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Time delayed feedback control is one of the most successful methods to discover
dynamically unstable features of a dynamical system in an experiment. This
approach feeds back only terms that depend on the difference between the current
output and the output from a fixed time T ago. Thus, any periodic orbit of period T
in the feedback controlled system is also a periodic orbit of the uncontrolled system,
independent of any modelling assumptions.

It has been an open problem whether this approach can be successful in gen-
eral, that is, under genericity conditions similar to those in linear control theory
(controllability), or if there are fundamental restrictions to time-delayed feedback
control. We show that there are no restrictions in principle. This paper proves
the following: for every periodic orbit satisfying a genericity condition slightly
stronger than classical linear controllability, one can find control gains that stabilise
this orbit with extended time-delayed feedback control.

While the paper’s techniques are based on linear stability analysis, they ex-
ploit the specific properties of linearisations near autonomous periodic orbits in
nonlinear systems, and are, thus, mostly relevant for the analysis of nonlinear
experiments.

1. Introduction

Time-delayed feedback control was originally proposed by Pyragas in 1992 as a tool for
discovery of unstable periodic orbits (one frequent building block in nonlinear systems with
chaotic dynamics or multiple attractors) in experimental nonlinear dynamical systems [1].
Pyragas proposed that one take the output x(t) ∈ Rn of a dynamical system and feed back in
real time the difference between this output and the output time T ago into an input u(t) ∈ Rnu

of the system (multiplied by some control gains KT ∈ Rnu×n):

u(t) = KT [x(t− T) − x(t)]. (1)

In a first experimental demonstration, Pyragas and Tamaševičius successfully identified and
stabilised an unstable periodic orbit in a chaotic electrical circuit [2]. Socolar et al in 1994 [3]
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introduced a generalisation of time-delayed feedback (which is often used in place of (1) and
is implemented as shown in Figure 1 as a block diagram):

u(t) = KT [x̃(t) − x(t)], where
x̃(t) = (1 − ε)x̃(t− T) + εx(t− T),

(2)

and ε ∈ (0, 1], called extended time-delayed feedback. If ε = 1, feedback law (2) reduces to time-
delayed feedback (1), if ε = 0 feedback law (2) degenerates to classical linear feedback with a
fixed T -periodic reference signal x̃(t) (see below (3) for a discussion). Note that, for example in
[3], the variable x̃(t) was eliminated in the mathematical discussion by writing

u(t) = KT

ε
 ∞∑
j=1

(1 − ε)j−1x(t− jT)

− x(t)

 .

While this would suggest that knowledge of all history of x is required to initialise the system,
in the experiment the feedback control was implemented as shown in the block diagram in
Figure 1, which is equivalent to (2). By construction of the feedback laws (1) and (2), for

Figure 1: Block diagram for extended time-delayed feedback (2), as applied to an experiment, for
example, in [3]. We prove generic stabilisablity for the case when the output x is the whole internal
state of the dynamical system and the input u is scalar. Triangle block symbols are multiplications of
the signal by the factor in the block.

ε > 0 every periodic orbit of period T of the dynamical system with feedback control is also
a periodic orbit of the uncontrolled system (u = 0).1 However, the stability of the periodic
orbit may change from unstable without control to asymptotically stable with control for
appropriately chosen gains K.

The delayed terms x(t − T) and x̃(t − T) make extended time-delayed feedback control
different from the classical linear feedback control, which has the form

u(t) = KT [x∗(t) − x(t)], (3)

where x∗(t) is, for example, a known unstable periodic orbit of the dynamical system governing
x. While the goal of (3) is to stabilise a known reference output (in this case a periodic orbit),
time-delayed feedback is able to stabilise and, thus, find a-priori unknown periodic orbits. For
this reason time-delayed feedback originated, and has found most attention, in the physics and
science community, rather than in the control engineering community. It can be used to discover
features of nonlinear dynamical systems inaccessible in conventional experiments, such as
unstable equilibria, periodic orbits and their bifurcations, non-invasively. A few examples
where time-delayed feedback (or its extended version) have been successfully used are: control

1For ε 6= 0, (2) with T -periodic x̃ implies that x̃ = x for all t.
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of chemical turbulence [4], all-optical control of unstable steady states and self-pulsations
in semiconductor lasers [5, 6, 7], control of neural synchrony [8, 9, 10], control of the Taylor-
Couette flow [11], atomic force microscopy [12] and (with further modifications) systematic
bifurcation analysis in mechanical experiments in mechanical engineering [13, 14, 15].

One difficulty for time-delayed feedback is that there are until now no general statements
guaranteeing the existence of stabilising control gains K under some genericity condition on
the dynamical system governing x and its input u, such as controllability. This is in contrast to
the situation for classical linear feedback control (3), where the following is known [16]: if the
periodic orbit x∗ is linearly controllable by input u in p periods (this is a genericity condition)
then one can assign its period-pT monodromy matrix to any matrix with positive determinant
by pT -periodic feedback gains K(t)T ∈ Rnu×n.

The greater level of difficulty for (extended) time-delayed feedback is unsurprising since the
feedback-controlled system acquires memory. Let us assume that the measured quantity x is
governed by an ordinary differential equation (ODE) ẋ(t) = f(x(t),u(t)) (which is autonomous
without control (u = 0) and non-autonomous with classical feedback control (3)). Then x and x̃
will be governed by a delay differential equation (DDE) if u is given by time-delayed feedback
(1), or by an ODE coupled to a difference equation if u is given by extended time-delayed
feedback (2) with ε ∈ (0, 1) (we will refer to both cases simply as DDEs). This means that the
initial value for both, x and x̃, is a history segment, a function on [−T , 0] with values in RN.
In DDEs periodic orbits have infinitely many Floquet multipliers.2 Section 2 will review the
development of analysis for the time-delayed feedback laws (1) and (2). This paper proves a
first simple generic stabilisability result for extended time-delayed feedback control (2) with
time-periodic gains K(t) (similar to results for classical linear feedback control).

Main result The following theorem states that the classical approach to periodic feedback gain
design by Brunovsky [17] can be applied to make (2) stable in the limit of small ε > 0 in the
simplest and most common case of a scalar input u (thus, nu = 1) and linear controllability of
the periodic orbit by an input at a single time instant.

Theorem 1.1 (Generic stabilisability with extended time-delayed feedback)

Assume that the dynamical system

ẋ(t) = f(x(t),u(t)) (f : Rn ×R 7→ Rn smooth) (4)

with u = 0 has a periodic orbit x∗(t) of period T > 0, and assume that the monodromy
matrix3 P0 of x∗ from time 0 to T is controllable with b0 = ∂uf(x∗(0), 0) (that is,
det[b0,P0b0, . . . ,Pn−1

0 b0] 6= 0).
Then there exist gains K0 ∈ Rn such that x∗ as a periodic orbit of the feedback

controlled system (4) with (see below for the definition of the function ∆δ)

u(t) = ∆δ(t)K
T
0 [x̃(t) − x(t)], x̃(t) = (1 − ε)x̃(t− T) + εx(t− T) (5)

has one simple Floquet multiplier at 1 and all other Floquet multipliers inside the unit
circle for all sufficiently small ε and δ.

2Floquet multipliers are the eigenvalues of the linearisation of the time-T map along the periodic orbit.
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The function ∆δ is zero except for a short interval of length δ every period T such that the
feedback u has the form of a short but large near-impulse:4

∆δ(t) =

{
1/δ if t|mod[0,T) ∈ [0, δ]
0 if t|mod[0,T) /∈ [0, δ].

(6)

Figure 2: Illustration of Floquet multiplier spectrum for extended time-delayed feedback with single
input. Using the appropriate control gains K0, n Floquet multipliers can be freely assigned up to
determinant restrictions (n = 2 in the illustrated case). The other Floquet multipliers lie on a circle
of radius ε/2 around 1 − ε/2, accumulating at 1 − ε. This spectrum is achieved asymptotically for
sufficiently short and strong impulses (δ � 1) and small ε. A simple trivial multiplier at 1 is always
present.

Remarks — Constant gains The gains as constructed are periodic. This is to be expected since
there are no general results for constant gains K ∈ Rn for the classical linear feedback case
(3), either. Furthermore, simple examples show that the above statement can definitely not be
made when we restrict ourselves to constant gains in (5): u(t) = KT [x̃(t) − x(t)] with K ∈ Rn.
See Section 5 for an example).

Properties of the spectrum of the linearisation (see also Figure 2 for an illustration) The claim of
Theorem 1.1 is about linear stability of the periodic orbit (x(t), x̃(t)) = (x∗(t), x∗(t)) of (4)–(5).
Thus, we have to consider the problem (4)–(5), linearised in (x(t), x̃(t)) = (x∗(t), x∗(t)):

ẋ(t) = A(t)x(t) + b(t)∆δ(t)K
T
0 [x̃(t) − x(t)],

x̃(t) = (1 − ε)x̃(t− T) + εx(t− T),
(7)

where A(t) = ∂xf(x∗(t), 0) and b(t) = ∂uf(x∗(t), 0).
The gains K0 are identical to those chosen by Brunovsky [17] for the classical feedback

spectrum assignment problem (note that Brunovsky made weaker assumptions on A(t) and
b(t) than Theorem 1.1). One can choose the gains K0 to place the n Floquet multipliers λk
(k = 1, . . . ,n) of

ẋ = A(t)x− b(t)∆δ(t)K
T
0 x,

4The notation t|mod[0,T) refers to the number τ ∈ [0, T) such that (t− τ)/T is an integer.
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anywhere inside the unit circle subject to the restriction that they have to be eigenvalues of a
real matrix with positive determinant.

However, DDEs such as (7) may have infinitely many Floquet multipliers. Theorem 1.1 rests
on a perturbation argument for small ε > 0 for the other, delay-induced, Floquet multipliers.5

At ε = 0 the difference equation for x̃ in (7) simplifies to x̃(t) = x̃(t− T). Thus, an arbitrary
initial history x̃ with period T will not change under the time-T map of (7). This results for
ε = 0 in a spectrum of (7) consisting of

• the finitely many assigned Floquet multipliers λk (k = 1, . . . ,n) as determined by the
gains K0, and (assuming all λk 6= 1)

• the spectral point λ∞ = 1 with an infinite-dimensional eigenspace. Specifically, if we
choose the space of continuous functions C([−T , 0]; Rn×Rn) as phase space for (7) then,
for ε = 0, the eigenspace for λ∞ = 1 is{

(x, x̃) ∈ C([−T , 0]; Rn ×Rn) : x(0) = x(−T), x̃(0) = x̃(−T),

ẋ = A(t)x+ b(t)∆δ(t)K
T
0 [x̃(t) − x(t)]

}
.

Note that, since λk 6= 1 for k = 1, . . . ,n, the ODE ẋ = A(t)x+ b(t)∆δ(t)K
T
0 [x̃(t) − x(t)]

has a unique periodic solution x for all periodic functions x̃. This means that for every
T -periodic x̃ there is an eigenvector for λ∞ = 1 with this x̃-component.

The general theory for DDEs [18] ensures that for positive (small) ε the Floquet multipliers
λk (k = 1, . . . ,n) are only slightly perturbed, and that the infinitely many Floquet multipliers
emerging from λ∞ accumulate to the spectrum of the essential part, the difference equation in
(7) with the x̃ terms only: x̃(t) = (1 − ε)x̃(t− T). Specifically, the only accumulation point of
the spectrum of (7) for ε ∈ (0, 1) is at 1 − ε and the stability of (7) is determined by the location
of the Floquet mulitpliers emerging from the perturbation of λ∞ (of which at most finitely
many can lie outside the unit circle). The detailed analysis in Section 3 will show that for
small ε > 0 the Floquet multipliers emerging from λ∞ lie close to a circle of radius ε/2 around
1 − ε/2, inside the unit circle (except for the unit Floquet multiplier), as shown in Figure 2 for
n = 2.

Trivial multiplier The eigenvector to the trivial multiplier 1 is ẋ∗(0), corresponding to the lin-
earised phase shift (for every s ∈ R, t 7→ x∗(t+ s) is also a solution of the system with extended
time-delayed feedback (4), (5)). Section 4 gives a modification of Theorem 1.1 with a function
∆δ depending on x(t) instead of t switching the gains on and off. Then the feedback controlled
system becomes autonomous. In this modified system with autonomous (but nonlinear) ex-
tended time-delayed feedback the periodic orbit x∗ is asymptotically stable in the classical
sense.

Timing of impulse In (6) we chose the timing of the impulse (the part of the period [0, T) where
∆δ is non-zero) as [0, δ] without loss of generality. The genericity condition in its most general
form requires that there must be a time t ∈ [0, T ] such that the monodromy matrix from t to
t+ T and ∂uf(x∗(t), 0) are controllable. As the uncontrolled system is autonomous, we can
shift the phase of the periodic orbit x∗, considering x∗(t+ ·) instead of x∗.

5The perturbation is not a small-delay perturbation since the delay T and one coefficient in front of the delay, 1− ε,
are not small.
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Practical considerations The result gives precise control over the Floquet multipliers in the limit
of small δ and ε. For small δ the feedback control corresponds to a sharp kick once per period,
which is not practical for strongly unstable periodic orbits. However, the gains found with
the help of Theorem 1.1 provide a feasible starting point for optimisation-based spectrum
assignment methods (continuous pole placement) as constructed by Michiels et al [19, 20] and
adapted to time-delayed feedback (1) [21, 22, 23]. In the context of continuation one can
combine the gains provided by Theorem 1.1 as starting points, continuous pole placement,
and the automatic adjustment of the time delay T demonstrated in [24, 25] to create a feedback
control that non-invasively tracks a family of periodic orbits in a system parameter.

2. Review: analysis of (extended) time-delayed feedback

The initial proposals of time-delayed feedback (1) and its extended version (2) were accompa-
nied with demonstrations in simulations and experiments, showing that this type of feedback
control can be successful [1, 2, 3], but not with general necessary or sufficient conditions for
applicability or with constructive ways to design the feedback gains.

However, it was quickly recognised that time-delayed feedback can be applied to periodic
orbits that are weakly unstable due to a period doubling bifurcation or torus bifurcation
[26, 27]. Hence, time-delayed feedback is often associated with control of chaos, because it can
be used to suppress period doubling cascades. However, general sufficient criteria were rather
restrictive [28], requiring full access to the state (x governed by ẋ(t) = f(x(t)) + u(t) with
u ∈ Rn). A first general result was negative, the so-called odd number limitation for periodically
forced systems [29], showing that extended time-delayed feedback cannot stabilise periodic
orbits in periodically forced systems with an odd number of Floquet multipliers λwith Re λ > 1
(and no Floquet multiplier at 1). This theoretical limitation is not a severe restriction in practice
since one can extend the uncontrolled system with an artificial unstable degree of freedom
before applying time-delayed feedback [30]. Fiedler et al showed that this limitation does not
apply to autonomous periodic orbits [31, 32]. Since then general results have been proven for
weakly unstable periodic orbits with a Floquet multiplier close to 1 (but larger than 1, [33]), or
near subcritical Hopf bifurcations [34, 35]. A review of developments up to 2010 is given in
[36].

An extension of the odd number limitation to autonomous periodic orbits (with trivial
Floquet multiplier) was given by Hooton & Amann [37, 38] for both, time-delayed feedback
(1) and its extension (2). However, these limitations merely impose restrictions on the gains K.
They do not rule out feedback stabilisability a priori (which is in contrast to the statements
about periodic orbits in forced systems).

3. Spectrum of linearisation for extended time-delayed feedback-controlled
system

Let us consider a feedback controlled dynamical system with extended time-delayed feedback
control and arbitrary time-dependent gains K(t) ∈ Rn:

ẋ(t) = f(x(t),u(t)), (8)

u(t) = K(t)T [x̃(t) − x(t)], (9)
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x̃(t) = (1 − ε)x̃(t− T) + εx(t− T). (10)

This system is governed by an ordinary differential equation (ODE) without control (u = 0)
and a delay differential equation (DDE) with control. We assume that the uncontrolled system
ẋ(t) = f(x(t), 0) has a periodic orbit x∗ of period T . This periodic orbit x∗ is also a periodic
orbit of (8)–(10) if ε > 0: x(t) = x̃(t) = x∗(t). System (8)–(10) is a DDE with the phase space

{(x, x̃) ∈ C([−T , 0]; Rn ×Rn) : x̃(0) = (1 − ε)x̃(−T) + εx(−T)} .

Hale & Verduyn-Lunel [18] treated DDEs of the type of system (8)–(10) (which contains
difference equations) as part of their discussion of neutral DDEs. The essential part of the
semiflow generated by (8)–(10) is governed by the part of (10) containing x̃: x̃(t) = (1− ε)x̃(t−
T), which is linear and has spectral radius 1 − ε. Thus, it fits into the scope of the theory as
described in the textbook by Hale & Verduyn-Lunel [18]. Specifically, the asymptotic stability
of the periodic orbit given by x(t) = x̃(t) = x∗(t) is determined by the point spectrum of the
linearisation of (8)–(10). Hence, the periodic orbit x∗ is stable if all Floquet multipliers of the
linearisation along x∗ except the trivial multiplier 1 are inside the unit circle (and the trivial
Floquet multiplier 1 is simple). We denote the monodromy matrix6 of

ẋ = [A(t) − µb(t)K(t)T ]x(t), where A(t) = ∂xf(x∗(t), 0), b(t) = ∂uf(x∗(t), 0) (11)

for µ ∈ C by P(µ). Thus, the monodromy matrix of the uncontrolled system ẋ(t) = A(t)x(t)
equals P(0), which we denote by

P0 = P(0). (12)

With this definition of P(µ), Floquet multipliers of the linearisation of (8)–(10) in x∗ different
from 1 − ε are given as roots of

h(λ; ε) := det
[
λI− P

(
1 −

ε

λ− (1 − ε)

)]
(I is the identity matrix; see Section A.1 for detailed proof). The following lemma states that
the gains K(t) can only stabilise a periodic orbit x∗ with extended time-delayed feedback
and small ε, if they are stabilising with classical linear feedback (that is, when replacing the
recursively determined signal x̃ by the target orbit x∗: u(t) = K(t)[x∗(t) − x(t)]). (Recall that
A(t) = ∂xf(x∗(t), 0), b(t) = ∂uf(x∗(t), 0).)

Lemma 3.1 (Extended time-delayed feedback stabilisation implies classical stabilisation)

If the linear system

ẋ(t) = [A(t) − b(t)K(t)T ]x(t) (13)

has at least one Floquet multiplier outside the unit circle, then there exists a εmax ∈ (0, 1)
such that the periodic orbit x∗ is unstable for the extended time-delayed feedback
(8)–(10) for all ε ∈ (0, εmax).

6Thus, P(µ) is defined as the solution y at time T of the linear differential equation ẏ(t) = [A(t) − µb(t)K(t)T ]y(t)
with initial value y(0) = I (I is the identity matrix).
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Proof The Floquet multipliers of (13) are given as roots of h(λ; 0) = det(λI− P(1)). We denote
the root with modulus greater than 1 by λ0 such that h(λ0; 0) = 0. Consequently, for all λ in the
ball Br(λ0), where r = (|λ0|− 1)/2, the difference h(λ; ε) − h(λ; 0) is uniformly bounded and
analytic for all ε ∈ (0, 1) and all λ in Br(λ0). Since λ0 must have finite multiplicity as a root of
h(·; 0), h(λ; ε) must have a root in Br(λ0) for sufficiently small ε > 0 (say, ε ∈ (0, εmax)), too. By
choice of r this root lies outside of the unit circle. (This ends the proof of Lemma 3.1.) �

Lemma 3.1 shows that gains K(t) that stabilise with extended time-delayed feedback with
small ε also have to feedback-stabilise in the classical sense. Since K is an arbitrary periodic
function there are many ways to construct gains for the classical linear feedback control
u(t) = K(t)[x∗(t) − x(t)] for periodic orbits x∗ [16]. We choose the approach comprehensively
treated by Brunovsky [17], which is particularly amenable to analysis in the extended time-
delayed feedback case and for which one can then prove the converse of Lemma 3.1:

extended time-delayed feedback is stabilising for the same gains for which Brunovksy’s
approach is stabilising the classical feedback control.

Near-impulse feedback and its parametrised monodromy matrix We pick state feedback control in the
form of a single large but short impulse. That is, we consider a short time δ ∈ (0, T) and define
the linear feedback control

uδ(t;y) = ∆δ(t)KT0 y, where ∆δ(t) =

{
1/δ if t|mod[0,T) ∈ [0, δ]
0 if t|mod[0,T) /∈ [0, δ].

(14)

where t|mod[0,T) is the number τ ∈ [0, T) such that (t−τ)/T is an integer, andK0 ∈ Rn is a vector
of constant control gains. Let us first look at classical feedback u(t) = ∆δ(t)K

T
0 [x∗(t) − x(t)]

(where we assume that we know the periodic orbit x∗). Using feedback law (14) the feedback
controlled system reads

ẋ(t) = f
(
x(t),∆δ(t)KT0 [x∗(t) − x(t)]

)
. (15)

We define the nonlinear time-T map X(x; δ,K0) as the solution at time T (the period of the
periodic orbit x∗) of (15) when starting from x at time 0 (including the dependence on param-
eters δ and K0 as additional arguments of X). Then, for small deviations y0 from x∗(0), the
map X(·; δ,K0) has the form X(x∗(0) + y0; δ,K0) = y(T) +O(‖y0‖2), where y satisfies the linear
differential equation (recall that A(t) = ∂xf(x∗(t), 0), b(t) = ∂uf(x∗(t), 0))

ẏ(t) =
[
A(t) − b(t)∆δ(t)K

T
0
]
y(t), y(0) = y0, (16)

and the termO(‖y0‖2) is uniformly small (including its derivatives) for all δ . Let us introduce a
complex parameter µ into (16), which will become useful later in our consideration of extended
time-delayed feedback: define for a general complex µwith |µ| 6 C (with an arbitrary fixed
C > 0) the linear ODE

ẏ(t) =
[
A(t) − µb(t)∆δ(t)K

T
0
]
y(t), y(0) = y0. (17)

Denote the monodromy matrix of (17) from t = 0 to t = T by P(µ; δ,K0) to keep track of
its dependence on the parameters δ ∈ (0, T) and K0 ∈ Rn. Thus, P(µ; δ,K0) refers to the
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same monodromy matrix as P(µ), defined by (11), for the special case K(t) = ∆δ(t)K0. Then
P(µ; δ,K0) satisfies

P(µ; δ,K0) = P0 exp(−b(0)KT0 µ) +O(δ), (18)

where the error term O(δ) is uniform for |µ| 6 C and bounded ‖K0‖, including its derivatives
with respect to all arguments. Hence, we can extend the definition of P(µ; δ,K0) to δ = 0:

P(µ; 0,K0) = lim
δ→0

P(µ; δ,K0) = P0 exp(−b(0)KT0 µ),

= P0[I− σ(µ)b(0)KT0 ] where (19)

σ(µ) =


exp

(
µKT0 b(0)

)
− 1

KT0 b(0)
if KT0 b(0) 6= 0

µ if KT0 b(0) = 0.
(20)

The limit is uniform for all µ with modulus less than C. For µ = 0, P is the monodromy matrix
P0 of the uncontrolled system, and, thus, independent of δ and K0.

Approximate spectrum assignment for finitely many Floquet multipliers The control (14) is a simplifi-
cation of the general case of finitely many (at most n) short impulses treated in [17]. Feedback
of type (14) permits us to assign arbitrary spectrum approximately under the assumption that
the pair (P0,b(0)) is controllable (recall that, according to the definition of P0 in (12), P0 is the
monodromy matrix of the uncontrolled system ẋ(t) = f(x(t), 0) along the periodic orbit x∗).
This is a stronger assumption than the assumption made in [17], but it is still a genericity
assumption.

Lemma 3.2 (Approximate spectrum assignment for classical state feedback control, simplified from [17])

Let r > 0 be arbitrary. If the pair (P0,b(0)) is controllable (that is, the n×n controlla-
bility matrix

[
b(0),P0b(0), . . . ,Pn−1

0 b(0)
]

is regular), then there exist a δmax > 0 and a
vector of control gains K0 ∈ Rn in (14) such that all Floquet multipliers of x∗ for the
differential equation (15) have modulus less than r for all δ ∈ (0, δmax), where ∆δ is as
defined in (14).

Note that the vector K0 can be chosen independent of the δ ∈ (0, δmax), but it may depend on
the radius r into which one wants to assign the spectrum. This result follows from classical
linear feedback control theory ([17] proves a more general result). In short, linear feedback
control theory [17] makes the following argument (thus, proving Lemma 3.2): the linearisation
of Xwith respect to its initial condition can be expanded in δ as

∂xX(x∗(0); δ,K0) = P(1; δ,K0) = P0 exp(−b(0)KT0 ) +O(δ)

(where P(·; δ,K0) was the generalised monodromy matrix defined for (17)). Since detP0 is posi-
tive we can for every matrix Rwith positive determinant find a vector K0 such that specR =
spec(P0 exp(−b(0)KT0 )) (using the assumption of controllability; see auxiliary Lemma A.1,
which is a special case from the more general treatment in [17], and [39] for a Matlab imple-
mentation). Hence, if we choose the spectrum of R inside a circle Br/2(0) of radius r/2 around
0, then the spectrum of ∂xX(x∗(0); δ,K0) is also inside Br(0) for sufficiently small δ > 0.
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Approximate spectrum for extended time-delayed feedback We fix the control gains K0 such that
limδ→0 P(1; δ,K0) = P0 exp(−b(0)KT0 ) has all eigenvalues inside Br(0) for some r ∈ (0, 1).
Consider now again the extended time-delayed feedback control (8)–(10) with the particular
choice of short impulse linear feedback law (14):

ẋ(t) = f(x(t),∆δ(t)KT0 [x̃(t) − x(t)]) (21)
x̃(t) = (1 − ε)x̃(t− T) + εx(t− T), (22)

where ε ∈ (0, 1).

Lemma 3.3 (Floquet multipliers of extended time-delayed feedback)

Assume that the matrix P0 exp(−b(0)KT0 ) has all eigenvalues inside the ball Br(0) with
r < 1. Then, for all sufficiently small ε and δ, the periodic orbit x(t) = x̃(t) = x∗(t)
of system (21), (22) has a simple Floquet multiplier λ = 1 and all its other Floquet
multipliers are inside the unit circle.

Outline of proof (details are given in Section A.2) Eigenvalues λ of the linearisation of (21)–(22) are
roots of the function

h(λ; ε, δ) = det
[
λI− P

(
1 −

ε

λ− (1 − ε)
; δ,K0

)]
. (23)

Roots of h with a non-small distance from 1 − ε are close to the roots of det(λI− P(1; δ,K0)),
which are inside the unit circle by assumption. Roots λ of h close to 1 − ε with modulus
greater than 1 − ε/2 have the form λ = 1 − ε+ ε/κ where |κ| is bounded away from 0 and
infinity. The roots κ of h(1 − ε+ ε/κ; δ, ε) are small perturbations of the roots κ`,0 of det(I−
P0 − P0b(0)KT0 σ(κ− 1)), where σ is as defined in (20). These roots κ`,0 have the form

κ`,0 = 1 +
2πi`
KT0 b(0)

(24)

(if KT0 b(0) 6= 0, otherwise, only a single root κ0,0 = 1 exists). The roots κ`,0 have all modulus
greather than unity (except for ` = 0, which corresponds to the trivial eigenvalue λ = 1) such
that the corresponding roots λ` of h have modulus smaller than unity. (This ends the proof of
Lemma 3.3.) �

Remark — two types of Floquet multipliers The proof of Lemma 3.3 shows that there are two
distinct types of roots: those approximating the spectrum assigned by the choice of control
gains K0, and those close to 1 − ε (called λ` above). The roots λ` lie close to the circle of radius
ε/2 around the center 1 − ε/2 in the complex plane and have the form

λ` ≈ 1 −
ε

2
+
ε

2

[
KT0 b(0) − 2πi`
KT0 b(0) + 2πi`

]
(` ∈ Z).

For ` = 0, the expression is exact (giving the simple root at unity), for the others the approxi-
mation is sufficiently accurate for small δ and ε to ensure that they stay inside the unit circle.
The illustration in Figure 2 shows the two distinct groups for the Hopf normal form example
discussed in Section 5.
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Importance of scalar input and trivial Floquet multiplier The proof of Lemma 3.3 hinges on one
argument that depends on the presence of a trivial Floquet multiplier: we need to find the
roots sj of s 7→ det(I− P0 − P0b(0)KT0 s) and then find solutions κ of σ(κ− 1) = sj for all these
roots sj. Since b(0)KT0 has rank one we know that s 7→ det(I− P0 − P0b(0)KT0 s) is a first-order
polynomial (see Section A.2 for details). The presence of a trivial Floquet multiplier then
ensures that this first-order polynomial has the root 0. Hence, 0 is its only root, restricting the
possible location for the κ`,0 to the list in (24). This simple argument would not apply for cases
where the uncontrolled periodic orbit x∗ has no trivial Floquet multiplier, or for control with
non-scalar inputs u, or for control with more than one kick per period.

4. Autonomous feedback control

The feedback control constructed in Lemma 3.3 introduces an explicit time dependence into
the system. The controlled system has the form

ẋ(t) = f(x(t),∆δ(t)KT0 [x̃(t) − x(t)])
x̃(t) = (1 − ε)x̃(t− T) + εx(t− T),

(25)

where ∆δ is time-periodic with period T , but the system still has a Floquet multiplier λ = 1.
The neutrally stable direction corresponding to this Floquet multiplier is a phase shift: if
(x(t), x̃(t)) = (x∗(t), x∗(t)) is a periodic orbit of (25) then so is (x(t), x̃(t)) = (x∗(t+ s), x∗(t+ s))
for any s ∈ R. Hence, the controlled system with the gains K(t) = ∆δ(t)K0 is susceptible
to arbitrarily small time-dependendent perturbations (say, experimental disturbances): the
phase s of the stabilised solution may drift until ∆δ is non-zero at a time s where the gains
K0 are no longer stabilising. This problem does not occur if, instead of applying the feedback
KT0 [x̃(t) − x(t)] at a fixed time per period, we apply it in a strip in Rn close to a Poincaré
section at x∗(0) (as illustrated in Figure 3), putting a factor depending on x(t) in front of
KT0 [x̃(t) − x(t)]. Specifically, we let the function ∆δ not depend explicitly on time t but on a
function t̃ : Rn 7→ R, where the argument of t̃ is x(t). Then the common notion of asymptotic
stability of periodic orbits in autonomous dynamical systems applies. One would then always

Figure 3: Illustration of choice for strip and Poincaré section where gains should be non-zero.

apply control near x∗(0) despite phase drift. A possible explicit expression for u is

u(t) = ∆ρ,δ(x(t))K
T
0 [x̃(t) − x(t)], where ∆ρ,δ(x) = Jρ(x)∆δ(t̃(x)), (26)

Jρ(x) =

{
1 if |x− x∗(0)| < ρ,
0 if |x− x∗(0)| > 2ρ,

t̃(x) =
ẋ∗(0)T

ẋ∗(0)T ẋ∗(0)
[x− x∗(0)], (27)

ρ > 0 is a small radius and Jρ is smooth. In (27), t̃(x∗(t)) = t+O(t2) for |t|� 1, and Jρ restricts
control to the neighborhood of radius ρ around x∗(0). With u as defined in (26), the right-hand
side of the now autonomous system

ẋ(t) = f(x(t),∆δ,ρ(x(t))K
T
0 [x̃(t) − x(t)]), x̃(t) = (1 − ε)x̃(t− T) + εx(t− T) (28)
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has a right-hand side that depends discontinuously on x(t) (because ∆δ is discontinuous in its
argument. Since the general mathematical theory for DDEs coupled to difference equations is
not well developed, one may replace the discontinous ∆δ in (26) with a smooth approximation
of ∆δ. This does not affect the final result, which we can state as a lemma (see Appendices A.3
and A.4 for the details of the choice for ρ and the smoothing of ∆δ,ρ):

Lemma 4.1 (Autonomous stabilisability of periodic orbits with extended time-delayed feedback)

Assume that the matrix P0 exp(−b(0)KT0 ), as used in Lemma 3.3, has all eigenvalues
inside the ball Br(0) with r < 1. Then, for all sufficiently small ρ, there exist εmax > 0
and δmax > 0 such that the periodic orbit x(t) = x̃(t) = x∗(t) of system (28) is
asymptotically exponentially stable for all ε ∈ (0, εmax) and δ ∈ (0, δmax).

Remark: other arguments for ∆δ,ρ In (26) we can replace the argument x(t) of ∆δ,ρ with x̃(t),
x(t − T) or x̃(t − T) without changing the linearisation in x(t) = x̃(t) = x∗(t). Thus, (28)
successfully stabilises the periodic orbit x∗ also with these modifications.

Robustness We assumed perfect knowledge of the periodic orbit x∗ and the right-hand side f
in the construction of K0 and ∆δ,ρ. However, we know that stable periodic orbits persist under
small perturbations. Thus, for gains near K0 and functions close to ∆δ,ρ the periodic orbit
of the controlled system persists. Due to the non-invasive nature of extended time-delayed
feedback, the periodic orbit of the system with perturbed K0 and ∆δ,ρ is still identical to x∗.

5. Illustrative example: Hopf normal form

The construction of gains as described in Section 4 has been implemented as a Matlab function
(publically available at [39], depending on DDE-Biftool [40, 41, 42]). The supplementary
material demonstrates how one can find stabilising gains for two examples:

1. a family of period-two unstable oscillations around the hanging-down position of the
parametrically excited pendulum, and

2. the unstable periodic orbits in the subcritical Hopf normal form.

We discuss example 2 in more detail in this section, because for this example we can prove that
stabilisation with ETDF is not possible with constant gains and small ε. The subcritical Hopf
bifurcation has also been used commonly in the literature as a benchmark example. Here we
choose the Hopf normal form with constant speed of rotation (such that in polar coordinates
the angle θ satisfies θ̇ = 1 and all periodic orbits have period 2π). Note that the control
constructed by Fiedler et al [31] depended on changing rotation and was stabilising only in a
small neighborhood of the bifurcation. Flunkert & Schöll [32] analysed time-delayed feedback
control (with ε = 1) of the subcritical Hopf bifurcation completely, but also excluded the case
of constant rotation and restricted themselves to a small neighbourhood of the bifurcation.
Thus, even though example 2 is seemingly simple, it shows that the method proposed in the
paper is able to stabilise periodic orbits that are beyond the approaches previously suggested
in the literature. Without loss of generality we choose a linear control input b = [1, 1]T such
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that the system with control has the form:

ẋ1 = px1 − x2 + x1[x
2
1 + x

2
2] + u,

ẋ2 = x1 + px2 + x2[x
2
1 + x

2
2] + u,

(29)

where p < 0. This system has for u = 0 an unstable periodic orbit of the form x∗(t) =
[r sin t,−r cos t]T with radius r =

√
−p and period T = 2π. The monodromy matrix P0 for the

uncontrolled system along the periodic orbit x∗ equals

P0 =

[
1 0
0 exp(−4πp)

]
.

Since the derivative of the right-hand side with respect to the control input equals b(t) = b =
[1, 1]T , the periodic orbit is controllable in time T . In fact, the pair (P0,b) is controllable as
required for the applicability of Lemma 3.3. Extended time-delayed feedback control, applied
to a two-dimensional system has the form

u(t) = K1(t)[x̃1(t) − x1(t)] +K2(t)[x̃2(t) − x2(t)]

x̃j(t) = (1 − ε)x̃j(t− T) + εxj(t− T) (j = 1, 2).
(30)

We can state two simple corollaries from our general considerations. First, it is impossible to
stabilise the periodic orbit x∗ with extended time-delayed feedback using time-independent
gains K1 and K2 for small ε:

Lemma 5.1 (Lack of stabilisability for constant control gains)

Let p < 0 and let K1(t) and K2(t) be arbitrary constants (also calling them K1 and
K2). Then there exists an εmax > 0 such that the periodic orbit x∗ is unstable with the
extended time-delayed feedback control (30) for all ε ∈ (0, εmax).

Proof Amann & Hooton [38] proved a general topological restriction on the gains K(t) for
extended time-delayed feedback control: let K(t) ∈ Rn be arbitrary (continuous), θ ∈ [0, 1] be
arbitrary, and let u be of the form

u = θK(t)T [x̃(t) − x(t)].

The scalar θ provides a homotopy from the uncontrolled system (θ = 0) to the controlled
system (θ = 1). Assume that the trivial Floquet multiplier λ1 = 1 of x∗ is isolated for u = 0
(which is the case for example (29) with p < 0). Then the Floquet multiplier λ1 depends
smoothly on θ at least for small θ and will be real: λ1(θ) ∈ R for 0 < θ � 1. A necessary
condition for extended time-delayed feedback with gains K(t) to be stabilising for x∗ and
arbitrary ε ∈ (0, 1) is that λ ′1(0) > 0 if the number of Floquet multipliers in {z ∈ C : Re z > 1} is
odd for θ = 0. If we denote an adjoint eigenvector for the trivial Floquet multiplier by x̄∗(t)
(the right eigenvector is ẋ∗(t)), this criterion can be simplified to∫T

0 x̄∗(t)
Tb(t)K(t)T ẋ∗(t)dt∫T

0 x̄∗(t)
T ẋ∗(t)dt

6 0,
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where b(t) = ∂uf(x∗(t), 0) (this simplifying criterion was formulated in general in [33]). For
our particular example, we have

ẋ∗(t) = x̄∗(t) =

[
r cos t
r sin t

]
, b(t) =

[
1
1

]
, T = 2π

and constant gains K1 and K2 such that the necessary condition of [33, 38] is

K1 +K2 6 0. (31)

On the other hand, if K1 +K2 6 0 the Jacobian of (29) with classical linear feedback control

u = K1(x1,∗(t) − x1) +K2(x2,∗(t) − x2) = K1(r sin t− x1) +K2(−r cos t− x2) (32)

along x = x∗(t) has the trace

tr∂xf(x(t),K(x∗(t) − x(t)))|x(t)=x∗(t) = 2p+ 4r2 −K1 −K2 = −2p−K1 −K2.

Since p < 0, this trace is positive if K1 + K2 6 0 for all t ∈ [0, 2π] such that the classical
linear feedback control (32) cannot be stabilising for the periodic orbit x∗ = [r sin t,−r cos t]T .
Thus, Lemma 3.1 implies that extended time-delayed feedback cannot be stabilising either, for
sufficiently small ε > 0.

(This ends the proof of Lemma 5.1.) �
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Figure 4: Left: Amplitude r =
√
−p and unstable Floquet exponent (equals −2p) along family of

periodic orbits. Right: gains K1 (note that K1 < 0 always) and K2 along family of periodic orbits in Hopf
normal form (29) with feedback law (33).

Construction of gains For the periodic control gains ∆δ(t)KT0 (or the autonomous nonlinear
gains ∆δ,ρ(x(t))K

T
0 ) the gains K0 are constructed such the matrix P0 exp(−b(0)KT0 ) has all

eigenvalues inside the unit circle (for our illustration we choose the target location at ±i/2).
Figure 4 shows the amplitude and unstable Floquet exponent of the periodic orbits and the
gains obtained in this manner (called K1 and K2 in Figure 4). Since the pair (P0,b(0)) is not
controllable at the Hopf point, the gains diverge to infinity for p→ 0. In particular, P0 = I for
p = 0 such that it cannot be linearly controllable with a single input.
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Figure 5: Numerically computed versus asymptotic spectrum for p = −0.25 (ε = 0.04, δ = T/500,
ρ = 0.3, K1 = −0.258, K2 = 4.786).Left: unit circle in the complex plane. Right: zoom into the circle
around 1 − ε or radius ε/2. Computed with DDE-Biftool [40, 41, 42], see supplementary material and
[39] for the code.

Illustration of asymptotics Figure 5 shows how the true Floquet multipliers approximate their
asymptotic values when using the autonomous time-delayed feedback control (44) with gains
depending on x:

u(t) = ∆δ,ρ(x(t)) [K1[x̃1(t) − x1(t)] +K2[x̃2(t) − x2(t)]]

x̃j(t) = (1 − ε)x̃j(t− T) + εxj(t− T) (j = 1, 2).
(33)

For the construction of ∆δ,ρ we used the construction of t̃ proposed in (26)–(27):

t̃(x) =
yT0
yT0 y0

[x− x0] for x ∈ Bρ(x0), (34)

where y0 = [r, 0]T , x0 = [0,−r]T and r =
√
−p. At the particular parameter value p = −0.25

shown in Figure 5 the uncontrolled periodic orbit is already strongly unstable: the unstable
Floquet multiplier equals exp(−4πp) ≈ 23.141. The gains K1 and K2, designed to assign the
Floquet mulitpliers ±i/2, are also large after division by δ. Hence, the range of δ and ε, for
which stabilisation is successful is small. The values for δ and ε used in the illustration are
chosen such that deviations from the asymptotic limit are visible but small.

6. Conclusion and Outlook

The paper proves conclusively that there are no restrictions inherent in extended time-delayed
(state) feedback control if one accepts time-periodic gains, while for constant gains general
positive results are unlikely (as they are absent for classical feedback control of linear time-
periodic systems). The particulars of the gain construction presented here, following the
approach of Brunovksy, are merely for the purpose of proving their existence analytically.
While the result raises the possibility that more general assignment is feasible (since there
is a lot of freedom in the choice of general time-periodic K(t)) the techniques for proving
this may have to be different from those in the paper. The central argument of the paper
rests on the rank-one nature of the control input, making it easy to locate all roots κ of the
transcendental function κ 7→ det[I− P0 exp(b(0)KT0 (κ− 1))] (the matrix b(0)KT0 has rank one
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in our case). The argument also exploits the presence of the trivial Floquet multiplier, thus,
making the result (even if it is based entirely on linear theory) mostly relevant to the analysis
of nonlinear systems.

A. Auxiliary Lemmas and detailed arguments of proofs

Lemma A.1

Let (A,b) with A ∈ Rn×n and b ∈ Rn be controllable, let detA > 0, and let
(λ1, . . . λn) ∈ Cn be the spectrum of a real matrix with positive determinant. Then one
can find a vector K ∈ Rn such that spec(A exp(bKT )) = (λ1, . . . , λn).

The proof is given in [17]. A Matlab implementation of the explicit construction is SpecExpAssign.m
in [39].

A.1. Floquet multipliers for extended time-delayed feedback

Lemma A.2 (Characteristic equation for Floquet multipliers)

Let A(t) ∈ Rn×n, b(t), K(t) ∈ Rn be T -periodic and let ε be positive. Then the Floquet
multipliers different from 1 − ε of the linear system

ẋ(t) = A(t)x(t) + b(t)K(t)T [x̃(t) − x(t)] (35)
x̃(t) = (1 − ε)x̃(t− T) + εx(t− T) (36)

are roots of the function

h : λ 7→ det
[
λI− P

(
1 −

ε

λ− (1 − ε)

)]
.

For µ ∈ C the matrix P(µ) was defined as the solution x at time T of ẋ = [A(t) − µb(t)K(t)T ]x
with x(0) = I (that is, P(µ) is the monodromy matrix of ẋ = [A(t) − µb(t)K(t)T ]x).

Proof Let λ ∈ C be an eigenvalue of the time-T mapM of (35)–(36). Let x0, x̃0 (both [−T , 0] 7→
Rn) be the components of an eigenvector corresponding to λ, and let x1, x̃1 (also both [−T , 0] 7→
Rn) be the corresponding components of M[x, x̃]. Then x̃1(t) = λx̃0(t) and, by definition of
the time-T mapM, x̃1(t) = (1 − ε)x̃0(t) + εx0(t). Hence, λx̃0(t) = (1 − ε)x̃0(t) + εx0(t), which
implies (since λ 6= 1 − ε)

x̃0(t) =
ε

λ− (1 − ε)
x0(t)

for t ∈ [−T , 0]. Using this relation, we can solve (35) on the interval [−T , 0] as

ẋ0(t) = A(t)x0(t) + b(t)K(t)
T

[
ε

λ− (1 − ε)
− 1
]
x0(t)

with boundary condition x0(0) = λx0(−T). By definition of the monodromy matrix P this is
equivalent to

P

(
1 −

ε

λ− (1 − ε)

)
x0(−T) = λx0(−T),
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which has a non-trivial solution x0(−T) if and only if the function h in Lemma A.2 is non-zero.
(This ends the proof of Lemma A.2.) �

A.2. Proof of Lemma 3.3

The characteristic function h(λ; ε, δ) = det[λI−P(1− ε/(λ−(1− ε)); δ,K0)], defined in (23), has
a root λ = 1 for all small δ and all ε ∈ (0, 1): a nullvector of I−P(0; δ,K0) is ẋ∗(0) (corresponding
to a linearised phase shift).

For λwith modulus larger than 1 − ε/2 the term ε/(λ− (1 − ε)) has modulus less or equal
than 2. Let us pick δ1 > 0 and a C1 ∈ (0, 1) (both small) such that the polynomial

λ 7→ det(λI− P(1 − µ; δ,K0))

has all roots inside the ball B(r+1)/2(0) ⊂ B1(0) for all δ ∈ [0, δ1] and µ with |µ| 6 C1. This
is possible since λ 7→ det(λI− P(1; 0,K0)) has all roots inside the ball Br(0) by assumption
of the Lemma and the limit of P(1 − µ; δ,K0) for δ → 0 was uniform for bounded µ (recall
limδ→0 P(1 − µ; δ,K0) = P0 exp((µ − 1)b(0)KT0 )). Thus, h(λ; ε, δ) cannot have roots λ on or
outside the unit circle for which ∣∣∣∣ ε

λ− (1 − ε)

∣∣∣∣ 6 C1

holds. Hence, for all δ ∈ [0, δ1] all roots of h(·; ε, δ) on or outside of the unit circle must satisfy

C1 6

∣∣∣∣ ε

λ− (1 − ε)

∣∣∣∣ 6 2. (37)

We introduce the new variable κ ∈ C defined via

λ = 1 − ε+ ε/κ. (38)

Restriction (37) for λ is equivalent to the restriction C1 6 |κ| 6 2 for κ. Hence, for all δ ∈ [0, δ1]
and ε ∈ (0, 1), every root λ of h(·; δ, ε) on or outside of the unit circle corresponds to a root κ of

g(κ; δ, ε) = h(1 − ε+ ε/κ; δ, ε)

= det
[(

1 − ε+
ε

κ

)
I− P(1 − κ; δ,K0)

]
with C1 6 |κ| 6 2. This one-to-one correspondence of roots of h and g is given via relation
(38) and includes multiplicity of the roots. Relation (38) also implies that |κ| 6 1, because,
otherwise, |λ| < 1. The function g has a limit

g(κ; δ, ε)→ g(κ; 0, 0) for (δ, ε)→ 0

uniformly for κ with C1 6 |κ| 6 2. Hence, the set of roots κ of g(·; δ, ε) with C1 6 |κ| 6 2 is a
small perturbation of the set of roots of g(·; 0, 0):

g(κ; 0, 0) = det
[
I− P0 exp

(
b(0)KT0 [κ− 1]

)]
= det

[
I− P0 − P0b(0)KT0 σ(κ− 1)

]
, where
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σ(κ− 1) =


exp

(
KT0 b(0)(κ− 1)

)
− 1

KT0 b(0)
if KT0 b(0) 6= 0

κ− 1 if KT0 b(0) = 0.

The generalised eigenvalue problem for the matrix pair (I− P0,P0b(0)KT0 ) with characteristic
polynomial σ 7→ det(I − P0 − P0b(0)KT0 σ) is regular because det(I − P0) = 0 but det(I −
P0 − P0b(0)KT0 σ(−1)) is regular (since P0 exp(−b(0)KT0 ) has all eigenvalues inside the unit
circle, I− P0 exp(−b(0)KT0 ) is regular). As P0b(0)KT0 has rank 1 the characteristic polynomial
corresponding to σ 7→ det(I− P0 − P0b(0)KT0 σ) has degree 1. Moreover, its only root equals 0
(which must be simple due to the regularity of det(I− P0 − P0b(0)KT0 σ)). Hence, we know that
g(κ; 0, 0) = 0 if and only if σ(κ− 1) = 0.

Case KT0 b(0) = 0 If KT0 b(0) = 0, this implies that the only root κ of g(·; 0, 0) with C1 6 |κ| 6 2
equals unity. Hence, also for sufficiently small ε and δ, the only root κ with C1 6 |κ| 6 2 of
g(·; δ; ε) equals unity (since g(1; δ; ε) = 0).

CaseKT0 b(0) 6= 0 If KT0 b(0) 6= 0, we have that g(κ; 0, 0) = 0 if and only if exp(KT0 b(0)(κ− 1)) =
1 such that the roots are

κ`,0 = 1 +
2πi`
KT0 b(0)

(` ∈ Z)

The first part of the subscript, `, numbers the roots, the second part of the subscript, 0, indicates
that δ = ε = 0. Thus, the roots κ`,0 of g(·; 0, 0) have a modulus

|κ`,0| =

√
1 +

4π2`2

(KT0 b(0))2

such that only the roots κ`,0 with index

−`max 6 ` 6 `max, where `max =

√
3

2π
|KT0 b(0)|,

are in the admissible range with C1 6 |κ`,0| 6 2. (Hence, both cases, KT0 b(0) = 0 and
KT0 b(0) 6= 0 can be treated equally.) The admissible roots κ`,0 of g(·; 0, 0) are all simple.
Hence, for sufficiently small δ and ε, g(·; δ, ε) will have roots κ` for |`| 6 `max that are small
perturbations of κ`,0, and these roots κ` are the only roots of g(·; δ, ε) with modulus in [C1, 2].
Since we know that g(1; δ, ε) = 0, we know that κ0 = 1 (hence, for ` = 0 the perturbation is
zero). Furthermore, for non-zero ` with |`| 6 `max, the modulus of κ`,0 is greater than 1. Hence,
the perturbed roots κ` also have modulus greater then 1 for sufficiently small ε and δ, and
non-zero |`| 6 `max.

Consequently, by relation (38), the only roots of h(·; δ, ε) that could be on or outside the unit
circle are

λ` = 1 − ε+
ε

κ`
where |`| 6 `max.

However, these roots λ` are simple and satisfy λ0 = 1 and |λ`| < 1 for non-zero `, since |κ`| > 1
for non-zero `. (This ends the proof of Lemma 3.3.) �
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A.3. Details of construction for autonomous feedback gains — Regularisation of the short
impulse ∆δ(t)

To avoid discontinous dependence of the right-hand side on the solution, we first regularise
the discontinuity of the time-dependent gain K(t). Define for δ ∈ (0,

√
T + 1/16 − 1/4) (such

that 2δ2 + δ < T ) the regularised version of ∆δ:

∆δ(t) =



1/δ if t|mod[0,T) ∈ [0, δ],
0 if t|mod[0,T) ∈ [δ+ δ2, T − δ2],
1
δ
m

(
δ+ δ2 − t|mod[0,T)

δ2

)
if t|mod[0,T) ∈ (δ, δ+ δ2)

1
δ
m

(
t|mod[0,T) − T + δ

2

δ2

)
if t|mod[0,T) ∈ (T − δ2, T),

(39)

wherem : R 7→ [0, 1] is an arbitrary smooth monotone increasing function withm(s) = 0 for
s 6 0 and m(s) = 1 for s > 1. When using ∆δ as defined in (39) instead of (6) to define the
linear (now approximately) short-impulse feedback law

uδ(t;y) = ∆δ(t)KT0 y (40)

the nonlinear time-T map is still linearisable. Denoting the monodromy matrix of the linear
system (recall that A(t) = ∂xf(x∗(t), 0), b(t) = ∂uf(x∗(t), 0) and using definition (39) for ∆δ)

ẏ(t) =
[
A(t) − µb(t)∆δ(t)K

T
0
]
y(t), y(0) = y0

again by P(µ; δ,K0) then the monodromy matrix of the smoothed system still satisfies (identical
to (18))

P(µ; δ,K0) = P0 exp(−b(0)KT0 µ) +O(δ), (41)

where the error term O(δ) is uniform for bounded µ ∈ C and K0 ∈ Rn. Hence, we can replace
the discontinuous definition (6) for ∆δ(t) by (39) in (21), and Lemma 3.3 still applies to the
modified (regularised) system.

A.4. State-dependent gains K(x(t))

Consider a sufficiently small radius ρ > 0 such that the equation ẋ∗(0)T [x− x∗(t)] = 0 has a
unique solution t ∈ R close to 0 for all x ∈ B2ρ(x∗(0)) ⊂ Rn, thus defining implicitly a smooth
function tρ:

tρ : Rn 7→ R, tρ(x) =

{
root t of ẋ∗(0)T [x− x∗(t)] = 0 if x ∈ B2ρ(x∗(0)),
arbitrary such that tρ is smooth otherwise.

(42)

The function t̃, defined in (27), is approximately equal to tρ along the periodic orbit x∗ and near
x∗(0): tρ(x∗(t)) − t̃(x∗(t)) = t− t̃(x∗(t)) = O(t2). We consider also a regularised indicator
function for the neighbourhood of x∗(0)

Jρ : Rn 7→ R, Jρ =


1 if x ∈ Bρ(x∗(0)),
0 if x /∈ B2ρ(x∗(0)),
arbitrary such that Jρ is smooth if x ∈ B2ρ(x∗(0)) \Bρ(x∗(0)).
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and combine tρ and Jρ with ∆̃δ as defined in (39) to the smooth globally defined function

∆̃δ,ρ : Rn 7→ R, ∆̃δ,ρ(x) = Jρ(x)∆̃δ(tρ(x))

When applying ∆̃δ,ρ to x∗(t) the result is identical to the timed impulse ∆̃δ for small δ: if
‖x∗(t) − x∗(0)‖ < ρ for all t ∈ [−δ2, δ+ δ2] then

∆̃δ,ρ(x∗(t)) = ∆̃δ(t)

for all t ∈ R. Consequently, the system with extended time-delayed feedback and state-
dependent gains

ẋ(t) = f(x(t), ∆̃δ,ρ(x(t))K
T
0 [x̃(t) − x(t)]) (43)

x̃(t) = (1 − ε)x̃(t− T) + εx(t− T), (44)

which is now autonomous with a smooth right-hand side, has for sufficiently small ρ and
δ + δ2 < ρ exactly the same linearisation along the periodic orbit x(t) = x̃(t) = x∗(t) as
system (21), (22). The derivative of ∆̃δ,ρ with respect to its argument is multiplied by 0 if
x̃(t) = x(t) = x∗(t) for all times t in the term ∆̃δ,ρ(x(t))K

T
0 [x̃(t) − x(t)] in (43).

The time reconstruction function tρ as defined in (42) satisfies tρ(x∗(t)) = t as long as x∗(t) ∈
B2ρ(x∗(0)). The definition of tρ as proposed in (27) in the main text is a O(t2) perturbation
of (42) for t of order δ. Thus, continuity of the Flqouet multipliers implies that the perturbed
version of tρ preserves the stability of the periodic orbit x∗.
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