rather than minimised.  

We are using the DEAP library implementation of the Hypervolume metric, written 

in Python (Fortin et al., 2012; Wessing, 2010), executed in the .NET environment 

alongside C# code using the IronPython python implementation (Foord and 

Muirhead, 2009). This implementation assumes minimisation on both objectives. 
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This problem was solved by inverting the scores from the particular objective that 

is being maximised, before applying the hypervolume metric. This results in a 

“flip” of the curve for that particular objective, meaning a reference point based 

upon this new, but equivalent, curve can be provided and the algorithm works 

without issue or alteration. 

 

Figure 13 - Dominated Hypervolume example, shaded area represents dominated volume 

from the single red reference point, to the blue line. 

4.6 Chapter Summary 

In this chapter, the improvements made to the existing software have been 

identified. The process of identifying a reduced rainfall set with an expected 

annual damage that correlates closely to the produced expected annual damage 

from the full rainfall set has been described. Optimisation methodologies, how 
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they can be improved and how two previously studied methodologies (Behzadian 

et al., 2009; Jourdan et al., 2005) compare, has been discussed. Finally, how the 

optimisation processes were set up and the metrics by which they were evaluated 

has been described in detail. This has laid the foundation for the following two 

chapters, which examine the results produced from this testing. 
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5. Water Distribution System Test-Cases 

5.1 Introduction 

It is important when selecting test cases to ensure that the test problems are as 

close as possible to the real problem one is attempting to solve. In the case of 

this thesis, that requires the problem is combinatorial, is non-linear in nature, has 

a highly complex problem-space and (in order to be useful for the purposes of 

testing) can be analysed in less time than the full problem could be. The test 

problems analysed by Wang et al. (2014) fit all of these criteria. Additionally, there 

are marked similarities in the decision variables (pipe sizes) and the objective 

functions (cost of the network, plus a measure of network performance). 

Therefore, it was decided to use a subset of these test problems as the testing 

set for the LEMMO algorithm developed within this thesis.  

5.2 Selection of Tests 

In the original paper describing the benchmark problems (Wang et al., 2014) 

twelve WDS (Water Distribution System) design problems are examined, which 

fit into four categories: small, medium, large and very large (see Table 11). This 

is done on the basis of the size of the search space defined by the problem. 
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Small Medium Large Very Large 
Two-Reservoir 
network (TRN) 
(3.28×10

e
) 

New York Tunnel 
network (NYT) 
(1.93×10

5h
) 

Fossolo network 
(FOS) 

(7.25×10
ee
) 

Modena network 
(MOD) 

(1.32×10
khk) 

Two-loop network 
(TLN) 

(1.48×10
m) 

Blacksburg 
network (BLA) 
(2.30×10

5n
) 

Pescara network 
(PES) 

(1.91×10
44Z) 

Balerma irrigation 
network (BIN) 
(1.00×10

ohh
) 

BakRyan network 
(BAK) 

(2.36×10
m
) 

Hanoi network 
(HAN) 

(2.87×10
5n
) 

 
Exeter network 

(EXN) 
(2.95×10

hmZ
) 

 
GoYang network 

(GOY) 
(1.24×10

5e 
  

Table 11: Test problem categories 

It was considered that at least one small problem should be included to allow for 

easy bug testing and modification of software with a small and fast to run problem. 

Additionally, a smaller problem has the advantage that the best estimated Pareto 

front has been found by exhaustive search and is therefore known correct. A 

medium problem was then included, in order to ensure that problems were tested 

upon across a reasonable range of the complexities available (see Table 11). 

Finally, two very large problems were included, as these most accurately 

represent the scale and type of problem that the new approach is designed to 

solve.  

Taking these considerations into account the selected problems are the two-loop 

network (TLN), the GoYang network (GOY), the Modena network (MOD) and the 

Balerma irrigation network (BIN). The details of these problems can be seen in 

Table 12. 
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Problem Water 
Sources 

Decision 
Variables 

(Pipes) 

Pipe 
Diameter 
Options 

Search 
Space Size 

TLN 1 8 14 1.48×107 

GOY 1 30 8 1.24×1027 

MOD 4 317 13 1.32×10353 

BIN 4 454 10 1.00×10455 

Table 12: Test problem details  

In the benchmark test paper (Wang et al., 2014) a computational budget is fixed, 

in order that the results were repeatable easily by maintaining a similar 

computational budget. The computational budgets used in this paper for the 

chosen tests can be seen in Table 13. 

Problem Number of 
Evaluations 

Group 1 
Population 

Group 2 
Population 

Group 3 
Population 

TLN 100,000 40 80 160 
GOY 600,000 60 120 240 
MOD 2,000,000 200 400 800 
BIN 2,000,000 200 400 800 

Table 13: Test problem computational budget in original benchmarking 

The best-known Pareto set was identified in Wang et al. (2014) by running a large 

number of different optimisation algorithms, conglomerating the results, and 

identifying the best non-dominated set from those conglomerated results. 

Because of this all the results within the best-known Pareto front were not 

generated using NSGA-II, and it was not expected that during our testing the 

algorithm would identify every single result that the Wang et al. (2014) identified. 

The amount and percentage (against the overall total) of solutions identified by 



Chapter 5 – Artificial Test-Cases 

  Page: 128 

NSGA-II in the best known-pareto fronts for each problem selected can be seen 

in Table 14 and Table 15. 

Problem Group 1 
Contribution 

Group 2 
Contribution 

Group 3 
Contribution 

TLN 54 74 77 
GOY 4 23 31 
MOD 71 61 26 
BIN 8 67 179 

Table 14: Contribution to best-known Pareto front from NSGA-II (Wang et al., 2014) 

Problem Total Solutions in 
Best-Known Pareto 

front 

Percent Discovered by 
NSGA-II (%) 

TLN 77 100 
GOY 67 43.3 
MOD 196 57.7 
BIN 265 72.5 

Table 15: Percentage contribution to the best-known Pareto front from NSGA-II in 

percentages (Wang et al., 2014) 

In Table 14 the number of contributions to the best-known Pareto front can be 

seen from each NSGA-II group run within Wang's tests. It can be seen in these 

results that certain problems seem to lend themselves to higher populations, 

which means a broader exploration of the available search space. Meanwhile, 

other problems lend themselves to smaller populations but necessarily higher 

numbers of iterations (to keep to the same computational budget), which means 

a deeper exploration of the available search space. With regard to the very large 

problems (particularly interesting for this thesis) one of each of these variants is 

included (the MOD and BIN problems). 
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Additionally in the second table (Table 15) it can be seen that during Wang et al. 

(2014)’s tests, NSGA-II performs very well on TLN, more poorly on MOD and 

GOY, and then better again on BIN. This pattern is mirrored by the NSGA-II 

implementation developed for this thesis, as would be expected.  

5.3 Objective Function Formulations 

The two objectives used for these test problems are network resilience and 

capital expenditure, network resilience is a measure of how reliable the water 

distribution network is. The formulation of the objectives can be seen in equations 

18, 19 and 20 (Wang et al., 2014). 

minS = ?×J
+

t
×X+

8u

+Y4

 ( 18 ) 

 

max W8 =

SMxM yM − yM

z{|88

MY4

x6y6 +
D+

}

8u~

+Y4

8z

6Y4
− xMyM

z{|88

MY4

 
( 19 ) 

 

SM =
J+

8uM

+Y4

)2�×max J+

 
( 20 ) 

 

In equation 18 S represents total cost (monetary units are problem dependant); 

)2 represents the total number of pipes; ? and A represent constants depending 

on specific problems; J+ is the diameter of pipe . and X+ is the length of pipe . 

(Wang et al., 2014). 
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In equations 19 and 20, W8 is network resilience; )) represents number of demand 

nodes; SM, xM, yM and y
M

z{| represent uniformity, demand, actual head, and 

minimum required head of node �; )F is number of reservoirs; x6 and y6 are 

discharge and actual head of reservoir Ä; )2Å is the number of pumps; D+ is the 

power of pump .; } represents the specific weight of water; )2� is the number of 

pipes that are connected to node �; J+ is the diameter of pipe . connected to 

demand node � (Wang et al., 2014). 

Mathematically, the cost function for these test problems is similar, but less 

complex than the cost function developed in this thesis. The resilience function is 

fairly dissimilar mathematically, but conceptually is similar, as it is a measure of 

network performance, albeit a considerably less complex measure.  

5.4 Testing Conditions 

The main purpose of these tests is to ensure that the implementations of the basic 

NSGA-II process, and the heuristic additions converge successfully to a 

reasonable approximation of the best estimated Pareto front. The best estimated 

Pareto front is as generated in the paper of Wang et al. (2014). The performance 

differences between the basic NSGA-II process and the heuristic additions on 

these test problems were then examined. 

In the paper of Wang et al. (2014) the parameters for the various algorithms being 

tested are specified in detail. The parameter values selected within this study 

approximate these parameter values (see Table 16). The algorithms used are the 

standard NSGA-II and an NSGA-II variant with LEMMO (Jourdan et al., 2005). 
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Both these algorithms use simulated binary crossover, mapped to an allowed set 

of real values, combined with a mutation operator that selects a random value 

from within the allowed set of values. This mutation parameter is applied at the 

gene level – every chromosome is up for mutation, then each gene within that 

chromosome has the probability of mutation applied. The level of mutation 

probability (see Table 16) is set so that the probability is equal to the number of 

genes present in each chromosome divided by one and thus the probability is 

that roughly one gene will be altered per chromosome. The NSGA-II algorithm 

functions in such a way that this does not affect the elitism present in the 

algorithm. 

It can be seen (in Table 16) that TLN has a million evaluations with a fairly small 

population. This is because it is very quick to execute and thus it can be run for 

a high number of iterations without a large impact on time. GOY runs for six 

hundred thousand evaluations, as this problem takes longer to run than TLN, and 

this value matches the number of evaluations allotted in Wang et al. (2014). MOD 

runs for five thousand iterations with a population of four hundred to give two 

million evaluations. It was felt important that one of the two very large problems 

have as long a runtime as was practical, and MOD is the problem which NSGA-

II performed most poorly on in Wang et al.  (2014). Finally, BIN runs for one million 

evaluations, as time constraints were strong, BIN was the longest running of the 

test functions, and NSGA-II had performed reasonably well on BIN in Wang et al. 

(2014). 
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 Crossover Mutation Maximum 
Iter. 

Pop. 
Size 

Parent 
Pop. 
Size 

No. 
Evals. 

TLN 1.0 0.125 12,500 80 40 1,000,000 
GOY 1.0 0.030 5,000 120 60 600,000 
MOD 1.0 0.003 5,000 400 200 2,000,000 
BIN 1.0 0.002 2,500 400 200 1,000,000 

Table 16: Settings for NSGA-II and NSGA-II LEMMO 

5.5 Testing of NSGA-II Base 

The NSGA-II base algorithm needs to be tested to ensure that it is converging to 

a reasonable Pareto front. In this case, a “reasonable” Pareto front is identified 

partially by comparing to the best-known Pareto fronts available from Wang et al. 

(2014) and partially by way of the optimisation metrics. 

The NSGA-II settings are identical to those for LEMMO (see Table 16), and the 

standard NSGA-II algorithm is implemented as described in the original literature 

(Deb et al., 2000, 2002). The crossover technique used is simulated binary 

crossover (often abbreviated to SBX) (Deb and Agrawal, 1994). 

The mutation technique used in the test problems is implemented at the gene 

level and involves replacing the “value” of the gene to be mutated with another, 

random, valid value. 

5.6 Meta-model Evaluation 

It has been necessary to identify a suitable structure for the neural network being 

utilised. It has been shown that a feed-forward neural network with one hidden 
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layer (see section 2.4.2) is a universal approximator (Cybenko, 1989; Hornik, 

1991; Hornik et al., 1989) given the correct parameters (i.e. weight values). 

However, the question still remains, which is how to find these parameters and 

how many nodes should be present in a hidden layer to solve a given problem.  

Additionally – these papers (Cybenko, 1989; Hornik, 1991; Hornik et al., 1989) 

do not necessarily prove that the three-layer approach is the most efficient to train 

and effective for a given problem, only that it theoretically should be able to 

achieve an approximation. There is no universal rule or system for selection of 

the correct number of hidden neurons for a given problem, but most suggested 

guidelines are between zero and 'n' with 'n' being the number of decision 

variables. Initially, therefore a three-layer network was used, where the number 

of hidden nodes was equal to the number of decision variables divided by two 

(see Figure 14).  
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Figure 14 - Initial neural network structure with six input nodes 

The training algorithm used was resilient back-propagation (RPROP+) 

(Riedmiller and Braun, 1993) this seemed to produce an improvement in 

approximating the Pareto front on smaller problems (such as TLN) but failed to 

the same for the larger problems. Additionally, by analysing the execution of the 

code, it could be seen that the neural network-training algorithm was running until 

it hit a hard limit imposed to prevent endless loops. This was interpreted as 

meaning that the neural network was struggling to classify the inputs, and was 

not producing a meaningful enough answer for the LEMMO algorithm to function 

correctly (di Pierro et al., 2009; Jourdan et al., 2005, 2004). 

It has been suggested (Masters, 1993) that a network with two hidden layers 

could perform better than one with a single hidden layer when approximating 
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complex discontinuous functions.  Based on this, it was decided to experiment 

with adding an extra layer, comprised of half the number of hidden nodes in the 

previously existing hidden layer (number of decision variables divided by two). 

This layer is between the previously existing hidden layer and the input layer (see 

Figure 15). This network arrangement produced considerably improved results 

over the previous arrangement (see section 5.7) and with time being a factor it 

was decided to progress using this network architecture.  

 

Figure 15 - Graphical representation of the neural network structure with ten input nodes 

(for illustration only - test-problems and real problems should have considerably more 

inputs). 
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5.7 Accuracy of Generated Pareto Fronts 

In order for the two different algorithm types to be analysed for each of the four 

problems, twenty tests were run for each, first without and then with LEMMO. 

Additionally, a sample of the initial results with LEMMO (before the neural network 

structure was changed from three to four layers) are included. These tests were 

halted when it became clear that the LEMMO algorithm with a three-layered ANN 

was not offering the improvement hoped for, and the algorithm checked to 

attempt to determine why the improvement seen in the original LEMMO paper 

(Jourdan et al., 2005) was not being realised. Therefore, there are fewer of these 

results (18 for BIN, 17 for MOD, and 19 for TLN) and the GOY test problem was 

not run with this configuration, as the tests were brought to a halt earlier than 

originally planned. Finally, the full twenty tests were performed for each test case 

with the LEMMO algorithm with a four-layered ANN. 

For each of these twenty tests (or in the case of the three layer ANN, 18, 17 and 

19 respectively for BIN, MOD and TLN) two tests that are a reasonable 

representation of the overall results were selected to be shown in more detail in 

this chapter. Each of these selected tests were separated into evenly spaced 

iterations, in order to show clear progression of the optimisation in the way which 

would be expected. A visual comparison of these tests also holds some value. It 

may be worth noting that for every single iteration, of every single result, a graph 

was generated and inspected. However, for brevity’s sake, not all were included. 

The numerical analysis of the results has been undertaken via the use of three 

metrics, convergence, diversity and dominated hypervolume, which are based on 
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the mean results from all iterations of each test. The full results tables for all these 

graphs can be seen in Appendix II – BIN Data Tables. 

5.7.1 NSGA-II Base Algorithm 

5.7.1.1 TLN 

TLN is the simplest of the four test problems being utilised in this thesis, and this 

is reflected in the graphs seen below (Figure 16 & Figure 17). It can be seen that 

by iteration ten (our first measure) the algorithm is already reasonably progressed 

towards the Pareto front, and by the last iterations the Pareto front is effectively 

found – with many of the points being identical to the Pareto front. This is because 

TLN is a trivial problem to solve and can in fact be exhaustively computed. 

Because of this, it is very useful as a measure of whether a multi-objective 

algorithm is functioning as expected. 
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Figure 16 - NSGA-II, base algorithm analysis, TLN-A 
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Figure 17 - NSGA-II, base algorithm analysis, TLN-B 

5.7.1.2 GOY 

The GOY testing problem is significantly more complex than TLN, but still on a 

fairly small scale compared to the two other test problems being utilised in this 

thesis. This can be seen (Figure 18 & Figure 19) in that the solutions are not as 

close to the overall best-known Pareto front by iteration ten as the TLN test 

problem solutions were, but by iteration one thousand the algorithm has 
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Figure 18 - NSGA-II, base algorithm analysis, GOY-A 
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Figure 19 - NSGA-II, base algorithm analysis, GOY-B 
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high cost – high resilience part of the best known Pareto front contains a smaller 

number of solutions with large gaps between them. This indicates that even the 

multi-algorithm strategy employed by Wang et al. (2014) struggled to identify 

solutions in that region of the Pareto front. Since only one algorithm is being used 

here, instead of the multi-algorithm strategy used in Wang et al. (2014), it is not 

expected that this algorithm necessarily finds the full Pareto front. 

 

Figure 20 - NSGA-II, base algorithm analysis, MOD-A 
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Figure 21 - NSGA-II, base algorithm analysis, MOD-B 
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Figure 22 - NSGA-II, base algorithm analysis, MOD-A (altered axes) 
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Figure 23 - NSGA-II, base algorithm analysis, MOD-B (altered axes) 
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Figure 24 - NSGA-II, base algorithm analysis, BIN-A 

0.00

5.00

10.00

15.00

20.00

25.00

0.35 0.45 0.55 0.65 0.75 0.85 0.95

Ca
pe
x	(
m
illi
on
	£)

Resilience	

NSGA-II	base	algorithm	analysis	(BIN-A)

Gen	10 Gen	500 Gen	1000 Gen	1500 Gen	2000 Gen	2500 Best	Known



Chapter 5 – Artificial Test-Cases 

  Page: 147 

 

Figure 25 - NSGA-II, base algorithm analysis, BIN-B 
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accurately representing the more complex problems with its current structure. 

These tests were therefore halted, and tests started with a four-layer network. 

These tests had more promising results, which are presented in section 5.7.3. 

The results for the three-layer ANN tests are included, despite their being 

superseded by the four-layer ANN tests, to demonstrate the process undertaken 

when designing the ANN meta-model.  

5.7.2.1 TLN 

This initial trial with the LEMMO algorithm and the three-layer neural network 

shows reasonable results visually, with the estimated Pareto front closely 

matching the reference Pareto front. This problem is fairly trivial, however, and 

any properly functioning algorithm should solve it with ease. 
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Figure 26 - NSGA-II, LEMMO with three layer ANN analysis, TLN-A 
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Figure 27 - NSGA-II, LEMMO with three layer ANN analysis, TLN-B 
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Figure 28 - NSGA-II, LEMMO with three layer ANN analysis, MOD-A 
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Figure 29 - NSGA-II, LEMMO with three layer ANN analysis, MOD-B 
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Figure 30 - NSGA-II, LEMMO with three layer ANN analysis, MOD-A (altered axes) 
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Figure 31 - NSGA-II, LEMMO with three layer ANN analysis, MOD-B (altered axes) 

5.7.2.3 BIN 
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Figure 32 - NSGA-II, LEMMO with three layer ANN analysis, BIN-A 
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Figure 33 - NSGA-II, LEMMO with three layer ANN analysis, BIN-B 
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Figure 34 - NSGA-II, LEMMO with four layer ANN analysis, TLN-A 
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Figure 35 - NSGA-II, LEMMO with four layer ANN analysis, TLN-B 
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Figure 36 - NSGA-II, LEMMO with four layer ANN analysis, GOY-A 
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Figure 37 - NSGA-II, LEMMO with four layer ANN analysis, GOY-B 
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Figure 38 - NSGA-II, LEMMO with four layer ANN analysis, MOD-	A 
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Figure 39 - NSGA-II, LEMMO with four layer ANN analysis, MOD-B 
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Figure 40 - NSGA-II, LEMMO with four layer ANN analysis, MOD-	A (altered axes) 
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Figure 41 - NSGA-II, LEMMO with four layer ANN analysis, MOD-B (altered axes) 

5.7.3.4 BIN 

It is clear from a visual inspection of two selected problems that with a four-layer 

artificial neural network the BIN WDS problem is converging to a far better 
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Figure 42 - NSGA-II, LEMMO with four layer ANN analysis, BIN-A 
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Figure 43 - NSGA-II, LEMMO with four layer ANN analysis, BIN-B 
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This is achieved by calculating all three metrics for each tenth iteration of every 

single test. These metrics for each iteration are then averaged across common 

tests. For example, the metric results for TLN with NSGA-II and no LEMMO 

consist of a set of averages of the metrics produced for each iteration. Further 

details of the results presented and the calculated metrics results can be seen in 

Appendix II – BIN Data Tables. 

5.7.4.1 TLN Analysis 

The analysis for TLN (see Figure 44, Figure 45 and Figure 46) shows that in 

terms of convergence towards the best known Pareto front, both LEMMO tests 

show improved results over the NSGA-II base algorithm. The three-layer ANN 

version of LEMMO very slightly out-performs the four-layer ANN version in terms 

of this metric – but the difference is minor, and it is worth noting that the four-layer 

version converges faster. 

In terms of diversity, the TLN analysis shows some interesting results. Both the 

four-layer ANN version of LEMMO and the NSGA-II base algorithm start off at a 

diversity of approximately point five. This diversity then decreases slightly before 

remaining fairly static. In contrast, the three-layer version of LEMMO starts at 

around a diversity of point five, before increasing, and becoming static at 

approximately point six five. Further investigation of the results files for TLN 

shows that TLN with three-layer ANN LEMMO consistently has a lower number 

of solutions in rank one at its final iteration than either of the other two variants. 

This would explain the higher diversity (as fewer points to cover the same curve 

will be further apart). 
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A hypothesis to explain this occurrence, could be that the meta-model is helping 

the genetic algorithm initially, resulting in the generally better results as the 

algorithm progresses faster. Three-layer ANN is then struggling to accurately 

represent the TLN problem. The NSGA-II algorithm continues to optimise from its 

(improved relative to running without the meta-models) position. This could result 

in a better overall convergence to the best-known Pareto front, but only elitism 

preserved solutions generated by NSGA-II being part of that convergence. This 

would happen to an increasing extent as the iterations progress.  

In terms of dominated hypervolume, both of the LEMMO algorithm variants out-

perform the NSGA-II base algorithm. The four-layer version of LEMMO appears 

to converge to its solution slightly faster – this is supported by the data given by 

the convergence metric. 
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Figure 44 - Averaged convergence metric for TLN 
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Figure 45 - Averaged diversity metric for TLN 
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Figure 46 - Averaged dominated hypervolume metric for TLN 
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II base algorithm is slightly out-performing the LEMMO implementation in terms 

of diversity.  

 

Figure 47 - Averaged convergence metric for GOY 
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Figure 48 - Averaged diversity metric for GOY 

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0 1000 2000 3000 4000 5000 6000

Co
nv
er
ge
nc
e

Iteration

Diversity	Metric

NSGA-II LEMMO	ANN4L



Chapter 5 – Artificial Test-Cases 

  Page: 174 

 

Figure 49 - Averaged dominated hypervolume metric for GOY 
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with a three-layer ANN has the most diversity at the stopping point. The NSGA-II 

base algorithm has slightly less diversity, followed by the four-layer ANN LEMMO 

variant with the least diversity.  

 

Figure 50 - Averaged convergence metric for MOD 
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Figure 51 - Averaged diversity metric for MOD 
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Figure 52 - Averaged dominated hypervolume metric for MOD 
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Figure 53 - Averaged convergence metric for BIN 
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Figure 54 - Averaged diversity metric for BIN 
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Figure 55 - Averaged dominated hypervolume metric for BIN 
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convergence to the best-known Pareto fronts in fewer iterations (and thus fewer 

objective function evaluations). It is also entirely possible that further tuning the 

ANN structure and training strategy could further improve the algorithms results 

in terms of how quickly they approach the optimal pareto front, and how closely 

they match it. 

Logically, no accuracy is lost through this process. The LEMMO algorithm 

integrates into the NSGA-II algorithm in such a way that if a LEMMO iteration 

produces only very poor solutions to the problem, they will not enter the 

population. The only possible negative effect could be that if the meta-model 

cannot model the complexities of the problem well, it could bias the algorithm 

towards convergence in a local optimum. This is likely to be the explanation 

behind results such as in Figure 52 where the LEMMO approach with a three-

layer neural network underperforms compared to the two other test variants. 

Additionally, the time taken to run a LEMMO iteration versus running a full 

iteration is negligible, meaning that it is very cheap in terms of computational 

demand to use this technique to improve the results of the NSGA-II algorithm. 

The conclusion, therefore, is that the LEMMO approach used with NSGA-II 

performs well with ANN meta-models. It generally improves the results compared 

to a standard NSGA-II base algorithm, and achieves comparable results in fewer 

iterations. The caveat is that the ANN used must be structured and trained well 

enough that it will approximate the testing function well, otherwise it could bias 

the algorithm towards local optima. 
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6.  Case Study: Dalmarnock Catchment 

6.1 Introduction 

The Dalmarnock drainage system is a flood risk catchment used by HR 

Wallingford for testing the SAM-Risk approach and software (Kellagher et al., 

2009). It, therefore, seemed reasonable to utilise this same catchment model as 

a case-study test for ADAPT and the optimisation algorithms that have been 

developed during this thesis. 

6.2 Dalmarnock Catchment Description 

6.2.1 Original Dalmarnock Model 

The original Dalmarnock model is a reasonably large, verified, Infoworks CS 

model of a drainage system covering 96 km2 and including 5501 nodes, 5468 

links and 2172 sub-catchments (see Table 17)  (Kellagher et al., 2009). 

The Dalmarnock drainage system is mostly combined, but does have a limited 

amount of separate wastewater pipe work and storm water pipework. 

With this model, assuming that all decision variables (pipe diameters, storage 

node volumes and orifice settings) were included individually rather than grouped 

together, and using the allowed values defined in the algorithm, the search space 

would be 2.01×10keZ, which is in the region of the very large WDS test problems 

covered in chapter 5.  
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Area (km2) 96 
No. Nodes 5501 
No. Links 5468 

No. Sub-catchments 2172 
No. weirs 145 

No. sluices 46 
No. pumps 10 
No. flumes 1 
No. orifices 41 
No. screens 1 

No. flap valves 11 
Slope (m/m) 0.01 

Table 17 - Original Dalmarnock catchment details (Kellagher et al., 2009) 

 

Figure 56 - Full Dalmarnock network model (Kellagher et al., 2009) 

6.2.2 Testing Dalmarnock Model 

As the algorithms the Dalmarnock model has been tested with are intensive and 

require repeated calls to the Infoworks CS model during the DTI-SAM project a 

sub-set of the original model was used. This is the network being used. This sub-
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set of the Dalmarnock model covers only 15.34% of the area in the original model, 

and has only 6.89% of the pipes and 6.83% of the nodes (see Table 18).  

This sub-set consists almost entirely of combined pipework, but does include a 

watercourse routed through a culvert (see Figure 57). With the reduced numbers 

of pipes and storage nodes in the testing network the new search space is roughly 

8.78×10
5ho which is significantly reduced, although still substantial. 

This test set gives us a large combined system, with a very few waste water only 

nodes, and a culvert which is storm-flow only. It is, therefore, ideal as a test 

network, as it encompasses a range of different types of pipes. 

Area (km2) 14.73 
No. Nodes 376 
No. Links 377 

No. Sub-Catchments 153 
No. Weirs 0 

No. Sluices 1 
No. Pumps 2 
No. Flumes 0 
No. Orifices 3 
No. Screens 0 

No. Flap Valves 0 
Slope (m/m) 0.01 

Table 18 - Sub-set of Original Dalmarnock Catchment Model (Kellagher et al., 2009) 
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Figure 57 - Testing Dalmarnock Model, Green features are combined, Red are wastewater, 

and Yellow are storm flow. 

6.3 Allowed Decision Variable Values 

Of the three kinds of decision variable possible within the developed algorithm, 

there are limitations on the possible values. 

The possible pipe sizes are taken from HR Wallingford and D.I.H. Barr’s “Tables 

for the Hydraulic Design of Pipes, Sewers and Channels” (2006) (see Table 19). 

Additionally, every pipe can also be its original size, even if that size doesn’t fit 

into the allowed sizes giving them a maximum number of 54 possible values. 
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Allowed Pipe Sizes (mm) 
150 200 225 250 275 300 350 375 400 450 500 
525 600 630 675 700 750 800 825 900 975 1000 
1050 1100 1125 1200 1250 1300 1350 1400 1500 1600 1650 
1800 1950 2000 2100 2200 2250 2400 2500 2550 2600 2700 
2800 2850 3000 3200 3400 3500 3600 4000 4500   

Table 19 - Allowed Pipe Sizes 

Orifices are allowed to be any setting between 0 m3/s and 10 m3/s in steps of 0.1 

m3/s, giving them a range of 100 possible settings. Meanwhile storage nodes can 

have a storage area of anywhere from 1 m3 to 100 m3 in steps of 1 m3, giving 

storage nodes 99 possible values. Additionally, similarly to pipes, nodes can also 

be their original value, regardless of whether that is in the allowed set. 

6.4 Mutation Operator for Dalmarnock 

The mutation operator for the Dalmarnock problem had to be developed slightly 

differently from the mutation operator used in the WDS problems. This was in 

order to fit with the requirements of restricted sizes and the requirements for 

maintaining consistency within the pipe groups. For the storage nodes, the 

mutation operator involved selecting a new size from a normal distribution, then 

validating that this new size complies with the various rules that may or may not 

be turned on. These rules include the disallowance of reduction of pipe sizes and 

storage node sizes (meaning they cannot be reduced below their original value, 

in the base network), a min and a max size for storage nodes and min/max limits 

on orifice discharges. Pipe groups mutate by selecting a random increase or 

decrease in pipe sizes by 0-3 steps on a discrete triangular distribution (within the 

ordered list of allowed pipe sizes). The selected change is then checked to ensure 
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it meets all currently applied rules before applying that change to the pipes in the 

group. Finally, orifices select a new value from a normal distribution similarly to 

storage nodes, before checking that the new value complies with all rules before 

applying. 

6.5 Optimisation Testing Introduction 

Time is a factor, and even with the improvements and optimisations that have 

been made, running an optimisation with a large flood risk problem such as this 

is an extremely time-consuming undertaking. 

Without the various optimisations and reductions in inputs, a full flood-risk 

analysis to calculate EAD took in the region of 6 hours to test (see section 

4.3.2.2). The search space for the used testing network (i.e. the subset of 

Dalmarnock) with all pipes included is 8.78×105ho, and therefore an exhaustive 

evaluation of this network would take approximately 6.0×105h4 years. To put this 

figure into perspective – the current age of the universe is roughly 13.8×10m 

years. 

An optimisation algorithm like NSGA-II improves upon this considerably, by 

searching heuristically so that it can ignore large portions of the search space 

and narrow in on the useful portions. An NSGA-II algorithm, running an objective 

function that takes this long to compute, assuming 5,000 iterations and a 

population of 100, would take roughly 342 years to complete.  

Using the methodology outlined in this thesis, that 6 hour runtime has been 

improved upon, reducing it to 40 seconds in our case once the reduced rainfall 
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set is found (see section 4.3.1), which is a reduction of more than 99% and a 

considerable achievement. 

With this new runtime, the exhaustive search and the NSGA-II run mentioned 

previously would take respectively 1.0×105om and 231 days (maximum, 

depending on how many runs along the way were cached). With caching, it is 

reasonable to assume that as the algorithm progresses, roughly 50% of the 

population at each iteration will be carried over from the previous iteration and 

therefore already evaluated. Reducing that runtime by 50% gives us a figure of 

115 days, or roughly 3.9 months. So it can be said with some confidence that the 

run time of that particular setup would be somewhere between 115 days and 231 

days.  

In order to reduce the search-space further, and hopefully give a better likelihood 

of  reasonable results with fewer iterations, the optimisation algorithm is only 

altering a sub-set of these pipes, from the lower end of the network (see Figure 

58) although the full network continues to be simulated in the flood risk analysis 

to generate EAD. This means that the hope would be for our resulting network 

options to be a small, but significant, improvement in terms of EAD from the 

original Dalmarnock model. No large improvement is likely without modifying the 

full selection of pipes and storage nodes. The pipes and nodes included were 

selected by identifying a point in the network where only two pipes carrying fluid 

between the two halves (see Figure 58).  
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Figure 58 - Decision variables from test Dalmarnock model (decision variable elements are 

highlighted). Red dashed line indicates separation from un-modified section of 

Dalmarnock. 

No. Nodes 174 
No. Links 176 

No. Sub-Catchments 56 

Figure 59 - Decision variables for Dalmarnock catchment testing 

There are a large number of parameters needed for the optimisation algorithm, 

as well as settings files that are used by the EAD calculation. The settings that 

have been used can be seen in Appendix III – SAM-Risk Settings. 

More details on the initial values of the decision variables used in the optimisation 

can be found in Appendix IV – Decision Variable Details. 
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LEMMO is capable of accelerating the progress of the optimisation, such that for 

a given number of iterations, the progress made is improved over base NSGA-II. 

Therefore, it may be suitable to run LEMMO with fewer iterations than NSGA-II 

would require, to present a reasonable answer. However, it can be seen that 

running this algorithm, even with the huge improvements in performance that 

have been made, is an extremely time-consuming process and ideally should be 

performed on a powerful machine with an uninterruptible power supply. 

Additionally, as a limitation on the ways in which one might manage to run 

multiple time-consuming problems in parallel, only one test can be run at a time. 

This is due to the licensing of the Infoworks software being contained on a USB 

dongle which can only connect to one computer at a time. 

Four runs were undertaken, three runs to ascertain that the algorithm was running 

correctly when applied to our test model (of 45, 100 and 100 generations 

respectively), followed by a long run (1049 iterations) to obtain a result which can 

be investigated and compared to the base system (the Dalmarnock test model 

with no alterations). This 1049 generation run took from 20:42 on 09/05/2015 until 

00:30 on 04/07/2015, a total of over 55 days of runtime. The computer used to 

perform these tests was as described in section 1.1. 

6.6 Reduced Data-set Identification 

The original rainfall set comprises 700 different rainfall files, encompassing return 

periods 2,5,10 then steps of 10 to 300, 500,750 and 1000 years. For each of 
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those return periods, there are durations of 30 minutes, 60, 90, then in steps of 

30 minutes all the way to 600. 

As a first stage of optimisation on the Dalmarnock flood risk model, the process 

detailed in section 4.3.1 was followed to generate a reduced data-set to be used 

for the optimisation of input data used to compute the objective function. 

This results in the rainfall setup detailed in Table 20 being identified. 

Return period (Yrs) Duration (S) 
2 36,000 

20 36,000 
40 36,000 
80 36,000 

160 36,000 
750 36,000 

1000 36,000 

Table 20 - Rainfall setup for reduced data-set identification 

6.7 NSGA-II and LEMMO Optimisation 

6.7.1 Basic Run Parameters 

This section gives the basic run parameters for all four optimisations run on 

Dalmarnock. The full details of the run parameters can be seen in Appendix III – 

SAM-Risk Settings. The parameters were selected to give a reasonable chance 

of running the algorithm to completion. These were a population size of 80, 

generation’s limit of 2,000, crossover rate of 1.0, and a mutation rate of 0.002 (1/n 

where ‘n’ is the number of decision variables). The objective functions are 

network cost and expected annual damage. 
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6.7.2 Optimisation Results 

6.7.2.1 45 Iteration Run Results 

It can be seen (Figure 60) in this very short run that the algorithm is improving 

and quickly forming an estimated Pareto front. By the 10th iteration, a Pareto front 

is already forming. This 45 iteration run took around two days total to complete. 

 

Figure 60 - Dalmarnock 45 Iteration Run Results 

In the dominated hypervolume analysis for the 45 iteration run (Figure 61), it can 

be seen that the algorithm initially progresses very rapidly (within the first ten 

iterations) then slows in progress, although progress is still being made. The 
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reference point for this hypervolume calculation is at x = 90,000 and y = 

60,000,000.  

 

 

Figure 61 - Dominated Hypervolume Analysis of Dalmarnock 45 Iteration Test Run 

(LEMMO, four-layer ANN) 

6.7.2.2 100 Iteration Run ‘A’ Results 

In the results of the 100 iteration ‘A’ run (see Figure 62) the same quick start of 

convergence can be seen. Additionally, it can be seen more clearly that the 

algorithm starts converging towards the 0,0 point as the “waves” of estimated 

Pareto front can be discerned to be moving in that direction.  
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Figure 62 - Dalmarnock 100 Iteration ‘A’ Results 

It may be noted that the maximum EAD is considerably less than in either the 45 

iteration or the 1049 iteration run, this is due to the optimisation running with a 

cut down model that only incorporated the portion of Dalmarnock that 

encompasses the decision variables being used. This was in order to speed up 

execution whilst performing test runs. This test run took approximately 3 days to 

complete – whereas, it could have been considerably longer had it been exporting 

the entire test-model of Dalmarnock at each simulation. 
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Figure 63 - Dominated Hypervolume Analysis of Dalmarnock 100 Iteration Test Run 

(LEMMO, four-layer ANN) 

The dominated hypervolume for the 100 iteration run ‘A’ can be seen (Figure 63) 

to be progressing extremely rapidly in the initial generations, followed by a 

tapering off into steady progress. This is on par with the results that have been 

seen on other runs. Small jumps in progress can be seen, which could be an 

indication that the LEMMO algorithm is performing well and making “leaps” of 

intuition. 
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6.7.2.3 100 Iteration Run ‘B’ Results 

 

Figure 64 - 100 Iteration Run 'B' Results 

It can be seen (see Figure 64) that the algorithm progresses well. As with run ‘A’ 

this test was run with a cut-down network to speed up optimisation progress. This 

run also took around 3 days to complete.  
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Figure 65 - Dominated Hypervolume Analysis of Dalmarnock 100 Iteration Test Run 'B' 

(LEMMO, four-layer ANN) 

A similar pattern can be seen in the dominated hypervolume metric as well (when 

compared to Dalmarnock 100 iteration run ‘A’). Where very fast initial progress is 

shortly followed by a more gradual, but steady increase in the dominated 

hypervolume. 
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two extra graphs with altered axes are also presented, to make it easier to see 

the differentiation. 

It can be seen that convergence towards the ideal (0, 0) point commences 

throughout the algorithm, and as the algorithm continues significant progress is 

made, particularly in the mid-range. It can be discerned that the mid-range 

progresses from an average of around £20m capex and between 5 – 60k EAD, 

to an average across the range of EAD of roughly £5m capex. This an extremely 

significant saving which would be well worth the time investment in running an 

algorithm.  

 

Figure 66 - Overall Dalmarnock case study results 
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Figure 67 – Dalmarnock case study results, EAD 0 – 20k 
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Figure 68 - Dalmarnock case study results, Capex 0-20m 
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The initial progress tallies well in general shape with both Figure 61 and Figure 

63 thus giving an indication that those two runs, had they continued, would likely 

have followed the same, or a similar curve. 

 

Figure 69 - Dominated hypervolume metric for Dalmarnock case study with LEMMO and 

four-layer ANN (Long Run)  
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to even lower EAD results) is a point which would likely be of interest to engineers 

investigating this catchment. The final point (point C) is part of a relatively flat 

portion of the estimated front, with a high EAD in comparison to the other two, 

but a low cost. 

A full SAM-Risk assessment was then run on these selected points (A, B, and C) 

and the original drainage network, the results of which can be seen in 

 

Figure 71. The optimised result can be seen to be significantly lower in EAD 

across the entire range of return periods analysed. 
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Figure 70 - Selected points A, B, and C from Dalmarnock Case Study Results (points 

circled and coloured red). 
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Figure 71 - EAD for Original Network vs Selected Optimised Result  
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It can be seen in 

 

Figure 71 that in fact point ‘A’, when analysed with the full rainfall set, performs 

more poorly than the original network. This can probably be attributed to error 

introduced by the reduced rainfall set. The mean error of the set used in testing 

was £1,570 and the difference between the two Pareto fronts (‘C’ and Original) is 

£2515.46. This optimised network is not identical to the network on which the 

original error was measured, and so it could be expected that results may become 

more error prone as that network is moved away from.   

The important point to note here is that where significant improvements are 

identified, they follow through to the full rainfall set. Where minor improvements 

are identified, they may not follow through to the final set. A better set of rainfall 

files could potentially reduce the chances of this issue occurring, however, any 

time that the full rainfall set is not being used, by necessity the optimisation is 
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trading accuracy for speed. These rainfall files do seem to be enough to guide 

the algorithm, as witnessed by the results with ‘A’ and ‘B’, 

 A B C 
Average 
Chamber Area 
(m2) 

8.25 2.71 2.56 

Average Pipe 
Width (m) 

1.13 0.91 0.90 

Table 21 - Average Chamber Area and Pipe Width for Optimised Points 

6.9 Chapter Summary 

This chapter shows that the same algorithm which performs well on WDS test 

problems, also applies well to our specific flood risk study. It appears to be 

optimising well, the dominated hypervolume metric is increasing as would be 

expected. The visual inspection of the Pareto fronts from iteration to iteration 

shows the progression of the estimated Pareto front well as both objectives are 

minimised. 

Additionally, it has been shown that a point on the produced estimated Pareto 

front, generated using a reduced rainfall-set, is still better than the baseline case 

(in terms of EAD) when re-analysed using the full rainfall set.  
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7. Summary and Conclusions 

7.1 Summary 

The specific objectives of this thesis (see section 1.2), have all been achieved 

during the course of this EngD research project, summarised here below. 

Specific Objective 1: Identification of a multi-objective optimisation 

algorithm to utilise as a starting and comparison point for the optimisation 

process. 

This objective was achieved through a thorough investigation of the state of the 

art multi-objective optimisation algorithms. The investigation was performed and 

a benchmark algorithm (NSGA-II) was selected on the basis of it showing 

excellent performance across a number of computationally complex optimisation 

problems and also being commonly used in research and practice. Additionally, 

the two main machine-learning approaches that were being considered as a basis 

for improving performance had built upon NSGA-II.  

This choice of NSGA-II was verified by the performance of the algorithm on the 

set of benchmark problems for the water distribution system design, which are 

similar in nature to the problem studied in this thesis. The testing on these 

problems and on the Dalmarnock catchment systems demonstrated the validity 

of the algorithm choice. 
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Specific Objective 2: To develop a multi-objective optimisation 

methodology and implement it through an object-oriented structured 

software engineering approach with a suitable user-interface, as one of the 

requirements for this EngD is software that can be further utilised in 

practice  

Once the multi-objective optimisation algorithm had been selected, the software 

was developed identifying and following the requirements of the industrial partner 

co-sponsoring this project. This software allowed for the running of our selected 

multi-objective optimisation algorithm in a modular fashion (which allows for the 

addition of elements to the code-base with ease, as the modules are loosely 

linked) and further development and testing of various methodologies 

investigated in this thesis. 

A suitable user interface was then developed for this software (see Appendix III 

– SAM-Risk Settings, which contains screenshots of this user interface in order 

to show settings). This user interface met HR Wallingford’s requirements and was 

developed with practitioner’s needs in mind. In addition to the utility of the 

software and the new interface being demonstrated on the Dalmarnock case 

study in this thesis, the successful achievement of this objective was verified by 

subsequent application by third-party modellers at HR Wallingford on the EU 

TRUST project (Boelee and Kellagher, 2015). In this application of the 

technology, a different approach to reducing rainfall periods needed was used, 

and the base NSGA-II algorithm was used for optimisation. However, the 

software used is the software developed for this thesis (with minor modifications).  
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Specific Objective 3: To formulate the overall optimisation problem for the 

multi-objective optimisation algorithm that will best describe the drainage 

system flood risk management problem based on: 

a. Expected annual damage, and 

b. Capital cost of intervention strategy. 

The previously developed methodology and software (SAM-Risk) was modified 

in order to improve its user-interface code and make it usable in a number of 

practical situations. This was replaced by the user-interface software developed 

in this thesis. In the process the SAM-Risk implementation was developed as a 

module, which could be run easily by any other software to calculate expected 

annual damage for an arbitrary drainage system. This was to be utilised for the 

computation of the first objective function in this thesis. The formulation allows a 

reduced of set of rainfall duration/return-period events to be used and compared 

to the full set so that a suitable improvement in computational speed can be 

achieved without a noticeable loss in accuracy. 

The second objective function for the drainage system risk optimisation multi-

objective algorithm, was developed to give a cost estimate of the changes being 

undertaken to the network. It is based upon the cost of the pipes required, plus 

the cost of excavation for storage, and fixed material costs. The cost calculation 

is customisable so that scaling can be applied to update this measure and make 

it appropriate for a particular situation. 
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Specific Objective 4: To test the objective functions for performance, and 

investigate methodologies for reducing the computational burden of these 

functions to allow efficient and effective drainage system flood risk 

optimisation 

Evaluation of the EAD objective function requires a large number of simulation 

model runs rendering optimisation almost impossible due to excessive times 

needed to complete it.  

To alleviate this, the EAD objective function was modified to cache drainage 

networks where the network is unchanged between rainfall runs, the solutions 

were modified to cache objective function scores where they have not been 

altered between evaluations, and some optimisation of the EAD software such 

as using LINQ (Pialorsi and Russo, 2007) where appropriate and restructuring 

iterations to reduce unnecessary complexity. This yielded a performance gain of 

around 15% for each EAD value calculated, and the caching reduced the time 

taken for multiple EAD value calculations to a linearly increasing value rather than 

an exponentially increasing value. 

To further improve this performance, the development of a methodology for 

identifying a reduced rainfall set as undertaken. This methodology allows for EAD 

to be estimated using a reduced number of rainfall events for a given network, 

vastly reducing the complexity of calculating EAD. This reduced the runtime to 

around 45 seconds per EAD calculation, from a value of 5 hours per calculation. 
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Finally, even a 45 second objective function is too large to allow for a large 

number of iterations to be completed, so methods were investigated to reduce 

the number of necessary iterations, or improve the performance of the 

optimisation. 

The LEMMO algorithm (Jourdan et al., 2005), which was originally used for 

optimisation of WDS design decisions, uses classifier based meta-models to 

improve computational efficiency of an optimisation algorithm. The original 

algorithm was based on the use of decision-tree methods as the main classifier. 

An approach based on employing Artificial Neural Networks (ANN) has been 

investigated in this thesis and shown to be effective in combination with a 

multiobjective genetic algorithm. This approach was developed by the author. 

The new methodology was applied and tested in depth on a set of WDS test 

problems that are similar in nature to the problem of drainage system risk 

optimisation, but require less simulation times, hence are faster to converge to a 

good Pareto front. Furthermore, a best-known Pareto front is available for each 

of the test cases (Wang et al., 2014), thus allowing easy evaluation of any 

optimisation algorithm. The new LEMMO-ANN algorithm was shown to work best 

with a four-layered ANN achieving a good approximation of the best-known 

Pareto fronts on a range of WDS problem sizes, ranging from 1.48×10m to 

1.00×10
ohh. 
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 Specific Objective 5: To test and verify computational efficiency and 

effectiveness of the new methodology on a real case study involving 

drainage system flood risk optimisation. 

After the successful test of the new methodology on the WDS design test cases, 

it was applied to the Dalmarnock test problem, with the EAD objective and the 

capital expenditure (cost of network alteration) objective. The size and complexity 

of the problem were such that this particular case study could not be tackled using 

existing tools.  Even with the new LEMMO-ANN methodology, only one long 

(1000 iterations plus) run on this case study was performed due to excessive run 

times and computational resources required. Based on this run it was seen that 

selected solutions from the Pareto front represent a considerable improvement 

over the base unmodified network which was the optimisation starting point.  

7.2 Novel Contributions 

The research work undertaken in this thesis resulted in the following key 

contributions: 

1. Developed a novel methodology to optimise urban flood risk management by 

linking a newly developed LEMMO-ANN optimisation method to a modified 

version of the flood risk assessment tools and methodology developed by HR 

Wallingford. 

Modifications to the flood risk assessment tools resulted in improving 

performance by an average of 15% in terms of time taken. This was achieved 
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by applying more modern features of the C# language, such as LINQ (Pialorsi 

and Russo, 2007) and refactoring iterative sections of the algorithm. 

When this modified toolset is utilised within the NSGA-II LEMMO-ANN 

algorithm developed within this thesis and combined with a reduced rainfall 

set (see point 2), the algorithm can complete in a reasonable (i.e. months, not 

hundreds of years) time frame. 

This formulation of the drainage system flood risk problem is unique as no 

previous study has been able to combine the statistical analysis of flood 

damage consequences and the cost of drainage system network 

improvements in a single multi-objective algorithm to identify the trade-off 

between the two conflicting objectives. 

2. Developed a novel methodology to identify a reduced set of rainfall events 

that can be used by an optimisation to approximate flood risk with enough 

accuracy to allow for optimisation to take place effectively. This methodology 

has shown to be effective during testing performed within this thesis, and is 

flexible enough to be combined with other state of the art efforts in this 

direction, if it were to be desirable, which may vary depending on the models 

being used. 

When the output of this methodology is combined with the modified flood risk 

assessment toolset mentioned in point 1 the overall run time for an evaluation 

of EAD for Dalmarnock is brought from around 5 hours, to 45 seconds. Whilst 

this is still a very lengthy time-span for an objective function evaluation within 
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a multi-objective algorithm, the improvements gained are extremely large and 

represent a significant contribution of this thesis. 

3. Developed a novel adaptation of the LEMMO algorithm (di Pierro et al., 2009; 

Jourdan et al., 2005, 2004) that functions using ANN’s as the machine-

learning component. This has shown extremely promising results in the tests 

undertaken during this thesis. As part of the development of this algorithm, a 

neural network structure has been empirically identified that is effective for the 

size and complexity of problems that have been tested during this thesis, as 

part of the newly developed LEMMO-ANN algorithm. 

This LEMMO-ANN algorithm has the potential to be applied both to future 

problems of the type described within this thesis, and other highly complex 

optimisation problems with exceptionally large search-spaces. It has been 

tested and validated for effectiveness against current state of the art baseline 

algorithms, in order to ensure that the developed algorithm is an overall 

improvement. Using a large number of runs on WDS test problems where 

near optimal Pareto fronts are known, the effectiveness of the algorithm was 

verified before it was applied to the flood risk problem formulated and 

developed within this thesis. 

7.3 Conclusions 

From this completed work several conclusions can be drawn. The main is that it 

is possible to run a full flood risk versus capital expenditure multi-objective 

optimisation on mainstream desktop computer hardware. This optimisation 
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progresses towards a Pareto front that should aid in identifying networks with an 

improved performance in terms of EAD vs capital expenditure. The caveat to that 

is, that it is only possible with appropriate improvements to the state-of-the-art 

optimisation methodology, including reduction of rainfall set, and use of a cutting 

edge machine learning and multi-objective optimisation algorithm. 

As a product of the above conclusion, it is possible to reduce the rainfall set used 

to evaluate flood-risk, provided that a specific set of rainfall suitable for the 

catchment is identified. This can be achieved with only minor loss of accuracy, 

which allows for this less accurate EAD to be used as a multi-objective 

optimisation algorithm objective. The end-product of that optimisation can then 

be checked using the full rainfall set to ensure that full accuracy checks of the 

lower-accuracy result have occurred. 

Additionally, one can conclude that the use of machine-learning based meta-

models within optimisation algorithms is highly promising. Both for application to 

future problems of this nature, and to other highly complex combinatorial type 

problems. For this particular application, it has been shown to produce good 

results on test-problems. Improving on a base NSGA-II algorithm both in terms 

of final output and throughout the algorithms execution, and optimising well and 

producing good results on a true flood-risk vs. network modification cost case-

study. 
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7.4 Recommendations for Future Work 

The first steps to continuing the work outlined within this thesis would be to 

continue the testing performed. In particular, with more real case-studies to 

examine how well the LEMMO-ANN combination and reduced rainfall set 

identification perform on different kinds of urban environment. There is also 

potential for combining an alternating block hyetograph type method with the 

methodology outlined here for identification of a reduced rainfall set. The 

durations could, for example, be combined for each return period and then the 

methodology applied to identify return periods. 

There is some potential in improving the way in which LEMMO is integrated into 

the NSGA-II base algorithm. It could be possible to develop an approach which 

would avoid the outcomes seen in Chapter 5, where a poorly performing meta-

model within the LEMMO algorithm results in less optimal performance than the 

base NSGA-II network

This work would be a clear candidate for the application of distributed or high-

powered computing due to the highly parallel nature of genetic algorithm based 

optimisation algorithms. In theory, applying enough computers to this problem 

could reduce the time taken for each iteration of the algorithm to the time required 

for one simulation. The downside to experimenting with this kind of approach, is 

that it would render the software unable to run on a single desktop computer, and 

would require extensive licensing costs, were Infoworks CS still utilised as part of 

the software. 
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There is also the prospect of developing a methodology for identifying a suitable 

neural network architecture for a given flood-drainage problem. In this research, 

this was achieved by experimentation on suitable architectures, until one was 

discovered which performed well. It is, however, possible that other architectures 

exist which would perform better for this work. There are several artificial neural 

network training algorithms which build the structure of the neural network in the 

process of training. Some of these can have a tendency to over-train but this 

tendency is may be less of an issue with a problem of this complexity, where the 

problem the ANN is training on is so complex that they are likely to struggle to 

learn it well.  

Another prospect for further research, would be developing the EAD generating 

methodology and toolset to function with a different flood drainage model. Whilst 

Infoworks CS is the industry standard (and is therefore trusted and well-

recognised in practice), it is not developed with automation in mind. Several 

problems were experienced that related directly to this software, and 

performance could potentially be improved by using software that offers an 

improved application programming interface (API). However, it would be 

important to rigorously evaluate any potential replacement flood drainage 

models. There would also be significant amounts of work involved in altering the 

rest of the flood-risk framework to work well with an alternative drainage model. 
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Appendices 

Appendix I – Software Diagrams 

This appendix contains class diagrams (without the extreme detail that a fill 

software engineering design would entail) to illustrate the relationships between 

the classes developed as part of the ADAPT software.  

Whilst this software could have been written in a simpler fashion, one of the goals 

for the software development process was to have a modular and loosely linked 

arrangement, in order that as much of the code as possible would be available 

for code re-use by HR Wallingford. 

Although there is a large amount of software components that form the ADAPT 

solution, only three of those are covered here. This is because these are the main 

three governing functionality of the NSGA-II and LEMMO algorithm during the 

optimisation performed for this thesis. 
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NSGA2CS Class Diagram 

  



Appendices – Appendix I – Software diagrams 

  Page: 220 

ADAPTController Class Diagram 
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ADAPT User Interface Class Diagram 
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Appendix II – BIN Data Tables 

This appendix contains a selection of the raw data tables associated with the 

testing performed in this thesis. It is not practical to include all the data, due to 

the sheer volume. 

Presented within this section are, therefore, results from the final iteration from 

one of the two BIN problems for each test variant plus the averaged results from 

the metric calculations for BIN. 

Additionally, the same sets of results from the Dalmarnock run are also included. 
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NSGA-II Base Algorithm 

These are the results from iteration 2500 of BIN “2014121508045444”. 

Resilience	 Capex	
0.402	 3.772	
0.402	 3.772	
0.405	 3.811	
0.406	 3.858	
0.410	 3.901	
0.414	 3.982	
0.414	 4.011	
0.415	 4.036	
0.415	 4.068	
0.476	 4.084	
0.489	 4.180	
0.489	 4.180	
0.489	 4.180	
0.493	 4.252	
0.493	 4.266	
0.499	 4.338	
0.499	 4.338	
0.552	 4.387	
0.552	 4.387	
0.582	 4.529	
0.582	 4.529	
0.584	 4.592	
0.584	 4.592	
0.615	 4.666	
0.615	 4.666	
0.617	 4.743	
0.617	 4.748	
0.617	 4.748	
0.626	 4.852	
0.629	 4.926	
0.629	 4.926	
0.633	 5.027	
0.633	 5.027	
0.634	 5.040	

0.643	 5.137	
0.645	 5.141	
0.705	 5.216	
0.705	 5.239	
0.705	 5.239	
0.705	 5.239	
0.716	 5.420	
0.717	 5.442	
0.717	 5.451	
0.723	 5.559	
0.723	 5.563	
0.727	 5.657	
0.739	 5.671	
0.739	 5.671	
0.743	 5.780	
0.743	 5.780	
0.747	 5.843	
0.747	 5.843	
0.757	 6.048	
0.757	 6.048	
0.757	 6.048	
0.757	 6.048	
0.757	 6.066	
0.767	 6.096	
0.767	 6.096	
0.768	 6.140	
0.768	 6.140	
0.768	 6.178	
0.779	 6.213	
0.779	 6.300	
0.782	 6.356	
0.797	 6.443	
0.797	 6.500	
0.799	 6.512	
0.799	 6.512	

0.799	 6.512	
0.800	 6.547	
0.801	 6.616	
0.801	 6.646	
0.801	 6.646	
0.812	 6.786	
0.812	 6.786	
0.813	 6.790	
0.813	 6.790	
0.814	 6.909	
0.816	 6.918	
0.816	 6.918	
0.816	 7.011	
0.816	 7.079	
0.816	 7.079	
0.829	 7.176	
0.833	 7.243	
0.833	 7.243	
0.836	 7.315	
0.836	 7.315	
0.841	 7.348	
0.842	 7.627	
0.842	 7.630	
0.842	 7.630	
0.842	 7.630	
0.842	 7.819	
0.843	 7.850	
0.847	 7.945	
0.847	 7.945	
0.847	 7.945	
0.847	 7.945	
0.849	 8.222	
0.849	 8.222	
0.849	 8.300	
0.849	 8.316	
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0.850	 8.387	
0.850	 8.393	
0.858	 8.430	
0.859	 8.461	
0.859	 8.473	
0.860	 8.494	
0.860	 8.682	
0.860	 8.682	
0.860	 8.705	
0.861	 8.712	
0.868	 8.846	
0.868	 8.865	
0.871	 8.935	
0.871	 8.937	
0.872	 8.955	
0.872	 8.955	
0.873	 9.029	
0.875	 9.060	
0.875	 9.060	
0.876	 9.213	
0.876	 9.213	
0.878	 9.265	
0.878	 9.265	
0.878	 9.750	
0.878	 9.767	
0.878	 9.849	
0.879	 9.904	
0.879	 9.904	
0.879	 10.044	
0.879	 10.044	
0.879	 10.099	
0.880	 10.189	
0.880	 10.189	
0.882	 10.257	
0.882	 10.262	
0.883	 10.269	
0.883	 10.269	
0.883	 10.269	
0.883	 10.414	
0.883	 10.414	

0.883	 10.414	
0.883	 10.467	
0.883	 10.467	
0.883	 11.937	
0.883	 11.937	
0.883	 11.937	
0.883	 11.940	
0.883	 11.994	
0.885	 12.051	
0.885	 12.065	
0.885	 12.085	
0.885	 12.085	
0.886	 12.180	
0.886	 12.183	
0.886	 12.326	
0.889	 12.363	
0.889	 12.490	
0.889	 12.490	
0.891	 12.578	
0.892	 12.657	
0.892	 12.657	
0.892	 12.657	
0.892	 12.657	
0.892	 12.749	
0.892	 12.749	
0.892	 12.786	
0.892	 12.786	
0.892	 12.786	
0.893	 12.808	
0.893	 13.054	
0.894	 13.088	
0.894	 13.088	
0.895	 13.166	
0.899	 13.234	
0.899	 13.234	
0.900	 13.472	
0.900	 13.484	
0.900	 13.557	
0.900	 13.573	
0.900	 13.573	

0.900	 13.658	
0.900	 13.658	
0.901	 13.738	
0.902	 13.745	
0.903	 13.844	
0.903	 13.862	
0.904	 13.871	
0.904	 13.875	
0.904	 13.875	
0.905	 14.115	
0.906	 14.190	
0.906	 14.190	
0.906	 14.263	
0.908	 14.313	
0.909	 14.336	
0.910	 14.418	
0.910	 14.425	
0.910	 14.505	
0.911	 14.552	
0.911	 14.552	
0.911	 15.018	
0.911	 15.018	
0.911	 15.018	
0.911	 15.026	
0.911	 15.084	
0.912	 15.171	
0.912	 15.171	
0.913	 15.255	
0.914	 15.263	
0.914	 15.263	
0.914	 15.338	
0.914	 15.403	
0.914	 15.408	
0.914	 15.428	
0.915	 15.455	
0.916	 15.548	
0.916	 15.548	
0.916	 15.548	
0.916	 15.548	
0.916	 15.619	
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0.917	 15.682	
0.917	 15.696	
0.917	 15.696	
0.917	 15.696	
0.918	 15.865	
0.918	 15.865	
0.918	 15.865	
0.918	 15.865	
0.918	 15.873	
0.918	 15.988	
0.919	 16.019	
0.920	 16.111	
0.920	 16.111	
0.920	 16.111	
0.920	 16.161	
0.921	 16.183	
0.921	 16.183	
0.921	 16.183	
0.921	 16.246	
0.921	 16.246	
0.922	 16.266	
0.922	 16.338	
0.922	 16.338	
0.923	 16.356	
0.923	 16.440	
0.924	 16.489	
0.924	 16.517	
0.925	 16.548	
0.925	 16.641	

0.925	 16.709	
0.925	 16.712	
0.925	 16.782	
0.925	 16.794	
0.925	 16.863	
0.926	 16.873	
0.926	 16.944	
0.927	 16.969	
0.927	 16.990	
0.928	 17.038	
0.928	 17.038	
0.928	 17.624	
0.928	 17.624	
0.928	 17.645	
0.928	 17.691	
0.928	 17.700	
0.928	 17.773	
0.928	 17.773	
0.929	 17.888	
0.931	 17.954	
0.931	 18.035	
0.932	 18.075	
0.933	 18.154	
0.933	 18.235	
0.935	 18.304	
0.935	 18.304	
0.935	 18.630	
0.935	 18.630	
0.935	 18.674	

0.936	 18.711	
0.936	 18.837	
0.936	 18.837	
0.936	 18.837	
0.936	 18.910	
0.936	 18.910	
0.936	 18.982	
0.937	 19.000	
0.937	 19.024	
0.937	 19.152	
0.937	 19.163	
0.938	 19.256	
0.938	 19.256	
0.938	 19.314	
0.938	 19.314	
0.938	 19.388	
0.938	 19.457	
0.939	 19.466	
0.939	 19.548	
0.939	 19.548	
0.939	 19.548	
0.939	 19.548	
0.940	 19.607	
0.940	 19.618	
0.940	 19.639	
0.940	 19.639	
0.940	 19.639	
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NSGA-II with LEMMO and Initial ANN Structure 

These are the results from iteration 2500 of BIN “2015030420295674”. 

Resilience	 Capex	
0.564	 4.304	
0.568	 4.307	
0.569	 4.318	
0.572	 4.328	
0.573	 4.330	
0.576	 4.335	
0.577	 4.336	
0.579	 4.344	
0.588	 4.359	
0.591	 4.375	
0.594	 4.384	
0.594	 4.395	
0.607	 4.405	
0.610	 4.428	
0.613	 4.438	
0.613	 4.446	
0.614	 4.456	
0.621	 4.459	
0.622	 4.467	
0.631	 4.468	
0.633	 4.482	
0.634	 4.494	
0.638	 4.496	
0.640	 4.502	
0.643	 4.507	
0.645	 4.524	
0.647	 4.539	
0.654	 4.569	
0.656	 4.578	
0.657	 4.611	
0.661	 4.650	
0.663	 4.651	
0.674	 4.665	
0.677	 4.688	

0.677	 4.690	
0.679	 4.728	
0.682	 4.748	
0.687	 4.755	
0.689	 4.771	
0.691	 4.792	
0.694	 4.853	
0.696	 4.890	
0.697	 4.922	
0.698	 4.925	
0.701	 4.931	
0.703	 4.934	
0.706	 4.952	
0.707	 5.004	
0.709	 5.009	
0.712	 5.061	
0.714	 5.083	
0.718	 5.113	
0.720	 5.135	
0.722	 5.161	
0.731	 5.167	
0.731	 5.178	
0.734	 5.211	
0.735	 5.224	
0.739	 5.249	
0.742	 5.323	
0.744	 5.333	
0.744	 5.345	
0.747	 5.436	
0.747	 5.499	
0.750	 5.510	
0.750	 5.517	
0.754	 5.521	
0.758	 5.579	
0.762	 5.592	

0.772	 5.601	
0.774	 5.610	
0.776	 5.624	
0.779	 5.642	
0.782	 5.650	
0.784	 5.675	
0.786	 5.678	
0.787	 5.689	
0.789	 5.704	
0.791	 5.729	
0.792	 5.755	
0.795	 5.761	
0.796	 5.770	
0.798	 5.792	
0.800	 5.792	
0.801	 5.805	
0.804	 5.805	
0.808	 5.813	
0.808	 5.813	
0.810	 5.842	
0.810	 5.877	
0.812	 5.913	
0.814	 5.922	
0.816	 5.926	
0.817	 5.952	
0.819	 5.987	
0.821	 6.071	
0.822	 6.112	
0.823	 6.163	
0.823	 6.211	
0.825	 6.233	
0.826	 6.287	
0.827	 6.340	
0.829	 6.387	
0.832	 6.402	
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0.833	 6.439	
0.834	 6.547	
0.836	 6.578	
0.837	 6.595	
0.839	 6.644	
0.840	 6.716	
0.841	 6.756	
0.844	 6.764	
0.845	 6.785	
0.846	 6.795	
0.849	 6.817	
0.850	 6.848	
0.852	 6.889	
0.852	 6.889	
0.852	 6.889	
0.852	 6.997	
0.854	 7.080	
0.855	 7.137	
0.858	 7.178	
0.861	 7.185	
0.862	 7.289	
0.863	 7.348	
0.864	 7.362	
0.864	 7.362	
0.864	 7.362	
0.864	 7.801	
0.865	 7.837	
0.865	 7.837	
0.869	 7.856	
0.870	 7.887	
0.870	 7.894	
0.870	 7.894	
0.870	 7.894	
0.870	 7.894	
0.872	 8.043	
0.874	 8.085	
0.875	 8.136	

0.877	 8.161	
0.879	 8.191	
0.880	 8.241	
0.883	 8.263	
0.885	 8.291	
0.887	 8.326	
0.887	 8.332	
0.887	 8.432	
0.889	 8.463	
0.891	 8.481	
0.893	 8.500	
0.895	 8.611	
0.896	 8.658	
0.897	 8.746	
0.897	 8.767	
0.897	 11.060	
0.899	 11.101	
0.899	 11.106	
0.901	 11.134	
0.902	 11.189	
0.902	 11.194	
0.904	 11.245	
0.905	 11.295	
0.906	 11.356	
0.906	 11.399	
0.907	 11.413	
0.907	 11.413	
0.907	 12.033	
0.908	 12.101	
0.908	 12.126	
0.908	 12.328	
0.909	 12.363	
0.910	 12.400	
0.911	 13.674	
0.912	 13.703	
0.913	 13.766	
0.914	 13.838	

0.914	 13.838	
0.914	 16.374	
0.914	 16.417	
0.915	 16.423	
0.915	 16.423	
0.915	 16.468	
0.915	 16.468	
0.916	 17.042	
0.917	 17.062	
0.917	 17.152	
0.918	 17.157	
0.918	 17.233	
0.918	 17.311	
0.918	 17.311	
0.919	 18.358	
0.922	 18.401	
0.923	 18.454	
0.924	 18.529	
0.925	 18.592	
0.925	 18.691	
0.926	 18.695	
0.926	 18.831	
0.927	 18.962	
0.928	 18.971	
0.929	 19.023	
0.930	 19.136	
0.930	 19.158	
0.931	 19.259	
0.932	 19.272	
0.933	 19.309	
0.934	 19.381	
0.935	 19.498	
0.935	 19.502	
0.936	 19.564	
0.936	 19.620	
0.937	 19.645	
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NSGA-II with LEMMO and Final ANN Structure 

These are the results from iteration 2500 of BIN “2015032511374346”. 

Resilience	 Capex	
0.495	 2.729	
0.496	 2.736	
0.502	 2.745	
0.502	 2.745	
0.507	 2.752	
0.507	 2.752	
0.507	 2.752	
0.508	 2.753	
0.513	 2.756	
0.516	 2.780	
0.520	 2.783	
0.520	 2.785	
0.522	 2.793	
0.524	 2.794	
0.538	 2.798	
0.542	 2.804	
0.542	 2.804	
0.542	 2.804	
0.542	 2.804	
0.549	 2.812	
0.549	 2.817	
0.550	 2.827	
0.554	 2.827	
0.554	 2.827	
0.554	 2.828	
0.559	 2.835	
0.559	 2.835	
0.563	 2.835	
0.563	 2.840	
0.567	 2.845	
0.567	 2.845	
0.571	 2.854	
0.576	 2.867	
0.579	 2.874	

0.579	 2.874	
0.584	 2.875	
0.584	 2.883	
0.588	 2.886	
0.589	 2.889	
0.589	 2.889	
0.593	 2.902	
0.595	 2.905	
0.597	 2.914	
0.599	 2.921	
0.603	 2.923	
0.603	 2.923	
0.603	 2.923	
0.609	 2.927	
0.611	 2.930	
0.614	 2.961	
0.614	 2.961	
0.614	 2.961	
0.614	 2.961	
0.618	 2.961	
0.620	 2.966	
0.625	 2.968	
0.626	 2.986	
0.631	 2.990	
0.631	 2.991	
0.636	 3.006	
0.638	 3.015	
0.648	 3.022	
0.649	 3.023	
0.654	 3.027	
0.655	 3.029	
0.657	 3.037	
0.660	 3.063	
0.660	 3.063	
0.665	 3.063	

0.666	 3.070	
0.666	 3.070	
0.666	 3.070	
0.670	 3.071	
0.670	 3.072	
0.675	 3.094	
0.675	 3.095	
0.679	 3.114	
0.679	 3.121	
0.683	 3.135	
0.683	 3.135	
0.686	 3.141	
0.689	 3.159	
0.689	 3.162	
0.689	 3.162	
0.693	 3.162	
0.693	 3.162	
0.693	 3.162	
0.697	 3.204	
0.698	 3.205	
0.700	 3.206	
0.703	 3.214	
0.704	 3.215	
0.704	 3.215	
0.708	 3.216	
0.709	 3.225	
0.712	 3.259	
0.715	 3.277	
0.715	 3.277	
0.719	 3.314	
0.719	 3.314	
0.725	 3.350	
0.725	 3.350	
0.726	 3.352	
0.727	 3.360	
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0.727	 3.360	
0.730	 3.384	
0.734	 3.385	
0.735	 3.389	
0.735	 3.389	
0.738	 3.457	
0.743	 3.478	
0.743	 3.478	
0.744	 3.481	
0.745	 3.481	
0.750	 3.500	
0.750	 3.500	
0.750	 3.500	
0.754	 3.526	
0.754	 3.526	
0.757	 3.551	
0.757	 3.551	
0.759	 3.566	
0.759	 3.566	
0.759	 3.566	
0.762	 3.658	
0.762	 3.660	
0.762	 3.662	
0.762	 3.662	
0.768	 3.703	
0.771	 3.712	
0.771	 3.712	
0.775	 3.717	
0.775	 3.717	
0.775	 3.717	
0.778	 3.766	
0.782	 3.776	
0.782	 3.778	
0.783	 3.950	
0.783	 3.958	
0.784	 3.961	
0.786	 3.993	
0.788	 4.000	
0.790	 4.032	
0.790	 4.034	

0.790	 4.034	
0.790	 4.034	
0.801	 4.053	
0.801	 4.053	
0.801	 4.053	
0.801	 4.059	
0.802	 4.075	
0.803	 4.077	
0.805	 4.137	
0.805	 4.137	
0.809	 4.160	
0.809	 4.160	
0.812	 4.196	
0.813	 4.212	
0.816	 4.226	
0.816	 4.226	
0.817	 4.359	
0.819	 4.363	
0.819	 4.363	
0.819	 4.363	
0.822	 4.391	
0.822	 4.393	
0.822	 4.393	
0.825	 4.410	
0.826	 4.412	
0.828	 4.442	
0.830	 4.453	
0.830	 4.453	
0.831	 4.457	
0.834	 4.486	
0.834	 4.486	
0.837	 4.498	
0.837	 4.498	
0.841	 4.522	
0.842	 4.657	
0.844	 4.658	
0.844	 4.662	
0.844	 4.662	
0.847	 4.755	
0.848	 4.777	

0.848	 4.777	
0.850	 4.836	
0.851	 4.838	
0.851	 4.839	
0.853	 4.887	
0.854	 4.895	
0.855	 5.000	
0.855	 5.004	
0.858	 5.097	
0.858	 5.097	
0.858	 5.097	
0.863	 5.121	
0.863	 5.121	
0.865	 5.179	
0.865	 5.179	
0.866	 5.320	
0.866	 5.320	
0.866	 5.323	
0.869	 5.428	
0.871	 5.448	
0.871	 5.448	
0.873	 5.508	
0.873	 5.508	
0.873	 5.508	
0.874	 5.780	
0.874	 5.781	
0.875	 5.783	
0.879	 5.837	
0.879	 5.837	
0.879	 5.837	
0.880	 5.924	
0.881	 5.927	
0.882	 5.964	
0.884	 5.966	
0.888	 5.985	
0.889	 5.987	
0.892	 6.071	
0.895	 6.167	
0.896	 6.182	
0.896	 6.182	
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0.899	 6.208	
0.899	 6.482	
0.899	 6.482	
0.899	 6.580	
0.900	 6.583	
0.900	 6.585	
0.900	 6.585	
0.901	 6.654	
0.903	 6.660	
0.904	 6.668	
0.904	 6.668	
0.905	 6.783	
0.905	 6.785	
0.905	 6.785	
0.905	 6.785	
0.905	 6.787	
0.908	 6.817	
0.908	 6.840	
0.909	 6.899	
0.911	 7.032	
0.911	 7.032	
0.911	 7.032	
0.911	 7.032	
0.913	 7.055	
0.913	 7.055	
0.915	 7.247	
0.915	 7.247	
0.915	 7.247	
0.916	 7.262	

0.916	 7.262	
0.916	 7.262	
0.916	 8.603	
0.917	 8.631	
0.918	 8.805	
0.918	 8.805	
0.918	 8.805	
0.918	 8.805	
0.919	 8.893	
0.921	 8.936	
0.926	 8.940	
0.926	 8.941	
0.927	 9.080	
0.927	 9.080	
0.928	 9.111	
0.928	 9.288	
0.928	 9.314	
0.928	 9.314	
0.929	 9.362	
0.931	 9.388	
0.931	 9.388	
0.931	 9.388	
0.931	 9.388	
0.931	 9.562	
0.932	 9.595	
0.933	 9.604	
0.933	 9.616	
0.933	 12.393	
0.933	 12.393	

0.935	 12.493	
0.936	 12.562	
0.936	 12.566	
0.937	 12.578	
0.937	 12.733	
0.938	 12.812	
0.940	 12.830	
0.940	 12.830	
0.940	 12.830	
0.940	 13.023	
0.940	 13.023	
0.941	 13.063	
0.941	 13.063	
0.941	 18.777	
0.941	 18.777	
0.941	 18.777	
0.941	 18.803	
0.942	 18.919	
0.942	 18.919	
0.942	 19.150	
0.942	 19.162	
0.942	 19.302	
0.942	 19.302	
0.943	 19.355	
0.943	 19.440	
0.943	 19.440	
0.943	 19.440	

  



Appendices – Appendix II – SAM-Risk settings 

  Page: 231 

NSGA-II Base Algorithm Analysis Metric Results 

Convergence	 Diversity	 Dominated	
Hypervolume	 Iteration	

11.040	 5.787	 8.290	 10.000	
10.355	 2.243	 9.081	 20.000	
9.781	 0.947	 9.671	 30.000	
9.377	 0.617	 10.064	 40.000	
9.099	 0.451	 10.341	 50.000	
8.835	 0.404	 10.609	 60.000	
8.584	 0.407	 10.859	 70.000	
8.338	 0.388	 11.109	 80.000	
8.115	 0.381	 11.324	 90.000	
7.851	 0.388	 11.575	 100.000	
7.637	 0.376	 11.782	 110.000	
7.442	 0.365	 11.966	 120.000	
7.286	 0.369	 12.121	 130.000	
7.108	 0.376	 12.295	 140.000	
6.961	 0.367	 12.441	 150.000	
6.829	 0.366	 12.572	 160.000	
6.705	 0.370	 12.696	 170.000	
6.581	 0.373	 12.818	 180.000	
6.415	 0.367	 12.971	 190.000	
6.278	 0.366	 13.104	 200.000	
6.143	 0.367	 13.235	 210.000	
6.018	 0.374	 13.358	 220.000	
5.907	 0.364	 13.461	 230.000	
5.790	 0.363	 13.572	 240.000	
5.687	 0.368	 13.669	 250.000	
5.597	 0.363	 13.758	 260.000	
5.487	 0.372	 13.857	 270.000	
5.408	 0.382	 13.939	 280.000	
5.319	 0.366	 14.022	 290.000	
5.232	 0.371	 14.103	 300.000	
5.136	 0.375	 14.190	 310.000	
5.069	 0.376	 14.260	 320.000	
4.999	 0.372	 14.326	 330.000	
4.927	 0.369	 14.395	 340.000	
4.848	 0.385	 14.469	 350.000	
4.767	 0.384	 14.542	 360.000	
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4.692	 0.387	 14.608	 370.000	
4.612	 0.371	 14.686	 380.000	
4.537	 0.383	 14.754	 390.000	
4.470	 0.377	 14.817	 400.000	
4.418	 0.381	 14.869	 410.000	
4.358	 0.388	 14.926	 420.000	
4.291	 0.378	 14.991	 430.000	
4.227	 0.388	 15.048	 440.000	
4.169	 0.382	 15.105	 450.000	
4.099	 0.383	 15.166	 460.000	
4.037	 0.385	 15.223	 470.000	
3.979	 0.382	 15.278	 480.000	
3.932	 0.391	 15.326	 490.000	
3.872	 0.391	 15.379	 500.000	
3.832	 0.381	 15.423	 510.000	
3.786	 0.390	 15.470	 520.000	
3.739	 0.388	 15.516	 530.000	
3.680	 0.397	 15.573	 540.000	
3.637	 0.399	 15.614	 550.000	
3.576	 0.394	 15.666	 560.000	
3.509	 0.396	 15.725	 570.000	
3.463	 0.391	 15.770	 580.000	
3.411	 0.397	 15.819	 590.000	
3.362	 0.392	 15.865	 600.000	
3.325	 0.397	 15.904	 610.000	
3.281	 0.398	 15.947	 620.000	
3.236	 0.394	 15.991	 630.000	
3.210	 0.394	 16.023	 640.000	
3.166	 0.398	 16.065	 650.000	
3.118	 0.396	 16.108	 660.000	
3.080	 0.397	 16.143	 670.000	
3.031	 0.395	 16.187	 680.000	
3.002	 0.406	 16.217	 690.000	
2.973	 0.400	 16.246	 700.000	
2.951	 0.399	 16.290	 710.000	
2.925	 0.403	 16.317	 720.000	
2.890	 0.400	 16.353	 730.000	
2.850	 0.400	 16.391	 740.000	
2.816	 0.400	 16.422	 750.000	
2.782	 0.402	 16.455	 760.000	
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2.758	 0.397	 16.483	 770.000	
2.718	 0.402	 16.518	 780.000	
2.677	 0.403	 16.555	 790.000	
2.645	 0.392	 16.586	 800.000	
2.605	 0.399	 16.623	 810.000	
2.578	 0.403	 16.652	 820.000	
2.550	 0.402	 16.684	 830.000	
2.513	 0.404	 16.718	 840.000	
2.488	 0.405	 16.745	 850.000	
2.465	 0.406	 16.769	 860.000	
2.443	 0.407	 16.792	 870.000	
2.417	 0.405	 16.821	 880.000	
2.397	 0.405	 16.846	 890.000	
2.367	 0.411	 16.875	 900.000	
2.346	 0.403	 16.897	 910.000	
2.324	 0.404	 16.921	 920.000	
2.293	 0.404	 16.952	 930.000	
2.268	 0.412	 16.980	 940.000	
2.250	 0.415	 17.002	 950.000	
2.228	 0.410	 17.029	 960.000	
2.209	 0.407	 17.051	 970.000	
2.185	 0.412	 17.078	 980.000	
2.164	 0.408	 17.101	 990.000	
2.143	 0.413	 17.121	 1,000.000	
2.123	 0.416	 17.142	 1,010.000	
2.106	 0.415	 17.163	 1,020.000	
2.082	 0.415	 17.185	 1,030.000	
2.062	 0.415	 17.208	 1,040.000	
2.041	 0.417	 17.228	 1,050.000	
2.026	 0.417	 17.246	 1,060.000	
2.012	 0.417	 17.263	 1,070.000	
2.000	 0.413	 17.280	 1,080.000	
1.977	 0.413	 17.304	 1,090.000	
1.957	 0.413	 17.326	 1,100.000	
1.937	 0.422	 17.344	 1,110.000	
1.919	 0.422	 17.363	 1,120.000	
1.902	 0.422	 17.384	 1,130.000	
1.887	 0.413	 17.402	 1,140.000	
1.870	 0.419	 17.421	 1,150.000	
1.856	 0.424	 17.439	 1,160.000	



Appendices – Appendix II – SAM-Risk settings 

  Page: 234 

1.840	 0.413	 17.457	 1,170.000	
1.824	 0.411	 17.475	 1,180.000	
1.812	 0.414	 17.493	 1,190.000	
1.795	 0.418	 17.510	 1,200.000	
1.781	 0.429	 17.528	 1,210.000	
1.767	 0.417	 17.547	 1,220.000	
1.753	 0.413	 17.564	 1,230.000	
1.736	 0.415	 17.583	 1,240.000	
1.724	 0.410	 17.600	 1,250.000	
1.708	 0.415	 17.618	 1,260.000	
1.691	 0.419	 17.637	 1,270.000	
1.679	 0.418	 17.654	 1,280.000	
1.669	 0.423	 17.668	 1,290.000	
1.653	 0.415	 17.687	 1,300.000	
1.638	 0.423	 17.704	 1,310.000	
1.625	 0.421	 17.720	 1,320.000	
1.617	 0.424	 17.732	 1,330.000	
1.608	 0.419	 17.747	 1,340.000	
1.594	 0.424	 17.762	 1,350.000	
1.582	 0.417	 17.778	 1,360.000	
1.567	 0.419	 17.794	 1,370.000	
1.553	 0.421	 17.812	 1,380.000	
1.543	 0.419	 17.827	 1,390.000	
1.532	 0.430	 17.840	 1,400.000	
1.526	 0.428	 17.850	 1,410.000	
1.517	 0.425	 17.862	 1,420.000	
1.507	 0.428	 17.875	 1,430.000	
1.495	 0.423	 17.890	 1,440.000	
1.483	 0.428	 17.904	 1,450.000	
1.472	 0.415	 17.917	 1,460.000	
1.460	 0.420	 17.931	 1,470.000	
1.452	 0.422	 17.941	 1,480.000	
1.443	 0.424	 17.953	 1,490.000	
1.435	 0.431	 17.966	 1,500.000	
1.425	 0.428	 17.979	 1,510.000	
1.411	 0.430	 17.994	 1,520.000	
1.405	 0.435	 18.003	 1,530.000	
1.397	 0.425	 18.015	 1,540.000	
1.388	 0.431	 18.029	 1,550.000	
1.380	 0.427	 18.041	 1,560.000	



Appendices – Appendix II – SAM-Risk settings 

  Page: 235 

1.373	 0.421	 18.052	 1,570.000	
1.366	 0.424	 18.065	 1,580.000	
1.359	 0.429	 18.077	 1,590.000	
1.350	 0.426	 18.088	 1,600.000	
1.340	 0.424	 18.100	 1,610.000	
1.332	 0.421	 18.111	 1,620.000	
1.323	 0.426	 18.123	 1,630.000	
1.312	 0.423	 18.135	 1,640.000	
1.303	 0.430	 18.148	 1,650.000	
1.294	 0.419	 18.161	 1,660.000	
1.289	 0.435	 18.169	 1,670.000	
1.283	 0.428	 18.178	 1,680.000	
1.276	 0.432	 18.189	 1,690.000	
1.269	 0.430	 18.201	 1,700.000	
1.261	 0.425	 18.211	 1,710.000	
1.253	 0.431	 18.222	 1,720.000	
1.248	 0.430	 18.232	 1,730.000	
1.242	 0.422	 18.243	 1,740.000	
1.233	 0.434	 18.254	 1,750.000	
1.228	 0.427	 18.263	 1,760.000	
1.222	 0.426	 18.273	 1,770.000	
1.217	 0.431	 18.281	 1,780.000	
1.209	 0.434	 18.291	 1,790.000	
1.207	 0.436	 18.299	 1,800.000	
1.198	 0.426	 18.312	 1,810.000	
1.191	 0.433	 18.322	 1,820.000	
1.185	 0.431	 18.331	 1,830.000	
1.179	 0.425	 18.340	 1,840.000	
1.172	 0.435	 18.350	 1,850.000	
1.164	 0.431	 18.361	 1,860.000	
1.158	 0.440	 18.369	 1,870.000	
1.152	 0.431	 18.378	 1,880.000	
1.146	 0.433	 18.386	 1,890.000	
1.141	 0.443	 18.394	 1,900.000	
1.134	 0.431	 18.404	 1,910.000	
1.129	 0.432	 18.412	 1,920.000	
1.123	 0.438	 18.418	 1,930.000	
1.116	 0.431	 18.430	 1,940.000	
1.111	 0.432	 18.440	 1,950.000	
1.104	 0.440	 18.450	 1,960.000	
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1.097	 0.430	 18.460	 1,970.000	
1.091	 0.434	 18.469	 1,980.000	
1.090	 0.436	 18.475	 1,990.000	
1.085	 0.434	 18.482	 2,000.000	
1.080	 0.432	 18.490	 2,010.000	
1.073	 0.437	 18.501	 2,020.000	
1.068	 0.436	 18.507	 2,030.000	
1.064	 0.441	 18.514	 2,040.000	
1.059	 0.429	 18.522	 2,050.000	
1.054	 0.440	 18.531	 2,060.000	
1.049	 0.432	 18.539	 2,070.000	
1.047	 0.429	 18.545	 2,080.000	
1.044	 0.436	 18.552	 2,090.000	
1.039	 0.431	 18.561	 2,100.000	
1.034	 0.432	 18.569	 2,110.000	
1.030	 0.429	 18.578	 2,120.000	
1.026	 0.433	 18.586	 2,130.000	
1.021	 0.440	 18.594	 2,140.000	
1.018	 0.431	 18.600	 2,150.000	
1.014	 0.442	 18.607	 2,160.000	
1.008	 0.426	 18.617	 2,170.000	
1.006	 0.444	 18.623	 2,180.000	
1.002	 0.433	 18.630	 2,190.000	
0.998	 0.443	 18.637	 2,200.000	
0.994	 0.432	 18.643	 2,210.000	
0.993	 0.434	 18.648	 2,220.000	
0.988	 0.430	 18.656	 2,230.000	
0.983	 0.429	 18.664	 2,240.000	
0.982	 0.433	 18.670	 2,250.000	
0.978	 0.435	 18.675	 2,260.000	
0.976	 0.436	 18.681	 2,270.000	
0.973	 0.433	 18.686	 2,280.000	
0.969	 0.427	 18.693	 2,290.000	
0.964	 0.433	 18.700	 2,300.000	
0.959	 0.435	 18.706	 2,310.000	
0.957	 0.433	 18.712	 2,320.000	
0.955	 0.428	 18.717	 2,330.000	
0.951	 0.425	 18.725	 2,340.000	
0.946	 0.444	 18.730	 2,350.000	
0.941	 0.428	 18.737	 2,360.000	
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0.938	 0.435	 18.742	 2,370.000	
0.934	 0.438	 18.750	 2,380.000	
0.928	 0.434	 18.758	 2,390.000	
0.926	 0.440	 18.763	 2,400.000	
0.923	 0.438	 18.769	 2,410.000	
0.920	 0.435	 18.775	 2,420.000	
0.916	 0.433	 18.781	 2,430.000	
0.914	 0.435	 18.787	 2,440.000	
0.911	 0.433	 18.793	 2,450.000	
0.908	 0.442	 18.798	 2,460.000	
0.904	 0.442	 18.806	 2,470.000	
0.901	 0.433	 18.811	 2,480.000	
0.898	 0.434	 18.817	 2,490.000	
0.896	 0.450	 18.822	 2,500.000	
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NSGA-II with LEMMO and Initial ANN Structure Analysis Metric 

Results 

Convergence	 Diversity	 Dominated	
Hypervolume	 Iteration	

9.880	 32.720	 9.232	 10.000	
8.093	 11.739	 11.090	 20.000	
6.471	 5.214	 12.627	 30.000	
5.704	 3.047	 13.356	 40.000	
5.212	 2.602	 13.826	 50.000	
4.864	 2.321	 14.165	 60.000	
4.436	 2.231	 14.571	 70.000	
4.178	 2.167	 14.828	 80.000	
4.021	 2.249	 14.987	 90.000	
3.845	 2.199	 15.167	 100.000	
3.665	 2.175	 15.365	 110.000	
3.568	 2.166	 15.474	 120.000	
3.447	 2.150	 15.619	 130.000	
3.309	 2.163	 15.753	 140.000	
3.212	 2.158	 15.856	 150.000	
3.132	 2.156	 15.944	 160.000	
3.029	 2.155	 16.052	 170.000	
2.968	 2.183	 16.125	 180.000	
2.862	 2.200	 16.227	 190.000	
2.820	 2.132	 16.279	 200.000	
2.734	 2.155	 16.371	 210.000	
2.680	 2.137	 16.430	 220.000	
2.621	 2.172	 16.497	 230.000	
2.574	 2.221	 16.553	 240.000	
2.515	 2.190	 16.615	 250.000	
2.462	 2.167	 16.670	 260.000	
2.412	 2.175	 16.724	 270.000	
2.378	 2.182	 16.762	 280.000	
2.353	 2.211	 16.797	 290.000	
2.328	 2.264	 16.829	 300.000	
2.302	 2.226	 16.858	 310.000	
2.284	 2.213	 16.888	 320.000	
2.260	 2.236	 16.917	 330.000	
2.241	 2.235	 16.948	 340.000	
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2.211	 2.238	 16.985	 350.000	
2.179	 2.254	 17.024	 360.000	
2.164	 2.238	 17.050	 370.000	
2.125	 2.261	 17.092	 380.000	
2.102	 2.195	 17.121	 390.000	
2.087	 2.228	 17.145	 400.000	
2.072	 2.200	 17.169	 410.000	
2.056	 2.241	 17.192	 420.000	
2.029	 2.247	 17.219	 430.000	
2.011	 2.287	 17.247	 440.000	
1.990	 2.279	 17.270	 450.000	
1.980	 2.255	 17.291	 460.000	
1.974	 2.258	 17.306	 470.000	
1.966	 2.268	 17.322	 480.000	
1.957	 2.283	 17.337	 490.000	
1.947	 2.290	 17.356	 500.000	
1.940	 2.279	 17.371	 510.000	
1.935	 2.278	 17.383	 520.000	
1.923	 2.245	 17.400	 530.000	
1.906	 2.308	 17.422	 540.000	
1.893	 2.303	 17.440	 550.000	
1.880	 2.290	 17.457	 560.000	
1.873	 2.293	 17.470	 570.000	
1.856	 2.284	 17.489	 580.000	
1.841	 2.317	 17.510	 590.000	
1.830	 2.289	 17.525	 600.000	
1.820	 2.321	 17.540	 610.000	
1.814	 2.338	 17.551	 620.000	
1.808	 2.302	 17.560	 630.000	
1.801	 2.337	 17.571	 640.000	
1.796	 2.313	 17.581	 650.000	
1.791	 2.329	 17.590	 660.000	
1.774	 2.355	 17.607	 670.000	
1.770	 2.323	 17.617	 680.000	
1.764	 2.339	 17.628	 690.000	
1.756	 2.342	 17.639	 700.000	
1.749	 2.353	 17.649	 710.000	
1.739	 2.352	 17.662	 720.000	
1.730	 2.341	 17.672	 730.000	
1.719	 2.367	 17.689	 740.000	
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1.705	 2.364	 17.706	 750.000	
1.693	 2.323	 17.722	 760.000	
1.678	 2.342	 17.741	 770.000	
1.668	 2.314	 17.758	 780.000	
1.663	 2.362	 17.772	 790.000	
1.655	 2.345	 17.786	 800.000	
1.647	 2.300	 17.798	 810.000	
1.640	 2.364	 17.809	 820.000	
1.634	 2.332	 17.818	 830.000	
1.628	 2.396	 17.827	 840.000	
1.616	 2.375	 17.841	 850.000	
1.609	 2.355	 17.852	 860.000	
1.604	 2.373	 17.860	 870.000	
1.603	 2.409	 17.866	 880.000	
1.598	 2.374	 17.877	 890.000	
1.587	 2.375	 17.892	 900.000	
1.579	 2.356	 17.903	 910.000	
1.576	 2.365	 17.911	 920.000	
1.571	 2.393	 17.922	 930.000	
1.564	 2.362	 17.932	 940.000	
1.559	 2.379	 17.941	 950.000	
1.553	 2.371	 17.951	 960.000	
1.551	 2.398	 17.960	 970.000	
1.547	 2.371	 17.967	 980.000	
1.543	 2.394	 17.974	 990.000	
1.535	 2.392	 17.983	 1,000.000	
1.529	 2.405	 17.991	 1,010.000	
1.524	 2.395	 17.999	 1,020.000	
1.519	 2.404	 18.009	 1,030.000	
1.513	 2.380	 18.020	 1,040.000	
1.508	 2.397	 18.030	 1,050.000	
1.505	 2.397	 18.035	 1,060.000	
1.501	 2.396	 18.043	 1,070.000	
1.496	 2.400	 18.050	 1,080.000	
1.489	 2.427	 18.059	 1,090.000	
1.485	 2.403	 18.067	 1,100.000	
1.478	 2.387	 18.077	 1,110.000	
1.473	 2.418	 18.084	 1,120.000	
1.468	 2.419	 18.092	 1,130.000	
1.463	 2.421	 18.100	 1,140.000	
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1.457	 2.381	 18.112	 1,150.000	
1.453	 2.367	 18.121	 1,160.000	
1.448	 2.431	 18.128	 1,170.000	
1.446	 2.393	 18.135	 1,180.000	
1.441	 2.395	 18.141	 1,190.000	
1.436	 2.401	 18.148	 1,200.000	
1.428	 2.440	 18.159	 1,210.000	
1.425	 2.400	 18.166	 1,220.000	
1.422	 2.427	 18.172	 1,230.000	
1.420	 2.397	 18.179	 1,240.000	
1.416	 2.452	 18.185	 1,250.000	
1.411	 2.460	 18.192	 1,260.000	
1.411	 2.418	 18.197	 1,270.000	
1.411	 2.437	 18.201	 1,280.000	
1.403	 2.428	 18.211	 1,290.000	
1.397	 2.408	 18.219	 1,300.000	
1.393	 2.449	 18.225	 1,310.000	
1.387	 2.429	 18.233	 1,320.000	
1.382	 2.428	 18.239	 1,330.000	
1.380	 2.459	 18.244	 1,340.000	
1.378	 2.455	 18.249	 1,350.000	
1.375	 2.452	 18.254	 1,360.000	
1.369	 2.435	 18.261	 1,370.000	
1.368	 2.473	 18.265	 1,380.000	
1.367	 2.463	 18.269	 1,390.000	
1.362	 2.445	 18.276	 1,400.000	
1.361	 2.465	 18.280	 1,410.000	
1.359	 2.431	 18.283	 1,420.000	
1.359	 2.452	 18.285	 1,430.000	
1.356	 2.461	 18.290	 1,440.000	
1.354	 2.448	 18.295	 1,450.000	
1.353	 2.450	 18.297	 1,460.000	
1.351	 2.440	 18.302	 1,470.000	
1.351	 2.455	 18.305	 1,480.000	
1.348	 2.449	 18.311	 1,490.000	
1.346	 2.455	 18.316	 1,500.000	
1.343	 2.444	 18.320	 1,510.000	
1.341	 2.445	 18.326	 1,520.000	
1.337	 2.452	 18.331	 1,530.000	
1.335	 2.448	 18.335	 1,540.000	
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1.331	 2.439	 18.341	 1,550.000	
1.329	 2.497	 18.346	 1,560.000	
1.327	 2.471	 18.350	 1,570.000	
1.325	 2.497	 18.354	 1,580.000	
1.322	 2.467	 18.359	 1,590.000	
1.319	 2.473	 18.363	 1,600.000	
1.317	 2.470	 18.367	 1,610.000	
1.315	 2.466	 18.372	 1,620.000	
1.315	 2.471	 18.375	 1,630.000	
1.314	 2.474	 18.380	 1,640.000	
1.313	 2.449	 18.382	 1,650.000	
1.316	 2.468	 18.388	 1,660.000	
1.316	 2.490	 18.391	 1,670.000	
1.315	 2.496	 18.394	 1,680.000	
1.315	 2.471	 18.396	 1,690.000	
1.313	 2.471	 18.400	 1,700.000	
1.310	 2.477	 18.404	 1,710.000	
1.306	 2.433	 18.411	 1,720.000	
1.304	 2.487	 18.414	 1,730.000	
1.302	 2.476	 18.418	 1,740.000	
1.299	 2.490	 18.422	 1,750.000	
1.298	 2.485	 18.425	 1,760.000	
1.298	 2.457	 18.428	 1,770.000	
1.298	 2.481	 18.430	 1,780.000	
1.297	 2.507	 18.434	 1,790.000	
1.296	 2.491	 18.437	 1,800.000	
1.292	 2.481	 18.443	 1,810.000	
1.291	 2.514	 18.447	 1,820.000	
1.290	 2.513	 18.451	 1,830.000	
1.289	 2.502	 18.453	 1,840.000	
1.287	 2.511	 18.457	 1,850.000	
1.286	 2.483	 18.460	 1,860.000	
1.284	 2.507	 18.464	 1,870.000	
1.282	 2.510	 18.467	 1,880.000	
1.280	 2.525	 18.474	 1,890.000	
1.278	 2.526	 18.477	 1,900.000	
1.278	 2.534	 18.479	 1,910.000	
1.277	 2.533	 18.482	 1,920.000	
1.277	 2.523	 18.484	 1,930.000	
1.274	 2.509	 18.488	 1,940.000	
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1.271	 2.529	 18.492	 1,950.000	
1.271	 2.488	 18.494	 1,960.000	
1.270	 2.515	 18.497	 1,970.000	
1.268	 2.504	 18.500	 1,980.000	
1.266	 2.499	 18.504	 1,990.000	
1.262	 2.498	 18.509	 2,000.000	
1.261	 2.515	 18.512	 2,010.000	
1.259	 2.534	 18.515	 2,020.000	
1.257	 2.522	 18.517	 2,030.000	
1.256	 2.518	 18.520	 2,040.000	
1.254	 2.522	 18.523	 2,050.000	
1.252	 2.545	 18.527	 2,060.000	
1.250	 2.540	 18.530	 2,070.000	
1.247	 2.524	 18.534	 2,080.000	
1.247	 2.500	 18.537	 2,090.000	
1.246	 2.526	 18.539	 2,100.000	
1.244	 2.548	 18.542	 2,110.000	
1.242	 2.551	 18.546	 2,120.000	
1.241	 2.514	 18.548	 2,130.000	
1.240	 2.540	 18.551	 2,140.000	
1.236	 2.530	 18.555	 2,150.000	
1.235	 2.554	 18.557	 2,160.000	
1.233	 2.537	 18.560	 2,170.000	
1.232	 2.532	 18.563	 2,180.000	
1.231	 2.531	 18.565	 2,190.000	
1.227	 2.527	 18.570	 2,200.000	
1.227	 2.518	 18.573	 2,210.000	
1.227	 2.549	 18.576	 2,220.000	
1.226	 2.550	 18.577	 2,230.000	
1.226	 2.529	 18.579	 2,240.000	
1.225	 2.569	 18.580	 2,250.000	
1.225	 2.561	 18.582	 2,260.000	
1.225	 2.533	 18.583	 2,270.000	
1.223	 2.536	 18.585	 2,280.000	
1.223	 2.555	 18.587	 2,290.000	
1.222	 2.552	 18.588	 2,300.000	
1.222	 2.549	 18.589	 2,310.000	
1.222	 2.563	 18.591	 2,320.000	
1.221	 2.567	 18.593	 2,330.000	
1.221	 2.569	 18.595	 2,340.000	
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1.219	 2.561	 18.598	 2,350.000	
1.218	 2.556	 18.600	 2,360.000	
1.216	 2.567	 18.602	 2,370.000	
1.216	 2.548	 18.603	 2,380.000	
1.216	 2.558	 18.605	 2,390.000	
1.215	 2.557	 18.606	 2,400.000	
1.215	 2.553	 18.608	 2,410.000	
1.215	 2.554	 18.609	 2,420.000	
1.215	 2.575	 18.611	 2,430.000	
1.215	 2.553	 18.612	 2,440.000	
1.215	 2.557	 18.613	 2,450.000	
1.214	 2.546	 18.615	 2,460.000	
1.215	 2.551	 18.616	 2,470.000	
1.215	 2.546	 18.618	 2,480.000	
1.213	 2.573	 18.620	 2,490.000	
1.213	 2.559	 18.621	 2,500.000	
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NSGA-II with LEMMO and Final ANN Structure Analysis Metric 

Results 

Convergence	 Diversity	 Dominated	
Hypervolume	 Iteration	

9.862	 30.787	 9.307	 10.000	
9.344	 16.873	 9.985	 20.000	
8.884	 7.267	 10.461	 30.000	
8.524	 4.564	 10.826	 40.000	
8.234	 3.375	 11.115	 50.000	
7.972	 2.684	 11.375	 60.000	
7.722	 2.675	 11.622	 70.000	
7.464	 2.314	 11.875	 80.000	
7.265	 2.342	 12.072	 90.000	
7.045	 2.212	 12.295	 100.000	
6.872	 2.152	 12.470	 110.000	
6.692	 2.180	 12.652	 120.000	
6.488	 2.169	 12.864	 130.000	
6.321	 2.146	 13.043	 140.000	
6.162	 2.143	 13.210	 150.000	
5.982	 2.080	 13.393	 160.000	
5.809	 2.085	 13.568	 170.000	
5.647	 2.061	 13.730	 180.000	
5.525	 2.045	 13.861	 190.000	
5.369	 2.059	 14.020	 200.000	
5.236	 2.016	 14.157	 210.000	
5.122	 2.016	 14.276	 220.000	
4.984	 2.028	 14.416	 230.000	
4.857	 1.989	 14.549	 240.000	
4.735	 1.982	 14.673	 250.000	
4.617	 1.995	 14.794	 260.000	
4.520	 2.003	 14.896	 270.000	
4.393	 2.007	 15.024	 280.000	
4.292	 1.980	 15.130	 290.000	
4.192	 1.940	 15.234	 300.000	
4.099	 1.972	 15.335	 310.000	
4.003	 1.967	 15.437	 320.000	
3.911	 1.973	 15.536	 330.000	
3.828	 1.969	 15.626	 340.000	
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3.738	 1.956	 15.720	 350.000	
3.651	 1.981	 15.813	 360.000	
3.563	 1.903	 15.905	 370.000	
3.475	 1.959	 15.999	 380.000	
3.403	 1.957	 16.080	 390.000	
3.299	 1.931	 16.184	 400.000	
3.227	 1.930	 16.261	 410.000	
3.154	 1.915	 16.337	 420.000	
3.093	 1.934	 16.405	 430.000	
3.012	 1.903	 16.488	 440.000	
2.955	 1.918	 16.553	 450.000	
2.900	 1.916	 16.616	 460.000	
2.821	 1.895	 16.698	 470.000	
2.755	 1.925	 16.771	 480.000	
2.696	 1.916	 16.834	 490.000	
2.635	 1.880	 16.901	 500.000	
2.577	 1.914	 16.965	 510.000	
2.524	 1.899	 17.023	 520.000	
2.473	 1.911	 17.079	 530.000	
2.420	 1.912	 17.139	 540.000	
2.374	 1.872	 17.191	 550.000	
2.321	 1.895	 17.249	 560.000	
2.283	 1.916	 17.298	 570.000	
2.226	 1.881	 17.358	 580.000	
2.184	 1.876	 17.407	 590.000	
2.136	 1.918	 17.463	 600.000	
2.094	 1.917	 17.512	 610.000	
2.050	 1.912	 17.563	 620.000	
2.001	 1.890	 17.616	 630.000	
1.965	 1.920	 17.661	 640.000	
1.921	 1.891	 17.711	 650.000	
1.884	 1.877	 17.755	 660.000	
1.847	 1.878	 17.797	 670.000	
1.796	 1.866	 17.849	 680.000	
1.760	 1.893	 17.890	 690.000	
1.727	 1.884	 17.930	 700.000	
1.696	 1.895	 17.968	 710.000	
1.672	 1.877	 18.000	 720.000	
1.642	 1.887	 18.039	 730.000	
1.606	 1.842	 18.081	 740.000	
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1.578	 1.850	 18.114	 750.000	
1.548	 1.868	 18.151	 760.000	
1.518	 1.896	 18.186	 770.000	
1.495	 1.880	 18.217	 780.000	
1.467	 1.868	 18.251	 790.000	
1.445	 1.869	 18.286	 800.000	
1.421	 1.848	 18.315	 810.000	
1.402	 1.857	 18.342	 820.000	
1.380	 1.871	 18.371	 830.000	
1.360	 1.866	 18.399	 840.000	
1.335	 1.837	 18.429	 850.000	
1.314	 1.827	 18.456	 860.000	
1.297	 1.849	 18.480	 870.000	
1.278	 1.879	 18.506	 880.000	
1.259	 1.864	 18.533	 890.000	
1.238	 1.843	 18.564	 900.000	
1.218	 1.843	 18.590	 910.000	
1.199	 1.828	 18.616	 920.000	
1.179	 1.846	 18.643	 930.000	
1.160	 1.821	 18.672	 940.000	
1.142	 1.855	 18.697	 950.000	
1.124	 1.849	 18.723	 960.000	
1.108	 1.825	 18.744	 970.000	
1.095	 1.833	 18.765	 980.000	
1.079	 1.833	 18.788	 990.000	
1.067	 1.818	 18.807	 1,000.000	
1.050	 1.831	 18.829	 1,010.000	
1.037	 1.830	 18.848	 1,020.000	
1.025	 1.844	 18.867	 1,030.000	
1.008	 1.840	 18.890	 1,040.000	
0.996	 1.839	 18.911	 1,050.000	
0.981	 1.829	 18.932	 1,060.000	
0.968	 1.821	 18.952	 1,070.000	
0.957	 1.823	 18.970	 1,080.000	
0.945	 1.857	 18.989	 1,090.000	
0.930	 1.801	 19.012	 1,100.000	
0.918	 1.830	 19.030	 1,110.000	
0.907	 1.811	 19.046	 1,120.000	
0.898	 1.833	 19.064	 1,130.000	
0.890	 1.829	 19.080	 1,140.000	
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0.876	 1.860	 19.100	 1,150.000	
0.867	 1.822	 19.115	 1,160.000	
0.853	 1.821	 19.136	 1,170.000	
0.841	 1.819	 19.155	 1,180.000	
0.847	 1.832	 19.170	 1,190.000	
0.841	 1.819	 19.186	 1,200.000	
0.832	 1.812	 19.200	 1,210.000	
0.823	 1.812	 19.214	 1,220.000	
0.816	 1.840	 19.228	 1,230.000	
0.810	 1.824	 19.241	 1,240.000	
0.802	 1.824	 19.254	 1,250.000	
0.797	 1.818	 19.268	 1,260.000	
0.790	 1.840	 19.280	 1,270.000	
0.782	 1.837	 19.294	 1,280.000	
0.774	 1.842	 19.309	 1,290.000	
0.766	 1.811	 19.324	 1,300.000	
0.759	 1.814	 19.338	 1,310.000	
0.753	 1.828	 19.348	 1,320.000	
0.746	 1.840	 19.365	 1,330.000	
0.741	 1.805	 19.377	 1,340.000	
0.736	 1.823	 19.390	 1,350.000	
0.728	 1.821	 19.402	 1,360.000	
0.722	 1.812	 19.416	 1,370.000	
0.715	 1.819	 19.428	 1,380.000	
0.709	 1.788	 19.438	 1,390.000	
0.704	 1.836	 19.452	 1,400.000	
0.699	 1.842	 19.463	 1,410.000	
0.693	 1.832	 19.475	 1,420.000	
0.689	 1.802	 19.486	 1,430.000	
0.682	 1.830	 19.499	 1,440.000	
0.677	 1.807	 19.509	 1,450.000	
0.672	 1.810	 19.520	 1,460.000	
0.667	 1.816	 19.531	 1,470.000	
0.662	 1.806	 19.541	 1,480.000	
0.655	 1.813	 19.554	 1,490.000	
0.650	 1.820	 19.562	 1,500.000	
0.643	 1.776	 19.573	 1,510.000	
0.638	 1.829	 19.584	 1,520.000	
0.633	 1.823	 19.595	 1,530.000	
0.630	 1.816	 19.607	 1,540.000	
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0.625	 1.797	 19.616	 1,550.000	
0.623	 1.780	 19.624	 1,560.000	
0.619	 1.809	 19.632	 1,570.000	
0.615	 1.783	 19.642	 1,580.000	
0.610	 1.816	 19.652	 1,590.000	
0.605	 1.803	 19.660	 1,600.000	
0.601	 1.813	 19.669	 1,610.000	
0.596	 1.809	 19.681	 1,620.000	
0.592	 1.789	 19.687	 1,630.000	
0.589	 1.813	 19.695	 1,640.000	
0.586	 1.820	 19.704	 1,650.000	
0.581	 1.823	 19.713	 1,660.000	
0.578	 1.805	 19.718	 1,670.000	
0.574	 1.794	 19.728	 1,680.000	
0.571	 1.797	 19.736	 1,690.000	
0.567	 1.798	 19.744	 1,700.000	
0.562	 1.805	 19.754	 1,710.000	
0.560	 1.801	 19.762	 1,720.000	
0.557	 1.819	 19.771	 1,730.000	
0.553	 1.814	 19.778	 1,740.000	
0.551	 1.807	 19.784	 1,750.000	
0.548	 1.799	 19.791	 1,760.000	
0.546	 1.814	 19.799	 1,770.000	
0.543	 1.808	 19.806	 1,780.000	
0.541	 1.810	 19.814	 1,790.000	
0.536	 1.791	 19.822	 1,800.000	
0.534	 1.803	 19.829	 1,810.000	
0.532	 1.803	 19.837	 1,820.000	
0.528	 1.807	 19.844	 1,830.000	
0.527	 1.810	 19.850	 1,840.000	
0.525	 1.834	 19.855	 1,850.000	
0.523	 1.816	 19.863	 1,860.000	
0.521	 1.796	 19.869	 1,870.000	
0.519	 1.824	 19.876	 1,880.000	
0.516	 1.808	 19.882	 1,890.000	
0.514	 1.802	 19.887	 1,900.000	
0.511	 1.816	 19.894	 1,910.000	
0.508	 1.797	 19.900	 1,920.000	
0.505	 1.805	 19.906	 1,930.000	
0.503	 1.794	 19.911	 1,940.000	
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0.500	 1.794	 19.918	 1,950.000	
0.497	 1.814	 19.923	 1,960.000	
0.494	 1.803	 19.928	 1,970.000	
0.491	 1.818	 19.935	 1,980.000	
0.489	 1.794	 19.941	 1,990.000	
0.486	 1.817	 19.946	 2,000.000	
0.483	 1.811	 19.951	 2,010.000	
0.481	 1.806	 19.958	 2,020.000	
0.498	 1.813	 19.963	 2,030.000	
0.497	 1.810	 19.969	 2,040.000	
0.494	 1.832	 19.974	 2,050.000	
0.493	 1.809	 19.979	 2,060.000	
0.490	 1.803	 19.983	 2,070.000	
0.488	 1.805	 19.988	 2,080.000	
0.485	 1.779	 19.996	 2,090.000	
0.483	 1.806	 20.002	 2,100.000	
0.482	 1.814	 20.007	 2,110.000	
0.480	 1.816	 20.012	 2,120.000	
0.478	 1.816	 20.018	 2,130.000	
0.476	 1.813	 20.023	 2,140.000	
0.473	 1.791	 20.029	 2,150.000	
0.470	 1.806	 20.034	 2,160.000	
0.469	 1.779	 20.040	 2,170.000	
0.467	 1.809	 20.045	 2,180.000	
0.465	 1.818	 20.050	 2,190.000	
0.463	 1.812	 20.054	 2,200.000	
0.462	 1.812	 20.058	 2,210.000	
0.462	 1.810	 20.063	 2,220.000	
0.461	 1.788	 20.068	 2,230.000	
0.458	 1.801	 20.072	 2,240.000	
0.457	 1.805	 20.075	 2,250.000	
0.455	 1.809	 20.080	 2,260.000	
0.454	 1.799	 20.085	 2,270.000	
0.454	 1.812	 20.088	 2,280.000	
0.451	 1.788	 20.092	 2,290.000	
0.450	 1.794	 20.096	 2,300.000	
0.449	 1.827	 20.100	 2,310.000	
0.447	 1.826	 20.104	 2,320.000	
0.446	 1.814	 20.107	 2,330.000	
0.445	 1.783	 20.112	 2,340.000	
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0.443	 1.818	 20.116	 2,350.000	
0.442	 1.790	 20.120	 2,360.000	
0.441	 1.822	 20.125	 2,370.000	
0.439	 1.820	 20.129	 2,380.000	
0.438	 1.821	 20.132	 2,390.000	
0.436	 1.819	 20.136	 2,400.000	
0.434	 1.788	 20.140	 2,410.000	
0.433	 1.791	 20.143	 2,420.000	
0.453	 1.816	 20.147	 2,430.000	
0.451	 1.820	 20.150	 2,440.000	
0.450	 1.793	 20.154	 2,450.000	
0.448	 1.793	 20.158	 2,460.000	
0.448	 1.788	 20.163	 2,470.000	
0.447	 1.802	 20.166	 2,480.000	
0.446	 1.808	 20.170	 2,490.000	
0.444	 1.820	 20.174	 2,500.000	
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Dalmarnock Case Study Results  

These are the results from the final complete iteration from the Dalmarnock case 

study. 

Network cost (£) 
Expected 

Annual Damage 
(£) 

Rank Crowding 
distance 

25243757.17 651.4286466 1 Infinity 
25239716.21 1119.875394 1 0.008600801 
25185446.5 1182.020857 1 0.006180114 

25136252.15 1295.436244 1 0.014419537 
25059271.79 1976.638749 1 0.021186697 
24885612.37 2244.96083 1 0.774726192 
5750455.941 2805.855535 1 0.877837503 
5485101.292 11464.51351 1 0.080764945 
5485101.292 11464.51351 1 0.110403976 
5289620.428 17389.87322 1 0.204892654 
2852647.653 19950.35613 1 0.166836575 
2793530.332 23121.56678 1 0.208412792 
2621097.045 36754.84341 1 0.291594523 
2554687.125 46917.47306 1 0.478635833 
2538550.951 76848.55754 1 0.374724157 
2117206.39 77061.09463 1 0.197140252 

0 84994.28223 1 Infinity 

Dalmarnock Analysis Metric Results 

Presented here are the results from the analysis metric run on the Dalmarnock 

case study results.  

Dominated	
Hypervolume	 Iteration	

2.38E+12	 1	
2.66E+12	 2	
2.67E+12	 3	
3.19E+12	 4	

3.58E+12	 5	
4.22E+12	 6	
4.31E+12	 7	
4.39E+12	 8	
4.39E+12	 9	
4.44E+12	 10	
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4.49E+12	 11	
4.51E+12	 12	
4.51E+12	 13	
4.52E+12	 14	
4.56E+12	 15	
4.57E+12	 16	
4.61E+12	 17	
4.61E+12	 18	
4.61E+12	 19	
4.63E+12	 20	
4.63E+12	 21	
4.64E+12	 22	
4.65E+12	 23	
4.65E+12	 24	
4.67E+12	 25	
4.68E+12	 26	
4.68E+12	 27	
4.68E+12	 28	
4.68E+12	 29	
4.69E+12	 30	
4.69E+12	 31	
4.69E+12	 32	
4.70E+12	 33	
4.70E+12	 34	
4.70E+12	 35	
4.70E+12	 36	
4.71E+12	 37	
4.71E+12	 38	
4.71E+12	 39	
4.70E+12	 40	
4.70E+12	 41	
4.71E+12	 42	
4.71E+12	 43	
4.71E+12	 44	
4.72E+12	 45	
4.71E+12	 46	
4.71E+12	 47	
4.72E+12	 48	
4.72E+12	 49	
4.71E+12	 50	

4.71E+12	 51	
4.72E+12	 52	
4.73E+12	 53	
4.73E+12	 54	
4.73E+12	 55	
4.73E+12	 56	
4.73E+12	 57	
4.80E+12	 58	
4.80E+12	 59	
4.80E+12	 60	
4.80E+12	 61	
4.81E+12	 62	
4.81E+12	 63	
4.81E+12	 64	
4.81E+12	 65	
4.82E+12	 66	
4.82E+12	 67	
4.82E+12	 68	
4.82E+12	 69	
4.82E+12	 70	
4.82E+12	 71	
4.82E+12	 72	
4.82E+12	 73	
4.82E+12	 74	
4.83E+12	 75	
4.83E+12	 76	
4.83E+12	 77	
4.83E+12	 78	
4.83E+12	 79	
4.83E+12	 80	
4.83E+12	 81	
4.84E+12	 82	
4.84E+12	 83	
4.84E+12	 84	
4.84E+12	 85	
4.84E+12	 86	
4.84E+12	 87	
4.84E+12	 88	
4.84E+12	 89	
4.84E+12	 90	
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4.85E+12	 91	
4.85E+12	 92	
4.85E+12	 93	
4.85E+12	 94	
4.85E+12	 95	
4.85E+12	 96	
4.85E+12	 97	
4.85E+12	 98	
4.85E+12	 99	
4.85E+12	 100	
4.85E+12	 101	
4.85E+12	 102	
4.93E+12	 103	
4.93E+12	 104	
4.93E+12	 105	
4.93E+12	 106	
4.93E+12	 107	
4.93E+12	 108	
4.93E+12	 109	
4.93E+12	 110	
4.93E+12	 111	
4.93E+12	 112	
4.94E+12	 113	
4.94E+12	 114	
4.94E+12	 115	
4.94E+12	 116	
4.94E+12	 117	
4.94E+12	 118	
4.94E+12	 119	
4.94E+12	 120	
4.94E+12	 121	
4.94E+12	 122	
4.94E+12	 123	
4.94E+12	 124	
4.94E+12	 125	
4.94E+12	 126	
4.94E+12	 127	
4.94E+12	 128	
4.95E+12	 129	
4.95E+12	 130	

4.95E+12	 131	
4.95E+12	 132	
4.95E+12	 133	
4.95E+12	 134	
4.95E+12	 135	
4.95E+12	 136	
4.95E+12	 137	
4.95E+12	 138	
4.95E+12	 139	
4.95E+12	 140	
4.95E+12	 141	
4.95E+12	 142	
4.95E+12	 143	
4.95E+12	 144	
4.95E+12	 145	
4.96E+12	 146	
4.96E+12	 147	
4.96E+12	 148	
4.96E+12	 149	
4.96E+12	 150	
4.96E+12	 151	
4.96E+12	 152	
4.96E+12	 153	
5.10E+12	 154	
5.10E+12	 155	
5.10E+12	 156	
5.11E+12	 157	
5.11E+12	 158	
5.11E+12	 159	
5.11E+12	 160	
5.11E+12	 161	
5.11E+12	 162	
5.11E+12	 163	
5.11E+12	 164	
5.11E+12	 165	
5.11E+12	 166	
5.10E+12	 167	
5.10E+12	 168	
5.10E+12	 169	
5.10E+12	 170	
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5.10E+12	 171	
5.10E+12	 172	
5.10E+12	 173	
5.10E+12	 174	
5.11E+12	 175	
5.11E+12	 176	
5.11E+12	 177	
5.11E+12	 178	
5.10E+12	 179	
5.11E+12	 180	
5.11E+12	 181	
5.11E+12	 182	
5.11E+12	 183	
5.11E+12	 184	
5.12E+12	 185	
5.12E+12	 186	
5.12E+12	 187	
5.12E+12	 188	
5.12E+12	 189	
5.12E+12	 190	
5.12E+12	 191	
5.12E+12	 192	
5.12E+12	 193	
5.12E+12	 194	
5.12E+12	 195	
5.12E+12	 196	
5.12E+12	 197	
5.12E+12	 198	
5.12E+12	 199	
5.12E+12	 200	
5.12E+12	 201	
5.12E+12	 202	
5.12E+12	 203	
5.12E+12	 204	
5.12E+12	 205	
5.12E+12	 206	
5.13E+12	 207	
5.13E+12	 208	
5.13E+12	 209	
5.14E+12	 210	

5.14E+12	 211	
5.14E+12	 212	
5.14E+12	 213	
5.14E+12	 214	
5.14E+12	 215	
5.14E+12	 216	
5.14E+12	 217	
5.14E+12	 218	
5.14E+12	 219	
5.14E+12	 220	
5.14E+12	 221	
5.14E+12	 222	
5.14E+12	 223	
5.14E+12	 224	
5.14E+12	 225	
5.14E+12	 226	
5.14E+12	 227	
5.14E+12	 228	
5.14E+12	 229	
5.14E+12	 230	
5.14E+12	 231	
5.14E+12	 232	
5.14E+12	 233	
5.14E+12	 234	
5.14E+12	 235	
5.14E+12	 236	
5.14E+12	 237	
5.14E+12	 238	
5.14E+12	 239	
5.14E+12	 240	
5.14E+12	 241	
5.14E+12	 242	
5.14E+12	 243	
5.14E+12	 244	
5.14E+12	 245	
5.14E+12	 246	
5.14E+12	 247	
5.14E+12	 248	
5.14E+12	 249	
5.14E+12	 250	
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5.14E+12	 251	
5.14E+12	 252	
5.14E+12	 253	
5.14E+12	 254	
5.14E+12	 255	
5.14E+12	 256	
5.15E+12	 257	
5.15E+12	 258	
5.15E+12	 259	
5.15E+12	 260	
5.15E+12	 261	
5.15E+12	 262	
5.15E+12	 263	
5.15E+12	 264	
5.15E+12	 265	
5.15E+12	 266	
5.15E+12	 267	
5.15E+12	 268	
5.15E+12	 269	
5.15E+12	 270	
5.15E+12	 271	
5.15E+12	 272	
5.15E+12	 273	
5.15E+12	 274	
5.15E+12	 275	
5.15E+12	 276	
5.15E+12	 277	
5.15E+12	 278	
5.15E+12	 279	
5.15E+12	 280	
5.15E+12	 281	
5.18E+12	 282	
5.18E+12	 283	
5.18E+12	 284	
5.18E+12	 285	
5.18E+12	 286	
5.18E+12	 287	
5.18E+12	 288	
5.18E+12	 289	
5.18E+12	 290	

5.18E+12	 291	
5.18E+12	 292	
5.18E+12	 293	
5.18E+12	 294	
5.18E+12	 295	
5.18E+12	 296	
5.18E+12	 297	
5.18E+12	 298	
5.18E+12	 299	
5.18E+12	 300	
5.18E+12	 301	
5.18E+12	 302	
5.18E+12	 303	
5.18E+12	 304	
5.18E+12	 305	
5.18E+12	 306	
5.18E+12	 307	
5.18E+12	 308	
5.18E+12	 309	
5.18E+12	 310	
5.18E+12	 311	
5.18E+12	 312	
5.18E+12	 313	
5.18E+12	 314	
5.18E+12	 315	
5.18E+12	 316	
5.18E+12	 317	
5.18E+12	 318	
5.18E+12	 319	
5.18E+12	 320	
5.18E+12	 321	
5.18E+12	 322	
5.18E+12	 323	
5.18E+12	 324	
5.18E+12	 325	
5.18E+12	 326	
5.18E+12	 327	
5.19E+12	 328	
5.19E+12	 329	
5.19E+12	 330	
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5.19E+12	 331	
5.19E+12	 332	
5.19E+12	 333	
5.19E+12	 334	
5.19E+12	 335	
5.19E+12	 336	
5.19E+12	 337	
5.19E+12	 338	
5.19E+12	 339	
5.19E+12	 340	
5.19E+12	 341	
5.19E+12	 342	
5.19E+12	 343	
5.19E+12	 344	
5.19E+12	 345	
5.19E+12	 346	
5.19E+12	 347	
5.19E+12	 348	
5.19E+12	 349	
5.19E+12	 350	
5.19E+12	 351	
5.19E+12	 352	
5.19E+12	 353	
5.19E+12	 354	
5.19E+12	 355	
5.19E+12	 356	
5.19E+12	 357	
5.19E+12	 358	
5.20E+12	 359	
5.20E+12	 360	
5.20E+12	 361	
5.20E+12	 362	
5.19E+12	 363	
5.20E+12	 364	
5.20E+12	 365	
5.20E+12	 366	
5.20E+12	 367	
5.20E+12	 368	
5.19E+12	 369	
5.20E+12	 370	

5.20E+12	 371	
5.19E+12	 372	
5.20E+12	 373	
5.19E+12	 374	
5.19E+12	 375	
5.19E+12	 376	
5.19E+12	 377	
5.19E+12	 378	
5.19E+12	 379	
5.19E+12	 380	
5.20E+12	 381	
5.20E+12	 382	
5.20E+12	 383	
5.20E+12	 384	
5.20E+12	 385	
5.20E+12	 386	
5.20E+12	 387	
5.20E+12	 388	
5.20E+12	 389	
5.19E+12	 390	
5.19E+12	 391	
5.20E+12	 392	
5.20E+12	 393	
5.20E+12	 394	
5.20E+12	 395	
5.20E+12	 396	
5.20E+12	 397	
5.20E+12	 398	
5.20E+12	 399	
5.20E+12	 400	
5.20E+12	 401	
5.20E+12	 402	
5.20E+12	 403	
5.20E+12	 404	
5.20E+12	 405	
5.20E+12	 406	
5.20E+12	 407	
5.20E+12	 408	
5.20E+12	 409	
5.20E+12	 410	
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5.20E+12	 411	
5.20E+12	 412	
5.20E+12	 413	
5.20E+12	 414	
5.20E+12	 415	
5.20E+12	 416	
5.20E+12	 417	
5.20E+12	 418	
5.20E+12	 419	
5.20E+12	 420	
5.20E+12	 421	
5.20E+12	 422	
5.20E+12	 423	
5.20E+12	 424	
5.20E+12	 425	
5.20E+12	 426	
5.20E+12	 427	
5.20E+12	 428	
5.20E+12	 429	
5.20E+12	 430	
5.20E+12	 431	
5.20E+12	 432	
5.20E+12	 433	
5.20E+12	 434	
5.20E+12	 435	
5.20E+12	 436	
5.20E+12	 437	
5.21E+12	 438	
5.21E+12	 439	
5.21E+12	 440	
5.21E+12	 441	
5.21E+12	 442	
5.21E+12	 443	
5.21E+12	 444	
5.21E+12	 445	
5.21E+12	 446	
5.21E+12	 447	
5.21E+12	 448	
5.22E+12	 449	
5.22E+12	 450	

5.22E+12	 451	
5.22E+12	 452	
5.22E+12	 453	
5.22E+12	 454	
5.22E+12	 455	
5.22E+12	 456	
5.22E+12	 457	
5.22E+12	 458	
5.22E+12	 459	
5.22E+12	 460	
5.22E+12	 461	
5.22E+12	 462	
5.22E+12	 463	
5.22E+12	 464	
5.22E+12	 465	
5.22E+12	 466	
5.22E+12	 467	
5.22E+12	 468	
5.22E+12	 469	
5.22E+12	 470	
5.22E+12	 471	
5.22E+12	 472	
5.22E+12	 473	
5.22E+12	 474	
5.22E+12	 475	
5.22E+12	 476	
5.22E+12	 477	
5.22E+12	 478	
5.22E+12	 479	
5.22E+12	 480	
5.23E+12	 481	
5.23E+12	 482	
5.23E+12	 483	
5.23E+12	 484	
5.23E+12	 485	
5.23E+12	 486	
5.23E+12	 487	
5.23E+12	 488	
5.23E+12	 489	
5.23E+12	 490	
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5.23E+12	 491	
5.23E+12	 492	
5.23E+12	 493	
5.23E+12	 494	
5.23E+12	 495	
5.23E+12	 496	
5.23E+12	 497	
5.23E+12	 498	
5.23E+12	 499	
5.23E+12	 500	
5.23E+12	 501	
5.23E+12	 502	
5.23E+12	 503	
5.23E+12	 504	
5.23E+12	 505	
5.23E+12	 506	
5.23E+12	 507	
5.23E+12	 508	
5.23E+12	 509	
5.23E+12	 510	
5.23E+12	 511	
5.23E+12	 512	
5.23E+12	 513	
5.23E+12	 514	
5.23E+12	 515	
5.23E+12	 516	
5.23E+12	 517	
5.23E+12	 518	
5.23E+12	 519	
5.23E+12	 520	
5.23E+12	 521	
5.23E+12	 522	
5.23E+12	 523	
5.23E+12	 524	
5.23E+12	 525	
5.23E+12	 526	
5.23E+12	 527	
5.23E+12	 528	
5.23E+12	 529	
5.23E+12	 530	

5.23E+12	 531	
5.23E+12	 532	
5.23E+12	 533	
5.23E+12	 534	
5.23E+12	 535	
5.23E+12	 536	
5.24E+12	 537	
5.24E+12	 538	
5.24E+12	 539	
5.24E+12	 540	
5.24E+12	 541	
5.24E+12	 542	
5.24E+12	 543	
5.24E+12	 544	
5.24E+12	 545	
5.24E+12	 546	
5.24E+12	 547	
5.24E+12	 548	
5.24E+12	 549	
5.24E+12	 550	
5.24E+12	 551	
5.24E+12	 552	
5.24E+12	 553	
5.24E+12	 554	
5.24E+12	 555	
5.24E+12	 556	
5.24E+12	 557	
5.24E+12	 558	
5.24E+12	 559	
5.24E+12	 560	
5.24E+12	 561	
5.24E+12	 562	
5.24E+12	 563	
5.24E+12	 564	
5.24E+12	 565	
5.24E+12	 566	
5.24E+12	 567	
5.24E+12	 568	
5.24E+12	 569	
5.24E+12	 570	
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5.24E+12	 571	
5.24E+12	 572	
5.24E+12	 573	
5.24E+12	 574	
5.24E+12	 575	
5.24E+12	 576	
5.24E+12	 577	
5.24E+12	 578	
5.24E+12	 579	
5.24E+12	 580	
5.24E+12	 581	
5.24E+12	 582	
5.24E+12	 583	
5.24E+12	 584	
5.24E+12	 585	
5.24E+12	 586	
5.24E+12	 587	
5.24E+12	 588	
5.24E+12	 589	
5.24E+12	 590	
5.24E+12	 591	
5.24E+12	 592	
5.24E+12	 593	
5.24E+12	 594	
5.24E+12	 595	
5.24E+12	 596	
5.24E+12	 597	
5.24E+12	 598	
5.24E+12	 599	
5.24E+12	 600	
5.24E+12	 601	
5.24E+12	 602	
5.24E+12	 603	
5.24E+12	 604	
5.24E+12	 605	
5.24E+12	 606	
5.26E+12	 607	
5.26E+12	 608	
5.26E+12	 609	
5.26E+12	 610	

5.26E+12	 611	
5.26E+12	 612	
5.26E+12	 613	
5.27E+12	 614	
5.27E+12	 615	
5.26E+12	 616	
5.26E+12	 617	
5.26E+12	 618	
5.26E+12	 619	
5.26E+12	 620	
5.27E+12	 621	
5.27E+12	 622	
5.27E+12	 623	
5.27E+12	 624	
5.27E+12	 625	
5.27E+12	 626	
5.27E+12	 627	
5.27E+12	 628	
5.27E+12	 629	
5.27E+12	 630	
5.27E+12	 631	
5.27E+12	 632	
5.27E+12	 633	
5.27E+12	 634	
5.27E+12	 635	
5.27E+12	 636	
5.27E+12	 637	
5.27E+12	 638	
5.27E+12	 639	
5.27E+12	 640	
5.27E+12	 641	
5.27E+12	 642	
5.27E+12	 643	
5.27E+12	 644	
5.27E+12	 645	
5.27E+12	 646	
5.27E+12	 647	
5.27E+12	 648	
5.27E+12	 649	
5.27E+12	 650	
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5.27E+12	 651	
5.27E+12	 652	
5.27E+12	 653	
5.27E+12	 654	
5.27E+12	 655	
5.27E+12	 656	
5.27E+12	 657	
5.27E+12	 658	
5.27E+12	 659	
5.27E+12	 660	
5.27E+12	 661	
5.27E+12	 662	
5.27E+12	 663	
5.27E+12	 664	
5.27E+12	 665	
5.27E+12	 666	
5.27E+12	 667	
5.27E+12	 668	
5.55E+12	 669	
5.55E+12	 670	
5.55E+12	 671	
5.55E+12	 672	
5.55E+12	 673	
5.55E+12	 674	
5.55E+12	 675	
5.55E+12	 676	
5.55E+12	 677	
5.55E+12	 678	
5.55E+12	 679	
5.55E+12	 680	
5.55E+12	 681	
5.55E+12	 682	
5.55E+12	 683	
5.55E+12	 684	
5.55E+12	 685	
5.55E+12	 686	
5.55E+12	 687	
5.55E+12	 688	
5.55E+12	 689	
5.55E+12	 690	

5.55E+12	 691	
5.55E+12	 692	
5.55E+12	 693	
5.55E+12	 694	
5.55E+12	 695	
5.55E+12	 696	
5.55E+12	 697	
5.55E+12	 698	
5.55E+12	 699	
5.55E+12	 700	
5.55E+12	 701	
5.55E+12	 702	
5.55E+12	 703	
5.55E+12	 704	
5.55E+12	 705	
5.56E+12	 706	
5.56E+12	 707	
5.56E+12	 708	
5.56E+12	 709	
5.56E+12	 710	
5.56E+12	 711	
5.56E+12	 712	
5.56E+12	 713	
5.56E+12	 714	
5.56E+12	 715	
5.56E+12	 716	
5.56E+12	 717	
5.56E+12	 718	
5.56E+12	 719	
5.56E+12	 720	
5.56E+12	 721	
5.56E+12	 722	
5.56E+12	 723	
5.56E+12	 724	
5.56E+12	 725	
5.56E+12	 726	
5.56E+12	 727	
5.56E+12	 728	
5.56E+12	 729	
5.56E+12	 730	
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5.56E+12	 731	
5.56E+12	 732	
5.56E+12	 733	
5.56E+12	 734	
5.56E+12	 735	
5.56E+12	 736	
5.56E+12	 737	
5.56E+12	 738	
5.56E+12	 739	
5.56E+12	 740	
5.56E+12	 741	
5.56E+12	 742	
5.56E+12	 743	
5.56E+12	 744	
5.56E+12	 745	
5.56E+12	 746	
5.56E+12	 747	
5.56E+12	 748	
5.56E+12	 749	
5.56E+12	 750	
5.56E+12	 751	
5.56E+12	 752	
5.56E+12	 753	
5.56E+12	 754	
5.56E+12	 755	
5.56E+12	 756	
5.56E+12	 757	
5.56E+12	 758	
5.56E+12	 759	
5.56E+12	 760	
5.56E+12	 761	
5.56E+12	 762	
5.56E+12	 763	
5.56E+12	 764	
5.56E+12	 765	
5.56E+12	 766	
5.56E+12	 767	
5.56E+12	 768	
5.56E+12	 769	
5.56E+12	 770	

5.56E+12	 771	
5.56E+12	 772	
5.56E+12	 773	
5.56E+12	 774	
5.56E+12	 775	
5.56E+12	 776	
5.56E+12	 777	
5.56E+12	 778	
5.56E+12	 779	
5.56E+12	 780	
5.56E+12	 781	
5.56E+12	 782	
5.56E+12	 783	
5.56E+12	 784	
5.56E+12	 785	
5.56E+12	 786	
5.56E+12	 787	
5.56E+12	 788	
5.56E+12	 789	
5.56E+12	 790	
5.56E+12	 791	
5.56E+12	 792	
5.56E+12	 793	
5.56E+12	 794	
5.56E+12	 795	
5.56E+12	 796	
5.56E+12	 797	
5.56E+12	 798	
5.56E+12	 799	
5.56E+12	 800	
5.56E+12	 801	
5.56E+12	 802	
5.56E+12	 803	
5.56E+12	 804	
5.56E+12	 805	
5.56E+12	 806	
5.56E+12	 807	
5.56E+12	 808	
5.56E+12	 809	
5.56E+12	 810	
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5.56E+12	 811	
5.56E+12	 812	
5.56E+12	 813	
5.56E+12	 814	
5.56E+12	 815	
5.56E+12	 816	
5.56E+12	 817	
5.56E+12	 818	
5.56E+12	 819	
5.56E+12	 820	
5.56E+12	 821	
5.56E+12	 822	
5.56E+12	 823	
5.56E+12	 824	
5.56E+12	 825	
5.56E+12	 826	
5.56E+12	 827	
5.56E+12	 828	
5.56E+12	 829	
5.56E+12	 830	
5.56E+12	 831	
5.56E+12	 832	
5.56E+12	 833	
5.56E+12	 834	
5.56E+12	 835	
5.56E+12	 836	
5.56E+12	 837	
5.56E+12	 838	
5.56E+12	 839	
5.56E+12	 840	
5.56E+12	 841	
5.56E+12	 842	
5.56E+12	 843	
5.56E+12	 844	
5.56E+12	 845	
5.56E+12	 846	
5.56E+12	 847	
5.56E+12	 848	
5.56E+12	 849	
5.56E+12	 850	

5.56E+12	 851	
5.56E+12	 852	
5.56E+12	 853	
5.56E+12	 854	
5.56E+12	 855	
5.56E+12	 856	
5.56E+12	 857	
5.56E+12	 858	
5.56E+12	 859	
5.56E+12	 860	
5.56E+12	 861	
5.56E+12	 862	
5.56E+12	 863	
5.56E+12	 864	
5.56E+12	 865	
5.56E+12	 866	
5.56E+12	 867	
5.56E+12	 868	
5.56E+12	 869	
5.56E+12	 870	
5.56E+12	 871	
5.56E+12	 872	
5.56E+12	 873	
5.56E+12	 874	
5.56E+12	 875	
5.56E+12	 876	
5.56E+12	 877	
5.56E+12	 878	
5.56E+12	 879	
5.56E+12	 880	
5.56E+12	 881	
5.56E+12	 882	
5.56E+12	 883	
5.56E+12	 884	
5.56E+12	 885	
5.56E+12	 886	
5.56E+12	 887	
5.56E+12	 888	
5.56E+12	 889	
5.56E+12	 890	
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5.56E+12	 891	
5.56E+12	 892	
5.56E+12	 893	
5.56E+12	 894	
5.56E+12	 895	
5.56E+12	 896	
5.56E+12	 897	
5.56E+12	 898	
5.56E+12	 899	
5.56E+12	 900	
5.56E+12	 901	
5.56E+12	 902	
5.56E+12	 903	
5.56E+12	 904	
5.56E+12	 905	
5.56E+12	 906	
5.56E+12	 907	
5.56E+12	 908	
5.56E+12	 909	
5.56E+12	 910	
5.56E+12	 911	
5.56E+12	 912	
5.56E+12	 913	
5.56E+12	 914	
5.56E+12	 915	
5.56E+12	 916	
5.56E+12	 917	
5.56E+12	 918	
5.56E+12	 919	
5.56E+12	 920	
5.56E+12	 921	
5.56E+12	 922	
5.56E+12	 923	
5.56E+12	 924	
5.56E+12	 925	
5.56E+12	 926	
5.56E+12	 927	
5.56E+12	 928	
5.56E+12	 929	
5.56E+12	 930	

5.56E+12	 931	
5.56E+12	 932	
5.56E+12	 933	
5.56E+12	 934	
5.56E+12	 935	
5.56E+12	 936	
5.56E+12	 937	
5.56E+12	 938	
5.56E+12	 939	
5.56E+12	 940	
5.56E+12	 941	
5.56E+12	 942	
5.56E+12	 943	
5.56E+12	 944	
5.56E+12	 945	
5.56E+12	 946	
5.56E+12	 947	
5.56E+12	 948	
5.56E+12	 949	
5.56E+12	 950	
5.56E+12	 951	
5.56E+12	 952	
5.56E+12	 953	
5.56E+12	 954	
5.56E+12	 955	
5.56E+12	 956	
5.56E+12	 957	
5.56E+12	 958	
5.56E+12	 959	
5.56E+12	 960	
5.56E+12	 961	
5.56E+12	 962	
5.56E+12	 963	
5.56E+12	 964	
5.56E+12	 965	
5.56E+12	 966	
5.56E+12	 967	
5.56E+12	 968	
5.56E+12	 969	
5.56E+12	 970	
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5.56E+12	 971	
5.56E+12	 972	
5.56E+12	 973	
5.56E+12	 974	
5.56E+12	 975	
5.56E+12	 976	
5.56E+12	 977	
5.56E+12	 978	
5.56E+12	 979	
5.56E+12	 980	
5.56E+12	 981	
5.56E+12	 982	
5.56E+12	 983	
5.56E+12	 984	
5.56E+12	 985	
5.56E+12	 986	
5.56E+12	 987	
5.56E+12	 988	
5.56E+12	 989	
5.56E+12	 990	
5.56E+12	 991	
5.56E+12	 992	
5.56E+12	 993	
5.56E+12	 994	
5.56E+12	 995	
5.56E+12	 996	
5.56E+12	 997	
5.56E+12	 998	
5.56E+12	 999	
5.56E+12	 1,000	
5.56E+12	 1,001	
5.56E+12	 1,002	
5.56E+12	 1,003	
5.56E+12	 1,004	
5.56E+12	 1,005	
5.56E+12	 1,006	
5.56E+12	 1,007	
5.56E+12	 1,008	
5.56E+12	 1,009	
5.56E+12	 1,010	

5.56E+12	 1,011	
5.56E+12	 1,012	
5.56E+12	 1,013	
5.56E+12	 1,014	
5.56E+12	 1,015	
5.56E+12	 1,016	
5.56E+12	 1,017	
5.56E+12	 1,018	
5.56E+12	 1,019	
5.56E+12	 1,020	
5.56E+12	 1,021	
5.56E+12	 1,022	
5.56E+12	 1,023	
5.56E+12	 1,024	
5.56E+12	 1,025	
5.56E+12	 1,026	
5.56E+12	 1,027	
5.56E+12	 1,028	
5.57E+12	 1,029	
5.57E+12	 1,030	
5.58E+12	 1,031	
5.61E+12	 1,032	
5.61E+12	 1,033	
5.61E+12	 1,034	
5.61E+12	 1,035	
5.63E+12	 1,036	
5.64E+12	 1,037	
5.64E+12	 1,038	
5.64E+12	 1,039	
5.64E+12	 1,040	
5.64E+12	 1,041	
5.64E+12	 1,042	
5.64E+12	 1,043	
5.64E+12	 1,044	
5.64E+12	 1,045	
5.64E+12	 1,046	
5.64E+12	 1,047	
5.64E+12	 1,048	
5.64E+12	 1,049	
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Appendix III – SAM-Risk Settings 

This appendix contains details of the exact settings used to run the Dalmarnock 

test problem using the ADAPT software developed as part of this thesis. The 

precise function of all settings is not described in this thesis, but relevant 

documentation will be cited to allow interested parties to investigate in-depth. 

ADAPT Settings 

This section contains the settings used within the ADAPT application, some of 

which, but not all, are mirrored in the SAM-UMC settings files. 

In order to easily present these settings without needing to undertake long and 

detailed descriptions of where different settings reside, this section is presented 

as a series of screenshots of the application running with the correct settings in 

place. 
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Settings Files 

The listing of files necessary to allow for the proper functioning of SAM-UMC is 

as follows: 

• CSO_Boundary.csv 

• CSO_Costs.csv 

• CSO_LoS.csv 

• FloodingPoint_Boundary.csv 

• FloodingPoint_Costs.csv 

• FloodingPoint_LoS.csv 

• InitialSolutions.csv 

• Orifice_Costs.csv 

• Orifices.csv 

• Outfall_Costs.csv 

• Outfalls_Boundary.csv 

• PipeGroup_Costs.csv 

• StorageNode_Costs.csv 

• StorageNodes.csv 

• Pipes.csv 

• Sam_UMCControl.csv 

Although it should be noted that not all files are used in the Dalmarnock 

optimisation performed for this thesis, it is necessary that all files are present and 

valid. Therefore, all files are identified and their contents during a Dalmarnock 

test run shown. 
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CSO_Boundary.csv 

The CSO boundary file identifies combined drainage system overflow 

boundaries, and is unused for the Dalmarnock optimisation performed for this 

thesis. 

US Node ID Link Suffix Cost Group 

CSO_Costs.csv 

The CSO costs file identifies costs associated with combined drainage system 

overflows. It is unused for the Dalmarnock optimisation performed for this thesis. 

Cost Group 
Mobilisation cost of new 

spills (£) 

Cost per unit additional 

volume (£/m³) 

1 1000 1000 

CSO_LoS.csv 

This file identifies a level of service that should be used against combined 

drainage system overflows when the level of service constraint is in place on the 

NSGA-II algorithm. This file is unused for the Dalmarnock optimisation performed 

for this thesis. 

US Node ID Link Suffix 
Spill return period 

threshold (years) 

FloodingPoint_Boundary.csv 

This file identifies the flooding points boundaries, and is unused for the 

Dalmarnock optimisation performed for this thesis. 

Node ID Cost Group 
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FloodingPoint_Costs.csv 

The flooding point costs file identifies the costs associated with various flooding 

points. This file is unused in the Dalmarnock optimisation performed for this 

thesis. 

Cost Group 
Mobilisation cost of new 

flooding (£) 

Cost per unit additional 

volume (£/m³) 

1 1000 1000 

FloodingPoint_LoS.csv 

The flooding point LoS file identifies the level of service required of given flooding 

points when the level of service restraint is being utilised during the optimisation. 

During the optimisation performed for this thesis, this restraint was not utilised. 

Node ID Flood return period threshold (years) 

InitialSolutions.csv 

This file is a utility file, which can be left empty (and is for the optimisation 

performed in this thesis). It allows the specification of certain initial solutions to 

include in the optimisation. This allows for pre-known promising solutions to be 

incorporated into the optimisation algorithms starting state. 

This file is too large in terms of numbers of headers to easily incorporate into this 

document (and it contains no data anyway). Essentially it is of the form: 

Pipe group 1 width (mm) Pipe group 2 width (mm) 

But the real file has a column for every pipe group specified in Pipes.csv. 



Appendices – Appendix III – SAM-Risk settings 

  Page: 276 

Orifice_Costs.csv 

This file contains the costs associated with various orifices within the model (i.e. 

how much it might cost to modify them. It is unused in the Dalmarnock 

optimisation. 

Cost Group Cost of altering orifice (£) 

1 1000 

Orifices.csv 

The orifices file specifies all orifices that are within the model and to be used 

within an optimisation run. It is unused in the Dalmarnock optimisation. 

US Node ID Link Suffix Cost Group 

Outfall_Costs.csv 

This file specifies the costs associated with various outfalls that may be within the 

model that is being run. 

Cost Group 
Mobilisation cost of 

volume increase (£) 

Cost per unit additional 

volume (£/m³) 

1 10000 1000 

Outfalls_Boundary.csv 

This file identifies the outfalls boundaries and is unused within the Dalmarnock 

optimisation performed for this thesis.  

Node ID Cost Group 
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PipeGroup_Costs.csv 

This file identifies the costs associated with specific pipe groups to which the 

different pipe groups specified in pipes.csv can belong. 

Cost	Group	 Base	cost	of	altering	pipe	
group	(£)	

Intervention	cost	per	unit	
volume	(£/m³)	

1	 1000	 1000	

StorageNode_Costs.csv 

The storage node costs file identifies the costs associated with altering storage 

nodes during the optimisation run. 

Cost	Group	 Base	cost	of	altering	node	
(£)	

Intervention	cost	per	unit	
plan	area	(£/m²)	

1	 10000	 500	

StorageNodes.csv 

This file identifies the storage nodes present in the model that can be altered 

during the optimisation process. 

Node	ID	 Cost	Group	

new	mh11	 1	
newmh10	 1	
newmh12	 1	
newmh7	 1	
newmh8	 1	
newmh9	 1	

NS59644401	 1	
NS59645401	 1	
NS59645407	 1	
NS59645507	 1	
NS59645508	 1	
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Node	ID	 Cost	Group	

NS59645510	 1	
NS59645512	 1	
NS59646501	 1	
NS59646511	 1	
NS59647505	 1	
NS59647556	 1	
NS59648404	 1	
NS59648407	 1	
NS59648410	 1	
NS59649302	 1	
NS60632801	 1	
NS60632802	 1	
NS60632804	 1	
NS60632901	 1	
NS60632902	 1	
NS60633401	 1	
NS60633501	 1	
NS60633502	 1	
NS60633601	 1	
NS60633602	 1	
NS60633705	 1	
NS60633708	 1	
NS60633801	 1	
NS60633802	 1	
NS60633803	 1	
NS60633806	 1	
NS60633901	 1	
NS60633902	 1	
NS60633905	 1	
NS60634201	 1	
NS60634301	 1	
NS60634302	 1	
NS60634303	 1	
NS60634401	 1	
NS60634403	 1	
NS60634404	 1	
NS60634405	 1	
NS60634409	 1	
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Node	ID	 Cost	Group	

NS60634701	 1	
NS60634702	 1	
NS60634710	 1	
NS60634909	 1	
NS60635203	 1	
NS60635302	 1	
NS60635701	 1	
NS60635812	 1	
NS60635813	 1	
NS60635901	 1	
NS60635911	 1	
NS60635922	 1	
NS60635935	 1	
NS60635936	 1	
NS60635945	 1	
NS60636103	 1	
NS60636105	 1	
NS60636201	 1	
NS60636203	 1	
NS60636301	 1	
NS60636302	 1	
NS60636303	 1	
NS60636305	 1	
NS60636401	 1	
NS60636403	 1	
NS60636404	 1	
NS60636408	 1	
NS60636409	 1	
NS60636501	 1	
NS60636503	 1	
NS60636506	 1	
NS60636604	 1	
NS60636605	 1	
NS60636701	 1	
NS60636705	 1	
NS60636707	 1	
NS60636801	 1	
NS60636812	 1	
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Node	ID	 Cost	Group	

NS60636815	 1	
NS60636901	 1	
NS60636902	 1	
NS60636909	 1	
NS60636911	 1	
NS60636916	 1	
NS60637001	 1	
NS60637005	 1	
NS60637101	 1	
NS60637102	 1	
NS60637103	 1	
NS60637104	 1	
NS60637106	 1	
NS60637108	 1	
NS60637110	 1	
NS60637201	 1	
NS60637202	 1	
NS60637207	 1	
NS60637301	 1	
NS60637501	 1	
NS60637506	 1	
NS60637705	 1	
NS60637907	 1	
NS60637916	 1	
NS60637920	 1	
NS60638002	 1	
NS60638101	 1	
NS60638102	 1	
NS60638107	 1	
NS60638204	 1	
NS60638206	 1	
NS60638208	 1	
NS60638209	 1	
NS60638301	 1	
NS60638303	 1	
NS60638406	 1	
NS60638501	 1	
NS60638504	 1	
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Node	ID	 Cost	Group	

NS60638507	 1	
NS60638601	 1	
NS60638610	 1	
NS60638715	 1	
NS60639101	 1	
NS60639105	 1	
NS60639107	 1	
NS60639203	 1	
NS60639301	 1	
NS60639603	 1	
NS60639606	 1	
NS60639704	 1	
NS60641102	 1	
NS60641201	 1	
NS60641202	 1	
NS60641203	 1	
NS60641208	 1	
NS60641305	 1	
NS60641309	 1	
NS60641310	 1	
NS60642003	 1	
NS60642004	 1	
NS60642005	 1	
NS60642006	 1	
NS60642009	 1	
NS60642010	 1	
NS60642011	 1	
NS60642103	 1	
NS60643001	 1	
NS60643003	 1	
NS60643007	 1	
NS60645002	 1	
NS60645005	 1	
NS60645009	 1	
NS60646004	 1	
NS61620299	 1	
NS61620901	 1	
NS61630003	 1	
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Node	ID	 Cost	Group	

NS61630102	 1	
NS61630105	 1	
NS61630202	 1	
NS61631001	 1	
NS61631002	 1	
NS61631102	 1	
NS61631104	 1	
NS61631105	 1	
NS61631106	 1	
NS61632101	 1	
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SAM-UMCControl.csv 

This control file is stored in comma-separated-value format (represented here as 

a table for easier reading). It consists of settings to enable SAM-UMC to run 

correctly. Only the “BATCHDATA” settings are used during the optimisation runs, 

as a correct “RUN” section is generated for each iteration. 

Further information on what individual settings are for, how they can be set, and 

what additional settings are available, can be obtained by reading the SAM-UMC 

documentation (Wills, 2013). 

*BATCHDATA START   

IWCS MasterDB F:\adapt-run\InfoworksCS\InfoWorks.iwm 

IWCS Catchment Dalmarnock_cut_lost  

IWCS Network ICM_BASE_008  

IWCS Rain Rainfall Group 

Rainfall 

Event 

IWCS Waste WWG WWG_3 

RFSM DBServer localhost  

RFSM Dbname WSA_SAM  

OPTION ResultsFolder F:\Results  

OPTION RunRFSM TRUE  

OPTION SaveDB TRUE  

OPTION SaveCsv TRUE  

*BATCHDATA END   

*RUN START No Changes  

IWCS Rain Rainfall Group hallo 

IWCS Run Duration 600 

IWCS Run TimeStep 750 

IWCS Rainfile F:\adapt-run\Rainfall  

*RUN END    
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Pipes.csv 

The pipes file defines pipe groups comprised of pipes within the model. Each pipe 

group will be modified as one unified entity. I.e. if pipe group 1 is comprised of 

pipes A, B and C, then if A is increase to the next size up, B and C will be similarly 

increased. This allows for an Engineer to identify pipes that form one unified entity 

although identified as individual pipes within the model. For the Dalmarnock 

optimisation, each pipe that is being optimised is identified as a unique pipe 

group, therefore each pipe is treated individually within the optimisation. 

US Node ID Link Suffix Pipe Group Cost Group 

new mh11 1 1 1 

newmh10 1 2 1 

newmh12 1 3 1 

newmh7 1 4 1 

newmh8 1 5 1 

newmh9 1 6 1 

NS59645401 1 7 1 

NS59645407 1 8 1 

NS59645507 1 9 1 

NS59645508 1 10 1 

NS59645510 1 11 1 

NS59645512 1 12 1 

NS59646501 1 13 1 

NS59646511 1 14 1 

NS59647505 1 15 1 

NS59647556 1 16 1 

NS59648404 1 17 1 

NS59648407 1 18 1 

NS59648410 1 19 1 

NS59649302 1 20 1 

NS60632801 1 21 1 

NS60632802 1 22 1 

NS60632804 1 23 1 
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US Node ID Link Suffix Pipe Group Cost Group 

NS60632901 1 24 1 

NS60632902 1 25 1 

NS60633401 1 26 1 

NS60633501 1 27 1 

NS60633502 1 28 1 

NS60633601 1 29 1 

NS60633602 1 30 1 

NS60633705 1 31 1 

NS60633708 1 32 1 

NS60633801 1 33 1 

NS60633802 1 34 1 

NS60633802 2 35 1 

NS60633803 1 36 1 

NS60633806 1 37 1 

NS60633901 1 38 1 

NS60633902 1 39 1 

NS60633905 1 40 1 

NS60634201 1 41 1 

NS60634301 1 42 1 

NS60634302 1 43 1 

NS60634303 1 44 1 

NS60634401 1 45 1 

NS60634403 1 46 1 

NS60634404 1 47 1 

NS60634405 1 48 1 

NS60634409 1 49 1 

NS60634701 1 50 1 

NS60634702 1 51 1 

NS60634710 1 52 1 

NS60634909 1 53 1 

NS60635203 1 54 1 

NS60635302 1 55 1 

NS60635701 1 56 1 

NS60635812 1 57 1 

NS60635813 1 58 1 

NS60635901 1 59 1 

NS60635911 1 60 1 

NS60635922 1 61 1 
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US Node ID Link Suffix Pipe Group Cost Group 

NS60635935 1 62 1 

NS60635936 1 63 1 

NS60635945 1 64 1 

NS60636103 1 65 1 

NS60636105 1 66 1 

NS60636201 1 67 1 

NS60636203 1 68 1 

NS60636301 1 69 1 

NS60636302 1 70 1 

NS60636303 1 71 1 

NS60636305 1 72 1 

NS60636401 1 73 1 

NS60636403 1 74 1 

NS60636404 1 75 1 

NS60636408 1 76 1 

NS60636408 2 77 1 

NS60636409 1 78 1 

NS60636501 1 79 1 

NS60636503 1 80 1 

NS60636506 1 81 1 

NS60636604 1 82 1 

NS60636605 1 83 1 

NS60636701 1 84 1 

NS60636705 1 85 1 

NS60636707 1 86 1 

NS60636801 1 87 1 

NS60636812 1 88 1 

NS60636815 1 89 1 

NS60636901 1 90 1 

NS60636902 1 91 1 

NS60636909 1 92 1 

NS60636911 2 93 1 

NS60636916 1 94 1 

NS60636916 2 95 1 

NS60637001 1 96 1 

NS60637005 1 97 1 

NS60637101 1 98 1 

NS60637102 1 99 1 
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US Node ID Link Suffix Pipe Group Cost Group 

NS60637103 1 100 1 

NS60637104 1 101 1 

NS60637106 1 102 1 

NS60637108 1 103 1 

NS60637110 1 104 1 

NS60637201 1 105 1 

NS60637202 1 106 1 

NS60637207 1 107 1 

NS60637301 1 108 1 

NS60637501 1 109 1 

NS60637506 1 110 1 

NS60637705 1 111 1 

NS60637907 1 112 1 

NS60637916 1 113 1 

NS60637920 1 114 1 

NS60638002 1 115 1 

NS60638101 1 116 1 

NS60638102 1 117 1 

NS60638107 1 118 1 

NS60638204 1 119 1 

NS60638206 1 120 1 

NS60638208 1 121 1 

NS60638209 1 122 1 

NS60638209 2 123 1 

NS60638301 1 124 1 

NS60638303 1 125 1 

NS60638406 1 126 1 

NS60638501 1 127 1 

NS60638504 1 128 1 

NS60638507 1 129 1 

NS60638601 1 130 1 

NS60638610 1 131 1 

NS60638715 1 132 1 

NS60639101 1 133 1 

NS60639105 1 134 1 

NS60639107 1 135 1 

NS60639203 1 136 1 

NS60639301 1 137 1 
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US Node ID Link Suffix Pipe Group Cost Group 

NS60639603 1 138 1 

NS60639606 1 139 1 

NS60639704 1 140 1 

NS60641102 1 141 1 

NS60641201 1 142 1 

NS60641202 1 143 1 

NS60641203 1 144 1 

NS60641208 1 145 1 

NS60641305 1 146 1 

NS60641309 1 147 1 

NS60641310 1 148 1 

NS60642003 1 149 1 

NS60642004 1 150 1 

NS60642005 1 151 1 

NS60642006 1 152 1 

NS60642009 1 153 1 

NS60642010 1 154 1 

NS60642011 1 155 1 

NS60642103 1 156 1 

NS60643001 1 157 1 

NS60643003 1 158 1 

NS60643007 1 159 1 

NS60645002 1 160 1 

NS60645005 1 161 1 

NS60645009 1 162 1 

NS60646004 1 163 1 

NS61620901 1 164 1 

NS61630003 1 165 1 

NS61630102 1 166 1 

NS61630105 1 167 1 

NS61630202 1 168 1 

NS61631001 1 169 1 

NS61631002 1 170 1 

NS61631102 1 171 1 

NS61631104 1 172 1 

NS61631105 1 173 1 

NS61631106 1 174 1 

NS61632101 1 175 1 
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Appendix IV – Decision Variable Details 

This appendix contains information on the initial value of the decision variables used in our runs of the Dalmarnock system. 

Initial Node Values 

Node	ID	 Node	
Type	

System	
Type	 x	(m)	 y	(m)	

Ground	
Level	
(m	AD)	

Flood	
Level	
(m	
AD)	

Chamber	
Floor	

Level	(m	
AD)	

Chamber	
Roof	

Level	(m	
AD)	

Chamber	
Plan	
Area	
(m2)	

Shaft	
Plan	
Area	
(m2)	

new	mh11	 Manhole	 combined	 261091	 662498.2	 7.12	 7.12	 1.027	 2.627	 4.4	 4.4	

newmh10	 Manhole	 combined	 261095.6	 662604.5	 7.28	 7.28	 1.493	 3.093	 4.4	 4.4	

newmh12	 Manhole	 combined	 261089.1	 662395.5	 7.29	 7.29	 0.578	 2.178	 4.4	 4.4	

newmh7	 Manhole	 combined	 261126.1	 662907.8	 8.77	 8.77	 3.156	 4.756	 4.4	 4.4	

newmh8	 Manhole	 combined	 261101.2	 662812.6	 8.44	 8.44	 3.042	 4.642	 4.4	 4.4	

newmh9	 Manhole	 combined	 261102.1	 662715.5	 7.34	 7.34	 2.931	 4.531	 4.4	 4.4	

NS59644401	 Outfall	 storm	 259504	 664449.3	 3.37	 3.37	 1.79	 3.2	 3.7	 3.7	

NS59645401	 Manhole	 storm	 259516.8	 664475.8	 6.93	 6.93	 2.33	 4.18	 15.8	 15.8	

NS59645407	 Manhole	 storm	 259510	 664455	 6.32	 6.32	 2.33	 4.18	 15.8	 15.8	

NS59645507	 Manhole	 storm	 259534.7	 664509.1	 7.3	 7.3	 2.34	 4.16	 15.6	 15.6	

NS59645508	 Manhole	 storm	 259578.4	 664590.7	 5.71	 5.71	 2.35	 4.18	 15.8	 15.8	

NS59645510	 Manhole	 storm	 259578.3	 664588.9	 5.71	 5.71	 2.35	 4.19	 15.8	 15.8	

NS59645512	 Manhole	 storm	 259588	 664595	 5.63	 5.63	 2.69	 4.43	 10	 10	

NS59646501	 Manhole	 storm	 259606	 664590	 5.74	 5.74	 2.84	 4.66	 10	 10	
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NS59646511	 Manhole	 storm	 259666	 664562	 6	 6	 3.41	 5.26	 10	 10	

NS59647505	 Manhole	 storm	 259742.4	 664525.4	 6.61	 6.61	 3.505	 5.355	 5.4	 5.4	

NS59647556	 Manhole	 storm	 259762	 664508	 7.05	 7.05	 3.59	 5.41	 5.2	 5.2	

NS59648404	 Manhole	 storm	 259837.5	 664434.5	 7.7	 7.7	 3.974	 5.794	 5.2	 5.2	

NS59648407	 Manhole	 storm	 259864.8	 664427.4	 8.25	 8.25	 4.05	 5.9	 5.4	 5.4	

NS59648410	 Manhole	 storm	 259823	 664439	 7.51	 7.51	 3.91	 5.73	 5.2	 5.2	

NS59649302	 Manhole	 storm	 259942.7	 664380.7	 8.61	 8.61	 4.41	 6.26	 5.4	 5.4	

NS60632801	 Manhole	 combined	 260290	 663841	 9.29	 9.29	 4.653	 6.153	 4	 4	

NS60632802	 Manhole	 combined	 260277	 663886	 8.97	 8.97	 4.688	 6.198	 4	 4	

NS60632804	 Manhole	 combined	 260297	 663813	 9.57	 9.57	 4.632	 6.232	 4.4	 4.4	

NS60632901	 Manhole	 combined	 260259	 663931	 9.25	 9.25	 4.65	 6.21	 4	 4	

NS60632902	 Manhole	 combined	 260254	 663977	 9.44	 9.44	 4.65	 6.16	 4	 4	

NS60633401	 Manhole	 combined	 260396	 663482	 9.63	 9.63	 4.376	 5.976	 4.4	 4.4	

NS60633501	 Manhole	 combined	 260381	 663533	 9.38	 9.38	 4.415	 6.015	 4.4	 4.4	

NS60633502	 Manhole	 combined	 260371	 663576	 9.5	 9.5	 4.42	 6.02	 4.4	 4.4	

NS60633601	 Manhole	 combined	 260357	 663616	 9.52	 9.52	 4.429	 6.039	 4.4	 4.4	

NS60633602	 Manhole	 combined	 260338	 663661	 9.48	 9.48	 4.515	 6.115	 4.4	 4.4	

NS60633705	 Manhole	 combined	 260302	 663795	 9.49	 9.49	 4.618	 6.218	 4.4	 4.4	

NS60633708	 Manhole	 combined	 260316	 663761	 9.48	 9.48	 4.59	 6.2	 4.4	 4.4	

NS60633801	 Manhole	 combined	 260385	 663817	 8.98	 8.98	 5.47	 6.25	 1.7	 1.7	

NS60633802	 Manhole	 combined	 260380	 663829	 9	 9	 4.75	 6.293	 3	 3	

NS60633803	 Manhole	 combined	 260362	 663872	 9.07	 9.07	 5.53	 6.34	 1.7	 1.7	

NS60633806	 Manhole	 combined	 260383	 663822	 9.04	 9.04	 5.475	 6.285	 1.7	 1.7	

NS60633901	 Manhole	 combined	 260350	 663903	 9.12	 9.12	 5.87	 6.68	 1.7	 1.7	

NS60633902	 Manhole	 combined	 260341	 663935	 9.19	 9.19	 6	 6.78	 1.7	 1.7	
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NS60633905	 Manhole	 combined	 260398	 663942	 9.29	 9.29	 6.5	 6.95	 1.2	 1.2	

NS60634201	 Manhole	 combined	 260483	 663292	 7.85	 7.85	 4.29	 5.89	 4.4	 4.4	

NS60634301	 Manhole	 combined	 260440	 663352	 8.8	 8.8	 4.337	 5.957	 4.4	 4.4	

NS60634302	 Manhole	 combined	 260461	 663320	 8.24	 8.24	 5.23	 5.68	 1.2	 1.2	

NS60634303	 Manhole	 combined	 260460	 663314	 8.15	 8.15	 4.31	 5.91	 4.4	 4.4	

NS60634401	 Manhole	 combined	 260463	 663481	 8.56	 8.56	 6.534	 6.909	 1	 1	

NS60634403	 Manhole	 combined	 260442	 663428	 8.74	 8.74	 5.8	 6.25	 1.2	 1.2	

NS60634404	 Manhole	 combined	 260458	 663432	 8.72	 8.72	 6.143	 6.588	 1	 1	

NS60634405	 Manhole	 combined	 260470	 663432	 8.81	 8.81	 6.71	 7.01	 1	 1	

NS60634409	 Manhole	 combined	 260418	 663409	 9.75	 9.75	 4.341	 5.941	 4.4	 4.4	

NS60634701	 Manhole	 combined	 260406	 663757	 8.88	 8.88	 4.725	 5.845	 1.5	 1.5	

NS60634702	 Manhole	 combined	 260403	 663773	 8.92	 8.92	 5.437	 6.112	 1.6	 1.6	

NS60634710	 Manhole	 combined	 260475	 663752	 8.97	 8.97	 4.812	 5.412	 1.5	 1.5	

NS60634909	 Manhole	 storm	 260490.5	 663985.9	 9.69	 9.69	 6.661	 8.661	 8.4	 8.4	

NS60635203	 Manhole	 combined	 260559	 663290	 8.77	 8.77	 4.211	 6.045	 4.4	 4.4	

NS60635302	 Manhole	 combined	 260559	 663315	 8.63	 8.63	 6.58	 6.88	 1	 1	

NS60635701	 Manhole	 combined	 260525	 663748	 9.21	 9.21	 4.854	 5.454	 1.5	 1.5	

NS60635812	 Manhole	 combined	 260563	 663860	 9.7	 9.7	 8.1	 8.4	 1	 1	

NS60635813	 Manhole	 combined	 260510.8	 663883.8	 9.71	 9.71	 4.94	 6.14	 3	 3	

NS60635901	 Manhole	 foul	 260551	 663906	 9.59	 9.59	 6.77	 6.92	 1	 1	

NS60635911	 Manhole	 storm	 260571	 663965	 9.43	 9.43	 7.9	 8.125	 1	 1	

NS60635922	 Manhole	 combined	 260554	 663902	 9.73	 9.73	 5.19	 6.9	 3	 3	

NS60635935	 Manhole	 storm	 260568.5	 663983.2	 9.67	 9.67	 7.08	 8.45	 15.4	 15.4	

NS60635936	 Manhole	 storm	 260577.3	 663973.9	 9.45	 9.45	 7.11	 8.48	 15.4	 15.4	

NS60635945	 Manhole	 storm	 260522	 663985	 9.77	 9.77	 6.967	 8.27	 8.4	 8.4	
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NS60636103	 Manhole	 combined	 260660	 663188	 9	 9	 3.847	 6.127	 4.4	 4.4	

NS60636105	 Manhole	 combined	 260666	 663188	 8.88	 8.88	 3.84	 5.44	 4.4	 4.4	

NS60636201	 Manhole	 combined	 260656	 663263	 9.24	 9.24	 4.015	 5.615	 4.4	 4.4	

NS60636203	 Manhole	 combined	 260640	 663286	 9.22	 9.22	 4.113	 5.738	 4.4	 4.4	

NS60636301	 Manhole	 combined	 260662	 663340	 9.33	 9.33	 6.202	 6.742	 1.3	 1.3	

NS60636302	 Manhole	 combined	 260663	 663371	 9.27	 9.27	 6.286	 6.811	 1.3	 1.3	

NS60636303	 Manhole	 combined	 260661	 663303	 9.39	 9.39	 6.165	 6.71	 1.3	 1.3	

NS60636305	 Manhole	 combined	 260691	 663374	 9.37	 9.37	 6.628	 7.028	 1	 1	

NS60636401	 Manhole	 combined	 260668	 663465	 9.48	 9.48	 6.273	 6.798	 1.3	 1.3	

NS60636403	 Manhole	 combined	 260665	 663412	 9.4	 9.4	 6.377	 6.902	 1.3	 1.3	

NS60636404	 Manhole	 combined	 260643	 663442	 9.76	 9.76	 7.031	 7.256	 1	 1	

NS60636408	 Manhole	 combined	 260667	 663443	 9.47	 9.47	 6.447	 6.822	 1	 1	

NS60636409	 Manhole	 combined	 260669	 663475	 9.45	 9.45	 6.186	 6.711	 1.3	 1.3	

NS60636501	 Manhole	 combined	 260665	 663576	 9.5	 9.5	 7.625	 7.9	 1	 1	

NS60636503	 Manhole	 combined	 260603	 663575	 10.45	 10.45	 8.1	 8.325	 1	 1	

NS60636506	 Manhole	 combined	 260678	 663572	 9.37	 9.37	 5.632	 6.232	 1.5	 1.5	

NS60636604	 Manhole	 combined	 260676	 663693	 10.13	 10.13	 5.24	 5.92	 1.5	 1.5	

NS60636605	 Manhole	 combined	 260674	 663642	 9.72	 9.72	 5.37	 5.97	 1.5	 1.5	

NS60636701	 Manhole	 combined	 260677	 663744	 10.28	 10.28	 4.926	 5.526	 1.5	 1.5	

NS60636705	 Manhole	 combined	 260686	 663796	 10.36	 10.36	 5.5	 5.975	 1.2	 1.2	

NS60636707	 Manhole	 combined	 260681	 663744	 10.38	 10.38	 4.93	 5.599	 1.5	 1.5	

NS60636801	 Manhole	 combined	 260604	 663859	 9.78	 9.78	 7.179	 7.889	 1.4	 1.4	

NS60636812	 Manhole	 combined	 260690	 663852	 10.43	 10.43	 5.53	 5.98	 1.2	 1.2	

NS60636815	 Manhole	 combined	 260604	 663855	 9.79	 9.79	 7.316	 8.006	 1.4	 1.4	

NS60636901	 Manhole	 storm	 260607.7	 663956.9	 9.4	 9.4	 7.28	 8.58	 13	 13	
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NS60636902	 Manhole	 foul	 260610	 663966	 9.22	 9.22	 5.284	 6.65	 3	 3	

NS60636909	 Manhole	 combined	 260600	 663922	 10.1	 10.1	 5.254	 6.484	 3	 3	

NS60636911	 Manhole	 storm	 260681.2	 663957.4	 9.85	 9.85	 7.57	 9.01	 12.3	 12.3	

NS60636916	 Manhole	 storm	 260614	 663936	 9.85	 9.85	 7.35	 8.79	 12.3	 12.3	

NS60637001	 Manhole	 combined	 260789	 663086	 9.67	 9.67	 6.44	 6.89	 1.2	 1.2	

NS60637005	 Manhole	 combined	 260784	 663044	 9.86	 9.86	 6.55	 7	 1.2	 1.2	

NS60637101	 Manhole	 combined	 260780	 663180	 9.25	 9.25	 3.809	 5.409	 4.4	 4.4	

NS60637102	 Manhole	 combined	 260726	 663183	 9.05	 9.05	 3.821	 5.421	 4.4	 4.4	

NS60637103	 Manhole	 combined	 260791	 663112	 9.63	 9.63	 6.39	 6.84	 1.2	 1.2	

NS60637104	 Manhole	 combined	 260794	 663136	 9.53	 9.53	 6.25	 6.78	 1.2	 1.2	

NS60637106	 Manhole	 combined	 260795	 663173	 9.32	 9.32	 5.115	 5.565	 1.2	 1.2	

NS60637108	 Manhole	 combined	 260794	 663131	 9.59	 9.59	 6.34	 6.79	 1.2	 1.2	

NS60637110	 Manhole	 combined	 260796	 663178	 9.35	 9.35	 3.805	 6.375	 4.4	 4.4	

NS60637201	 Manhole	 combined	 260797	 663217	 9.51	 9.51	 6.57	 6.955	 1	 1	

NS60637202	 Manhole	 combined	 260799	 663205	 9.37	 9.37	 6.54	 6.935	 1	 1	

NS60637207	 Manhole	 combined	 260796	 663238	 9.46	 9.46	 6.77	 7.145	 1	 1	

NS60637301	 Manhole	 combined	 260751	 663371	 9.57	 9.57	 6.875	 7.27	 1	 1	

NS60637501	 Manhole	 combined	 260775	 663569	 9.34	 9.34	 5.982	 6.432	 1.2	 1.2	

NS60637506	 Manhole	 combined	 260749	 663571	 9.7	 9.7	 5.929	 6.419	 1.2	 1.2	

NS60637705	 Manhole	 combined	 260795	 663738	 10.22	 10.22	 5.18	 6.449	 1.3	 1.3	

NS60637907	 Manhole	 combined	 260700	 663956	 9.83	 9.83	 5.54	 5.99	 1.2	 1.2	

NS60637916	 Manhole	 storm	 260779	 663936.4	 9.934	 9.934	 7.9	 9.3	 9.1	 9.1	

NS60637920	 Manhole	 storm	 260739.1	 663963.1	 10.04	 10.04	 7.766	 9.166	 9.1	 9.1	

NS60638002	 Manhole	 combined	 260829	 663016	 9.66	 9.66	 6.675	 7.125	 1.2	 1.2	

NS60638101	 Manhole	 combined	 260892	 663170	 9.6	 9.6	 3.769	 5.369	 4.4	 4.4	
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NS60638102	 Manhole	 combined	 260833	 663174	 9.55	 9.55	 3.782	 5.397	 4.4	 4.4	

NS60638107	 Manhole	 combined	 260880	 663170	 9.61	 9.61	 3.772	 5.372	 4.4	 4.4	

NS60638204	 Manhole	 combined	 260881	 663293	 9.9	 9.9	 7.347	 7.722	 1	 1	

NS60638206	 Manhole	 combined	 260831	 663294	 9.58	 9.58	 7.076	 7.451	 1	 1	

NS60638208	 Manhole	 combined	 260801	 663273	 9.62	 9.62	 6.792	 7.167	 1	 1	

NS60638209	 Manhole	 combined	 260802	 663297	 9.73	 9.73	 6.916	 7.291	 1	 1	

NS60638301	 Manhole	 combined	 260805	 663369	 9.55	 9.55	 6.904	 7.279	 1	 1	

NS60638303	 Manhole	 combined	 260803	 663315	 9.45	 9.45	 6.913	 7.288	 1	 1	

NS60638406	 Manhole	 combined	 260806	 663400	 9.45	 9.45	 7.25	 7.625	 1	 1	

NS60638501	 Manhole	 combined	 260812	 663567	 9.36	 9.36	 6.001	 6.471	 1.2	 1.2	

NS60638504	 Manhole	 combined	 260868	 663566	 9.87	 9.87	 6.52	 6.97	 1.2	 1.2	

NS60638507	 Manhole	 combined	 260813	 663567	 9.43	 9.43	 6.025	 6.475	 1.2	 1.2	

NS60638601	 Manhole	 combined	 260817	 663648	 9.71	 9.71	 6.32	 6.77	 1.2	 1.2	

NS60638610	 Manhole	 combined	 260814	 663610	 9.38	 9.38	 6.181	 6.631	 1.2	 1.2	

NS60638715	 Manhole	 combined	 260802	 663747	 10.34	 10.34	 6.641	 6.941	 1	 1	

NS60639101	 Manhole	 combined	 260952	 663166	 9.7	 9.7	 3.757	 5.357	 4.4	 4.4	

NS60639105	 Manhole	 combined	 260936	 663167	 9.62	 9.62	 3.76	 5.36	 4.4	 4.4	

NS60639107	 Manhole	 foul	 260997	 663162	 9.7	 9.7	 3.747	 5.347	 4.4	 4.4	

NS60639203	 Manhole	 combined	 260960	 663291	 10.26	 10.26	 7.944	 8.329	 1	 1	

NS60639301	 Manhole	 combined	 260938	 663321	 10.39	 10.39	 8.942	 9.317	 1	 1	

NS60639603	 Manhole	 storm	 260933	 663629	 10	 10	 6.562	 7.087	 1.3	 1.3	

NS60639606	 Manhole	 combined	 260918	 663686	 10.09	 10.09	 6.3	 6.825	 1.3	 1.3	

NS60639704	 Manhole	 combined	 260907	 663732	 10.08	 10.08	 5.47	 6.605	 1.3	 1.3	

NS60641102	 Manhole	 combined	 260176	 664200	 8.78	 8.78	 4.978	 5.913	 2.2	 2.2	

NS60641201	 Manhole	 combined	 260150	 664240	 9.4	 9.4	 6.01	 6.96	 2.2	 2.2	
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NS60641202	 Manhole	 combined	 260132	 664288	 10.32	 10.32	 7.111	 8.041	 2.2	 2.2	

NS60641203	 Manhole	 combined	 260135	 664268	 8.97	 8.97	 6.688	 7.638	 2.2	 2.2	

NS60641208	 Manhole	 storm	 260118	 664245	 9.02	 9.02	 4.88	 6.73	 5.4	 5.4	

NS60641305	 Manhole	 combined	 260135	 664352	 14.81	 14.81	 8.66	 9.57	 2.2	 2.2	

NS60641309	 Manhole	 combined	 260146	 664313	 12.38	 12.38	 7.726	 8.656	 2.2	 2.2	

NS60641310	 Manhole	 combined	 260161	 664326	 14.43	 14.43	 8.149	 9.079	 2.2	 2.2	

NS60642003	 Manhole	 combined	 260275	 664055	 8.71	 8.71	 4.83	 6.24	 2.2	 2.2	

NS60642004	 Manhole	 combined	 260250	 664015	 9.06	 9.06	 4.67	 6.17	 4	 4	

NS60642005	 Manhole	 combined	 260247	 664030	 9.06	 9.06	 4.67	 6.17	 4	 4	

NS60642006	 Manhole	 combined	 260279	 664058	 8.74	 8.74	 5.133	 6.363	 2.2	 2.2	

NS60642009	 Manhole	 storm	 260236	 664090	 8.29	 8.29	 5.46	 7.31	 5.4	 5.4	

NS60642010	 Manhole	 storm	 260271	 664048	 8.79	 8.79	 5.63	 7.48	 10	 10	

NS60642011	 Manhole	 storm	 260263	 664053	 8.76	 8.76	 5.58	 7.43	 5.4	 5.4	

NS60642103	 Manhole	 combined	 260230	 664137.7	 8.96	 8.96	 4.953	 6.303	 3.5	 3.5	

NS60643001	 Manhole	 storm	 260311.4	 664029.7	 8.84	 8.84	 5.78	 7.78	 10	 10	

NS60643003	 Manhole	 combined	 260306	 664054	 8.42	 8.42	 6.012	 7.152	 2.2	 2.2	

NS60643007	 Manhole	 storm	 260365.6	 664004.7	 9.54	 9.54	 5.948	 7.948	 6	 6	

NS60645002	 Manhole	 combined	 260548	 664079	 11.15	 11.15	 6.86	 7.535	 1.6	 1.6	

NS60645005	 Manhole	 combined	 260598	 664059	 9.83	 9.83	 5.979	 6.75	 1.6	 1.6	

NS60645009	 Manhole	 foul	 260584	 664031	 9.87	 9.87	 7.03	 7.48	 1	 1	

NS60646004	 Manhole	 combined	 260645	 664040	 9.8	 9.8	 5.755	 6.955	 3	 3	

NS61620299	 Outfall	 combined	 261084.5	 662286.4	 6.08	 6.08	 3.23	 4.44	 3	 3	

NS61620901	 Manhole	 combined	 261029	 662992	 9.03	 9.03	 6.629	 7.079	 1.2	 1.2	

NS61630003	 Manhole	 combined	 261036	 663031	 9.2	 9.2	 6.24	 6.76	 1.2	 1.2	

NS61630102	 Manhole	 combined	 261054	 663158	 9.41	 9.41	 3.6	 5.2	 4.4	 4.4	
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NS61630105	 Manhole	 combined	 261063	 663157	 9.47	 9.47	 3.58	 5.18	 4.4	 4.4	

NS61630202	 Manhole	 combined	 261000	 663289	 10.32	 10.32	 8.015	 8.39	 1	 1	

NS61631001	 Manhole	 combined	 261161	 663001	 8.72	 8.72	 3.27	 4.89	 4.4	 4.4	

NS61631002	 Manhole	 combined	 261176	 663051	 8.55	 8.55	 3.33	 4.93	 4.4	 4.4	

NS61631102	 Manhole	 combined	 261154	 663120	 8.55	 8.55	 3.33	 4.97	 4.4	 4.4	

NS61631104	 Manhole	 combined	 261115	 663125	 8.74	 8.74	 3.43	 5.03	 4.4	 4.4	

NS61631105	 Manhole	 combined	 261194	 663107	 8.36	 8.36	 3.33	 4.93	 4.4	 4.4	

NS61631106	 Manhole	 combined	 261100	 663134	 8.86	 8.86	 3.47	 5.07	 4.4	 4.4	

NS61632101	 Manhole	 combined	 261207	 663154	 8.11	 8.11	 5.62	 6.6	 1.6	 1.6	
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Initial Pipe Values 

US	Node	ID	
Link	
Suffix	 DS	Node	ID	

System	
Type	

Length	
(m)	

Shape	
ID	

Width	
(mm)	

Height	
(mm)	

Conduit	
full	
capacity	
(m3/s)	

new	mh11	 1	 newmh12	 combined	 102.7	 CIRC	 1600	 1600	 4.905	

newmh10	 1	 new	mh11	 combined	 106.4	 CIRC	 1600	 1600	 4.905	

newmh12	 1	 NS61620299	 combined	 109.2	 CIRC	 1600	 1600	 4.905	

newmh7	 1	 newmh8	 combined	 98.5	 CIRC	 1600	 1600	 2.511	

newmh8	 1	 newmh9	 combined	 97.1	 CIRC	 1600	 1600	 2.511	

newmh9	 1	 newmh10	 combined	 111.2	 CIRC	 1600	 1600	 8.439	

NS59645401	 1	 NS59645407	 storm	 21.9	 FM424	 3720	 1850	 0	

NS59645407	 1	 NS59644401	 storm	 8.3	 CIRC	 1400	 1400	 13.223	

NS59645507	 1	 NS59645401	 storm	 37.8	 RECT	 3700	 1800	 5.167	

NS59645508	 1	 NS59645510	 storm	 1.8	 FM433	 3720	 1830	 -18.186	

NS59645510	 1	 NS59645507	 storm	 90.9	 AND22	 3700	 1820	 2.132	

NS59645512	 1	 NS59645508	 storm	 10.5	 AND21	 1300	 1500	 3.702	

NS59646501	 1	 NS59645512	 storm	 18.7	 AND20	 2800	 1740	 12.861	

NS59646511	 1	 NS59646501	 storm	 66.9	 AND19	 2800	 1820	 13.972	

NS59647505	 1	 NS59646511	 storm	 86.3	 AND17	 1850	 1850	 3.579	

NS59647556	 1	 NS59647505	 storm	 26.8	 AND17	 1800	 1820	 5.746	

NS59648404	 1	 NS59648410	 storm	 15.2	 AND17	 1800	 1820	 6.612	

NS59648407	 1	 NS59648404	 storm	 28.3	 AND17	 1800	 1820	 5.284	

NS59648410	 1	 NS59647556	 storm	 95.7	 AND17	 1800	 1820	 5.894	
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NS59649302	 1	 NS59648407	 storm	 94.1	 AND17	 1850	 1850	 6.68	

NS60632801	 1	 NS60632804	 combined	 28.9	 CIRC	 1500	 1500	 1.701	

NS60632802	 1	 NS60632801	 combined	 46.8	 CIRC	 1500	 1500	 1.7	

NS60632804	 1	 NS60633705	 combined	 18.7	 CIRC	 1600	 1600	 2.029	

NS60632901	 1	 NS60632802	 combined	 48.5	 CIRC	 1500	 1500	 0.98	

NS60632902	 1	 NS60632901	 combined	 46.3	 CIRC	 1500	 1500	 0	

NS60633401	 1	 NS60634409	 combined	 76.4	 CIRC	 1600	 1600	 1.587	

NS60633501	 1	 NS60633401	 combined	 53.2	 CIRC	 1600	 1600	 2.009	

NS60633502	 1	 NS60633501	 combined	 44.1	 CIRC	 1600	 1600	 0.752	

NS60633601	 1	 NS60633502	 combined	 42.4	 CIRC	 1600	 1600	 1.076	

NS60633602	 1	 NS60633601	 combined	 48.8	 CIRC	 1600	 1600	 2.925	

NS60633705	 1	 NS60633708	 combined	 36.8	 CIRC	 1600	 1600	 2.018	

NS60633708	 1	 NS60633602	 combined	 102.5	 CIRC	 1600	 1600	 2.13	

NS60633801	 1	 NS60634702	 combined	 47.5	 CIRC	 675	 675	 0.228	

NS60633802	 1	 NS60632804	 combined	 84.5	 CIRC	 1200	 1200	 1.297	

NS60633802	 2	 NS60633806	 combined	 7.6	 EGG	 690	 810	 0.306	

NS60633803	 1	 NS60633802	 combined	 46.6	 EGG	 690	 810	 0.3	

NS60633806	 1	 NS60633801	 combined	 5.4	 EGG	 690	 780	 0.276	

NS60633901	 1	 NS60633803	 combined	 33.2	 EGG	 670	 790	 0.876	

NS60633902	 1	 NS60633901	 combined	 33.2	 EGG	 690	 780	 0.498	

NS60633905	 1	 NS60633902	 combined	 57.6	 CIRC	 450	 450	 0.202	

NS60634201	 1	 NS60635203	 combined	 76	 CIRC	 1600	 1600	 2.383	

NS60634301	 1	 NS60634303	 combined	 42.9	 CIRC	 1600	 1600	 1.856	

NS60634302	 1	 NS60634303	 combined	 6.1	 CIRC	 450	 450	 0.986	

NS60634303	 1	 NS60634201	 combined	 31.8	 CIRC	 1600	 1600	 1.855	
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NS60634401	 1	 NS60634404	 combined	 49.3	 CIRC	 375	 375	 0.129	

NS60634403	 1	 NS60634409	 combined	 30.6	 CIRC	 450	 450	 0.425	

NS60634404	 1	 NS60634403	 combined	 16.5	 CIRC	 300	 300	 0.117	

NS60634405	 1	 NS60634404	 combined	 12	 CIRC	 300	 300	 0.181	

NS60634409	 1	 NS60634301	 combined	 61.1	 CIRC	 1600	 1600	 -1.192	

NS60634701	 1	 NS60633708	 combined	 90.1	 CIRC	 600	 600	 0.207	

NS60634702	 1	 NS60634701	 combined	 16.3	 CIRC	 375	 375	 0.076	

NS60634710	 1	 NS60634701	 combined	 69.2	 CIRC	 600	 600	 0.145	

NS60634909	 1	 NS60643007	 storm	 126.8	 CIRC	 2000	 2000	 10.004	

NS60635203	 1	 NS60636203	 combined	 81.1	 CIRC	 1600	 1600	 2.225	

NS60635302	 1	 NS60635203	 combined	 25.1	 CIRC	 300	 300	 0.161	

NS60635701	 1	 NS60634710	 combined	 50.2	 CIRC	 600	 600	 0.159	

NS60635812	 1	 NS60636815	 combined	 41.3	 CIRC	 300	 300	 0.121	

NS60635813	 1	 NS60633802	 combined	 141.8	 CIRC	 1200	 1200	 1.27	

NS60635901	 1	 NS60635922	 foul	 5	 CIRC	 150	 150	 0.009	

NS60635911	 1	 NS60635936	 storm	 10.9	 CIRC	 225	 225	 0.039	

NS60635922	 1	 NS60635813	 combined	 46.9	 CIRC	 1200	 1200	 2.537	

NS60635935	 1	 NS60635945	 storm	 46.5	 ARCH	 2500	 1300	 4.59	

NS60635936	 1	 NS60635935	 storm	 12.9	 RECT	 3660	 1370	 10.248	

NS60635945	 1	 NS60634909	 storm	 31.5	 ARCH	 2500	 1300	 9.313	

NS60636103	 1	 NS60636105	 combined	 6	 CIRC	 1600	 1600	 2.516	

NS60636105	 1	 NS60637102	 combined	 60.2	 CIRC	 1600	 1600	 1.318	

NS60636201	 1	 NS60636103	 combined	 75.8	 CIRC	 1600	 1600	 3.494	

NS60636203	 1	 NS60636201	 combined	 28	 CIRC	 1600	 1600	 4.378	

NS60636301	 1	 NS60636303	 combined	 37	 CIRC	 525	 525	 0.083	
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NS60636302	 1	 NS60636301	 combined	 31	 CIRC	 525	 525	 0.184	

NS60636303	 1	 NS60636103	 combined	 115	 CIRC	 525	 525	 0.273	

NS60636305	 1	 NS60636302	 combined	 28.2	 CIRC	 375	 375	 0.176	

NS60636401	 1	 NS60636409	 combined	 10	 CIRC	 525	 525	 0.362	

NS60636403	 1	 NS60636302	 combined	 41	 CIRC	 525	 525	 0.184	

NS60636404	 1	 NS60636408	 combined	 24	 CIRC	 225	 225	 0.064	

NS60636408	 1	 NS60636401	 combined	 22	 CIRC	 375	 375	 0.141	

NS60636408	 2	 NS60636403	 combined	 31.1	 CIRC	 375	 375	 0.075	

NS60636409	 1	 NS60636506	 combined	 97.5	 CIRC	 375	 375	 0.12	

NS60636501	 1	 NS60636506	 combined	 13.6	 CIRC	 225	 225	 0.156	

NS60636503	 1	 NS60636501	 combined	 83.3	 CIRC	 225	 225	 0.029	

NS60636506	 1	 NS60636605	 combined	 70.1	 CIRC	 600	 600	 0.339	

NS60636604	 1	 NS60636707	 combined	 51.2	 CIRC	 600	 600	 0.381	

NS60636605	 1	 NS60636604	 combined	 51	 CIRC	 600	 600	 0.173	

NS60636701	 1	 NS60635701	 combined	 152.1	 CIRC	 600	 600	 0.12	

NS60636705	 1	 NS60636707	 combined	 52.2	 CIRC	 450	 450	 0.247	

NS60636707	 1	 NS60636701	 combined	 4	 CIRC	 600	 600	 0.175	

NS60636801	 1	 NS60636909	 combined	 63.1	 EGG	 550	 690	 0.977	

NS60636812	 1	 NS60636705	 combined	 56.1	 CIRC	 450	 450	 0.025	

NS60636815	 1	 NS60636801	 combined	 4	 EGG	 550	 690	 0.958	

NS60636901	 1	 NS60635936	 storm	 35	 NARCH	 3300	 1300	 9.625	

NS60636902	 1	 NS60636909	 foul	 45.1	 CIRC	 1200	 1200	 0	

NS60636909	 1	 NS60635922	 foul	 50.2	 CIRC	 1200	 1200	 1.24	

NS60636911	 2	 NS60636916	 storm	 70.5	 NARCH	 3200	 1440	 8.656	

NS60636916	 1	 NS60636901	 storm	 23.2	 NARCH	 2450	 1150	 4.482	
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NS60636916	 2	 NS60636902	 foul	 	 34	 RECT	 1200	 0.05447	

NS60637001	 1	 NS60637103	 combined	 DW	 26.1	 CIRC	 450	 0.00192	

NS60637005	 1	 NS60637001	 combined	 DW	 47	 CIRC	 450	 0.00234	

NS60637101	 1	 NS60637110	 combined	 DW	 16.1	 CIRC	 1600	 0.00022	

NS60637102	 1	 NS60637101	 combined	 DW	 54.1	 CIRC	 1600	 0.00022	

NS60637103	 1	 NS60637108	 combined	 DW	 19.2	 CIRC	 450	 0.0026	

NS60637104	 1	 NS60637106	 combined	 DW	 37	 CIRC	 450	 0.03065	

NS60637106	 1	 NS60637110	 combined	 DW	 5.1	 CIRC	 450	 0.03608	

NS60637108	 1	 NS60637104	 combined	 DW	 5	 CIRC	 450	 0.002	

NS60637110	 1	 NS60638102	 combined	 DW	 37.2	 CIRC	 1600	 0.00022	

NS60637201	 1	 NS60637202	 combined	 DW	 12.2	 CIRC	 375	 0.00082	

NS60637202	 1	 NS60637110	 combined	 DW	 27.2	 CIRC	 375	 0.01982	

NS60637207	 1	 NS60637201	 combined	 DW	 21	 CIRC	 375	 0.00904	

NS60637301	 1	 NS60636305	 combined	 DW	 60.1	 CIRC	 375	 0.0037	

NS60637501	 1	 NS60637506	 combined	 DW	 26.1	 CIRC	 450	 0.00051	

NS60637506	 1	 NS60636506	 combined	 DW	 71	 CIRC	 450	 0.00418	

NS60637705	 1	 NS60636707	 combined	 DW	 114.2	 CIRC	 525	 0.00219	

NS60637907	 1	 NS60636812	 combined	 DW	 104.6	 CIRC	 450	 0.00009	

NS60637916	 1	 NS60637920	 storm	 DE	 48	 NARCH	 2650	 0.00278	

NS60637920	 1	 NS60636911	 storm	 	 58.2	 NARCH	 2650	 0.00338	

NS60638002	 1	 NS60637005	 combined	 DW	 53.2	 CIRC	 450	 0.00235	

NS60638101	 1	 NS60639105	 combined	 DW	 44.1	 CIRC	 1600	 0.00021	

NS60638102	 1	 NS60638107	 combined	 DW	 47.2	 CIRC	 1600	 0.00021	

NS60638107	 1	 NS60638101	 combined	 DW	 12	 CIRC	 1600	 0.00021	

NS60638204	 1	 NS60638206	 combined	 DW	 50	 CIRC	 375	 0.00542	
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NS60638206	 1	 NS60638209	 combined	 DW	 29.2	 CIRC	 375	 0.00549	

NS60638208	 1	 NS60637207	 combined	 DW	 35.4	 CIRC	 375	 0.00062	

NS60638209	 1	 NS60638303	 combined	 DW	 18	 CIRC	 375	 0.00017	

NS60638209	 2	 NS60638208	 combined	 DW	 24	 CIRC	 375	 0.00516	

NS60638301	 1	 NS60637301	 combined	 DW	 54	 CIRC	 375	 0.00017	

NS60638303	 1	 NS60638301	 combined	 DW	 54.1	 CIRC	 375	 0.00017	

NS60638406	 1	 NS60638301	 combined	 DW	 31	 CIRC	 375	 0.01116	

NS60638501	 1	 NS60637501	 combined	 DW	 37.1	 CIRC	 450	 0.00051	

NS60638504	 1	 NS60638507	 combined	 DW	 55	 CIRC	 450	 0.009	

NS60638507	 1	 NS60638501	 combined	 DW	 1	 CIRC	 450	 0.00365	

NS60638601	 1	 NS60638610	 combined	 DW	 38.1	 CIRC	 450	 0.00364	

NS60638610	 1	 NS60638507	 combined	 DW	 43	 CIRC	 450	 0.00365	

NS60638715	 1	 NS60637705	 foul	 DW	 11.4	 CIRC	 300	 0.04315	

NS60639101	 1	 NS60639107	 combined	 DW	 45.2	 CIRC	 1600	 0.00021	

NS60639105	 1	 NS60639101	 combined	 DW	 16	 CIRC	 1600	 0.00021	

NS60639107	 1	 NS61630102	 combined	 DW	 57.2	 CIRC	 1600	 0.00257	

NS60639203	 1	 NS60638204	 combined	 DW	 79	 CIRC	 375	 0.00755	

NS60639301	 1	 NS60638204	 combined	 DW	 63.5	 CIRC	 375	 0.02512	

NS60639603	 1	 NS60639606	 combined	 DW	 58.9	 CIRC	 525	 0.00445	

NS60639606	 1	 NS60639704	 combined	 DW	 47.3	 CIRC	 525	 0.00465	

NS60639704	 1	 NS60637705	 combined	 DW	 112.2	 CIRC	 525	 0.00259	

NS60641102	 1	 NS60642103	 combined	 DW	 83.9	 CIRC	 920	 0.00012	

NS60641201	 1	 NS60641102	 combined	 DW	 47.7	 CIRC	 920	 0.02131	

NS60641202	 1	 NS60641203	 combined	 DW	 20.2	 CIRC	 890	 0.02095	

NS60641203	 1	 NS60641201	 combined	 DW	 31.8	 EGG	 900	 0.02134	
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NS60641208	 1	 NS59649302	 storm	 DE	 222.7	 AND17	 1800	 0.00211	

NS60641305	 1	 NS60641310	 combined	 DW	 36.8	 CIRC	 910	 0.0139	

NS60641309	 1	 NS60641202	 combined	 DW	 28.7	 CIRC	 930	 0.02144	

NS60641310	 1	 NS60641309	 combined	 DW	 19.8	 CIRC	 930	 0.02134	

NS60642003	 1	 NS60642005	 combined	 DW	 37.5	 EGG	 900	 0.00426	

NS60642004	 1	 NS60632902	 combined	 DW	 38.2	 CIRC	 1500	 0.00026	

NS60642005	 1	 NS60642004	 combined	 DW	 15.3	 CIRC	 1500	 0	

NS60642006	 1	 NS60642003	 combined	 DW	 5	 EGG	 930	 0.0245	

NS60642009	 1	 NS60641208	 storm	 DE	 197.6	 AND17	 1850	 0.00293	

NS60642010	 1	 NS60642011	 storm	 DE	 10.1	 NARCH	 1850	 0.00496	

NS60642011	 1	 NS60642009	 storm	 DE	 46.1	 AND16	 1800	 0.0026	

NS60642103	 1	 NS60642005	 combined	 DW	 119.8	 CIRC	 1350	 0.00236	

NS60643001	 1	 NS60642010	 storm	 DE	 44.4	 AND20	 2800	 0.00337	

NS60643003	 1	 NS60642006	 combined	 DW	 27.3	 EGG	 900	 0.0322	

NS60643007	 1	 NS60643001	 storm	 DE	 59.7	 CIRC	 2000	 0.00281	

NS60645002	 1	 NS60645005	 combined	 DW	 54.1	 CIRC	 675	 0.01628	

NS60645005	 1	 NS60646004	 combined	 DW	 50.7	 CIRC	 450	 0.00443	

NS60645009	 1	 NS60645005	 foul	 DW	 31.3	 CIRC	 450	 0.02332	

NS60646004	 1	 NS60636902	 combined	 DW	 81.9	 CIRC	 1200	 0.00449	

NS61620901	 1	 NS61630003	 combined	 DW	 39.6	 CIRC	 450	 0.00805	

NS61630003	 1	 NS61630105	 combined	 DW	 128.9	 CIRC	 450	 0.01981	

NS61630102	 1	 NS61630105	 combined	 DW	 9.1	 CIRC	 1600	 0.00221	

NS61630105	 1	 NS61631106	 combined	 DW	 43.6	 CIRC	 1600	 0.00252	

NS61630202	 1	 NS60639203	 combined	 DW	 40	 CIRC	 375	 0.00152	

NS61631001	 1	 newmh7	 combined	 DW	 99.5	 CIRC	 1600	 0.00115	
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NS61631002	 1	 NS61631001	 combined	 DW	 52.2	 CIRC	 1600	 0.00077	

NS61631102	 1	 NS61631105	 combined	 DW	 42.1	 CIRC	 1600	 0	

NS61631104	 1	 NS61631102	 combined	 DW	 39.3	 CIRC	 1600	 0.00153	

NS61631105	 1	 NS61631002	 combined	 DW	 58.8	 CIRC	 1600	 0	

NS61631106	 1	 NS61631104	 combined	 DW	 17.5	 CIRC	 1600	 0.00229	

NS61632101	 1	 NS61631105	 combined	 DW	 48.8	 EGG	 675	 0.04159	
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A Node Values 

Node	ID	

Chamber	
Plan	Area	
(m2)	

new	mh11	 14	

newmh1	 2.6	

newmh10	 14	

newmh12	 20	

newmh14	 1.5	

newmh2	 2.6	

newmh3	 2.6	

newmh4	 2.6	

newmh5	 2.6	

newmh6	 2.6	

newmh7	 18	

newmh8	 18	

newmh9	 21	

NS59644401	 20	

NS59645401	 24	

NS59645407	 24	

NS59645507	 22	

NS59645508	 32	

NS59645510	 22	

NS59645512	 23	

NS59646501	 20	

NS59646511	 22	

NS59647505	 11	

NS59647556	 21	

NS59648404	 21	

NS59648407	 18	

NS59648410	 21	

NS59649302	 18	

NS59649604	 3	

NS59649705	 3	

NS60632801	 13	

NS60632802	 19	

NS60632804	 11	

NS60632901	 16	

NS60632902	 19	

NS60633401	 20	

NS60633501	 20	

NS60633502	 21	

NS60633601	 10	

NS60633602	 17	

NS60633705	 14	

NS60633708	 17	

NS60633801	 10	

NS60633802	 8	

NS60633803	 8	

NS60633806	 12	

NS60633901	 18	

NS60633902	 8	

NS60633905	 9	

NS60634201	 20	

NS60634301	 11	

NS60634302	 17	

NS60634303	 14	

NS60634401	 7	

NS60634403	 17	

NS60634404	 16	

NS60634405	 18	

NS60634409	 17	

NS60634701	 15	

NS60634702	 18	

NS60634710	 10	

NS60634909	 24	

NS60635203	 20	

NS60635302	 13	

NS60635701	 9	

NS60635812	 17	
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NS60635813	 10	

NS60635901	 14	

NS60635911	 17	

NS60635922	 20	

NS60635935	 21	

NS60635936	 26	

NS60635945	 15	

NS60636103	 20	

NS60636105	 18	

NS60636201	 19	

NS60636203	 17	

NS60636301	 18	

NS60636302	 14	

NS60636303	 17	

NS60636305	 7	

NS60636401	 17	

NS60636403	 11	

NS60636404	 8	

NS60636408	 7	

NS60636409	 14	

NS60636501	 6	

NS60636503	 11	

NS60636506	 14	

NS60636604	 18	

NS60636605	 9	

NS60636701	 11	

NS60636705	 16	

NS60636707	 14	

NS60636801	 11	

NS60636812	 14	

NS60636815	 17	

NS60636901	 27	

NS60636902	 11	

NS60636909	 12	

NS60636911	 28	

NS60636916	 25	

NS60637001	 10	

NS60637005	 14	

NS60637101	 19	

NS60637102	 21	

NS60637103	 11	

NS60637104	 13	

NS60637106	 17	

NS60637108	 11	

NS60637110	 12	

NS60637201	 17	

NS60637202	 2	

NS60637207	 17	

NS60637301	 13	

NS60637501	 14	

NS60637506	 12	

NS60637705	 17	

NS60637907	 11	

NS60637916	 22	

NS60637920	 25	

NS60638002	 11	

NS60638101	 20	

NS60638102	 10	

NS60638107	 19	

NS60638204	 17	

NS60638206	 17	

NS60638208	 17	

NS60638209	 11	

NS60638301	 10	

NS60638303	 17	

NS60638406	 14	

NS60638501	 17	

NS60638504	 15	

NS60638507	 17	

NS60638601	 17	

NS60638610	 17	

NS60638715	 18	

NS60639101	 14	

NS60639105	 12	

NS60639107	 9	



Appendices – Appendix IV – Decision Variable Details 

  Page: 307 

NS60639203	 17	

NS60639301	 17	

NS60639603	 9	

NS60639606	 14	

NS60639704	 13	

NS60640603	 3	

NS60640606	 3	

NS60640609	 1.2	

NS60640701	 1.2	

NS60640707	 2.7	

NS60640708	 2.7	

NS60640709	 3	

NS60640804	 1.2	

NS60641102	 8	

NS60641201	 17	

NS60641202	 18	

NS60641203	 17	

NS60641208	 21	

NS60641305	 20	

NS60641309	 17	

NS60641310	 18	

NS60641502	 1	

NS60641503	 1.2	

NS60641605	 2.2	

NS60641702	 1.2	

NS60641704	 1.5	

NS60641705	 1.8	

NS60641706	 2.2	

NS60641708	 1.5	

NS60641710	 1.5	

NS60641803	 1	

NS60641805	 1.2	

NS60642003	 17	

NS60642004	 12	

NS60642005	 18	

NS60642006	 8	

NS60642009	 20	

NS60642010	 16	

NS60642011	 9	

NS60642103	 18	

NS60642501	 1.7	

NS60642506	 1.9	

NS60642507	 3	

NS60642512	 3	

NS60642605	 1.5	

NS60642701	 1.8	

NS60643001	 22	

NS60643003	 12	

NS60643007	 19	

NS60643401	 3	

NS60643403	 1.9	

NS60643405	 2	

NS60643410	 3	

NS60643412	 3	

NS60643414	 2.6	

NS60643604	 1.5	

NS60643612	 1.2	

NS60643715	 1.7	

NS60643716	 1.8	

NS60643902	 3	

NS60644502	 1.8	

NS60644503	 1.8	

NS60644504	 2	

NS60644506	 3.2	

NS60644602	 1.2	

NS60644603	 1	

NS60644604	 1	

NS60644611	 1	

NS60644614	 1	

NS60644622	 3.2	

NS60644624	 3	

NS60644704	 1	

NS60644804	 3	

NS60644903	 1.8	

NS60644904	 3	
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NS60644906	 3	

NS60645002	 18	

NS60645005	 12	

NS60645009	 17	

NS60645711	 1.8	

NS60645715	 1.5	

NS60645793	 1	

NS60645794	 1	

NS60645804	 3	

NS60645902	 1.2	

NS60646004	 19	

NS60646407	 2.4	

NS60646597	 2.4	

NS60646598	 2.4	

NS60646599	 1.8	

NS60646701	 2	

NS60647108	 4	

NS60647203	 3.7	

NS60647217	 1.8	

NS60647218	 3	

NS60647301	 3.7	

NS60647306	 3.7	

NS60647404	 1.9	

NS60647406	 1.9	

NS60647407	 3.7	

NS60647503	 1	

NS60647504	 1.7	

NS60647601	 1.6	

NS60647602	 1.9	

NS60647603	 1.8	

NS60647702	 2.2	

NS60647704	 2.2	

NS60647705	 1.6	

NS60647706	 2.2	

NS60647713	 2.2	

NS60648501	 1.7	

NS60648601	 1.6	

NS60648602	 1.6	

NS60648606	 1.7	

NS60648710	 1.2	

NS60648713	 1.2	

NS60648718	 1.7	

NS60648719	 1.8	

NS60648720	 1.8	

NS60648801	 2.2	

NS60648901	 2.2	

NS60648902	 1.5	

NS60648905	 2.2	

NS60649601	 1.6	

NS60649603	 1.7	

NS60649604	 1.7	

NS60649712	 1.3	

NS60649802	 1.6	

NS60649901	 1.5	

NS60653004	 3	

NS60653109	 3.2	

NS60653110	 3.2	

NS60653114	 2.1	

NS60654102	 2.1	

NS60655003	 1.6	

NS60655104	 1.6	

NS60655107	 2.1	

NS60655112	 1.6	

NS60656001	 1.9	

NS60656002	 1.9	

NS60656101	 1.2	

NS60656103	 1.2	

NS60656111	 1	

NS60656116	 1	

NS60656118	 1.5	

NS60656201	 1	

NS60656213	 1.5	

NS60656215	 1.5	

NS60656305	 1.4	

NS60656306	 1.5	
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NS60657001	 2	

NS60657002	 2	

NS60657008	 1.5	

NS60657107	 1	

NS60657109	 1	

NS60657114	 1	

NS60657115	 1	

NS60657302	 1	

NS60657402	 1.4	

NS60658001	 1.4	

NS60658006	 1.4	

NS60658007	 1.4	

NS60658102	 1	

NS60658402	 1.2	

NS60659008	 1.4	

NS60659101	 1	

NS61620299	 20	

NS61620901	 18	

NS61630003	 17	

NS61630102	 18	

NS61630105	 11	

NS61630202	 6	

NS61631001	 13	

NS61631002	 20	

NS61631102	 20	

NS61631104	 17	

NS61631105	 19	

NS61631106	 19	

NS61632101	 13	

NS61640603	 1.6	

NS61640605	 1.5	

NS61640803	 1.5	

NS61640905	 1.6	

NS61641603	 1.2	

NS61641609	 1.5	

NS61641701	 1	

NS61641707	 1.5	

NS61641801	 1.5	

NS61641804	 1.5	

NS61641999	 1.5	

NS61642801	 1.4	

NS61643806	 1.5	

NS61644903	 1.3	

NS61650001	 1.8	

NS61650003	 1.3	

NS61650007	 1.5	

NS61650009	 1.4	

NS61650010	 1.8	

NS61650011	 1.8	

NS61650012	 1.3	

NS61650102	 1.3	

NS61650301	 1.3	

NS61650302	 1.3	

NS61650402	 1.3	

NS61650403	 1.2	

NS61650501	 1.2	

NS61650503	 1.2	

NS61651001	 1	

NS61651002	 1	

NS61651006	 1.8	

NS61651007	 1.8	

NS61651008	 1.7	

NS61651103	 1	

NS61651109	 1	

NS61651111	 1	

NS61651113	 1	

NS61651513	 1	

NS61652005	 1.7	

NS61652101	 1.2	

NS61652102	 1.2	

NS61652301	 1.2	

NS61652305	 1	

NS61652306	 1.2	

NS61652402	 1.2	

NS61653002	 1.7	
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NS61653102	 1.2	

NS61653304	 1	

NS61654001	 1.7	

NS61654101	 1.2	

NS61654302	 1.2	

NS61655005	 1.7	

NS61655101	 1.4	

NS61655103	 1.4	

NS61655201	 1.4	

NS61655301	 1.4	
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A Pipe Values 

US	Node	ID	 Link	Suffix	 DS	Node	ID	
Width	
(mm)	

new	mh11	 1	 newmh12	 2100	

newmh1	 2	 newmh3	 1050	

newmh10	 1	 new	mh11	 2200	

newmh12	 1	 NS61620299	 2500	

newmh14	 1	 NS61640603	 600	

newmh2	 1	 newmh4	 1050	

newmh3	 2	 newmh5	 1050	

newmh4	 1	 newmh6	 1050	

newmh5	 2	 NS60642103	 1050	

newmh6	 1	 NS60642103	 675	

newmh7	 1	 newmh8	 2400	

newmh8	 1	 newmh9	 2400	

newmh9	 1	 newmh10	 1600	

NS59645401	 1	 NS59645407	 4500	

NS59645407	 1	 NS59644401	 1950	

NS59645507	 1	 NS59645401	 3600	

NS59645508	 1	 NS59645510	 4000	

NS59645510	 1	 NS59645507	 3600	

NS59645512	 1	 NS59645508	 1950	

NS59646501	 1	 NS59645512	 4000	

NS59646511	 1	 NS59646501	 3200	

NS59647505	 1	 NS59646511	 2400	

NS59647556	 1	 NS59647505	 2400	

NS59648404	 1	 NS59648410	 2400	

NS59648407	 1	 NS59648404	 2400	

NS59648410	 1	 NS59647556	 2400	

NS59649302	 1	 NS59648407	 2200	

NS59649604	 1	 NS60640606	 1200	

NS59649705	 1	 NS59649604	 1200	

NS60632801	 1	 NS60632804	 2100	

NS60632802	 1	 NS60632801	 1950	

NS60632804	 1	 NS60633705	 1800	

NS60632901	 1	 NS60632802	 2100	

NS60632902	 1	 NS60632901	 2100	

NS60633401	 1	 NS60634409	 2550	

NS60633501	 1	 NS60633401	 2400	

NS60633502	 1	 NS60633501	 2400	

NS60633601	 1	 NS60633502	 2400	

NS60633602	 1	 NS60633601	 1600	

NS60633705	 1	 NS60633708	 2400	

NS60633708	 1	 NS60633602	 2400	

NS60633801	 1	 NS60634702	 975	

NS60633802	 1	 NS60632804	 1950	

NS60633802	 2	 NS60633806	 1200	
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NS60633803	 1	 NS60633802	 1100	

NS60633806	 1	 NS60633801	 1100	

NS60633901	 1	 NS60633803	 750	

NS60633902	 1	 NS60633901	 975	

NS60633905	 1	 NS60633902	 975	

NS60634201	 1	 NS60635203	 2400	

NS60634301	 1	 NS60634303	 1950	

NS60634302	 1	 NS60634303	 900	

NS60634303	 1	 NS60634201	 2400	

NS60634401	 1	 NS60634404	 1200	

NS60634403	 1	 NS60634409	 750	

NS60634404	 1	 NS60634403	 675	

NS60634405	 1	 NS60634404	 800	

NS60634409	 1	 NS60634301	 2400	

NS60634701	 1	 NS60633708	 700	

NS60634702	 1	 NS60634701	 975	

NS60634710	 1	 NS60634701	 900	

NS60634909	 1	 NS60643007	 2500	

NS60635203	 1	 NS60636203	 2400	

NS60635302	 1	 NS60635203	 975	

NS60635701	 1	 NS60634710	 1300	

NS60635812	 1	 NS60636815	 600	

NS60635813	 1	 NS60633802	 1800	

NS60635901	 1	 NS60635922	 630	

NS60635911	 1	 NS60635936	 750	

NS60635922	 1	 NS60635813	 1800	

NS60635935	 1	 NS60635945	 3400	

NS60635936	 1	 NS60635935	 4000	

NS60635945	 1	 NS60634909	 3000	

NS60636103	 1	 NS60636105	 2500	

NS60636105	 1	 NS60637102	 2200	

NS60636201	 1	 NS60636103	 2200	

NS60636203	 1	 NS60636201	 2200	

NS60636301	 1	 NS60636303	 1050	

NS60636302	 1	 NS60636301	 1050	

NS60636303	 1	 NS60636103	 1300	

NS60636305	 1	 NS60636302	 600	

NS60636401	 1	 NS60636409	 975	

NS60636403	 1	 NS60636302	 800	

NS60636404	 1	 NS60636408	 500	

NS60636408	 1	 NS60636401	 600	

NS60636408	 2	 NS60636403	 600	

NS60636409	 1	 NS60636506	 1050	

NS60636501	 1	 NS60636506	 750	

NS60636503	 1	 NS60636501	 375	

NS60636506	 1	 NS60636605	 1100	

NS60636604	 1	 NS60636707	 1350	

NS60636605	 1	 NS60636604	 975	

NS60636701	 1	 NS60635701	 975	

NS60636705	 1	 NS60636707	 675	
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NS60636707	 1	 NS60636701	 1100	

NS60636801	 1	 NS60636909	 800	

NS60636812	 1	 NS60636705	 1050	

NS60636815	 1	 NS60636801	 1300	

NS60636901	 1	 NS60635936	 4500	

NS60636902	 1	 NS60636909	 1800	

NS60636909	 1	 NS60635922	 1600	

NS60636911	 2	 NS60636916	 4500	

NS60636916	 1	 NS60636901	 3400	

NS60636916	 2	 NS60636902	 1250	

NS60637001	 1	 NS60637103	 975	

NS60637005	 1	 NS60637001	 800	

NS60637101	 1	 NS60637110	 2400	

NS60637102	 1	 NS60637101	 2400	

NS60637103	 1	 NS60637108	 800	

NS60637104	 1	 NS60637106	 600	

NS60637106	 1	 NS60637110	 900	

NS60637108	 1	 NS60637104	 1250	

NS60637110	 1	 NS60638102	 2400	

NS60637201	 1	 NS60637202	 600	

NS60637202	 1	 NS60637110	 675	

NS60637207	 1	 NS60637201	 750	

NS60637301	 1	 NS60636305	 450	

NS60637501	 1	 NS60637506	 1050	

NS60637506	 1	 NS60636506	 525	

NS60637705	 1	 NS60636707	 975	

NS60637907	 1	 NS60636812	 900	

NS60637916	 1	 NS60637920	 3200	

NS60637920	 1	 NS60636911	 3400	

NS60638002	 1	 NS60637005	 750	

NS60638101	 1	 NS60639105	 2400	

NS60638102	 1	 NS60638107	 2100	

NS60638107	 1	 NS60638101	 2500	

NS60638204	 1	 NS60638206	 600	

NS60638206	 1	 NS60638209	 675	

NS60638208	 1	 NS60637207	 975	

NS60638209	 1	 NS60638303	 450	

NS60638209	 2	 NS60638208	 675	

NS60638301	 1	 NS60637301	 800	

NS60638303	 1	 NS60638301	 525	

NS60638406	 1	 NS60638301	 1200	

NS60638501	 1	 NS60637501	 1200	

NS60638504	 1	 NS60638507	 1250	

NS60638507	 1	 NS60638501	 900	

NS60638601	 1	 NS60638610	 800	

NS60638610	 1	 NS60638507	 900	

NS60638715	 1	 NS60637705	 675	

NS60639101	 1	 NS60639107	 2400	

NS60639105	 1	 NS60639101	 1950	

NS60639107	 1	 NS61630102	 1950	
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NS60639203	 1	 NS60638204	 600	

NS60639301	 1	 NS60638204	 1200	

NS60639603	 1	 NS60639606	 900	

NS60639606	 1	 NS60639704	 1050	

NS60639704	 1	 NS60637705	 975	

NS60640603	 1	 NS60642512	 1200	

NS60640606	 1	 NS60640603	 1200	

NS60640609	 1	 NS60640708	 450	

NS60640701	 1	 NS60640707	 450	

NS60640707	 1	 NS60640708	 1100	

NS60640708	 1	 NS60640709	 1100	

NS60640709	 1	 NS59649705	 1200	

NS60640804	 1	 NS60640701	 450	

NS60641102	 1	 NS60642103	 1600	

NS60641201	 1	 NS60641102	 1200	

NS60641202	 1	 NS60641203	 1800	

NS60641203	 1	 NS60641201	 1100	

NS60641208	 1	 NS59649302	 2400	

NS60641305	 1	 NS60641310	 1600	

NS60641309	 1	 NS60641202	 1200	

NS60641310	 1	 NS60641309	 1100	

NS60641502	 1	 NS60641503	 375	

NS60641503	 1	 NS60642506	 450	

NS60641605	 1	 NS60641706	 900	

NS60641702	 1	 NS60641704	 450	

NS60641704	 1	 NS60641708	 640	

NS60641705	 1	 NS60641710	 630	

NS60641706	 1	 NS60641704	 640	

NS60641708	 1	 NS60640707	 640	

NS60641710	 1	 NS60641706	 630	

NS60641803	 1	 NS60641805	 225	

NS60641805	 1	 NS60641702	 450	

NS60642003	 1	 NS60642005	 1350	

NS60642004	 1	 NS60632902	 2100	

NS60642005	 1	 NS60642004	 2100	

NS60642006	 1	 NS60642003	 1350	

NS60642009	 1	 NS60641208	 2400	

NS60642010	 1	 NS60642011	 2400	

NS60642011	 1	 NS60642009	 2400	

NS60642103	 1	 NS60642005	 1800	

NS60642501	 1	 NS60642506	 710	

NS60642506	 1	 NS60643403	 800	

NS60642507	 1	 NS60643401	 1200	

NS60642512	 1	 NS60642507	 1200	

NS60642605	 1	 NS60641605	 600	

NS60642701	 1	 NS60641705	 750	

NS60643001	 1	 NS60642010	 3200	

NS60643003	 1	 NS60642006	 1100	

NS60643007	 1	 NS60643001	 2500	

NS60643401	 1	 NS60643410	 1200	
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NS60643403	 1	 NS60643410	 800	

NS60643405	 1	 NS60643414	 680	

NS60643410	 1	 newmh2	 1050	

NS60643410	 2	 newmh1	 1050	

NS60643412	 1	 NS60643410	 1200	

NS60643414	 2	 NS60643412	 1062	

NS60643604	 1	 NS60642605	 600	

NS60643612	 1	 NS60643604	 450	

NS60643715	 1	 NS60643716	 730	

NS60643716	 1	 NS60642701	 750	

NS60643902	 1	 NS60644906	 1200	

NS60644502	 1	 NS60644503	 745	

NS60644503	 1	 NS60644504	 750	

NS60644504	 1	 NS60643405	 830	

NS60644506	 1	 NS60643412	 1200	

NS60644602	 1	 NS60644502	 450	

NS60644603	 1	 NS60644602	 225	

NS60644604	 1	 NS60644603	 225	

NS60644611	 1	 NS60644604	 225	

NS60644614	 1	 NS60644611	 225	

NS60644622	 1	 NS60644506	 1250	

NS60644624	 1	 NS60644622	 1200	

NS60644704	 1	 NS60644614	 150	

NS60644804	 1	 NS60645804	 1200	

NS60644903	 1	 NS60644906	 770	

NS60644904	 1	 NS60644804	 1200	

NS60644906	 1	 NS60644904	 1200	

NS60645002	 1	 NS60645005	 900	

NS60645005	 1	 NS60646004	 900	

NS60645009	 1	 NS60645005	 800	

NS60645711	 1	 NS60646701	 750	

NS60645715	 1	 NS60645711	 600	

NS60645793	 1	 NS60645794	 150	

NS60645804	 1	 NS60644624	 1200	

NS60645902	 1	 NS60644903	 450	

NS60646004	 1	 NS60636902	 1500	

NS60646407	 1	 NS60647407	 900	

NS60646597	 1	 NS60646407	 1000	

NS60646598	 1	 NS60646597	 1000	

NS60646599	 1	 NS60646598	 740	

NS60646701	 1	 NS60647702	 825	

NS60647217	 1	 NS60647218	 710	

NS60647218	 1	 NS60647108	 1200	

NS60647301	 1	 NS60647306	 1400	

NS60647306	 1	 NS60647203	 1400	

NS60647404	 1	 NS60647406	 800	

NS60647406	 1	 NS60647407	 800	

NS60647407	 1	 NS60647301	 1400	

NS60647503	 1	 NS60647404	 375	

NS60647504	 1	 NS60647404	 700	
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NS60647601	 1	 NS60647702	 675	

NS60647602	 1	 NS60647603	 740	

NS60647603	 1	 NS60646599	 740	

NS60647702	 1	 NS60647602	 800	

NS60647704	 1	 NS60647713	 920	

NS60647705	 1	 NS60647704	 650	

NS60647706	 1	 NS60647702	 920	

NS60647713	 1	 NS60647706	 920	

NS60648501	 1	 NS60647504	 700	

NS60648601	 1	 NS60648602	 675	

NS60648602	 1	 NS60647601	 675	

NS60648606	 1	 NS60648501	 700	

NS60648710	 1	 NS60647705	 450	

NS60648713	 1	 NS60648710	 450	

NS60648718	 1	 NS60648713	 450	

NS60648719	 1	 NS60648718	 720	

NS60648720	 1	 NS60648719	 770	

NS60648801	 1	 NS60647704	 920	

NS60648901	 1	 NS60648905	 920	

NS60648902	 1	 NS60648901	 600	

NS60648905	 1	 NS60648801	 920	

NS60649601	 1	 NS60649603	 675	

NS60649603	 1	 NS60648601	 675	

NS60649604	 1	 NS60649603	 690	

NS60649712	 1	 NS60648720	 500	

NS60649802	 1	 NS60649901	 600	

NS60649901	 1	 NS60648902	 600	

NS60653004	 1	 NS60643902	 1200	

NS60653109	 1	 NS60653004	 1200	

NS60653110	 1	 NS60653109	 1250	

NS60653114	 2	 NS60653110	 880	

NS60654102	 1	 NS60653114	 615	

NS60655003	 1	 NS60655107	 660	

NS60655104	 1	 NS60655112	 680	

NS60655107	 1	 NS60654102	 880	

NS60655112	 1	 NS60655107	 580	

NS60656001	 1	 NS60655003	 600	

NS60656002	 1	 NS60656001	 780	

NS60656101	 1	 NS60656103	 450	

NS60656103	 1	 NS60656001	 450	

NS60656111	 1	 NS60656103	 225	

NS60656116	 1	 NS60656111	 225	

NS60656118	 1	 NS60655104	 600	

NS60656201	 1	 NS60656116	 225	

NS60656213	 1	 NS60656215	 600	

NS60656215	 1	 NS60656118	 600	

NS60656305	 1	 NS60656306	 580	

NS60656306	 1	 NS60656213	 600	

NS60657001	 1	 NS60657002	 840	

NS60657002	 1	 NS60656002	 600	
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NS60657008	 1	 NS60657002	 600	

NS60657107	 1	 NS60657109	 375	

NS60657109	 1	 NS60657114	 375	

NS60657114	 1	 NS60657115	 375	

NS60657115	 1	 NS60656101	 375	

NS60657302	 1	 NS60656305	 300	

NS60657402	 1	 NS60656305	 580	

NS60658001	 1	 NS60658007	 570	

NS60658006	 1	 NS60657008	 550	

NS60658007	 1	 NS60658006	 550	

NS60658102	 1	 NS60657107	 375	

NS60658402	 1	 NS60657402	 450	

NS60659008	 1	 NS60658007	 550	

NS60659101	 1	 NS60658001	 300	

NS61620901	 1	 NS61630003	 800	

NS61630003	 1	 NS61630105	 675	

NS61630102	 1	 NS61630105	 1950	

NS61630105	 1	 NS61631106	 2200	

NS61630202	 1	 NS60639203	 600	

NS61631001	 1	 newmh7	 2200	

NS61631002	 1	 NS61631001	 2400	

NS61631102	 1	 NS61631105	 2400	

NS61631104	 1	 NS61631102	 2700	

NS61631105	 1	 NS61631002	 2200	

NS61631106	 1	 NS61631104	 2400	

NS61632101	 1	 NS61631105	 1100	

NS61640603	 1	 NS60649601	 675	

NS61640605	 1	 NS61640603	 610	

NS61640803	 1	 NS60649802	 600	

NS61640905	 1	 NS60649802	 650	

NS61641603	 1	 NS61640605	 450	

NS61641609	 1	 newmh14	 600	

NS61641701	 1	 NS61641603	 375	

NS61641707	 1	 NS61641609	 600	

NS61641801	 1	 NS61641804	 600	

NS61641804	 1	 NS61641707	 600	

NS61641999	 1	 NS61641801	 600	

NS61642801	 1	 NS61641801	 580	

NS61643806	 1	 NS61641804	 610	

NS61644903	 1	 NS61643806	 530	

NS61650001	 1	 NS61650010	 770	

NS61650003	 1	 NS61650012	 520	

NS61650007	 1	 NS61640905	 635	

NS61650009	 1	 NS60659008	 550	

NS61650010	 1	 NS61650009	 550	

NS61650010	 2	 NS61650007	 620	

NS61650011	 1	 NS61650010	 760	

NS61650012	 1	 NS61650001	 520	

NS61650102	 1	 NS61650003	 500	

NS61650301	 1	 NS61650302	 500	
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NS61650302	 1	 NS61650102	 460	

NS61650402	 1	 NS61650301	 500	

NS61650403	 1	 NS61650402	 450	

NS61650501	 1	 NS61650403	 450	

NS61650503	 1	 NS61650501	 450	

NS61651001	 1	 NS61651007	 375	

NS61651002	 1	 NS61651001	 375	

NS61651006	 1	 NS61651007	 750	

NS61651006	 2	 NS61641999	 600	

NS61651007	 1	 NS61650011	 770	

NS61651008	 1	 NS61651006	 700	

NS61651103	 1	 NS61652101	 375	

NS61651109	 1	 NS61651111	 300	

NS61651111	 1	 NS61651002	 375	

NS61651513	 1	 NS61650503	 375	

NS61652005	 1	 NS61651008	 690	

NS61652101	 1	 NS61652102	 450	

NS61652102	 1	 NS61651008	 450	

NS61652301	 1	 NS61652306	 450	

NS61652305	 1	 NS61652306	 300	

NS61652306	 1	 NS61652101	 450	

NS61652402	 1	 NS61652301	 450	

NS61653002	 1	 NS61652005	 690	

NS61653102	 1	 NS61653002	 450	

NS61653304	 1	 NS61654302	 375	

NS61654001	 1	 NS61653002	 720	

NS61654101	 1	 NS61655103	 450	

NS61654302	 1	 NS61655301	 450	

NS61655005	 1	 NS61654001	 720	

NS61655101	 1	 NS61655103	 580	

NS61655103	 1	 NS61655005	 570	

NS61655201	 1	 NS61655101	 580	

NS61655301	 1	 NS61655201	 580	
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B Node Values 

Node	ID	

Chamber	
Plan	Area	
(m2)	

new	mh11	 4	

newmh1	 2.6	

newmh10	 4	

newmh12	 4	

newmh14	 1.5	

newmh2	 2.6	

newmh3	 2.6	

newmh4	 2.6	

newmh5	 2.6	

newmh6	 2.6	

newmh7	 4	

newmh8	 4	

newmh9	 5	

NS59644401	 4	

NS59645401	 16	

NS59645407	 16	

NS59645507	 16	

NS59645508	 16	

NS59645510	 16	

NS59645512	 10	

NS59646501	 10	

NS59646511	 10	

NS59647505	 5	

NS59647556	 5	

NS59648404	 6	

NS59648407	 5	

NS59648410	 6	

NS59649302	 5	

NS59649604	 3	

NS59649705	 3	

NS60632801	 4	

NS60632802	 6	

NS60632804	 4	

NS60632901	 4	

NS60632902	 4	

NS60633401	 4	

NS60633501	 4	

NS60633502	 5	

NS60633601	 4	

NS60633602	 4	

NS60633705	 4	

NS60633708	 4	

NS60633801	 2	

NS60633802	 3	

NS60633803	 2	

NS60633806	 2	

NS60633901	 2	

NS60633902	 2	

NS60633905	 1	

NS60634201	 4	

NS60634301	 4	

NS60634302	 1	

NS60634303	 4	

NS60634401	 1	

NS60634403	 1	

NS60634404	 1	

NS60634405	 4	

NS60634409	 4	

NS60634701	 1	

NS60634702	 2	

NS60634710	 1	

NS60634909	 8	

NS60635203	 4	

NS60635302	 7	

NS60635701	 1	

NS60635812	 1	
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NS60635813	 3	

NS60635901	 1	

NS60635911	 2	

NS60635922	 4	

NS60635935	 15	

NS60635936	 15	

NS60635945	 9	

NS60636103	 4	

NS60636105	 4	

NS60636201	 6	

NS60636203	 4	

NS60636301	 2	

NS60636302	 1	

NS60636303	 1	

NS60636305	 1	

NS60636401	 1	

NS60636403	 1	

NS60636404	 1	

NS60636408	 1	

NS60636409	 1	

NS60636501	 1	

NS60636503	 1	

NS60636506	 1	

NS60636604	 2	

NS60636605	 1	

NS60636701	 1	

NS60636705	 1	

NS60636707	 1	

NS60636801	 1	

NS60636812	 1	

NS60636815	 2	

NS60636901	 13	

NS60636902	 3	

NS60636909	 3	

NS60636911	 12	

NS60636916	 12	

NS60637001	 1	

NS60637005	 1	

NS60637101	 4	

NS60637102	 5	

NS60637103	 1	

NS60637104	 1	

NS60637106	 2	

NS60637108	 1	

NS60637110	 4	

NS60637201	 1	

NS60637202	 1	

NS60637207	 1	

NS60637301	 1	

NS60637501	 1	

NS60637506	 1	

NS60637705	 1	

NS60637907	 9	

NS60637916	 9	

NS60637920	 9	

NS60638002	 1	

NS60638101	 4	

NS60638102	 4	

NS60638107	 4	

NS60638204	 2	

NS60638206	 1	

NS60638208	 1	

NS60638209	 1	

NS60638301	 1	

NS60638303	 1	

NS60638406	 1	

NS60638501	 1	

NS60638504	 1	

NS60638507	 1	

NS60638601	 1	

NS60638610	 1	

NS60638715	 2	

NS60639101	 4	

NS60639105	 4	

NS60639107	 4	
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NS60639203	 2	

NS60639301	 2	

NS60639603	 1	

NS60639606	 1	

NS60639704	 1	

NS60640603	 3	

NS60640606	 3	

NS60640609	 1.2	

NS60640701	 1.2	

NS60640707	 2.7	

NS60640708	 2.7	

NS60640709	 3	

NS60640804	 1.2	

NS60641102	 2	

NS60641201	 2	

NS60641202	 2	

NS60641203	 2	

NS60641208	 5	

NS60641305	 9	

NS60641309	 3	

NS60641310	 2	

NS60641502	 1	

NS60641503	 1.2	

NS60641605	 2.2	

NS60641702	 1.2	

NS60641704	 1.5	

NS60641705	 1.8	

NS60641706	 2.2	

NS60641708	 1.5	

NS60641710	 1.5	

NS60641803	 1	

NS60641805	 1.2	

NS60642003	 2	

NS60642004	 4	

NS60642005	 4	

NS60642006	 2	

NS60642009	 5	

NS60642010	 10	

NS60642011	 6	

NS60642103	 4	

NS60642501	 1.7	

NS60642506	 1.9	

NS60642507	 3	

NS60642512	 3	

NS60642605	 1.5	

NS60642701	 1.8	

NS60643001	 10	

NS60643003	 2	

NS60643007	 6	

NS60643401	 3	

NS60643403	 1.9	

NS60643405	 2	

NS60643410	 3	

NS60643412	 3	

NS60643414	 2.6	

NS60643604	 1.5	

NS60643612	 1.2	

NS60643715	 1.7	

NS60643716	 1.8	

NS60643902	 3	

NS60644502	 1.8	

NS60644503	 1.8	

NS60644504	 2	

NS60644506	 3.2	

NS60644602	 1.2	

NS60644603	 1	

NS60644604	 1	

NS60644611	 1	

NS60644614	 1	

NS60644622	 3.2	

NS60644624	 3	

NS60644704	 1	

NS60644804	 3	

NS60644903	 1.8	

NS60644904	 3	
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NS60644906	 3	

NS60645002	 2	

NS60645005	 2	

NS60645009	 1	

NS60645711	 1.8	

NS60645715	 1.5	

NS60645793	 1	

NS60645794	 1	

NS60645804	 3	

NS60645902	 1.2	

NS60646004	 3	

NS60646407	 2.4	

NS60646597	 2.4	

NS60646598	 2.4	

NS60646599	 1.8	

NS60646701	 2	

NS60647108	 4	

NS60647203	 3.7	

NS60647217	 1.8	

NS60647218	 3	

NS60647301	 3.7	

NS60647306	 3.7	

NS60647404	 1.9	

NS60647406	 1.9	

NS60647407	 3.7	

NS60647503	 1	

NS60647504	 1.7	

NS60647601	 1.6	

NS60647602	 1.9	

NS60647603	 1.8	

NS60647702	 2.2	

NS60647704	 2.2	

NS60647705	 1.6	

NS60647706	 2.2	

NS60647713	 2.2	

NS60648501	 1.7	

NS60648601	 1.6	

NS60648602	 1.6	

NS60648606	 1.7	

NS60648710	 1.2	

NS60648713	 1.2	

NS60648718	 1.7	

NS60648719	 1.8	

NS60648720	 1.8	

NS60648801	 2.2	

NS60648901	 2.2	

NS60648902	 1.5	

NS60648905	 2.2	

NS60649601	 1.6	

NS60649603	 1.7	

NS60649604	 1.7	

NS60649712	 1.3	

NS60649802	 1.6	

NS60649901	 1.5	

NS60653004	 3	

NS60653109	 3.2	

NS60653110	 3.2	

NS60653114	 2.1	

NS60654102	 2.1	

NS60655003	 1.6	

NS60655104	 1.6	

NS60655107	 2.1	

NS60655112	 1.6	

NS60656001	 1.9	

NS60656002	 1.9	

NS60656101	 1.2	

NS60656103	 1.2	

NS60656111	 1	

NS60656116	 1	

NS60656118	 1.5	

NS60656201	 1	

NS60656213	 1.5	

NS60656215	 1.5	

NS60656305	 1.4	

NS60656306	 1.5	
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NS60657001	 2	

NS60657002	 2	

NS60657008	 1.5	

NS60657107	 1	

NS60657109	 1	

NS60657114	 1	

NS60657115	 1	

NS60657302	 1	

NS60657402	 1.4	

NS60658001	 1.4	

NS60658006	 1.4	

NS60658007	 1.4	

NS60658102	 1	

NS60658402	 1.2	

NS60659008	 1.4	

NS60659101	 1	

NS61620299	 4	

NS61620901	 2	

NS61630003	 1	

NS61630102	 4	

NS61630105	 4	

NS61630202	 1	

NS61631001	 4	

NS61631002	 4	

NS61631102	 8	

NS61631104	 4	

NS61631105	 9	

NS61631106	 4	

NS61632101	 2	

NS61640603	 1.6	

NS61640605	 1.5	

NS61640803	 1.5	

NS61640905	 1.6	

NS61641603	 1.2	

NS61641609	 1.5	

NS61641701	 1	

NS61641707	 1.5	

NS61641801	 1.5	

NS61641804	 1.5	

NS61641999	 1.5	

NS61642801	 1.4	

NS61643806	 1.5	

NS61644903	 1.3	

NS61650001	 1.8	

NS61650003	 1.3	

NS61650007	 1.5	

NS61650009	 1.4	

NS61650010	 1.8	

NS61650011	 1.8	

NS61650012	 1.3	

NS61650102	 1.3	

NS61650301	 1.3	

NS61650302	 1.3	

NS61650402	 1.3	

NS61650403	 1.2	

NS61650501	 1.2	

NS61650503	 1.2	

NS61651001	 1	

NS61651002	 1	

NS61651006	 1.8	

NS61651007	 1.8	

NS61651008	 1.7	

NS61651103	 1	

NS61651109	 1	

NS61651111	 1	

NS61651113	 1	

NS61651513	 1	

NS61652005	 1.7	

NS61652101	 1.2	

NS61652102	 1.2	

NS61652301	 1.2	

NS61652305	 1	

NS61652306	 1.2	

NS61652402	 1.2	

NS61653002	 1.7	
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NS61653102	 1.2	

NS61653304	 1	

NS61654001	 1.7	

NS61654101	 1.2	

NS61654302	 1.2	

NS61655005	 1.7	

NS61655101	 1.4	

NS61655103	 1.4	

NS61655201	 1.4	

NS61655301	 1.4	
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B Pipe Values 

US	Node	ID	 Link	Suffix	 DS	Node	ID	
Width	
(mm)	

new	mh11	 1	 newmh12	 1600	

newmh1	 2	 newmh3	 1050	

newmh10	 1	 new	mh11	 1600	

newmh12	 1	 NS61620299	 1650	

newmh14	 1	 NS61640603	 600	

newmh2	 1	 newmh4	 1050	

newmh3	 2	 newmh5	 1050	

newmh4	 1	 newmh6	 1050	

newmh5	 2	 NS60642103	 1050	

newmh6	 1	 NS60642103	 675	

newmh7	 1	 newmh8	 1600	

newmh8	 1	 newmh9	 1600	

newmh9	 1	 newmh10	 1600	

NS59645401	 1	 NS59645407	 3600	

NS59645407	 1	 NS59644401	 1400	

NS59645507	 1	 NS59645401	 3600	

NS59645508	 1	 NS59645510	 3600	

NS59645510	 1	 NS59645507	 3600	

NS59645512	 1	 NS59645508	 1400	

NS59646501	 1	 NS59645512	 2850	

NS59646511	 1	 NS59646501	 3200	

NS59647505	 1	 NS59646511	 2100	

NS59647556	 1	 NS59647505	 1800	

NS59648404	 1	 NS59648410	 1800	

NS59648407	 1	 NS59648404	 1800	

NS59648410	 1	 NS59647556	 1800	

NS59649302	 1	 NS59648407	 1950	

NS59649604	 1	 NS60640606	 1200	

NS59649705	 1	 NS59649604	 1200	

NS60632801	 1	 NS60632804	 1500	

NS60632802	 1	 NS60632801	 1500	

NS60632804	 1	 NS60633705	 1650	

NS60632901	 1	 NS60632802	 1500	

NS60632902	 1	 NS60632901	 1500	

NS60633401	 1	 NS60634409	 1800	

NS60633501	 1	 NS60633401	 1600	

NS60633502	 1	 NS60633501	 1600	

NS60633601	 1	 NS60633502	 1600	

NS60633602	 1	 NS60633601	 1600	

NS60633705	 1	 NS60633708	 1600	

NS60633708	 1	 NS60633602	 1600	

NS60633801	 1	 NS60634702	 675	

NS60633802	 1	 NS60632804	 1200	

NS60633802	 2	 NS60633806	 700	
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NS60633803	 1	 NS60633802	 700	

NS60633806	 1	 NS60633801	 700	

NS60633901	 1	 NS60633803	 675	

NS60633902	 1	 NS60633901	 750	

NS60633905	 1	 NS60633902	 450	

NS60634201	 1	 NS60635203	 1650	

NS60634301	 1	 NS60634303	 1600	

NS60634302	 1	 NS60634303	 600	

NS60634303	 1	 NS60634201	 1600	

NS60634401	 1	 NS60634404	 400	

NS60634403	 1	 NS60634409	 500	

NS60634404	 1	 NS60634403	 400	

NS60634405	 1	 NS60634404	 300	

NS60634409	 1	 NS60634301	 1600	

NS60634701	 1	 NS60633708	 600	

NS60634702	 1	 NS60634701	 400	

NS60634710	 1	 NS60634701	 600	

NS60634909	 1	 NS60643007	 2000	

NS60635203	 1	 NS60636203	 1600	

NS60635302	 1	 NS60635203	 300	

NS60635701	 1	 NS60634710	 630	

NS60635812	 1	 NS60636815	 350	

NS60635813	 1	 NS60633802	 1200	

NS60635901	 1	 NS60635922	 150	

NS60635911	 1	 NS60635936	 275	

NS60635922	 1	 NS60635813	 1250	

NS60635935	 1	 NS60635945	 2600	

NS60635936	 1	 NS60635935	 3600	

NS60635945	 1	 NS60634909	 2700	

NS60636103	 1	 NS60636105	 1600	

NS60636105	 1	 NS60637102	 1600	

NS60636201	 1	 NS60636103	 1600	

NS60636203	 1	 NS60636201	 1800	

NS60636301	 1	 NS60636303	 525	

NS60636302	 1	 NS60636301	 525	

NS60636303	 1	 NS60636103	 525	

NS60636305	 1	 NS60636302	 375	

NS60636401	 1	 NS60636409	 525	

NS60636403	 1	 NS60636302	 525	

NS60636404	 1	 NS60636408	 225	

NS60636408	 1	 NS60636401	 400	

NS60636408	 2	 NS60636403	 450	

NS60636409	 1	 NS60636506	 500	

NS60636501	 1	 NS60636506	 300	

NS60636503	 1	 NS60636501	 225	

NS60636506	 1	 NS60636605	 630	

NS60636604	 1	 NS60636707	 750	

NS60636605	 1	 NS60636604	 600	

NS60636701	 1	 NS60635701	 600	

NS60636705	 1	 NS60636707	 450	
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NS60636707	 1	 NS60636701	 630	

NS60636801	 1	 NS60636909	 525	

NS60636812	 1	 NS60636705	 450	

NS60636815	 1	 NS60636801	 630	

NS60636901	 1	 NS60635936	 3400	

NS60636902	 1	 NS60636909	 1200	

NS60636909	 1	 NS60635922	 1200	

NS60636911	 2	 NS60636916	 3500	

NS60636916	 1	 NS60636901	 2600	

NS60636916	 2	 NS60636902	 1200	

NS60637001	 1	 NS60637103	 450	

NS60637005	 1	 NS60637001	 450	

NS60637101	 1	 NS60637110	 1600	

NS60637102	 1	 NS60637101	 1650	

NS60637103	 1	 NS60637108	 450	

NS60637104	 1	 NS60637106	 450	

NS60637106	 1	 NS60637110	 450	

NS60637108	 1	 NS60637104	 450	

NS60637110	 1	 NS60638102	 1600	

NS60637201	 1	 NS60637202	 400	

NS60637202	 1	 NS60637110	 375	

NS60637207	 1	 NS60637201	 375	

NS60637301	 1	 NS60636305	 375	

NS60637501	 1	 NS60637506	 450	

NS60637506	 1	 NS60636506	 450	

NS60637705	 1	 NS60636707	 600	

NS60637907	 1	 NS60636812	 600	

NS60637916	 1	 NS60637920	 2700	

NS60637920	 1	 NS60636911	 2700	

NS60638002	 1	 NS60637005	 450	

NS60638101	 1	 NS60639105	 1600	

NS60638102	 1	 NS60638107	 1800	

NS60638107	 1	 NS60638101	 1650	

NS60638204	 1	 NS60638206	 375	

NS60638206	 1	 NS60638209	 375	

NS60638208	 1	 NS60637207	 400	

NS60638209	 1	 NS60638303	 375	

NS60638209	 2	 NS60638208	 375	

NS60638301	 1	 NS60637301	 400	

NS60638303	 1	 NS60638301	 375	

NS60638406	 1	 NS60638301	 400	

NS60638501	 1	 NS60637501	 450	

NS60638504	 1	 NS60638507	 525	

NS60638507	 1	 NS60638501	 450	

NS60638601	 1	 NS60638610	 500	

NS60638610	 1	 NS60638507	 450	

NS60638715	 1	 NS60637705	 300	

NS60639101	 1	 NS60639107	 1600	

NS60639105	 1	 NS60639101	 1600	

NS60639107	 1	 NS61630102	 1600	
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NS60639203	 1	 NS60638204	 450	

NS60639301	 1	 NS60638204	 400	

NS60639603	 1	 NS60639606	 525	

NS60639606	 1	 NS60639704	 525	

NS60639704	 1	 NS60637705	 525	

NS60640603	 1	 NS60642512	 1200	

NS60640606	 1	 NS60640603	 1200	

NS60640609	 1	 NS60640708	 450	

NS60640701	 1	 NS60640707	 450	

NS60640707	 1	 NS60640708	 1100	

NS60640708	 1	 NS60640709	 1100	

NS60640709	 1	 NS59649705	 1200	

NS60640804	 1	 NS60640701	 450	

NS60641102	 1	 NS60642103	 900	

NS60641201	 1	 NS60641102	 900	

NS60641202	 1	 NS60641203	 900	

NS60641203	 1	 NS60641201	 900	

NS60641208	 1	 NS59649302	 1800	

NS60641305	 1	 NS60641310	 900	

NS60641309	 1	 NS60641202	 975	

NS60641310	 1	 NS60641309	 900	

NS60641502	 1	 NS60641503	 375	

NS60641503	 1	 NS60642506	 450	

NS60641605	 1	 NS60641706	 900	

NS60641702	 1	 NS60641704	 450	

NS60641704	 1	 NS60641708	 640	

NS60641705	 1	 NS60641710	 630	

NS60641706	 1	 NS60641704	 640	

NS60641708	 1	 NS60640707	 640	

NS60641710	 1	 NS60641706	 630	

NS60641803	 1	 NS60641805	 225	

NS60641805	 1	 NS60641702	 450	

NS60642003	 1	 NS60642005	 900	

NS60642004	 1	 NS60632902	 1600	

NS60642005	 1	 NS60642004	 1600	

NS60642006	 1	 NS60642003	 900	

NS60642009	 1	 NS60641208	 2000	

NS60642010	 1	 NS60642011	 2100	

NS60642011	 1	 NS60642009	 1800	

NS60642103	 1	 NS60642005	 1350	

NS60642501	 1	 NS60642506	 710	

NS60642506	 1	 NS60643403	 800	

NS60642507	 1	 NS60643401	 1200	

NS60642512	 1	 NS60642507	 1200	

NS60642605	 1	 NS60641605	 600	

NS60642701	 1	 NS60641705	 750	

NS60643001	 1	 NS60642010	 2800	

NS60643003	 1	 NS60642006	 900	

NS60643007	 1	 NS60643001	 2000	

NS60643401	 1	 NS60643410	 1200	
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NS60643403	 1	 NS60643410	 800	

NS60643405	 1	 NS60643414	 680	

NS60643410	 1	 newmh2	 1050	

NS60643410	 2	 newmh1	 1050	

NS60643412	 1	 NS60643410	 1200	

NS60643414	 2	 NS60643412	 1062	

NS60643604	 1	 NS60642605	 600	

NS60643612	 1	 NS60643604	 450	

NS60643715	 1	 NS60643716	 730	

NS60643716	 1	 NS60642701	 750	

NS60643902	 1	 NS60644906	 1200	

NS60644502	 1	 NS60644503	 745	

NS60644503	 1	 NS60644504	 750	

NS60644504	 1	 NS60643405	 830	

NS60644506	 1	 NS60643412	 1200	

NS60644602	 1	 NS60644502	 450	

NS60644603	 1	 NS60644602	 225	

NS60644604	 1	 NS60644603	 225	

NS60644611	 1	 NS60644604	 225	

NS60644614	 1	 NS60644611	 225	

NS60644622	 1	 NS60644506	 1250	

NS60644624	 1	 NS60644622	 1200	

NS60644704	 1	 NS60644614	 150	

NS60644804	 1	 NS60645804	 1200	

NS60644903	 1	 NS60644906	 770	

NS60644904	 1	 NS60644804	 1200	

NS60644906	 1	 NS60644904	 1200	

NS60645002	 1	 NS60645005	 675	

NS60645005	 1	 NS60646004	 450	

NS60645009	 1	 NS60645005	 450	

NS60645711	 1	 NS60646701	 750	

NS60645715	 1	 NS60645711	 600	

NS60645793	 1	 NS60645794	 150	

NS60645804	 1	 NS60644624	 1200	

NS60645902	 1	 NS60644903	 450	

NS60646004	 1	 NS60636902	 1200	

NS60646407	 1	 NS60647407	 900	

NS60646597	 1	 NS60646407	 1000	

NS60646598	 1	 NS60646597	 1000	

NS60646599	 1	 NS60646598	 740	

NS60646701	 1	 NS60647702	 825	

NS60647217	 1	 NS60647218	 710	

NS60647218	 1	 NS60647108	 1200	

NS60647301	 1	 NS60647306	 1400	

NS60647306	 1	 NS60647203	 1400	

NS60647404	 1	 NS60647406	 800	

NS60647406	 1	 NS60647407	 800	

NS60647407	 1	 NS60647301	 1400	

NS60647503	 1	 NS60647404	 375	

NS60647504	 1	 NS60647404	 700	
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NS60647601	 1	 NS60647702	 675	

NS60647602	 1	 NS60647603	 740	

NS60647603	 1	 NS60646599	 740	

NS60647702	 1	 NS60647602	 800	

NS60647704	 1	 NS60647713	 920	

NS60647705	 1	 NS60647704	 650	

NS60647706	 1	 NS60647702	 920	

NS60647713	 1	 NS60647706	 920	

NS60648501	 1	 NS60647504	 700	

NS60648601	 1	 NS60648602	 675	

NS60648602	 1	 NS60647601	 675	

NS60648606	 1	 NS60648501	 700	

NS60648710	 1	 NS60647705	 450	

NS60648713	 1	 NS60648710	 450	

NS60648718	 1	 NS60648713	 450	

NS60648719	 1	 NS60648718	 720	

NS60648720	 1	 NS60648719	 770	

NS60648801	 1	 NS60647704	 920	

NS60648901	 1	 NS60648905	 920	

NS60648902	 1	 NS60648901	 600	

NS60648905	 1	 NS60648801	 920	

NS60649601	 1	 NS60649603	 675	

NS60649603	 1	 NS60648601	 675	

NS60649604	 1	 NS60649603	 690	

NS60649712	 1	 NS60648720	 500	

NS60649802	 1	 NS60649901	 600	

NS60649901	 1	 NS60648902	 600	

NS60653004	 1	 NS60643902	 1200	

NS60653109	 1	 NS60653004	 1200	

NS60653110	 1	 NS60653109	 1250	

NS60653114	 2	 NS60653110	 880	

NS60654102	 1	 NS60653114	 615	

NS60655003	 1	 NS60655107	 660	

NS60655104	 1	 NS60655112	 680	

NS60655107	 1	 NS60654102	 880	

NS60655112	 1	 NS60655107	 580	

NS60656001	 1	 NS60655003	 600	

NS60656002	 1	 NS60656001	 780	

NS60656101	 1	 NS60656103	 450	

NS60656103	 1	 NS60656001	 450	

NS60656111	 1	 NS60656103	 225	

NS60656116	 1	 NS60656111	 225	

NS60656118	 1	 NS60655104	 600	

NS60656201	 1	 NS60656116	 225	

NS60656213	 1	 NS60656215	 600	

NS60656215	 1	 NS60656118	 600	

NS60656305	 1	 NS60656306	 580	

NS60656306	 1	 NS60656213	 600	

NS60657001	 1	 NS60657002	 840	

NS60657002	 1	 NS60656002	 600	
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NS60657008	 1	 NS60657002	 600	

NS60657107	 1	 NS60657109	 375	

NS60657109	 1	 NS60657114	 375	

NS60657114	 1	 NS60657115	 375	

NS60657115	 1	 NS60656101	 375	

NS60657302	 1	 NS60656305	 300	

NS60657402	 1	 NS60656305	 580	

NS60658001	 1	 NS60658007	 570	

NS60658006	 1	 NS60657008	 550	

NS60658007	 1	 NS60658006	 550	

NS60658102	 1	 NS60657107	 375	

NS60658402	 1	 NS60657402	 450	

NS60659008	 1	 NS60658007	 550	

NS60659101	 1	 NS60658001	 300	

NS61620901	 1	 NS61630003	 450	

NS61630003	 1	 NS61630105	 450	

NS61630102	 1	 NS61630105	 1600	

NS61630105	 1	 NS61631106	 1600	

NS61630202	 1	 NS60639203	 375	

NS61631001	 1	 newmh7	 1600	

NS61631002	 1	 NS61631001	 1600	

NS61631102	 1	 NS61631105	 1800	

NS61631104	 1	 NS61631102	 1650	

NS61631105	 1	 NS61631002	 1600	

NS61631106	 1	 NS61631104	 1600	

NS61632101	 1	 NS61631105	 700	

NS61640603	 1	 NS60649601	 675	

NS61640605	 1	 NS61640603	 610	

NS61640803	 1	 NS60649802	 600	

NS61640905	 1	 NS60649802	 650	

NS61641603	 1	 NS61640605	 450	

NS61641609	 1	 newmh14	 600	

NS61641701	 1	 NS61641603	 375	

NS61641707	 1	 NS61641609	 600	

NS61641801	 1	 NS61641804	 600	

NS61641804	 1	 NS61641707	 600	

NS61641999	 1	 NS61641801	 600	

NS61642801	 1	 NS61641801	 580	

NS61643806	 1	 NS61641804	 610	

NS61644903	 1	 NS61643806	 530	

NS61650001	 1	 NS61650010	 770	

NS61650003	 1	 NS61650012	 520	

NS61650007	 1	 NS61640905	 635	

NS61650009	 1	 NS60659008	 550	

NS61650010	 1	 NS61650009	 550	

NS61650010	 2	 NS61650007	 620	

NS61650011	 1	 NS61650010	 760	

NS61650012	 1	 NS61650001	 520	

NS61650102	 1	 NS61650003	 500	

NS61650301	 1	 NS61650302	 500	
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NS61650302	 1	 NS61650102	 460	

NS61650402	 1	 NS61650301	 500	

NS61650403	 1	 NS61650402	 450	

NS61650501	 1	 NS61650403	 450	

NS61650503	 1	 NS61650501	 450	

NS61651001	 1	 NS61651007	 375	

NS61651002	 1	 NS61651001	 375	

NS61651006	 1	 NS61651007	 750	

NS61651006	 2	 NS61641999	 600	

NS61651007	 1	 NS61650011	 770	

NS61651008	 1	 NS61651006	 700	

NS61651103	 1	 NS61652101	 375	

NS61651109	 1	 NS61651111	 300	

NS61651111	 1	 NS61651002	 375	

NS61651513	 1	 NS61650503	 375	

NS61652005	 1	 NS61651008	 690	

NS61652101	 1	 NS61652102	 450	

NS61652102	 1	 NS61651008	 450	

NS61652301	 1	 NS61652306	 450	

NS61652305	 1	 NS61652306	 300	

NS61652306	 1	 NS61652101	 450	

NS61652402	 1	 NS61652301	 450	

NS61653002	 1	 NS61652005	 690	

NS61653102	 1	 NS61653002	 450	

NS61653304	 1	 NS61654302	 375	

NS61654001	 1	 NS61653002	 720	

NS61654101	 1	 NS61655103	 450	

NS61654302	 1	 NS61655301	 450	

NS61655005	 1	 NS61654001	 720	

NS61655101	 1	 NS61655103	 580	

NS61655103	 1	 NS61655005	 570	

NS61655201	 1	 NS61655101	 580	

NS61655301	 1	 NS61655201	 580	

  



Appendices – Appendix IV – Decision Variable Details 

  Page: 333 

C Node Values 

Node	ID	

Chamber	
Plan	Area	
(m2)	

new	mh11	 4	

newmh1	 2.6	

newmh10	 4	

newmh12	 4	

newmh14	 1.5	

newmh2	 2.6	

newmh3	 2.6	

newmh4	 2.6	

newmh5	 2.6	

newmh6	 2.6	

newmh7	 4	

newmh8	 4	

newmh9	 4	

NS59644401	 4	

NS59645401	 16	

NS59645407	 16	

NS59645507	 16	

NS59645508	 16	

NS59645510	 16	

NS59645512	 10	

NS59646501	 10	

NS59646511	 10	

NS59647505	 5	

NS59647556	 5	

NS59648404	 5	

NS59648407	 5	

NS59648410	 5	

NS59649302	 5	

NS59649604	 3	

NS59649705	 3	

NS60632801	 4	

NS60632802	 4	

NS60632804	 4	

NS60632901	 4	

NS60632902	 4	

NS60633401	 4	

NS60633501	 4	

NS60633502	 4	

NS60633601	 4	

NS60633602	 4	

NS60633705	 4	

NS60633708	 4	

NS60633801	 2	

NS60633802	 3	

NS60633803	 2	

NS60633806	 2	

NS60633901	 2	

NS60633902	 2	

NS60633905	 1	

NS60634201	 4	

NS60634301	 4	

NS60634302	 1	

NS60634303	 4	

NS60634401	 1	

NS60634403	 1	

NS60634404	 1	

NS60634405	 1	

NS60634409	 4	

NS60634701	 1	

NS60634702	 2	

NS60634710	 1	

NS60634909	 8	

NS60635203	 4	

NS60635302	 1	

NS60635701	 1	

NS60635812	 1	
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NS60635813	 3	

NS60635901	 1	

NS60635911	 1	

NS60635922	 3	

NS60635935	 15	

NS60635936	 15	

NS60635945	 8	

NS60636103	 4	

NS60636105	 4	

NS60636201	 4	

NS60636203	 4	

NS60636301	 1	

NS60636302	 1	

NS60636303	 1	

NS60636305	 1	

NS60636401	 1	

NS60636403	 1	

NS60636404	 1	

NS60636408	 1	

NS60636409	 1	

NS60636501	 1	

NS60636503	 1	

NS60636506	 1	

NS60636604	 1	

NS60636605	 1	

NS60636701	 1	

NS60636705	 1	

NS60636707	 1	

NS60636801	 1	

NS60636812	 1	

NS60636815	 1	

NS60636901	 13	

NS60636902	 3	

NS60636909	 3	

NS60636911	 12	

NS60636916	 12	

NS60637001	 1	

NS60637005	 1	

NS60637101	 4	

NS60637102	 4	

NS60637103	 1	

NS60637104	 1	

NS60637106	 1	

NS60637108	 1	

NS60637110	 4	

NS60637201	 1	

NS60637202	 1	

NS60637207	 1	

NS60637301	 1	

NS60637501	 1	

NS60637506	 1	

NS60637705	 1	

NS60637907	 1	

NS60637916	 9	

NS60637920	 9	

NS60638002	 1	

NS60638101	 4	

NS60638102	 4	

NS60638107	 4	

NS60638204	 1	

NS60638206	 1	

NS60638208	 1	

NS60638209	 1	

NS60638301	 1	

NS60638303	 1	

NS60638406	 1	

NS60638501	 1	

NS60638504	 1	

NS60638507	 1	

NS60638601	 1	

NS60638610	 1	

NS60638715	 1	

NS60639101	 4	

NS60639105	 4	

NS60639107	 4	
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NS60639203	 1	

NS60639301	 1	

NS60639603	 1	

NS60639606	 1	

NS60639704	 1	

NS60640603	 3	

NS60640606	 3	

NS60640609	 1.2	

NS60640701	 1.2	

NS60640707	 2.7	

NS60640708	 2.7	

NS60640709	 3	

NS60640804	 1.2	

NS60641102	 2	

NS60641201	 2	

NS60641202	 2	

NS60641203	 2	

NS60641208	 5	

NS60641305	 2	

NS60641309	 2	

NS60641310	 2	

NS60641502	 1	

NS60641503	 1.2	

NS60641605	 2.2	

NS60641702	 1.2	

NS60641704	 1.5	

NS60641705	 1.8	

NS60641706	 2.2	

NS60641708	 1.5	

NS60641710	 1.5	

NS60641803	 1	

NS60641805	 1.2	

NS60642003	 2	

NS60642004	 4	

NS60642005	 4	

NS60642006	 2	

NS60642009	 5	

NS60642010	 10	

NS60642011	 5	

NS60642103	 4	

NS60642501	 1.7	

NS60642506	 1.9	

NS60642507	 3	

NS60642512	 3	

NS60642605	 1.5	

NS60642701	 1.8	

NS60643001	 10	

NS60643003	 2	

NS60643007	 6	

NS60643401	 3	

NS60643403	 1.9	

NS60643405	 2	

NS60643410	 3	

NS60643412	 3	

NS60643414	 2.6	

NS60643604	 1.5	

NS60643612	 1.2	

NS60643715	 1.7	

NS60643716	 1.8	

NS60643902	 3	

NS60644502	 1.8	

NS60644503	 1.8	

NS60644504	 2	

NS60644506	 3.2	

NS60644602	 1.2	

NS60644603	 1	

NS60644604	 1	

NS60644611	 1	

NS60644614	 1	

NS60644622	 3.2	

NS60644624	 3	

NS60644704	 1	

NS60644804	 3	

NS60644903	 1.8	

NS60644904	 3	
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NS60644906	 3	

NS60645002	 2	

NS60645005	 2	

NS60645009	 1	

NS60645711	 1.8	

NS60645715	 1.5	

NS60645793	 1	

NS60645794	 1	

NS60645804	 3	

NS60645902	 1.2	

NS60646004	 3	

NS60646407	 2.4	

NS60646597	 2.4	

NS60646598	 2.4	

NS60646599	 1.8	

NS60646701	 2	

NS60647108	 4	

NS60647203	 3.7	

NS60647217	 1.8	

NS60647218	 3	

NS60647301	 3.7	

NS60647306	 3.7	

NS60647404	 1.9	

NS60647406	 1.9	

NS60647407	 3.7	

NS60647503	 1	

NS60647504	 1.7	

NS60647601	 1.6	

NS60647602	 1.9	

NS60647603	 1.8	

NS60647702	 2.2	

NS60647704	 2.2	

NS60647705	 1.6	

NS60647706	 2.2	

NS60647713	 2.2	

NS60648501	 1.7	

NS60648601	 1.6	

NS60648602	 1.6	

NS60648606	 1.7	

NS60648710	 1.2	

NS60648713	 1.2	

NS60648718	 1.7	

NS60648719	 1.8	

NS60648720	 1.8	

NS60648801	 2.2	

NS60648901	 2.2	

NS60648902	 1.5	

NS60648905	 2.2	

NS60649601	 1.6	

NS60649603	 1.7	

NS60649604	 1.7	

NS60649712	 1.3	

NS60649802	 1.6	

NS60649901	 1.5	

NS60653004	 3	

NS60653109	 3.2	

NS60653110	 3.2	

NS60653114	 2.1	

NS60654102	 2.1	

NS60655003	 1.6	

NS60655104	 1.6	

NS60655107	 2.1	

NS60655112	 1.6	

NS60656001	 1.9	

NS60656002	 1.9	

NS60656101	 1.2	

NS60656103	 1.2	

NS60656111	 1	

NS60656116	 1	

NS60656118	 1.5	

NS60656201	 1	

NS60656213	 1.5	

NS60656215	 1.5	

NS60656305	 1.4	

NS60656306	 1.5	
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NS60657001	 2	

NS60657002	 2	

NS60657008	 1.5	

NS60657107	 1	

NS60657109	 1	

NS60657114	 1	

NS60657115	 1	

NS60657302	 1	

NS60657402	 1.4	

NS60658001	 1.4	

NS60658006	 1.4	

NS60658007	 1.4	

NS60658102	 1	

NS60658402	 1.2	

NS60659008	 1.4	

NS60659101	 1	

NS61620299	 3	

NS61620901	 1	

NS61630003	 1	

NS61630102	 4	

NS61630105	 4	

NS61630202	 1	

NS61631001	 4	

NS61631002	 4	

NS61631102	 4	

NS61631104	 4	

NS61631105	 4	

NS61631106	 4	

NS61632101	 2	

NS61640603	 1.6	

NS61640605	 1.5	

NS61640803	 1.5	

NS61640905	 1.6	

NS61641603	 1.2	

NS61641609	 1.5	

NS61641701	 1	

NS61641707	 1.5	

NS61641801	 1.5	

NS61641804	 1.5	

NS61641999	 1.5	

NS61642801	 1.4	

NS61643806	 1.5	

NS61644903	 1.3	

NS61650001	 1.8	

NS61650003	 1.3	

NS61650007	 1.5	

NS61650009	 1.4	

NS61650010	 1.8	

NS61650011	 1.8	

NS61650012	 1.3	

NS61650102	 1.3	

NS61650301	 1.3	

NS61650302	 1.3	

NS61650402	 1.3	

NS61650403	 1.2	

NS61650501	 1.2	

NS61650503	 1.2	

NS61651001	 1	

NS61651002	 1	

NS61651006	 1.8	

NS61651007	 1.8	

NS61651008	 1.7	

NS61651103	 1	

NS61651109	 1	

NS61651111	 1	

NS61651113	 1	

NS61651513	 1	

NS61652005	 1.7	

NS61652101	 1.2	

NS61652102	 1.2	

NS61652301	 1.2	

NS61652305	 1	

NS61652306	 1.2	

NS61652402	 1.2	

NS61653002	 1.7	
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NS61653102	 1.2	

NS61653304	 1	

NS61654001	 1.7	

NS61654101	 1.2	

NS61654302	 1.2	

NS61655005	 1.7	

NS61655101	 1.4	

NS61655103	 1.4	

NS61655201	 1.4	

NS61655301	 1.4	

  



Appendices – Appendix IV – Decision Variable Details 

  Page: 339 

C Pipe Values 

US	Node	ID	 Link	Suffix	 DS	Node	ID	
Width	
(mm)	

new	mh11	 1	 newmh12	 1600	

newmh1	 2	 newmh3	 1050	

newmh10	 1	 new	mh11	 1600	

newmh12	 1	 NS61620299	 1600	

newmh14	 1	 NS61640603	 600	

newmh2	 1	 newmh4	 1050	

newmh3	 2	 newmh5	 1050	

newmh4	 1	 newmh6	 1050	

newmh5	 2	 NS60642103	 1050	

newmh6	 1	 NS60642103	 675	

newmh7	 1	 newmh8	 1600	

newmh8	 1	 newmh9	 1600	

newmh9	 1	 newmh10	 1600	

NS59645401	 1	 NS59645407	 3600	

NS59645407	 1	 NS59644401	 1400	

NS59645507	 1	 NS59645401	 3600	

NS59645508	 1	 NS59645510	 3600	

NS59645510	 1	 NS59645507	 3600	

NS59645512	 1	 NS59645508	 1300	

NS59646501	 1	 NS59645512	 2800	

NS59646511	 1	 NS59646501	 2800	

NS59647505	 1	 NS59646511	 1800	

NS59647556	 1	 NS59647505	 1800	

NS59648404	 1	 NS59648410	 1800	

NS59648407	 1	 NS59648404	 1800	

NS59648410	 1	 NS59647556	 1800	

NS59649302	 1	 NS59648407	 1800	

NS59649604	 1	 NS60640606	 1200	

NS59649705	 1	 NS59649604	 1200	

NS60632801	 1	 NS60632804	 1500	

NS60632802	 1	 NS60632801	 1500	

NS60632804	 1	 NS60633705	 1600	

NS60632901	 1	 NS60632802	 1500	

NS60632902	 1	 NS60632901	 1500	

NS60633401	 1	 NS60634409	 1600	

NS60633501	 1	 NS60633401	 1600	

NS60633502	 1	 NS60633501	 1600	

NS60633601	 1	 NS60633502	 1600	

NS60633602	 1	 NS60633601	 1600	

NS60633705	 1	 NS60633708	 1600	

NS60633708	 1	 NS60633602	 1600	

NS60633801	 1	 NS60634702	 675	

NS60633802	 1	 NS60632804	 1200	

NS60633802	 2	 NS60633806	 700	
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NS60633803	 1	 NS60633802	 700	

NS60633806	 1	 NS60633801	 700	

NS60633901	 1	 NS60633803	 675	

NS60633902	 1	 NS60633901	 700	

NS60633905	 1	 NS60633902	 450	

NS60634201	 1	 NS60635203	 1600	

NS60634301	 1	 NS60634303	 1600	

NS60634302	 1	 NS60634303	 450	

NS60634303	 1	 NS60634201	 1600	

NS60634401	 1	 NS60634404	 375	

NS60634403	 1	 NS60634409	 450	

NS60634404	 1	 NS60634403	 300	

NS60634405	 1	 NS60634404	 300	

NS60634409	 1	 NS60634301	 1600	

NS60634701	 1	 NS60633708	 600	

NS60634702	 1	 NS60634701	 375	

NS60634710	 1	 NS60634701	 600	

NS60634909	 1	 NS60643007	 2000	

NS60635203	 1	 NS60636203	 1600	

NS60635302	 1	 NS60635203	 300	

NS60635701	 1	 NS60634710	 600	

NS60635812	 1	 NS60636815	 300	

NS60635813	 1	 NS60633802	 1200	

NS60635901	 1	 NS60635922	 150	

NS60635911	 1	 NS60635936	 225	

NS60635922	 1	 NS60635813	 1200	

NS60635935	 1	 NS60635945	 2500	

NS60635936	 1	 NS60635935	 3600	

NS60635945	 1	 NS60634909	 2500	

NS60636103	 1	 NS60636105	 1600	

NS60636105	 1	 NS60637102	 1600	

NS60636201	 1	 NS60636103	 1600	

NS60636203	 1	 NS60636201	 1600	

NS60636301	 1	 NS60636303	 525	

NS60636302	 1	 NS60636301	 525	

NS60636303	 1	 NS60636103	 525	

NS60636305	 1	 NS60636302	 375	

NS60636401	 1	 NS60636409	 525	

NS60636403	 1	 NS60636302	 525	

NS60636404	 1	 NS60636408	 225	

NS60636408	 1	 NS60636401	 375	

NS60636408	 2	 NS60636403	 375	

NS60636409	 1	 NS60636506	 375	

NS60636501	 1	 NS60636506	 225	

NS60636503	 1	 NS60636501	 225	

NS60636506	 1	 NS60636605	 600	

NS60636604	 1	 NS60636707	 600	

NS60636605	 1	 NS60636604	 600	

NS60636701	 1	 NS60635701	 600	

NS60636705	 1	 NS60636707	 450	
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NS60636707	 1	 NS60636701	 600	

NS60636801	 1	 NS60636909	 525	

NS60636812	 1	 NS60636705	 450	

NS60636815	 1	 NS60636801	 525	

NS60636901	 1	 NS60635936	 3400	

NS60636902	 1	 NS60636909	 1200	

NS60636909	 1	 NS60635922	 1200	

NS60636911	 2	 NS60636916	 3200	

NS60636916	 1	 NS60636901	 2500	

NS60636916	 2	 NS60636902	 1200	

NS60637001	 1	 NS60637103	 450	

NS60637005	 1	 NS60637001	 450	

NS60637101	 1	 NS60637110	 1600	

NS60637102	 1	 NS60637101	 1600	

NS60637103	 1	 NS60637108	 450	

NS60637104	 1	 NS60637106	 450	

NS60637106	 1	 NS60637110	 450	

NS60637108	 1	 NS60637104	 450	

NS60637110	 1	 NS60638102	 1600	

NS60637201	 1	 NS60637202	 375	

NS60637202	 1	 NS60637110	 375	

NS60637207	 1	 NS60637201	 375	

NS60637301	 1	 NS60636305	 375	

NS60637501	 1	 NS60637506	 450	

NS60637506	 1	 NS60636506	 450	

NS60637705	 1	 NS60636707	 525	

NS60637907	 1	 NS60636812	 450	

NS60637916	 1	 NS60637920	 2700	

NS60637920	 1	 NS60636911	 2700	

NS60638002	 1	 NS60637005	 450	

NS60638101	 1	 NS60639105	 1600	

NS60638102	 1	 NS60638107	 1600	

NS60638107	 1	 NS60638101	 1600	

NS60638204	 1	 NS60638206	 375	

NS60638206	 1	 NS60638209	 375	

NS60638208	 1	 NS60637207	 375	

NS60638209	 1	 NS60638303	 375	

NS60638209	 2	 NS60638208	 375	

NS60638301	 1	 NS60637301	 375	

NS60638303	 1	 NS60638301	 375	

NS60638406	 1	 NS60638301	 375	

NS60638501	 1	 NS60637501	 450	

NS60638504	 1	 NS60638507	 450	

NS60638507	 1	 NS60638501	 450	

NS60638601	 1	 NS60638610	 450	

NS60638610	 1	 NS60638507	 450	

NS60638715	 1	 NS60637705	 300	

NS60639101	 1	 NS60639107	 1600	

NS60639105	 1	 NS60639101	 1600	

NS60639107	 1	 NS61630102	 1600	
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NS60639203	 1	 NS60638204	 375	

NS60639301	 1	 NS60638204	 375	

NS60639603	 1	 NS60639606	 525	

NS60639606	 1	 NS60639704	 525	

NS60639704	 1	 NS60637705	 525	

NS60640603	 1	 NS60642512	 1200	

NS60640606	 1	 NS60640603	 1200	

NS60640609	 1	 NS60640708	 450	

NS60640701	 1	 NS60640707	 450	

NS60640707	 1	 NS60640708	 1100	

NS60640708	 1	 NS60640709	 1100	

NS60640709	 1	 NS59649705	 1200	

NS60640804	 1	 NS60640701	 450	

NS60641102	 1	 NS60642103	 900	

NS60641201	 1	 NS60641102	 900	

NS60641202	 1	 NS60641203	 900	

NS60641203	 1	 NS60641201	 900	

NS60641208	 1	 NS59649302	 1800	

NS60641305	 1	 NS60641310	 900	

NS60641309	 1	 NS60641202	 900	

NS60641310	 1	 NS60641309	 900	

NS60641502	 1	 NS60641503	 375	

NS60641503	 1	 NS60642506	 450	

NS60641605	 1	 NS60641706	 900	

NS60641702	 1	 NS60641704	 450	

NS60641704	 1	 NS60641708	 640	

NS60641705	 1	 NS60641710	 630	

NS60641706	 1	 NS60641704	 640	

NS60641708	 1	 NS60640707	 640	

NS60641710	 1	 NS60641706	 630	

NS60641803	 1	 NS60641805	 225	

NS60641805	 1	 NS60641702	 450	

NS60642003	 1	 NS60642005	 900	

NS60642004	 1	 NS60632902	 1500	

NS60642005	 1	 NS60642004	 1500	

NS60642006	 1	 NS60642003	 900	

NS60642009	 1	 NS60641208	 1800	

NS60642010	 1	 NS60642011	 1800	

NS60642011	 1	 NS60642009	 1800	

NS60642103	 1	 NS60642005	 1350	

NS60642501	 1	 NS60642506	 710	

NS60642506	 1	 NS60643403	 800	

NS60642507	 1	 NS60643401	 1200	

NS60642512	 1	 NS60642507	 1200	

NS60642605	 1	 NS60641605	 600	

NS60642701	 1	 NS60641705	 750	

NS60643001	 1	 NS60642010	 2800	

NS60643003	 1	 NS60642006	 900	

NS60643007	 1	 NS60643001	 2000	

NS60643401	 1	 NS60643410	 1200	
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NS60643403	 1	 NS60643410	 800	

NS60643405	 1	 NS60643414	 680	

NS60643410	 1	 newmh2	 1050	

NS60643410	 2	 newmh1	 1050	

NS60643412	 1	 NS60643410	 1200	

NS60643414	 2	 NS60643412	 1062	

NS60643604	 1	 NS60642605	 600	

NS60643612	 1	 NS60643604	 450	

NS60643715	 1	 NS60643716	 730	

NS60643716	 1	 NS60642701	 750	

NS60643902	 1	 NS60644906	 1200	

NS60644502	 1	 NS60644503	 745	

NS60644503	 1	 NS60644504	 750	

NS60644504	 1	 NS60643405	 830	

NS60644506	 1	 NS60643412	 1200	

NS60644602	 1	 NS60644502	 450	

NS60644603	 1	 NS60644602	 225	

NS60644604	 1	 NS60644603	 225	

NS60644611	 1	 NS60644604	 225	

NS60644614	 1	 NS60644611	 225	

NS60644622	 1	 NS60644506	 1250	

NS60644624	 1	 NS60644622	 1200	

NS60644704	 1	 NS60644614	 150	

NS60644804	 1	 NS60645804	 1200	

NS60644903	 1	 NS60644906	 770	

NS60644904	 1	 NS60644804	 1200	

NS60644906	 1	 NS60644904	 1200	

NS60645002	 1	 NS60645005	 675	

NS60645005	 1	 NS60646004	 450	

NS60645009	 1	 NS60645005	 450	

NS60645711	 1	 NS60646701	 750	

NS60645715	 1	 NS60645711	 600	

NS60645793	 1	 NS60645794	 150	

NS60645804	 1	 NS60644624	 1200	

NS60645902	 1	 NS60644903	 450	

NS60646004	 1	 NS60636902	 1200	

NS60646407	 1	 NS60647407	 900	

NS60646597	 1	 NS60646407	 1000	

NS60646598	 1	 NS60646597	 1000	

NS60646599	 1	 NS60646598	 740	

NS60646701	 1	 NS60647702	 825	

NS60647217	 1	 NS60647218	 710	

NS60647218	 1	 NS60647108	 1200	

NS60647301	 1	 NS60647306	 1400	

NS60647306	 1	 NS60647203	 1400	

NS60647404	 1	 NS60647406	 800	

NS60647406	 1	 NS60647407	 800	

NS60647407	 1	 NS60647301	 1400	

NS60647503	 1	 NS60647404	 375	

NS60647504	 1	 NS60647404	 700	
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NS60647601	 1	 NS60647702	 675	

NS60647602	 1	 NS60647603	 740	

NS60647603	 1	 NS60646599	 740	

NS60647702	 1	 NS60647602	 800	

NS60647704	 1	 NS60647713	 920	

NS60647705	 1	 NS60647704	 650	

NS60647706	 1	 NS60647702	 920	

NS60647713	 1	 NS60647706	 920	

NS60648501	 1	 NS60647504	 700	

NS60648601	 1	 NS60648602	 675	

NS60648602	 1	 NS60647601	 675	

NS60648606	 1	 NS60648501	 700	

NS60648710	 1	 NS60647705	 450	

NS60648713	 1	 NS60648710	 450	

NS60648718	 1	 NS60648713	 450	

NS60648719	 1	 NS60648718	 720	

NS60648720	 1	 NS60648719	 770	

NS60648801	 1	 NS60647704	 920	

NS60648901	 1	 NS60648905	 920	

NS60648902	 1	 NS60648901	 600	

NS60648905	 1	 NS60648801	 920	

NS60649601	 1	 NS60649603	 675	

NS60649603	 1	 NS60648601	 675	

NS60649604	 1	 NS60649603	 690	

NS60649712	 1	 NS60648720	 500	

NS60649802	 1	 NS60649901	 600	

NS60649901	 1	 NS60648902	 600	

NS60653004	 1	 NS60643902	 1200	

NS60653109	 1	 NS60653004	 1200	

NS60653110	 1	 NS60653109	 1250	

NS60653114	 2	 NS60653110	 880	

NS60654102	 1	 NS60653114	 615	

NS60655003	 1	 NS60655107	 660	

NS60655104	 1	 NS60655112	 680	

NS60655107	 1	 NS60654102	 880	

NS60655112	 1	 NS60655107	 580	

NS60656001	 1	 NS60655003	 600	

NS60656002	 1	 NS60656001	 780	

NS60656101	 1	 NS60656103	 450	

NS60656103	 1	 NS60656001	 450	

NS60656111	 1	 NS60656103	 225	

NS60656116	 1	 NS60656111	 225	

NS60656118	 1	 NS60655104	 600	

NS60656201	 1	 NS60656116	 225	

NS60656213	 1	 NS60656215	 600	

NS60656215	 1	 NS60656118	 600	

NS60656305	 1	 NS60656306	 580	

NS60656306	 1	 NS60656213	 600	

NS60657001	 1	 NS60657002	 840	

NS60657002	 1	 NS60656002	 600	
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NS60657008	 1	 NS60657002	 600	

NS60657107	 1	 NS60657109	 375	

NS60657109	 1	 NS60657114	 375	

NS60657114	 1	 NS60657115	 375	

NS60657115	 1	 NS60656101	 375	

NS60657302	 1	 NS60656305	 300	

NS60657402	 1	 NS60656305	 580	

NS60658001	 1	 NS60658007	 570	

NS60658006	 1	 NS60657008	 550	

NS60658007	 1	 NS60658006	 550	

NS60658102	 1	 NS60657107	 375	

NS60658402	 1	 NS60657402	 450	

NS60659008	 1	 NS60658007	 550	

NS60659101	 1	 NS60658001	 300	

NS61620901	 1	 NS61630003	 450	

NS61630003	 1	 NS61630105	 450	

NS61630102	 1	 NS61630105	 1600	

NS61630105	 1	 NS61631106	 1600	

NS61630202	 1	 NS60639203	 375	

NS61631001	 1	 newmh7	 1600	

NS61631002	 1	 NS61631001	 1600	

NS61631102	 1	 NS61631105	 1600	

NS61631104	 1	 NS61631102	 1600	

NS61631105	 1	 NS61631002	 1600	

NS61631106	 1	 NS61631104	 1600	

NS61632101	 1	 NS61631105	 675	

NS61640603	 1	 NS60649601	 675	

NS61640605	 1	 NS61640603	 610	

NS61640803	 1	 NS60649802	 600	

NS61640905	 1	 NS60649802	 650	

NS61641603	 1	 NS61640605	 450	

NS61641609	 1	 newmh14	 600	

NS61641701	 1	 NS61641603	 375	

NS61641707	 1	 NS61641609	 600	

NS61641801	 1	 NS61641804	 600	

NS61641804	 1	 NS61641707	 600	

NS61641999	 1	 NS61641801	 600	

NS61642801	 1	 NS61641801	 580	

NS61643806	 1	 NS61641804	 610	

NS61644903	 1	 NS61643806	 530	

NS61650001	 1	 NS61650010	 770	

NS61650003	 1	 NS61650012	 520	

NS61650007	 1	 NS61640905	 635	

NS61650009	 1	 NS60659008	 550	

NS61650010	 1	 NS61650009	 550	

NS61650010	 2	 NS61650007	 620	

NS61650011	 1	 NS61650010	 760	

NS61650012	 1	 NS61650001	 520	

NS61650102	 1	 NS61650003	 500	

NS61650301	 1	 NS61650302	 500	
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NS61650302	 1	 NS61650102	 460	

NS61650402	 1	 NS61650301	 500	

NS61650403	 1	 NS61650402	 450	

NS61650501	 1	 NS61650403	 450	

NS61650503	 1	 NS61650501	 450	

NS61651001	 1	 NS61651007	 375	

NS61651002	 1	 NS61651001	 375	

NS61651006	 1	 NS61651007	 750	

NS61651006	 2	 NS61641999	 600	

NS61651007	 1	 NS61650011	 770	

NS61651008	 1	 NS61651006	 700	

NS61651103	 1	 NS61652101	 375	

NS61651109	 1	 NS61651111	 300	

NS61651111	 1	 NS61651002	 375	

NS61651513	 1	 NS61650503	 375	

NS61652005	 1	 NS61651008	 690	

NS61652101	 1	 NS61652102	 450	

NS61652102	 1	 NS61651008	 450	

NS61652301	 1	 NS61652306	 450	

NS61652305	 1	 NS61652306	 300	

NS61652306	 1	 NS61652101	 450	

NS61652402	 1	 NS61652301	 450	

NS61653002	 1	 NS61652005	 690	

NS61653102	 1	 NS61653002	 450	

NS61653304	 1	 NS61654302	 375	

NS61654001	 1	 NS61653002	 720	

NS61654101	 1	 NS61655103	 450	

NS61654302	 1	 NS61655301	 450	

NS61655005	 1	 NS61654001	 720	

NS61655101	 1	 NS61655103	 580	

NS61655103	 1	 NS61655005	 570	

NS61655201	 1	 NS61655101	 580	

NS61655301	 1	 NS61655201	 580	
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