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ABSTRACT

The authors assess the ability of 18 Earth system models to simulate the land and ocean carbon cycle for the

present climate. Thesemodelswill be used in the next Intergovernmental Panel onClimateChange (IPCC)Fifth

Assessment Report (AR5) for climate projections, and such evaluation allows identification of the strengths

and weaknesses of individual coupled carbon–climatemodels as well as identification of systematic biases of

the models. Results show that models correctly reproduce themain climatic variables controlling the spatial

and temporal characteristics of the carbon cycle. The seasonal evolution of the variables under examination

is well captured. However, weaknesses appear when reproducing specific fields: in particular, considering

the land carbon cycle, a general overestimation of photosynthesis and leaf area index is found for most of

the models, while the ocean evaluation shows that quite a few models underestimate the primary pro-

duction.The authors also propose climate and carbon cycle performance metrics in order to assess whether

there is a set of consistently better models for reproducing the carbon cycle. Averaged seasonal cycles and

probability density functions (PDFs) calculated from model simulations are compared with the corresponding

seasonal cycles and PDFs from different observed datasets. Although the metrics used in this study allow

identification of somemodels as better or worse than the average, the ranking of this study is partially subjective

because of the choice of the variables under examination and also can be sensitive to the choice of reference

data. In addition, it was found that the model performances show significant regional variations.

1. Introduction

Earth system models (ESMs) are complex numerical

tools designed to simulate physical, chemical, and bi-

ological processes taking place on Earth between the

atmosphere, the land, and the ocean. Worldwide, only

a few research institutions have developed such models

and used them to carry out historical and future simu-

lations in order to project future climate change.

ESMs, and numerical models in general, are never

perfect. Consequently, before using their results to make

future projection of climate change, an assessment of their

accuracy reproducing several variables for the present

climate is required. In fact, the ability of a climatemodel to

reproduce the present-day mean climate and its variation

adds confidence to projections of future climate change

(Reifen and Toumi 2009). Nevertheless, good skills re-

producing the present climate do not necessarily guaran-

tee that the selected model is going to generate a reliable

prediction of future climate (Reichler and Kim 2008).

ESMs are routinely subjected to a variety of tests to

assess their capabilities, and several papers provide exten-

sive model evaluation (e.g., Tebaldi et al. 2006; Lin 2007;

Lucarini et al. 2007; Santer et al. 2007; Gillett et al. 2008;

Gleckler et al. 2008; Reichler and Kim 2008; Schneider

et al. 2008; Santer et al. 2009; Tjiputra et al. 2009; Knutti

et al. 2010; Steinacher et al. 2010; Radi�c and Clarke 2011;

Scherrer 2011; S�ef�erian et al. 2013; Yin et al. 2012). In

these papers, the authors describe the performance of
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climate models by measuring their ability to simulate

today’s climate at various scales from global to regional.

Results reported in these papers indicate that not all

models simulate the present climate with similar accu-

racy. Furthermore, it should be noted that these papers

also highlighted that the best models for a particular re-

gion of Earth do not always achieve the same degree of

performance in other regions. Additionally, the skill of

the models is different according to the meteorological

variables examined.

Within this context, the aim of this paper is twofold.

The first aim is to quantify howwell the fifth phase of the

CoupledModel IntercomparisonProject (CMIP5; Taylor

et al. 2012) models represent the twentieth-century car-

bon cycle over the land and ocean, as well as the main

climatic variables that influence the carbon cycle.

Traditional model evaluation, or diagnostics (e.g.,

Collins et al. 2006; Delworth et al. 2006; Johns et al. 2006;

Zhou and Yu 2006; Waliser et al. 2007; Lin et al. 2008;

Volodin et al. 2010; Marti et al. 2010; Xavier et al. 2010;

Arora et al. 2011; Chylek et al. 2011; Collins et al. 2011;

Radi�c and Clarke 2011; Watanabe et al. 2011), provide

detailed assessments of the strengths and weaknesses of

individual climate models based principally on seasonal

and annual time scales, as well as on anomaly maps and

zonal means.

Our model evaluation is performed at three different

time scales: first, we analyze the long-term trend, which

provides information on the model capability to simulate

the temporal evolution over the twentieth century given

greenhouse gas (GHG) and aerosol radiative forcing.

Second, we analyze the interannual variability (IAV) of

physical variables as a constraint on the model capability

to simulate realistic climate patterns that influence both

ocean and continental carbon fluxes (Rayner et al. 2008).

Third, we evaluate the modeled seasonal cycle, which

(particularly in the Northern Hemisphere) constrains the

model’s simulation of the continental fluxes.

The second aim of the paper is to assess whether there

is a set of consistently better models reproducing the

carbon cycle and the main physical variables controlling

the carbon cycle. One of the scientific motivations is that

modelers commonly make use of large climate model

projections to underpin impact assessments. So far, Inter-

governmental Panel on Climate Change (IPCC) assumed

that all climate models are equally good and they are

equally weighted in future climate projections (Meehl

et al. 2007). If an impactsmodeler wants to choose the best

models for a particular region, however, assuming allmodels

are equally good is not a requirement and models could be

ranked, weighted, or omitted based on performance.

Contrasting with diagnostics, metrics could be de-

veloped and used for such purposes (Gleckler et al. 2008;

Maxino et al. 2008; Cadule et al. 2010; R€ais€anen et al.

2010; Chen et al. 2011; Errasti et al. 2011; Moise and

Delage 2011; Radi�c and Clarke 2011).

2. Models, reference datasets, and assessment of
performances

a. CMIP5 simulations

In this study we analyze outputs from 18 coupled

carbon–climate models that are based on the set of new

global model simulations planned in support of the IPCC

Fifth Assessment Report (AR5). These simulations are

referred to as the fifth phase of the Coupled Model In-

tercomparison Project. This set of simulations comprises

a large number ofmodel experiments, including historical

simulations, new scenarios for the twenty-first century,

decadal prediction experiments, experiments including

the carbon cycle, and experiments aimed at investigating

individual feedback mechanisms (Taylor et al. 2012). The

CMIP5 multimodel dataset has been archived by the Pro-

gram for Climate Model Diagnosis and Intercomparison

(PCMDI) and has been made available to the climate re-

search community (http://cmip-pcmdi.llnl.gov/cmip5/).

Here we summarize the physical and biogeochemical

model’s performances for the historical experiment only

(i.e., ESMs driven by CO2 concentration). Among all

the available CMIP5 ESMs, we only selected the models

simulating both the land and ocean carbon fluxes and

reporting enough variables for our analysis.

The models used in this study, as well as their atmo-

spheric and ocean grids and complete expansions, are

listed in Table 1; note that all the diagnostics and statistics

are computed after regridding each model’s output and

reference datasets to a common 28 3 28 grid. In the case of
carbon fluxes, our regridding approach assumed conser-

vation of mass, while for the physical fields as well as for

the leaf area index (LAI)weused a bilinear interpolation.

Table 2 reports the land and ocean biogeochemical

models used by ESMs, while Table 3 lists the variables

considered in this study with the number of independent

realizations (or ensemble member) for each model/

variable. In fact, some models have only one run (reali-

zation), but other models have up to five runs (Table 3).

These realizations are climate simulations with different

initial conditions. In the next section, we present results

only from the first realization for each individual climate

model, while for the final ranking we use the realization

with the highest score for each individual model. In

general it is expected that the ensemble of runs associated

with a particular model with the same external forcing

will reproduce a very similar seasonal cycle and range of

climate variability, irrespective of the initial conditions
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(Errasti et al. 2011). However, because of each ensem-

ble member having its own internal variability (largely

unforced), the interannual variability of the ensemble

average is expected to be reduced with respect to one

individual simulation; for such reason we decided to use

results from only the first realization, rather than the

ensemble mean over the available realizations.

Our analysis focuses on the historical period (twentieth-

century simulations; historical experiment, CO2 concen-

tration driven), which was forced by a variety of externally

imposed changes such as increasing greenhouse gas and

sulfate aerosol concentrations, change in solar radia-

tion, and forcing by volcanic eruptions. Considering the

land surface (except for BCC-CSM1.1, BCC-CSM1.1-M,

and INM-CM4) all models account for land use change

(Table 2); likewise, except BNU-ESM, NorESM1-ME,

andCESM1-BGCnone of themodels have an interactive

land nitrogen (N) cycle (Table 2).

Since considerable uncertainty as to the true forcing

remains, the forcing used and its implementation in the

climate model is not exactly the same for all models

(Jones et al. 2011). Rather, these runs represent each

group’s best effort to simulate the twentieth-century

climate. The models were spun up under conditions

representative of the preindustrial climate (generally

1850 for almost all models; see Table 2). From this point

(external time varying forcing) consistent with the his-

torical period was introduced, and the simulations were

extended through to year 2005.

Although the CMIP5 archive includes daily means for

a few variables, we focus here only on themonthly-mean

model output since this temporal frequency is high

enough to provide a reasonably comprehensive picture

of model performance both in terms of mean state of the

system, its seasonal and interannual variability, and trends.

In this study we focus mostly on the last 20 yr of the

twentieth-century simulations (1986–2005). During this

period, in fact, the observational record ismost reliable and

complete, largely because of the expansion and advances in

space-based remote sensing of vegetation greenness.

b. Reference data

The main focus of this paper is the evaluation of the

land and ocean carbon fluxes. However, climatic factors

exert a direct control on the terrestrial and ocean carbon

exchange with the atmosphere (Houghton 2000; Schaefer

et al. 2002); therefore, we also provide an evaluation of

the physical variables. The main physical factors con-

trolling the land carbon balance are the surface temper-

ature and precipitation (Piao et al. 2009), but also the

cloud cover through its control on incoming radiation

is important for the land carbon balance. However,

we decided to consider only the two most important

variables influencing the land carbon cycle (Piao et al.

2009). In the ocean, physical fields include sea surface

temperature (SST), which is important for biological

growth and respiration rates as well as air–sea gas ex-

change, andmixing- layer depth (MLD), which influences

nutrient entrainment and the average light field observed

by the phytoplankton (Martinez et al. 2009).

Considering the land and ocean carbon fluxes, some of

the available datasets used for the comparison come

from atmospheric inversion [discussed in section 2b(6)].

To avoid pitfalls arising fromweak data constraints, most

inversion studies have relied on regularization techniques

that include the aggregation of estimate fluxes over large

regions (Engelen et al. 2002); as a matter of fact, aggre-

gating the observed regional fluxes in space is one way to

lower the uncertainty due to the limited observational

constraint (Kaminski et al. 2001; Engelen et al. 2002).

Therefore, we only evaluate the net CO2 fluxes simulated

by models at the global scale or over large latitudinal

bands (see below). For all other model variables, the

evaluation is performed at the grid level, conserving

the spatial information. However, when presenting the

results, all model performances are averaged over the

following domains for land variables: global (908S–908N),

Southern Hemisphere (208–908S), Northern Hemi-

sphere (208–908N), and the tropics (208S–208N). Con-

sidering the ocean carbon, according to Gruber et al.

(2009), we aggregate results over six large regions: the

globe (908S–908N), Southern Ocean (908–448S), temper-

ate Southern Ocean (448–188S), the tropics (188S–188N),

temperate Northern Ocean (188–498N), and Northern

Ocean (498–908N).

In the following subsections we describe the differ-

ent datasets used for the model comparison (see also

Table 4).

1) LAND TEMPERATURE AND PRECIPITATION

Monthly gridded surface temperature and pre-

cipitation were constructed from statistical interpolation

of station observations by the Climatic Research Unit

(CRU) of theUniversity of EastAnglia (New et al. 2002;

Mitchell and Jones 2005). CRU provides a global cov-

erage only for land points between 1901 and 2006 with a

spatial resolution of 0.58 (Table 4). Most of the previous

model–data comparison studies use the 40-yr European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Re-Analysis (ERA-40; or other reanalysis) instead of the

CRU dataset because of the complete global land and

ocean coverage and the way these reanalysis are built.

Specifically, the reanalysis are a combination of weather

model output and a large amount of assimilated different

observational data. Therefore, unlike CRU,which is built

on statistical principles, the reanalysis are based on
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physical principles (Scherrer 2011). Also, comparison

of the ERA-40 dataset with the CRU land temperature

shows good agreement for most regions and the dif-

ferences are comparatively small in comparison to the

model differences (Scherrer 2011). However, CRU

provides data for the entire twentieth century allowing

the evaluation of the simulated temperature and pre-

cipitation trends.

2) SEA SURFACE TEMPERATURE

For the sea surface temperature evaluation we use the

Hadley Centre Sea Ice and Sea Surface Temperature

dataset (HadISST; Rayner et al. 2003), a combination of

monthly global SST and sea ice fractional coverage on

a 18 3 18 spatial grid from 1870 to date.

The SST data are taken from the Met Office Marine

Data Bank (MDB), which from 1982 onward also in-

cludes data received through the Global Telecommu-

nications System. To enhance data coverage, monthly

median SSTs for 1871–1995 from the Comprehensive

Ocean–Atmosphere Data Set (COADS) were also used

where there were noMDB data. HadISST temperatures

are reconstructed using a two-stage reduced-space opti-

mal interpolation procedure, followed by superposition

of quality-improved gridded observations onto the re-

constructions to restore local detail (Dima and Lohmann

2010). SSTs near sea ice are estimated using statistical

relationships between SST and sea ice concentration

(Rayner et al. 2003).

3) MIXED LAYER DEPTH

The oceanmixed layer depth can be defined in different

ways according to the dataset used. In this paper, MLD

data are from theOceanMixed Layer Depth Climatology

Dataset as described in de Boyer Mont�egut et al. (2004).

Data are available inmonthly format on a 28 3 28 latitude–
longitude mesh and were derived from more than five

million individual vertical profilesmeasured between 1941

and 2008, including data from Argo profilers as archived

by the National Oceanographic Data Center (NODC)

and the World Ocean Circulation Experiment (WOCE).

To solve the MLD overestimation due to salinity strati-

fication, in this dataset the depth of the mixed layer is

defined as the uppermost depth at which temperature

differs from the temperature at 10m by 0.28C. A valida-

tion of the temperature criterion on moored time series

data show that this method is successful at following the

base of the mixed layer (de Boyer Mont�egut et al. 2004).

4) TERRESTRIAL GROSS PRIMARY PRODUCTION

Gross primary production (GPP) represents the uptake

of atmospheric CO2 during photosynthesis and is influ-

enced by light availability, atmospheric CO2 concentration,
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temperature, availability of water and nitrogen, and several

interacting factors (e.g., atmospheric pollution, harvesting,

and insect attacks).

Direct GPP observations at the global scale and for

our reference period (1986–2005) do not exist, since in the

1980s no measurement sites existed and satellite obser-

vations ofGPPwere not yet available. Recently, satellite-

derived GPP products have been developed (e.g., Mao

et al. 2012) but do not cover the reference period.

Here we use GPP estimates derived from the upscaling

of data from the Flux Network (FLUXNET) of eddy co-

variance towers (Beer et al. 2010). The global FLUXNET

upscaling uses data-oriented diagnostic models trained

with eddy covariance flux data to provide empirically

derived, spatially gridded fluxes (Beer et al. 2010). In this

study, we use the global FLUXNET upscaling of GPP

based on the model tree ensembles (MTE) approach,

described by Jung et al. (2009, 2011). The upscaling relies

on remotely sensed estimates of the fraction of absorbed

photosynthetically active radiation (fAPAR), climate

fields, and land cover data. The spatial variation of mean

annual GPP as well as the mean seasonal course of GPP

are the most robust features of the MTE–GPP product,

while there is less confidence in its interannual variability

and trends (Jung et al. 2011). MTE–GPP estimates are

provided as monthly fluxes covering the period 1982–

2008 with a spatial resolution of 0.58 (Table 4).

5) LAI

Leaf area index is defined as the one-sided green leaf

area per unit ground area in broadleaf canopies and as

one-half the total needle surface area per unit ground

area in coniferous canopies (Myneni et al. 2002). The

LAI dataset used in this study (LAI3g) was generated

using an artificial neural network (ANN) from the latest

version (third generation) of the Global Inventory

Modeling and Mapping Studies group (GIMMS) Ad-

vanced Very High Resolution Radiometer (AVHRR)

normalized difference vegetation index (NDVI) data for

the period July 1981–December 2010 at a 15-day fre-

quency (Zhu et al. 2013). The ANN was trained with

best-quality collection 5 Moderate Resolution Imaging

Spectroradiometer (MODIS) LAI product and corre-

sponding GIMMSNDVI data for an overlapping period

of 5 yr (2000–04) and then tested for its predictive ca-

pability over another 5-yr period (2005–09). The ac-

curacy of the MODIS LAI product is estimated to be

0.66 LAI units (Yang et al. 2006); further details are

provided in Zhu et al. (2013).

6) LAND–ATMOSPHERE AND OCEAN–
ATMOSPHERE CO2 FLUXES

The net land–atmosphere (NBP) and ocean–

atmosphere (fgCO2) CO2 exchange estimated by CMIP5

models are compared with results from atmospheric in-

versions of the Atmospheric Tracer Transport Model In-

tercomparison Project (TransCom 3; Gurney et al. 2004;

Baker et al. 2006), an intercomparison study of inversions

(Gurney et al. 2002, 2003, 2004, 2008).Within this project

a series of experiments were conducted in which sev-

eral atmospheric tracer transport models were used to

calculate the global carbon budget of the atmosphere.

TABLE 2. Summary of land and ocean biogeochemistry models used by ESMs and comparison of the selected processes (dynamic

vegetation, nitrogen cycling, and land use change) for the only terrestrial modules.

Models Land models Dynamic vegetation N cycle LUC Ocean models

BCC-CSM1.1 BCC_AVIM1.0 N N N OCMIP2

BCC-CSM1.1-M BCC_AVIM1.0 N N N OCMIP2

BNU-ESM CoLM 1 BNU-DGVM Y Y Y iBGC

CanESM2 CLASS2.7 1 CTEM1 N N Y CMOC

CESM1-BGC CLM4 N Y Y BEC

GFDL-ESM2G LM3 Y N Y TOPAZ2

GFDL-ESM2M LM3 Y N Y TOPAZ2

HadGEM2-CC JULES 1 TRIFFID Y N Y Diat-HadOCC

HadGEM2-ES JULES 1 TRIFFID Y N Y Diat-HadOCC

INM-CM4 Simple model into INM-CM4

atmospheric component

N N Y* Simple model into INM-CM4

ocean component

IPSL-CM5A-LR ORCHIDEE N N Y PISCES

IPSL-CM5A-MR ORCHIDEE N N Y PISCES

IPSL-CM5B-LR ORCHIDEE N N Y PISCES

MIROC-ESM-CHEM MATSIRO 1 SEIB-DGVM Y N Y NPZD

MIROC-ESM MATSIRO 1 SEIB-DGVM Y N Y NPZD

MPI-ESM-LR JSBACH 1 BETHY Y N Y HAMOCC5

MPI-ESM-MR JSBACH 1 BETHY Y N Y HAMOCC5

NorESM1-ME CLM4 N Y Y HAMOCC5

* In INM-CM4 land use change was prescribed at low preindustrial level.
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TransCom 3 results represent the a posteriori surface

CO2 fluxes inferred from monthly atmospheric CO2

observations at stations from the GLOBALVIEW

dataset after accounting for the effects of atmospheric

transport on a prescribed a priori surface flux, which is

corrected during the atmospheric inversion (Gurney

et al. 2003). In other words, the goal of the atmospheric

inversion process is to find the most likely combination

of regional surface net carbon fluxes that best matches

observed CO2 within their error, given values of prior

fluxes and errors, after those fluxes have been trans-

ported through a given atmospheric model (Gurney

et al. 2003, 2008).

Flux estimates from atmospheric inverse models are

comprehensive, in the sense that all ecosystem sources

and sinks, fossil fuel emissions, and any other processes

TABLE 3. Temporal range of available data for historical simulation and variable used in this study, with associated the number of

independent realization for each variable. Note that not all the variables for all the ensembles are available (i.e., n/a) on PCMDI server.

Models Physical variables Biological variables

Land Ocean Land Ocean

Surface temperature Precipitation SST MLD GPP LAI NBP SoilC VegC fgCO2 PP

BCC-CSM1.1 3 3 3 n/a 3 3 n/a 3 3 3 n/a

BCC-CSM1.1-M 3 3 3 n/a 3 3 n/a 3 3 3 n/a

BNU-ESM 1 1 1a n/a 1 1 1 1 1 1 n/a

CanESM2 5 5 5 1 5 5 5 5 5 5 5

CESM1-BGC 1 1 1 1 1 1 1 1 1 1 1

GFDL-ESM2G 1 1 1 1 1 1 1 1 1 1 1

GFDL-ESM2M 1 1 1 1 1 1 1 1 1 1 1

HadGEM2-CC 1 1 1 1 1 1 1 1 1 1 1

HadGEM2-ES 4 4 4 1 4 4 4 4 4 4 4

INM-CM4 1 1 1 n/a 1 1 1b 1 1 1 n/a

IPSL-CM5A-LR 5 5 5 5 5 5 5 5 5 5 5

IPSL-CM5A-MR 1 1 1 1 1 1 1 1 1 1 1

IPSL-CM5B-LR 1 1 1 1 1 1 1 1 1 1 1

MIROC-ESM-CHEM 1 1 1 1c 1 1 1 1 1 1 1

MIROC-ESM 3 3 1 1c 3 3 3 3 3 3 1

MPI-ESM-LR 3 3 3 3 3 3 3 3 3 3 3

MPI-ESM-MR 3 3 3 3 3 3 3 3 3 3 3

NorESM1-ME 1 1 1 1 1 1 1 1 1 1 1

aMonthly SST were not available on the server; we used daily SST in the reference period 1950–2005 to compute the monthly SST.
b In INM-CM4 the land use was prescribed at preindustial level and kept constant during the whole simulation; this means that the

provided NBP does not include the LUC term and therefore it should be considered as net ecosystem production (NEP) rather NBP.

For this reason we decided to exclude the INM-CM4 NBP from our analysis.
cMLD fromMIROCmodels was not directly provided as output, but it has been estimated from potential temperature, potential density

and salinity.

TABLE 4. Observationally based datasets used to validate models. The spatial resolution is given as latitude 3 longitude.

Variables Reference Temporal window Spatial resolution Temporal resolution

Temperature CRU (Mitchell and Jones 2005) 1901–2006 Global (land), 0.58 3 0.58 Monthly

Precipitation CRU (Mitchell and Jones 2005) 1901–2006 Global (land), 0.58 3 0.58 Monthly

SST HadISST (Rayner et al. 2003) 1870–2011 Global, 18 3 18 Monthly

MLD de Boyer Mont�egut et al. (2004) 1941–2008 Global, 28328 Climatology

GPP MTE (Jung et al. 2009) 1982–2008 Global, 0.58 3 0.58 Monthly

LAI LAI3g (Zhu et al. 2013) 1981–2011 Global, ;0.088 3 ;0.088 15 days

NBP Inversion (Gurney et al. 2004) 1995–2008 Global, 0.58 3 0.58 Monthly

GCP (Le Qu�er�e et al. 2009) 1959–2008 Global, spatial average Yearly

Soil carbon HSWD, (Nachtergaele et al. 2012) — Global, 1 km 3 1 km Annual value

Vegetation carbon NDP-017b (Gibbs 2006) — Global, 0.5 3 0.5 Annual value

fgCO2 Inversion (Gurney et al. 2004) 1995–2008 Global, 0.58 3 0.58 Monthly

GCP (Le Qu�er�e et al. 2009) 1959–2008 Global, spatial average Yearly

Takahashi (Takahashi et al. 2009) 2000 Global, 48 3 58 Climatology

NPP SeaWiFS. (Behrenfeld and Falkowski 1997) 1998–2007 Global, 6 3 6 km Monthly

15 SEPTEMBER 2013 ANAV ET AL . 6807



emitting or absorbing CO2 (e.g., aquatic CO2 fluxes,

decomposition of harvested wood, and food products at

the surface of Earth) are, in principle, captured by the

inversion CO2 fluxes results.

TransCom 3 also provides an ensemble mean com-

puted over 13 available atmospheric models in the pe-

riod 1996–2005 at a spatial resolution of 0.58. The use of
several models was motivated because large differences

in modeled CO2 were found between models using the

same set of prescribed fluxes (Gurney et al. 2004). How-

ever, it is argued that an average of multiple models may

show characteristics that do not resemble those of any

single model, and some characteristics may be physically

implausible (Knutti et al. 2010). In absence of any other

information to select the most realistic transport models,

Gurney et al. (2002) used the ‘‘between model’’ standard

deviation to assess the error of inversions induced by the

transport model errors. In addition, Stephens et al. (2007)

suggest that an average taken across all models does not

provide the most robust estimate of northern versus

tropical flux partitioning. Additionally, they point to

three different models as best representing observed

vertical profiles of [CO2] in the Northern Hemisphere

(Stephens et al. 2007). For such reasons, instead of

using the TransCom 3 ensemble mean and the between

model standard deviation, we used results from the

only Japanese Meteorological Agency (JMA) model

(Gurney et al. 2003), being one of the three models sug-

gested by Stephens et al. (2007) and the only one avail-

able in our reference period 1986–2005.

We also use results from the Global Carbon Project

(GCP, http://www.tyndall.ac.uk/global-carbon-budget-

2010), which estimates, using several models and ob-

servations, the ocean–atmosphere and land–atmosphere

CO2 exchange (Le Qu�er�e et al. 2009). These results are

the most recent estimates of global CO2 fluxes for the

period 1959–2008. Within this project, the global ocean

uptake of anthropogenic carbon was estimated using the

average of four global ocean biogeochemistry models

forced by observed atmospheric conditions of weather

and CO2 concentration (Le Qu�er�e et al. 2009). The

global residual land carbon sink was estimated from the

residual of the other terms involved in the carbon bud-

get, namely the residual land sink is equal to the sum of

fossil fuel emissions and land use change less than the

atmospheric CO2 growth and the ocean sink (Le Qu�er�e

et al. 2009). From the GCP analysis, the NBP can easily

be computed as the difference between the residual sink

and the land use change.

Finally, in addition to the inversion and GCP data for

the ocean–atmosphere flux we also use results from

Takahashi et al. (2002, 2009). This product contains

a climatologicalmean distribution of the partial pressure

of CO2 in seawater (pCO2) over the global oceans with

a spatial resolution of 48 (latitude) 3 58 (longitude) for
the reference year 2000 based on about three million

measurements of surface water pCO2 obtained from 1970

to 2007 (Takahashi et al. 2009). It should be noted that

Takahashi et al. (2002) data are used as prior knowledge

in many atmospheric inversions, suggesting that the two

datasets are not completely independent.

Although the difference between the partial pressure

of CO2 in seawater and that in the overlying air (DpCO2)

would be a better reference dataset for the oceanic up-

take of CO2, in this study we have used the net sea–air

CO2 flux to be consistent with the land flux component

of this paper. The net air–sea CO2 flux is estimated using

the sea–air pCO2 difference and the air–sea gas transfer

rate that is parameterized as a function of wind speed

(Takahashi et al. 2009).

7) VEGETATION AND SOIL CARBON CONTENT

Heterotrophic organisms in the soil respire dead or-

ganic carbon, the largest carbon pool in the terrestrial

biosphere (Jobbagy and Jackson 2000); therefore the soil

carbon (soilC), through the heterotrophic respiration,

represents a critical component of the global carbon cycle.

There are several global datasets that include esti-

mates of soil carbon to a depth of 1m. Generally, there

are two different approaches to creating such datasets:

1) estimation of carbon stocks under natural, or mostly

undisturbed, vegetation using climate and ecological life

zones and 2) extrapolation of soil carbon data from mea-

surement in soil profiles using soil type (Smith et al. 2012).

The Harmonized World Soil Database (HWSD) de-

veloped by the Food and Agriculture Organization of

the United Nations (FAO; Nachtergaele et al. 2012) and

the International Institute for Applied Systems Analysis

(IIASA) is the most recent highest-resolution global

soils dataset available. It uses vast volumes of recently

collected regional and national soil information to sup-

plement the 1:5 000000 scale FAO–United Nations Edu-

cational, Scientific, andCulturalOrganization (UNESCO)

Digital Soil Map of theWorld. It is an empirical dataset

and it provides soil parameter estimates for topsoil (0–

30 cm) and subsoil (30–100 cm) at 30-arc-s resolution

(about 1 km).

The CMIP5 ESMs do not report the depth of carbon

in the soil profile, making direct comparison with em-

pirical estimates of soil carbon difficult. For our analysis,

we assumed that all soil carbon was contained within the

top 1m. Litter carbon was a small fraction of soil carbon

for the models that reported litter pools; thus, we com-

bined litter and soil carbon for this analysis and refer to

the sum as soil carbon. For theHWSD, the major sources

of error are related to analytical measurement of soil
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carbon, variation in carbon content within a soil type, and

assumption that soil types can be used to extrapolate the

soil carbon data. Analytical measurements of soil carbon

concentrations are generally precise, but measurements

of soil bulk density are more uncertain (Todd-Brown

et al. 2012).

In addition to the soil carbon, the vegetation carbon

(vegC) is also a key variable in the global carbon cycle. In

the 1980s,Olsonet al. (1985) developed a global ecosystem–

complex carbon stocks map of above and below ground

biomass following more than 20 years of field inves-

tigations, consultations, and analyses of the published

literature. Gibbs (2006) extended Olson et al.’s method-

ology to more contemporary land cover conditions using

remotely sensed imagery and the Global Land Cover

Database (GLC 2000). For this analysis we used the data

created by Gibbs (2006), with a spatial resolution of 0.58.

8) OCEANIC NET PRIMARY PRODUCTION

Oceanic integrated net primary production (NPP or

intPP) is the gross photosynthetic carbon fixation (pho-

tosynthesis), minus the carbon used in phytoplankton

respiration. NPP is regulated by the availability of light,

nutrients, and temperature and affects the magnitude of

the biological carbon pump. Oceanic export production

(EP) exerts a more direct control on air–sea CO2 fluxes;

however, because of limitedEPdatawe assess themodels

compared to NPP estimates. In addition, we used the NPP

to be consistent with the use of GPP in the land section of

the study, however, often it is argued that a proper vali-

dation of biological oceanic models should be based on

the comparison of surface chlorophyll concentration

rather than phytoplankton primary production.

We used NPP estimated from satellite chlorophyll by

the Vertically Generalized Production Model (VGPM;

Behrenfeld and Falkowski 1997). The VGPM computes

marine NPP as a function of chlorophyll, available light,

and temperature-dependent photosynthetic efficiency.

The NPP, estimated with the Sea-Viewing Wide-Field-

of-ViewSensor (SeaWiFS) from1997 to 2007, is amonthly

dataset with a spatial resolution of about 6km.

As well as previous datasets (GPP–MTE, LAI,

TransCom 3, and GCP data-derived CO2 fluxes), it

should be noted that although this is one of the best

available global NPP products it is not actually data, but

rather a model estimate dependent on parameterizations

(the temperature-dependent assimilation efficiency for

carbon fixation and an empirically determined light de-

pendency term).

9) UNCERTAINTY IN THE OBSERVED DATASET

One limitation of most of the above chosen reference

datasets is that it is in general difficult to estimate their

observational errors (except for Bayesian inversions

that explicitly comewith uncertainty estimates). Sources

of uncertainty include random and bias errors in the

measurements themselves, sampling errors, and analysis

error when the observational data are processed through

models or otherwise altered. In short, the quality of ob-

servational measurements varies considerably from one

variable to the next (Gleckler et al. 2008) and is often not

reported.

Errors in the reference data are frequently ignored in

the evaluation of the models. It is often argued that this

is acceptable as long as these errors remain much smaller

than the errors in the models (Gleckler et al. 2008). A full

quantitative assessment of observational errors by the

estimation of its impact on themodel ranking is, however,

beyond the scope of this study.

Nevertheless, we would report that some of the ref-

erence data used for model validation show relevant

problems. For instance, the oceanNPP is calculated from

SeaWiFS satellite chlorophyll data, which contains a sig-

nificant uncertainty of ;30% (Gregg and Casey 2004).

The MLD and SST datasets have a lack of observa-

tions in the Southern Ocean compared to other regions,

hence the uncertainty in these datasets is greatest in the

Southern Ocean (de Boyer Mont�egut et al. 2004).

It is also argued that CRU has been designed to pro-

vide best estimates of interannual variations rather

than detection of long-term trends (Mitchell and Jones

2005).

Finally, the soil databases are based on a limited

number of soil profiles and extrapolated to other areas

according to soil type. Climate or land cover and man-

agement are usually not considered so that these data

have high-associated uncertainty.

c. Assessment of model performances

A series of measures of analysis are employed here for

model evaluation and ranking; the model performances

are evaluated at every grid point and then aggregated

over the different land and ocean subdomains. However,

as previously described in section 2b, the atmospheric in-

version estimates do not provide any reliable information

at grid cell level, therefore for land–atmosphere and

ocean–atmosphere CO2 fluxes only the evaluation is

performed using regional averages of the CO2 fluxes. In

the following we describe the diagnostics used for model

evaluation and the metrics used for model ranking.

1) DIAGNOSTICS DEFINITION

Climatic trends for land surface temperature, land

precipitation, and SST are estimated by the linear trend

value obtained from a least squares fit line computed for

the full period 1901–2005 of data, while for the LAI and
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GPP (because of the unavailability of data before 1982)

the trends are computed in the same way but for the

reference period 1986–2005.

Looking at simulated interannual variability, the root-

mean-square error (RMSE) is not an appropriate mea-

sure for characterizing this aspect of model performance

because there is no reason to expect models and obser-

vations to agree on the phasing of internal (natural un-

forced) interannual variations (e.g., the timing of El

Ni~no events; Lin 2007; Gleckler et al. 2008). Standard

measures of model mean variability, such as the ratio of

the standard deviation of the model means divided by

the standard deviation of the means in the reference

dataset, suffer from the serious problem that regions with

too large/small IAV can cancel out and therefore give

a too optimistic picture of model performance (Gleckler

et al. 2008; Scherrer 2011). To avoid these cancellation

effects, the model variability index (MVI) as introduced

by Gleckler et al. (2008) and Scherrer (2011) is used here

to analyze the performance for each model, as given by

MVIMx,y5

 
sMx,y

sOx,y
2

sOx,y

sMx,y

!2

, (1)

where sMx,y and sOx,y are the standard deviations of the

annual time series of models and observation for a given

variable at each grid point (x, y). Using this simple index

of performance, we compare each model’s variability

at every grid cell and then average over the different

subdomains in the period 1986–2005. Perfect model–

reference agreement would result in a MVI value of 0.

The MVI provides a good measure to assess differences

between model and reference data standard deviations

and allows us to identify consistent biases in the standard

deviations of single models. The definition of a MVI

threshold value that discriminates between ‘‘good’’

and ‘‘bad’’ is somewhat arbitrary. Scherrer (2011), in

his CMIP3 validation paper, defined a MVI , 0.5 as a

good representation of IAV. In this paper we use the

same threshold, although in case of biological variables

the MVI could be much larger than 0.5.

Often it is also argued that a 20-yr window could be

not long enough for characterizing the long time scale

variance of a model (Wittenberg 2009; Johnson et al.

2011). This means that when theMVI is being computed

over the last 20 yr, there is an implicit assumption that

the variability is representative of the full length of the

simulation. To test whether this is the case, we also have

accounted the MVI for the physical variables over the

period 1901–2005, and we found a relevant reduction in

the MVI of global surface temperature, precipitation,

and SST compared to the MVI computed in the period

1986–2005 (not shown). This confirms that a 20-yr win-

dow is pretty marginal in characterizing what the actual

variability of the model is. However, considering this

work, while for climate variables it is possible to com-

pute the MVI from the beginning of last century, in the

case of all the other variables the data are limited to the

only last 20 yr; therefore we decided to analyze the MVI

over the period 1986–2005 to be consistent between

physical and biological variables.

2) METRICS DEFINITION

Two different skill scores are used for the model

ranking. In the case of mean annual cycle we check the

ability of the models to reproduce both the phase and

amplitude of the observations during the period 1986–

2005. Starting for monthly-mean climatological data, we

use the centered root-mean-square (RMS) error statistic

to account for errors in both the spatial pattern and the

annual cycle. Given a model (M) at the grid point (x, y)

and the reference dataset at the same location (Ox,y), the

errors of the model m (Em2

x,y) is calculated as follows:

Em2

x,y 5
1

N
�
N

t51

[(M
x,y
t 2M

x,y
)2 (O

x,y
t 2O

x,y
)]2 , (2)

where t corresponds to the temporal dimension,N is the

number of months (i.e., 12), and M
x,y

and O
x,y

are the

mean values of the model and reference data, re-

spectively, at the grid point (x, y).

To get an error between 0 and 1 (where 0 corresponds

to poor skill and 1 perfect skill), we normalize the error

of the model m dividing it by the maximum error com-

puted considering all the models at the grid point (x, y).

Therefore the relative error (Re) of a single model m

becomes

Remx,y5 12
Em2

x,y

max(E2
x,y)

. (3)

Unlike Gleckler et al. (2008) who normalized their

seasonal skill score by the median of the RMS errors

computed considering all themodels, here we decided to

divide by the maximum RMS error in order to have

a skill score ranging between 0 and 1.

The second skill score used for model ranking is based

on the comparison of Epanechnikov kernel–based prob-

ability density functions (PDFs; Silverman 1986) of

models with observations (Perkins et al. 2007). This

skill score provides a very simple but powerful measure

of similarity between data and observations since it al-

lows comparison of both the mean state and the inter-

annual variability of a given variable by calculation of the
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common area under the two PDFs (Maxino et al. 2008). If

models perfectly reproduce the observed condition, the

skill score would equal 1, which is the total area under

a given PDF. On the contrary, if a model simulates the

observed PDF poorly, it will have a skill score close to 0;

namely, there is not any overlap between the observed

and modeled PDF. Note that despite this seeming to be

similar to theKolmogorov–Smirnov test for the similarity

of PDFs, there is a fundamental difference between them:

the Kolmogorov–Smirnov test is based on the maximum

difference between cumulative PDFs, while the skill

score is based on the common area under the PDF curves

(Errasti et al. 2011). Starting from yearly data and given

Zx,y the common area under the observed PDF (zOx,y) and

the simulated PDF (zMx,y) at the grid point (x, y)

Zx,y5min(zOx,y, z
M
x,y) , (4)

the skill score at a given geographical location is com-

puted in the following way:

sx,y5w

ðN
1
Zx,y , (5)

where sx,y is the numerical value of the skill score (0 #

sx,y # 1), N is the number of intervals used to discretize

the PDF estimated by means of the Epanechnikov ker-

nels (in this study, N 5 100), and w is a weight (Table 5)

introduced in order to give lower weight at the grid points

where models are expected to poorly reproduce the ob-

servations. In fact, models are expected not to faithfully

reproduce the observation in some specific regions such

as in area of complex topography (i.e., in mountainous

regions the coarse resolution of models does not allow

to correctly reproduce the right temperature pattern)

or over specific surface cover (e.g., coastal regions, ice-

covered area, and sparse vegetated points).

This measure is, however, imperfect: a model that is

able to simulate the tails of a distribution well (i.e., ex-

treme events like heat waves or cold spells, drought, or

heavy rain) would be very valuable, but if it simulates

the more common regions of the PDF poorly it could

score badly overall. Conversely, a model could appear

skillful by simulating all the probabilities one or two

standard deviations from the mean while being poor to-

ward the tails (Maxino et al. 2008).

In general, models that properly simulate the ob-

served mean value of a given variable (namely they fall

into the range of 61s of the observed PDF) are able to

reproduce at least 68.2% of the reference data. Maxino

et al. (2008) defined as ‘‘adequate’’ those models with

a skill score greater than 0.9; this value was chosen since

it allows identification of not only models that correctly

capture the mean value, but also those models that

capture a considerable amount of the interannual vari-

ability.

However, a threshold of 0.9 is too large when aggre-

gating the skills over subregions, therefore in this study

we consider a model as having relevant skill when it

simulates at least 1s of the observed PDF. This method

has already been used for the IPCC Fourth Assess-

ment Report (AR4) over Australia (Perkins et al. 2007;

Maxino et al. 2008), Spain (Errasti et al. 2011), and

Coordinated Regional Downscaling Experiment in

African (CORDEX) regions (Jacob et al. 2012). In their

study, Errasti et al. (2011) removed all the points below

a threshold value of 0.7 to avoidmodels characterized by

very poor values affecting the overall score. However,

this latter procedure is questionable since over large

subregions removing the points with a skill lower than

0.7 will favor only the points with good agreement to

observations and any poor performance of models re-

lated to severe bias will not be regarded. Additionally,

removing all the points below a particular low threshold

(e.g., 0.05) can lead to an overestimation of a model’s

skill. For this reason, in order to compute the regional

skill score we apply a weighted mean, giving relatively

large weights to points where the skill score exceed 0.75

and low importance to points where the score is poor

(Table 4). We also have computed the ranking without

weighting the skill scores (not shown) and found that the

weights only change the models skill values, leaving

unchanged the overall ranking.

In addition, for those variables we are unable to build

the PDFs because of the lack of yearly data (e.g., soil

carbon, vegetation carbon, and MLD) the skill score is

computed using the bias between a givenmodel (M) and

the reference data (O). Given the bias (B) of the model

m at the grid point (x, y)

Bm
x,y5 jMx,y2Ox,yj , (6)

the skill score is computed following Eq. (3). It should

also be noted that normalizing the skill score calcula-

tions in this way yields a measure of how well a given

model (with respect to a particular reference dataset)

TABLE 5. Skill score values with the corresponding weights used to

compute regional estimates.

Skill score WeightÐ
Zx,y , 0.05 0.05

0.05 #
Ð
Zx,y , 0.25 0.1

0.25 #
Ð
Zx,y , 0.5 0.15

0.5 #
Ð
Zx,y , 0.75 0.25Ð

Zx,y $ 0.75 0.45
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compares with the typical model error; namely, it leads

to a more optimistic skill compared to the PDF-based

skill score.

3. CMIP5 model performances during the
twentieth century

Since the simulation of physical variables will affect

the simulation of the carbon cycle, we first briefly show

how CMIP5 models reproduce these variables and then

we focus on the carbon cycle performances. In particu-

lar, the evaluation of climatic variables is needed to as-

sess whether any bias in the simulated carbon variables

can be related to poor performances of the ESMs re-

producing physical variables or is mainly due to the poor

representation of some biogeochemical processes into

the biological components of ESMs.

a. Land surface temperature, land precipitation, SST,
and MLD evaluation

The temporal evolution of global mean surface tem-

perature, for the land points only (without Antarctica),

is shown in Fig. 1 (top) for the CMIP5 simulation as well

as for the observations-derived data product (CRU).

As for the AR4 results (Solomon et al. 2007), the

CMIP5 simulations of the twentieth century that incor-

porate anthropogenic forcing (including increasing

greenhouse gas concentrations and aerosols concentra-

tions), as well as natural external forcing (volcanoes,

change in solar radiation), are able to correctly reproduce

the observed temperature anomaly, the observed data

being systematically within the gray shading representing

the range of variability of CMIP5 models. Plotting the

CMIP5 temperature time series as anomalieswith respect

to the base period 1901–30, all the models exhibit a gen-

eral upward temperature trend (Fig. 1); the net temper-

ature increase over the historical period is determined

primarily by a balance between the warming caused by

increased GHGs and the cooling over some regions as-

sociated with increasing aerosols.

The ensemble mean suggests that CMIP5 models cor-

rectly reproduce the transient drop in global mean tem-

peratures owing to main volcanic eruptions followed by

gradual recovery over several years (Fig. 1). Larger in-

terannual variations are seen in the observations than in

the ensemble mean; consequently, mainly during the first

50 years the observed evolution lies outside the 90%

confidence limits diagnosed from the CMIP5 ensemble

spread (red shading). This result is related with the multi-

model ensemble mean that filters out much of the nat-

ural variability (unforced and forced; i.e., volcanic, solar,

and aerosols) simulated by each of the CMIP5 models.

In addition, the ensemble spread (i.e., range of model

variability) shows an increase with lead time, reflecting

the loss of predictability associated with the different

climate sensitivities (i.e., with the different model re-

sponses to forcing; Solomon et al. 2007; Hawkins and

Sutton 2009).

In Fig. 1 (bottom)we present for eachmodel themean

surface temperature over the period 1986–2005, the MVI

computed in the same temporal period, and the trend

during 1901–2005. On the x axis, models falling at the left

(right) of observations indicate a cold (warm) bias, while

on the y axis models above (below) the observations have

a stronger (lower) trend than observations.

The comparison with CRU data shows that in general

fewmodels have a warm bias (within 18C), while most of

the models have a cold bias (Fig. 1). Poor performances

have been found for the INM-CM4 model: specifically,

its global cold bias is around 2.38C, with the minimum

found in Northern Hemisphere (1.88C) and a maximum

in the tropics (3.28C). Conversely, the best performances

have been found in IPSL-CM5A-MR, MPI-ESM-LR,

MPI-ESM-MR, and GFDL-ESM2M models that are

consistently closer to CRU data. Looking at the trends,

however, IPSL-CM5A-MR and GFDL-ESM2M gen-

erally seem to be closer to the observations than MPI-

ESM-LR and MPI-ESM-MR.

On the other hand, GFDL-ESM2M shows the poorest

performances reproducing the observed IAV, having a

MVI larger than 1.4 at the global scale, while only a few

models show a MVI lower than 0.5 (indicating a good

representation of the simulated IAV). The best results

in terms of simulated IAV are found in the Northern

Hemisphere, where several models show a MVI lower

than 0.5; conversely, in the tropics most of the models

have a MVI larger than 1.

In Fig. 2 (top) we compare precipitation changes during

the twentieth century over land surfaces as reconstructed

from station data (CRU) and simulated by individual

CMIP5 models; here shown are annual anomalies with

respect to the period 1901–30.

The CMIP5 models correctly reproduce the precipi-

tation variability: specifically, for most of the time the

reference data fall inside the range of variability of the

models, identified by the gray shading. Explosive volcano

eruptions prescribed to the models introduce anomalies

in the simulated historical precipitation as seen by tem-

perature; clear precipitation reductions around the year

1991 associated with the Pinatubo eruptions is found in

both CRU data and CMIP5 simulations.

Looking at the multimodel ensemble mean, it does

not reproduce the amplitude of temporal evolution in

twentieth-century terrestrial precipitation (see also Allan

and Soden 2007; John et al. 2009; Liepert and Previdi

2009), displaying the observations larger than the 90%
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FIG. 1. (top) Globally averaged surface air temperature (only land points, without Antarctica) from observations (CRU) and as sim-

ulated by CMIP5 models in response to major forcings, natural and anthropogenic. The anomaly has been computed with respect to the

reference period 1901–30. Vertical gray lines indicate the timing of major volcanic eruptions, while the orange line shows the most intense

ElNi~no event that occurred in the twentieth century. The gray shaded area represents range of variability of the 18CMIP5models (i.e., the

envelope of positive and negative temperature extremes based on multimodel mean), while the red shading shows the confidence interval

diagnosed from the ensemble standard deviation assuming a t distribution centered on the ensemble mean (white curve). (bottom)

Intercomparison of surface temperature over land estimated by 18 different CMIP5 models (circles) with reference temperature esti-

mated by CRUdataset (triangles) for the whole globe, SouthernHemisphere (208–908S, without Antarctica), NorthernHemisphere (208–
908N), and the tropics (208S–208N). Scatterplot shows multiyear average temperature in x axis computed during the period 1986–2005, its

linear trend in y axis over the full period 1901–2005, and MVI.
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confidence limits diagnosed from the ensemble spread

(blue shading). As already described for the temperature,

the averaging process partially filters out the IAV.

The evaluation of precipitation for everymodel is given

in Fig. 2 (bottom). The best performances reproducing

global precipitation are found in IPSL-CM5B-LR,

BCC-CSM1.1-M, and the MPI models. BCC-CSM1.1,

HadGEM2-ES, andHadGEM2-CCmodels show a slight

wet bias (less than 50mmyr21), while CanESM2, IPSL-

CM5A-LR, and IPSL-CM5A-MR have a dry bias of

about 80mmyr21. All the other models overestimate

global precipitation with a bias of about 100mmyr21.

In the Southern Hemisphere several models match

the CRU data well, while IPSL-CM5A-LR and

FIG. 2. As in Fig. 1, but for land precipitation.
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IPSL-CM5A-MRshow a dry bias andNorESM1-MEand

CESM1-BGC have a strong wet bias. In the tropical re-

gion, quite a few models are able to reproduce the mean

precipitation, while in the Northern Hemisphere (except

CanESM2) all the models show a wet bias.

Looking at the IAV none of the models has a MVI

close to the threshold of 0.5; the best results are found in

the Southern Hemisphere for the Hadley models. As

expected, the worst performances reproducing the pre-

cipitation IAVoccur in the tropical region, reflecting the

inability of these models to reproduce the interannual

variations in the hydrological cycle (Lin 2007; Scherrer

2011); as already suggested by Wild and Liepert (2010)

inadequacies in the simulation of surface radiation bal-

ance may contribute to the poor simulation of IAV dur-

ing the twentieth century. In addition, shortcomings in

the representation of the natural variability in atmo-

sphere–ocean exchanges of energy and water that result

in variations of convection and consequently in cloudi-

ness andhumidity can contribute to a poor representation

of precipitation IAV in CMPI5 models (Lin 2007; Wild

and Liepert 2010).

The evaluation of the trend shows that at the global

scale and in the tropical region several models are close

to CRU, while in the Southern and Northern Hemi-

sphere in general the models are not capable to capture

the observed wettening trend. This is particularly evi-

dent in the Southern Hemisphere where the CMIP5

models show an ensemble trend around zero, while the

CRU data give a positive trend of 5.5mmdecade21 over

the period 1901–2005.

To understand the source of this mismatch between

CMIP5 models and CRU data, we also use precipitation

data from the Global Precipitation Climatology Project

(GPCP; Adler et al. 2003) for a further comparison. The

GPCP trend in the Southern Hemisphere during the

period 1979–2005 is20.46 9.5mmdecade21, whileCRU

shows a strong positive trend of 13 6 10mmdecade21

over the same period; this suggests that the two datasets

show a completely different trend. Although these results

are affected by a large uncertainty, it is often argued for

the reliability of CRU for the long-term trends (Mitchell

and Jones 2005).

Figure 3 (top) shows the temporal evolution of global

mean SST. Unlike the observed surface temperature

that is scatted around the CMIP5 ensemble mean and

falls in the middle of the gray shading, the observed SST

is markedly above the ensemble mean, particularly dur-

ing the period 1940–70.

The CMIP5 ensemble mean shows an increasing

trend, with declining periods in the early 1960s and 1990s

as a consequence of the cooling due to the Agung and

Pinapubo eruptions and a sharper rise in the post-1960

period. The HadISST data show an overall more linear

increase than the CMIP5 model ensemble mean. Similar

to the land temperature trend, the SST trend is primarily

a balance between warming caused by GHG concen-

trations in the atmosphere and cooling resulting from

aerosol emissions, modulated by the heat uptake by the

ocean. Thus, factors regulating the heat uptake by the

ocean, such as changes in the thermohaline circulation

and upwelling, have an effect on SST.

Aerosols from volcanic eruptions can lower SST at the

time of the eruption and for a few years following the

eruption. The CMIP5 models simulate a drop in SST as

a result of the main volcanic eruptions, as can be seen in

Fig. 3 (top).

Figure 3 (bottom) shows that the increasing trend in

SST is evident in all regions for all the CMIP5 models

except in the high-latitude Southern Hemisphere where

GFDL-ESM2M shows a cooling and the high-latitude

Northern Hemisphere where GFDL-ESM2G displays a

cooling. It should also be noted that the trend for BNU-

ESM has been computed over the period 1950–2005,

rather than in the period 1901–2005, and it explains why

this model exhibits this large trend compared to both

observations and other CMIP5 models.

Most of the models show a cold bias, particularly in

the Northern Hemisphere and a lower trend than the

observations, particularly in the Southern Hemisphere.

At the global scale most of the models display a cold

bias, with IPSL-CM5A-LR having the largest cold bias

(18C). All models except IPSL-CM5A-LR, IPSL-CM5A-

MR, MPI-ESM-LR, and BCC-CSM1.1 show a lower

trend than observations, with the lowest trend being in

HadGEM2-ES, which has an increase of 0.48C decade21

(less than is seen in observations). The interannual vari-

ability is fairly well simulated by CMIP5 models, with

a MVI lower than 1.5 in most of the subdomains and for

most of the models; however, severe problems repro-

ducing the IAV are found in the high-latitude Northern

Hemisphere where most of the models generally show

a MVI larger than 2. Since we also found poor perfor-

mances for a few models in reproducing the IAV in the

Southern Hemisphere, the poor skill could be related to

sea ice cover that affects both measured and modeled

SST.

As already described in section 2b(3), the reference

MLDdataset is a climatology; therefore it is not possible

to provide the same evaluation used for the other physical

variables. However, the MLD seasonal cycle allows iden-

tification of some importance differences between the

models and also allows the identification of possible bias

when compared to observations. Figure 4 shows the

seasonal performance of each of the models in compari-

son to observedMLD (de Boyer Mon�egut et al. 2004). In
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general, all the models simulate the basic seasonal cycle.

However, in all the models (except the Hadley models)

there is a consistent slight deep bias at the global scale,

with a strong bias found inMPI-ESM-LR andMPI-ESM-

MR.

The large global bias found in theMax Planck Institute

(MPI) models is related to a very deep mixed layer in the

Weddell gyre; the aggregation of regions means that the

entire Southern Ocean MLD is over estimated during

austral winter. However, it must also be considered that

FIG. 3. As in Fig. 1, but for SST. The regional SSTs are computed over the ocean subregions rather than over the land subdomains. The

reference SST dataset is HadISST.Note that BNU-ESM trend has been computed over the period 1950–2005 because of the unavailability

of data on PCMDI server. (top) BNU-ESM has been excluded by the analysis.
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deep mixed layers of up to 800m are indeed observed in

this region (Rintoul and Trull 2001). In addition, there is

a lack of observations in the Southern Ocean compared

to other regions and therefore there are biases in the data

that are based on individual profiles of temperature and

salinity.

The biases are less pronounced in the Northern

Hemisphere; however, several models display a deep

bias, particularly in winter. Most of the models show

a shift in the timing of the maximum and minimum

MLD compared to the observations with the maximum

occurring 1 month later. This would have a knock-on

effect on other components of the model, such as the

timing of the spring bloom. Summer MLDs are better

simulated as there is less variability at this time, with

summer depths between approximately 10 and 50m in

all subregions.

It should also be noted that some inconsistencies be-

tween CMIP5modelsmight arise as the result of differing

definitions of mixed layer depth between the CMIP5

modeling groups.

b. CMIP5 land carbon

The land–atmosphere CO2 flux, or net exchange of

carbon between the terrestrial biosphere and the atmo-

sphere, represents the difference between carbon uptake

by photosynthesis and release by plant respiration, soil

respiration, and disturbance processes [fire, windthrow,

insect attack, and herbivory in unmanaged systems to-

gether with deforestation, afforestation, land manage-

ment, and harvest in managed systems; Denman et al.

(2007)]. In Fig. 5 we compare the temporal evolution of

simulated global land–atmosphere CO2 flux with the

GCP global carbon budget estimates (Le Qu�er�e et al.

2009). Mainly thanks to the CO2 fertilization effect, the

CMIP5 ensemblemean shows increasing global landCO2

uptake between 1960 and 2005 with large year-to-year

variability. The temporal variability of the land carbon is

primarily driven by variability in precipitation, surface

temperature, and radiation, largely caused by ENSO

variability (Zeng et al. 2005). Specifically, the observed

land carbon sink decreases during warm climate El Ni~no

FIG. 4. Simulated and observed climatological seasonal cycle of MLD (m) for each ocean subdomain.
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events and increases during cold climate La Ni~na and

volcanic eruption events (Sarmiento et al. 2009). Con-

sistent with surface temperature results (Fig. 1), CMIP5

models do capture the right NBP response after volcanic

eruptions but are not meant to reproduce the observed

phase of ENSO variability (Fig. 5).

The CMIP5 multimodel ensemble land–atmosphere

flux (6 standard deviation of the multimodel ensemble)

evolved from a small source of 20.31 6 0.52 PgC yr21

over the period 1901–30 (with a mean year-to-year

variability of 60.33 PgC yr21) to a sink of 0.7 6 0.6

PgC yr21 in the period 1960–2005 (with a mean yearly

variability of 60.69 PgC yr21), while GCP estimates

show a weaker land sink of 0.366 1 PgC yr21 during the

latter period. As already shown for the physical variable,

the GCP IAV (61 PgC yr21) is larger than the IAV of

the multimodel ensemble (60.6 PgC yr21), owing to the

averaging process that partially filters out the IAV.

At the regional level, the evaluation is performed

against the atmospheric inversions, the GCP estimate

being only global. Individual model performances re-

producing the land–atmosphereCO2 fluxes over different

regions are given in Fig. 6. The global value of land–

atmosphere flux from JMA atmospheric CO2 inversion

in the period 1986–2005 is 1.17 6 1.06 PgC yr21, with

GCP showing a slightly lower global mean (0.756 1.30

PgC yr21).

As shown in Fig. 6, quite a few models correctly re-

produce the global land sink: in particular, MIROC-

ESM (0.91 6 1.20 PgC yr21), IPSL-CM5A-LR (0.99 6
1.18 PgC yr21), IPSL-CM5A-MR (1.276 1.54 PgC yr21),

HadGEM2-CC (1.33 6 1.44 PgC yr21), MIROC-ESM-

CHEM (1.45 6 1.21 PgC yr21), and BNU-ESM (1.55 6
1.37 PgC yr21) simulate global NBP within the range of

reference datasets. CanESM2 (0.31 6 2.32 PgC) un-

derestimates the land sink, as does NorESM1-ME

(20.09 6 1.03 PgC yr21) and CESM1-BGC (20.23 6
0.78 PgC yr21); these latter models show a global carbon

source in our reference period in contradiction with the

atmospheric inversion and GCP estimates. Despite

showing a realistic mean uptake, GFDL-ESM2M (0.676
4.53 PgC yr21) has severe problems reproducing the IAV,

GFDL-ESM2G (0.726 2.58 PgC yr21) showing a strong

reduction in IAV compared to GFDL-ESM2M.

In the TransCom 3 inversions, the Southern Hemi-

sphere land is found to be either carbon neutral or a slight

source region of CO2 (20.256 0.23 PgC yr21) potentially

because of deforestation; CMIP5 results in general put

a slight carbon sink in this region and only a few of the

models (IPSL-CM5A-MR, IPSL-CM5A-LR, CESM1-

BGC, andMIROC-ESM)agreewith observations (Fig. 6).

Inversions place a substantial land carbon sink in the

Northern Hemisphere (2.22 6 0.43 PgC yr21), while

tropical lands are a net source of carbon (20.8 6 0.75

PgC yr21) because of deforestation.

Looking at the Northern Hemisphere, all CMIP5

models predict a CO2 sink despite an overall under-

estimation. Possible reasons for this underestimation

could be the poor representation of forest regrowth from

abandoned crops fields (Shevliakova et al. 2009), as well

as the absence of sinks as a result of nitrogen deposition

formostmodels (Dezi et al. 2010). It should also be noted

that Stephens et al. (2007) found JMA having a weaker

sink in the Northern Hemisphere compared to the other

inversion datasets, therefore using another inversion

model from TransCom would further increase the mis-

match between CMIP5 models and the inversion esti-

mates over this subdomain.

FIG. 5. Temporal variability of CMIP5 global land–atmosphere CO2 flux compared to GCP estimates (black line). Green shading shows

the confidence interval diagnosed from the CMIP5 ensemble standard deviation assuming a t distribution centered on the ensemble mean

(white curve), while the gray shading represents the range of variability of CMIP5 models. Positive values correspond to land uptake.
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Over the tropical region several models simulate a

carbon source [i.e., CESM1-BGC (20.246 0.55 PgC yr21),

MIROC-ESM (20.24 6 0.79 PgC y21), NorESM1-ME

(20.11 6 0.74 PgC yr21), and GFDL-ESM2G (20.03 6
1.52 PgC yr21)]; the rest of the ESMs simulate a tropical

sink, with IPSL-CM5B-LR (0.97 6 1.30 PgC yr21) sim-

ulating the strongest carbon sink.

In Fig. 7 the seasonal evolution of simulated land–

atmosphere CO2 fluxes is compared against the JMA

atmospheric inversion estimates.While at the global scale

and in the Northern Hemisphere only CanESM2 has

serious problems reproducing the net uptake of carbon

during spring and summer months because of increasing

GPP over respirations and the release of carbon during

autumn and winter months owing to respiration

processes; in the SouthernHemisphere and in the tropics

somemodels do not capture the right seasonal cycle. The

performances of CMIP5 models are particularly poor in

the tropics, wheremost of the models are shifted by a few

months or are even anticorrelated with observations.

Looking at surface climate, quite a few models do cor-

rectly reproduce the right phase of temperature and

precipitation in the tropics, therefore this suggests that

the poor performances reproducing the right NBP phase

are not directly related with bad skills simulating sur-

face climate. Among other possibilities, missing or coarse

parameterization of harvesting, fires, and land use change

(LUC) might help to explain the seasonal cycle discrep-

ancy between the models and data, as well as the well-

known problems related to tree rooting depth (Saleska

FIG. 6. Error bar plot showing the 1986–2005 CMIP5 integrated NBP over the land subdomains. Positive values correspond to land

uptake, and vertical bars are computed considering the interannual variation. At the global scale CMIP5 models are compared also with

GCP estimates, while in all other subregions the reference observations are inversion estimates (triangles).
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et al. 2003; Baker et al. 2008). Additionally, it should also

be noted that there are no CO2 station data in the tropics,

and consequently the seasonal cycle estimates might

suffer from large uncertainty (Gurney et al. 2004). It is

also remarkable that in the tropics the amplitude of the

NBP seasonal cycle is small, therefore it is partially ex-

pected that models do not perfectly reproduce the flat

temporal evolution.

In the following, we try to identify the causes thatmight

lead to wrong land–atmosphere CO2 fluxes, namely, we

check how CMIP5 models reproduce the GPP, the LAI,

and soil and vegetation carbon pools. Note that likeGPP,

the heterotrophic respiration (RH) is a key variable af-

fecting NBP; however, owing to the lack of global data-

sets, the RH evaluation is not performed in this study.

The comparison of GPP simulated by CMIP5 models

with estimates derived from FLUXNET site–level ob-

servations using a model tree ensemble (MTE) upscal-

ing approach (Jung et al. 2009, 2011) show that all the

models overestimate the GPP over the period 1986–

2005 (Fig. 8). In general we can identify two groups of

models: the first group has a mean global GPP value

ranging from 106 to 140 PgC yr21, which despite an

overall overestimation is reasonably similar to the value

of 1196 6 PgC yr21 found in theMTE (where 6 PgC yr21

is the uncertainty because of the different approaches

used to estimate theMTE–GPP) and a second group that

has a mean global GPP value greater than 150 PgC yr21.

Using eddy covariance flux data and various diagnostic

models [a similar approach is used by Jung et al. (2009)],

Beer et al. (2010) provide an observation-based estimate

of this flux at 123 6 8 PgC yr21 in the period 1998–2005

consistent with result of Jung et al. (2009), while MODIS

GPP estimates (Mao et al. 2012) indicate a mean value of

114 PgC yr21 over the period 2000–05. These results sug-

gest that L’Institut Pierre-Simon Laplace (IPSL), Geo-

physical Fluid Dynamics Laboratory (GFDL), and MPI

models strongly overestimate the global GPP (Fig. 8). We

note that recent studies suggest that current estimates

of global GPP of 120 PgC yr21 may be too low and that

a best guess of 150–175 PgC yr21 (Welp et al. 2011) or

1466 19 PgC yr21 (Koffi et al. 2012) better reflects the

FIG. 7. Comparison of mean annual cycle of NBP (PgC month21) as simulated by CMIP5 models and JMA inversion in the 20-yr

period 1986–2005.
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observed rapid cycling of CO2. In light of these recent

results, one could suggest that the best CMIP5 models

are those having a global GPP value greater than 150

PgC yr21. However, it is argued that Welp et al. (2011)

have used only a limited number of observations and

a very simple model for their studies, while Koffi et al.

(2012) cannot distinguish the best estimate of 1466 19

PgC yr21 from a different assimilation experiment yielding

a terrestrial globalGPP of 117 PgC yr21. For such reasons

our reference dataset forGPP still remains theMTE–GPP

of Jung et al. (2011).

With the clear exception of high latitudes, annual GPP

or LAI zonal means follow precipitation zonal distribu-

tions (i.e., more productive ecosystems are found in the

correspondence of precipitation maxima). Therefore, as

a first approximation, the precipitation is the main lim-

iting factor for the photosynthesis across the globe, tem-

perature being mainly limiting at high latitudes (Piao

et al. 2009). In fact too high temperatures could produce

a negative effect onGPP, while awet bias would generally

be a benefit for theGPP. Looking at Fig. 2, we can exclude

that the bias inGPP is caused by awet bias in precipitation

since themodels that systematically overestimate theGPP

are in fact closer to the observed precipitation. Therefore,

there are other reasons explaining the systematic over-

estimation of global mean GPP in all the CMIP5 models.

First, most of these models do not consider nutrient lim-

itation on GPP (Zaehle et al. 2010; Goll et al. 2012); it

should be noted that the few models simulating the N

cycling are the closer to the reference data. Second, the

parameterization of the impact of tropospheric ozone on

reducing GPP is not implemented yet in the models; Sitch

et al. (2007) andWittig et al. (2009) quantified that ozone

leads to a mean global GPP reduction of about 20%

during the historical period as compared to a simulation

without elevated tropospheric ozone.

Finally, the original FLUXNET stations datasets used

in the MTE approach are affected by uncertainties

FIG. 8. Integrated GPP over the land subdomains. The linear trend has been computed over the period 1986–2005 and the reference

dataset is MTE–GPP.
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originating from u* filtering (Papale et al. 2006), gap

filling (Moffat et al. 2007), and flux partitioning

(Reichstein et al. 2005; Lasslop et al. 2009). In addition,

uncertainties increase when extrapolating to the globe,

which also carries uncertainties related to the accuracy

and spatial–temporal consistency of global forcing data

(Jung et al. 2011).

A further comparison with results from different

process-based terrestrial carbon cycle models forced

offline by observed climate (i.e., CRU) shows that the

land surface components of the CMIP5 ESMs still over-

estimate the GPP when forced by observations. Specifi-

cally, Piao et al. (2013) found that the global terrestrial

GPP averaged across 10 models forced by observed cli-

mate is 133 6 15 PgC yr21 with Organizing Carbon and

Hydrology in Dynamic Ecosystems (ORCHIDEE) and

the Community Land Model version 4 (CLM4) having a

mean global GPP of 151 6 4 PgC yr21 over the period

1982–2008 and Top-Down Representation of Interactive

Foliage and Flora Including Dynamics (TRIFFID)

showing a global GPP of about 140 PgC yr21, consistent

with our results from the IPSL-CM5 models, and

CESM1-BGC and the HadGEM2 models, respectively.

Since TRIFFID does not show any relevant bias re-

duction between the online and offline version, and al-

though the bias in ORCHIDEE is slightly lowered when

forced by observed climate, we can exclude that the

coupling generates this large bias in GPP.

Looking at the interannual variability of GPP in the

tropics and in the Northern Hemisphere, no model cap-

tures the IAV of the observation-based product; all

models simulate larger GPP IAV than the one given by

the MTE–GPP. Several models show relatively good

performances in the Southern Hemisphere despite none

of these models showing a MVI value close to the good

performance threshold of 0.5 defined by Scherrer (2011).

The poor performances found in the tropics and in the

Northern Hemisphere affect the global MVI and all the

models show a MVI larger than 3.

However, it is worth seriously questioning the realism

of the MTE–GPP product regarding its magnitude of in-

terannual variability and in particular in the tropics (Zhao

and Running 2010). Most of the MTE GPP sensitivity to

temperature and precipitation is learned from the spatial

variability of the FLUXNET data, not its interannual

variability. Also, there are virtually no FLUXNET sites in

the tropics to train the MTE product. The MTE tropical

temporal variability is hence derived from the spatial

variability of temperate ecosystems. Hence, we prefer not

to use theMTE–GPP IAV as a target for CMIP5models’

evaluation.

All models predict a significant increase in vegeta-

tion productivity at the global scale from 1986 to 2005,

although the magnitude of the trend from all the CMIP5

models (ranging from 0.2 to 0.66 PgC yr22) is signifi-

cantly larger than MTE estimates (0.09 PgC yr22).

Again, one could question the MTE–GPP trend as at-

mospheric CO2 fertilization was not explicitly accounted

for inMTE–GPP framework. Also, theMTE–GPP trend

may be affected by changing satellite products of vege-

tation activity before and after 1998.Hence, weprefer not

to use theMTE–GPP trend as a target for CMIP5models’

evaluation.

In the Southern Hemisphere almost all CMIP5 models

do not show any relevant increase in vegetation pro-

ductivity being the trend scattered around zero, while

over the Northern Hemisphere and the tropics all the

models exhibit a positive trend in GPP.

In Fig. 9 we compare the phase of the mean annual

cycle of CMIP5 models with the GPP from the MTE

dataset. At the global scale, all the CMIP5 models cor-

rectly reproduce the phase of the seasonal cycle of GPP.

In particular, over the globe and Northern Hemisphere,

the CMIP5 models capture the GPP minimum during

winter and fall and the summer GPP maximum related

to the spring leaf out and maximum growing season,

while in the Southern Hemisphere the models reproduce

the phase of the winter GPP minimum. Several problems

are found in the tropical regions, and only a few of the

models (BCC-CSM1.1, INM-CM4, HadGEM2-ES, and

NorESM1-ME) are able to accurately reproduce the

phase of the GPP seasonal cycle in this region. IPSL-

CM5A-LR and IPSL-CM5A-MR, indeed, show in the

Northern Hemisphere (and on a global scale as well)

a strong positive bias of GPP during June–August (JJA).

Since the evaluation of precipitation does not show a co-

incident wet bias, this suggests that the land surface

component of the IPSL models overestimates the GPP

in summer, maybe because this model does not have N

limitations or because the water stress is not strong enough

during the peak growing season.

The comparison of simulated LAI with a global dataset

derived from satellite data is presented in Fig. 10. How-

ever, before describing themodel’s deficiencies we would

highlight that there are several limitations in the satellite

observations that could explain the mismatch between

the LAI dataset and CMIP5 results.

The remote sensing LAI products are estimates de-

rived from top-of-the-atmosphere reflectances and use

different sensors and algorithms (Los et al. 2000;Myneni

et al. 2002). Therefore, the quality of LAI retrievals is

limited by the intrinsic characteristics of the sensor sys-

tems, the dynamic of the signal received at the satellite

level, and the physical properties of the target (Gibelin

et al. 2006). For instance, cloud cover hides the sur-

face and produces discontinuities in the time series. In
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addition, the layers of a vegetation canopy cast shadow

and LAI of lower layers near the ground may not be well

documented. This may yield a 30% underestimation in

the case of clumped canopies (Roujean andLacaze 2002).

This occurs mostly for dense forested areas and fully

developed crops. On the other hand, over semiarid eco-

systems, soil brightness contaminates sufficiently the

signal to restrict its sensitive response to LAI increase.

Similarly, high reflectance of snow may hamper an ac-

curate LAI retrieval at high latitudes at springtime

(Gibelin et al. 2006).

Similar to the temperature, precipitation, and GPP

evaluation, the overall behavior of CMIP5 models re-

producing the LAI is analyzed by comparing the yearly

mean simulated value with the satellite-derived dataset.

In Fig. 10 we present for each model the mean LAI, the

trend, and theMVI computed in the period 1986–2005 for

different subdomains.

Looking at themean global value, only INM-CM4 and

CanESM2 capture themain features of the global pattern,

while all the remaining models overestimate the global

LAI. Serious problems have been found in BNU-ESM

and theGFDLmodels, all showing a global LAI above 2.4

while the reference values are much lower (1.45). We

found BNU-ESM having severe problems in reproducing

the right amplitude of LAI in the tropics (Fig. 10) and the

GFDL models completely unable to reproduce the east-

ward gradient over Europe and Asia, as well as over-

estimating the LAI in North America (Anav et al. 2013).

Consequently as shown in Fig. 10 in the Northern

Hemisphere, GFDL-ESM2G andGFDL-ESM2Mare far

outliers and the global result is affected by this erroneous

pattern. This problem is likely due to the initialization of

the vegetation during the spinup phase: in fact the GFDL

land model only allows coniferous trees to grow in cold

climates (i.e., deciduous trees and grass do not grow in

these cold regions). As a result, coniferous trees are es-

tablished in areas where there should be tundra or cold

deciduous trees (Anav et al. 2013). Additionally, since all

CMIP5models were spun up formany thousands of years,

FIG. 9. Comparison of mean annual cycle of GPP (PgC month21) as simulated by CMIP5 models with MTE–GPP data over the 20-yr

period 1986–2005.
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in the case of theGFDLmodels the coniferous vegetation

eventually builds up high LAI. It is also noteworthy that

this positive bias in LAI does not significantly affect the

GPP in the Northern Hemisphere (Fig. 8).

Over the Southern and Northern Hemispheres as well

as in the tropical bounds we found a general tendency by

CMIP5 models to overestimate the LAI and only a few

models are close to the observation.

There are several reasons to explain the large over-

estimation of LAI by CMIP5models. First, the high GPP

could lead to a surplus of biomass stored into the leaves.

Also the missing parameterization of ozone partially ex-

plains the LAI overestimation due to the GPP: specifi-

callyWittig et al. (2009) andAnav et al. (2011) found that

ozone leads to a mean global LAI reduction of about

10%–20% during the historical period as compared with

a simulation without elevated tropospheric ozone. Fi-

nally, as the LAI dataset does not come out from true

observations we cannot exclude that it is affected by

a significant bias. However, compared to other LAI da-

tasets our reference data show a good agreement: in

particular, considering the period 2000–05 the mean

global LAI of our dataset is 1.46, while MODIS LAI

(Yuan et al. 2011) shows a value of 1.49 and Carbon

Cycle and Change in Land Observational Products from

an Ensemble of Satellites (CYCLOPES) LAI (Baret

et al. 2007; Weiss et al. 2007) has a global mean slightly

lower at 1.27. However, this latter dataset has some low

values in dense canopies, especially evergreen broadleaf

forests, which results in a lower value for the whole Earth

(Zhu et al. 2013). Besides, taking into account the error of

the reference data (0.66) estimated by comparing the

satellite datawith groundmeasurements (Zhu et al. 2013)

the model-data misfit would be significantly reduced.

Considering the interannual variability, none of the

models are close to the good performance threshold of

0.5, the MVI being systematically larger than 2 in all the

domains. On the other side, the LAI trend is well simu-

lated by all models except BNU-ESM that largely over-

estimates the greening in the Northern Hemisphere and

the tropics, as well as byGFDL-ESM2Mand IPSL-CM5A-

LR, which show a browning in the Southern Hemisphere.

FIG. 10. Mean annual LAI as simulated by CMIP5 models and the reference LAI3g data (black triangle) over the land subdomains.
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Looking at the global scale, most of the models do re-

produce a slight greening of the samemagnitude than the

observed data.

The comparison of the LAI seasonal cycle is given in

Fig. 11. At the global scale and in the Northern Hemi-

sphere all the models (except GFDL) correctly reproduce

the seasonal variability; namelyCMIP5models reproduce

the right timing of bud burst and leaf out, as well as the

weak leaf coverage during fall and winter. Some problems

are found in the tropics and Southern Hemisphere where

some models are anticorrelated to observations. Despite

that the MIROC models show a good phase of LAI com-

pared to observations, they also show a strong positive bias

during JJA in both the hemispheres and at the global scale.

The mean global soil carbon (6 ensemble standard

deviation) reported across all ESMs is 1502 6 798 PgC,

whereas the global soil carbon in the reference dataset is

1343 PgC (Fig. 12). CESM1-BGC has the lowest total at

512 PgC and MPI-ESM-MR the highest at 3091 PgC.

Looking at the global mean, most of the ESMs are

clustered around the HWSD reference data (Todd-

Brown et al. 2012). It is also interesting to note that both

CESM1-BGC andNorESM1-ME show the lowest totals

and these models both use CLM4 as a land surface

model (Table 2). This severe global underestimation is

due to the lower carbon soil simulated in the Northern

Hemisphere. On the other side,MIROC andMPImodels

strongly overestimate the soil carbon in all the subregions.

Similarly to the soil carbon results, the vegetation carbon

evaluation shows thatESMs are also clustered around the

reference value (Fig. 12). Themultimodel mean of global

vegetation carbon (6 ensemble standard deviation)

reported across all ESMs is 522 6 162 PgC, a value

close to the reference data (556 PgC). At the global scale

MIROC and MPI models underestimate the reference

value, whereasBNU-ESMreported the highest total at 927

PgC compared to the reference data. It is also interesting

to note that in the Northern Hemisphere GFDL-ESM2M

shows the highest value; as already observed for the LAI,

theoverestimationof vegetation carbonbyGFDL-ESM2M

is related to the substitution of tundra with coniferous

forest in the cold regions of North Hemisphere.

FIG. 11. Mean annual cycle of LAI over the period 1986–2005.
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These results also show that CESM1-BGC and the

NorESM1-ME models have a realistic vegetation car-

bon, indicating that the large underestimation of their

soil carbon content most probably comes from an over-

estimation of the soil carbon decomposition rate. This

might also contribute to explain the lower than average

NBP simulated by these two models (Fig. 6).

c. CMIP5 ocean carbon

The simulated evolution of ocean–atmosphere CO2

flux is compared with GCP estimates in Fig. 13. Analo-

gous to the land–atmosphereCO2 flux (Fig. 5), theCMIP5

models show increasing global oceanCO2 uptake, evident

from the 1940s to 2005. The CMIP5 ensemble air–sea flux

increased from a sink of 0.56 6 0.13 PgC yr21 (with

a mean yearly variability of 60.07 PgC yr21) over the

period 1901–30 to 1.66 0.2 PgC yr21 in the period 1960–

2005 (with a mean yearly variability of 60.4 PgC yr21).

Thismultimodelmean is slightly lower thanGCPestimates,

which show an ocean sink of 1.926 0.3 PgC yr21 for the

period 1960–2005.

During El Ni~no events there is a suppression of the

normally strong outgassing of CO2 in the equatorial

Pacific and, hence, a larger than average global ocean

sink. Keeling et al. (1995) show a much smaller effect on

the atmospheric CO2 variability from the ocean than the

biosphere, however, observational-based estimates show

contrasting results in terms of the timing and magnitude

of the variations in net air–sea CO2 fluxes (Francey et al.

1995; Rayner et al. 1999). The CMIP5 ensemble mean

shows a smaller variability in the ocean CO2 uptake than

in the biosphere (i.e., models agree on the sign and

magnitude of oceanCO2 fluxes), as well as having a lower

year-to-year variability than GCP estimates, partly be-

cause the interannual variability is somewhat smoothed

out because of the model averaging.

The mean ocean–atmosphere CO2 fluxes for any in-

dividual model and in each ocean subdomain are shown

in Fig. 14. The global estimate of the oceanic uptake of

CO2 from JMA inversion over the period 1986–2005 is

1.73 6 0.33 PgC yr21, which is significantly lower than

GCP estimate (2.19 6 0.17 PgC yr21) and Takahashi

FIG. 12. Simulated CMIP5 soil and vegetation carbon content over the period 1986–2005 compared against the HWSD and the NDP-017

vegetation data.
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estimate (2.33 PgC yr21), however similar to the esti-

mates made in the IPCC AR4 (Denman et al. 2007).

At the global scale all CMIP5 models, except INM-

CM4, that overestimate the ocean sink with a 1986–2005

average of 2.65 6 0.37 PgC yr21 are in the range of

observational uncertainty. In particular, IPSL-CM5A-

MR (2.22 6 0.11 PgC yr21), IPSL-CM5A-LR (2.17 6
0.21 PgC yr21), BCC-CSM1.1-M (2.096 0.18 PgC yr21),

GFDL-ESM2M (2.04 6 0.3 PgC yr21), HadGEM2-ES

(2.01 6 0.12 PgC yr21), HadGEM2-CC (2.00 6 0.19

PgC yr21), and MPI-ESM-LR (1.96 6 0.17 PgC yr21)

simulate values of both the global mean and inter-

annual variability close to the observational values,

whileCanESM2 (1.646 0.25PgC yr21) shows theweaker

CO2 sink and NorESM1-ME (2.326 0.15 PgC yr21) well

matches the Takahashi estimate.

The fact that the CMIP5 models lack processes asso-

ciated with the river loop of the carbon cycle might ex-

plain why the JMA inversions give a slightly lower CO2

uptake than the models. Although carbon fluxes from

rivers are small compared to natural fluxes, they have

the potential to contribute substantially to the net air–

sea fluxes of CO2 (Aumont et al. 2001).

Using oceanic inversion methods it is possible to sep-

arately estimate the natural and anthropogenic compo-

nents of the air–sea CO2 fluxes (Gruber et al. 2009). Here

we consider the CMIP5 historical simulations only, and

therefore all regional patterns described are largely

characteristic of natural air–sea CO2 exchanges and do

not elucidate anthropogenic CO2 uptake patterns.

At the regional scale the CMIP5 models demonstrate

the expected pattern of outgassing of CO2 in the tropics

and an uptake of CO2 in the mid and high latitudes with

comparatively small fluxes in the high latitudes. The

exceptions are INM-CM4, which shows an outgassing of

CO2 in the high-latitude Northern Hemisphere, and

CanESM2, which shows an outgassing in the high-

latitude Southern Hemisphere.

Inversion and Takahashi estimates show the mid-

latitude Southern Ocean is a large sink of atmospheric

CO2 (Takahashi et al. 2002). Its magnitude has been

estimated over the period 1986–2005 to be about 0.736
0.19 PgC yr21 from JMA inversion and 1.28 PgC yr21

from the Takahashi product (Fig. 14). All the CMIP5

models simulate a similar magnitude sink in this region

except CanESM2, which overestimates the sink (1.59 6
0.05 PgC yr21).

The midlatitude Northern Hemisphere ocean is also

a net sink for CO2 (Denman et al. 2007), with a magni-

tude of the order of 0.776 0.08 PgC yr21 from JMA and

1.15 PgC yr21 from Takahashi over the period 1986–

2005 (Fig. 14). All the CMIP5models simulate a net sink

with values comparable to the JMA inversion results.

The tropical oceans outgassing of CO2 to the atmo-

sphere has a mean flux of the order of 20.73 6 0.14

PgC yr21 in the period 1986–2005 (Fig. 14), estimated

from JMA inversions and a value of 21.25 PgC yr21

estimated from Takahashi. We find INM-CM4 (1.10 6
0.17 PgC yr21) the only model unable to reproduce the

tropical source of carbon.

The seasonal air–sea CO2 fluxes are compared against

the JMA inversion estimates and the Takahashi product

in Fig. 15. All the models except INM-CM4 accurately

reproduce the observational-based estimates in the

midlatitudes. The model estimates for the tropics and

high latitudes show greater ambiguity. This is attributed

to large uncertainties in modeled SST, MLD, and ocean

NPP in the high-latitude Southern Ocean, while in the

FIG. 13. Temporal variability of CMIP5 global ocean–atmosphere CO2 flux compared to GCP estimates (black line). Blue shading shows

the confidence interval diagnosed from the CMIP5 ensemble standard deviation assuming a t distribution centered on the ensemble mean

(white curve), while the gray shading represents the range of variability of CMIP5 models. Positive values correspond to ocean uptake.
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equatorial region uncertainties can arise as a result of

the lack ofmesoscale processes simulated by themodels.

At the global scale all of the models are out of phase

with the observations, and the MPI models as well as

INM-CM4 show a larger seasonal variation than ob-

servations. In the MPI models this is a result of the poor

performance in the high-latitude Southern Hemisphere

where they strongly overestimate the CO2 sink in austral

summer and underestimate during austral winter.

The air–sea CO2 flux is driven in part by the biological

pump. Figure 16 shows individual model performances

at reproducing SeaWiFS-based estimates of oceanic NPP

in the reference ocean subdomains. The mean global

NPP estimate based on the SeaWiFS data used here

during the period 1998–2005 is 52.2 PgC yr21. Using

Coastal Zone Color Scanner (CZCS) chlorophyll fields,

Longhurst et al. (1995) estimated global NPP to be be-

tween 45 and 50 PgC yr21, andBehrenfeld and Falkowski

(1997) estimated a global rate of 43.5 PgC yr21.

Globally quite a few models, except GFDLs, under-

estimate SeaWiFS NPP. Most of the models predict a

global average of ;30–40 PgC yr21. This is reasonable

when compared with published chlorophyll-based

estimates and considering the large uncertainty in the

observational-based datasets. The significant under esti-

mation of oceanNPPbymost of theCMIP5models could

occur partly because of the lack of explicit representation

of coastal processes. The coarse resolution of oceanmodels

does not allow realistic simulation of the processes taking

place in these shallow waters that are naturally eutrophic

FIG. 14. Error bar plot showing the 1986–2005 CMIP5 means and standard deviations of fgCO2 in the chosen ocean subdomains.

Positive values correspond to ocean uptake, while vertical bars are computed considering the interannual variation. At the global scale

CMIP5 models are compared also with GCP estimates, while in all the other subregions the reference observations are JMA inversion

estimates and Takahashi data (triangles).
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because of riverine discharge, coastal upwelling, and a

high recycling rate of organic nutrient matter.

On the other side, the strong positive bias found in the

GFDLmodels for ocean NPP predominantly stems from

an overestimation of phytoplankton activity in the east-

ern equatorial Pacific. The GFDL SST (Fig. 3) andMLD

do not show a larger deviation from observations than

other models, therefore we can exclude these two vari-

ables as the cause of the bias in this region.

Conversely, MPI models and CESM1-BGC have a

global mean marine NPP most similar to that of the

SeaWiFS NPP, however in the case of MPI models this

is a misleading result since the agreement arises from a

large overestimation ofNPP in the SouthernHemisphere

and an underestimation in the Northern Hemisphere.

Regionally all of themodel biases take a different pattern

to that of the global scale. In the northern high latitudes

we see that all of themodels underestimateNPP,whereas

in the Southern Hemisphere high latitudes all the models

except CanESM2, IPSL-CM5A-LR, and IPSL-CM5A-

MR overestimate NPP.

In all the CMIP5 models and the SeaWiFS-based es-

timates, zonally summed NPP is greatest in the tropics.

This is simply because of a larger ocean surface area,

since on average NPP is lower in the tropics and highest

in Northern Hemisphere high latitudes.

Looking at the interannual variability, the models in

general are clustered around the reference data, albeit in

the two Northern Hemisphere subregions larger inter-

annual variations are seen in the reference data than in

the CMIP5 models.

In Fig. 17 we show the mean annual cycle of NPP as

simulated by the CMIP5models comparedwith theNPP

estimated from SeaWiFS data. The largest seasonal var-

iability in the SeaWiFS-based NPP is seen in the North-

ern Hemisphere high latitudes (498–908N) with the peak

in observations occurring in July. None of the CMIP5

models capture themagnitude or timing of this significant

peak in productivity, with the majority of the models

biased toward lower NPP and predicting the peak in

productivity up to 2 months too early. Accurate model

simulations of NPP are more difficult in this ocean

FIG. 15. Comparison of mean annual cycle of fgCO2 (PgC month21) as simulated by CMIP5 models with JMA inversion and Takahashi

data in the 20-yr period 1986–2005.
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subdomain since it includes a mixture of several different

regions and has a large proportion of coastal areas.

Many of the models show the largest seasonal peak in

marine NPP in the Southern Ocean (908–448S), which is

not supported by SeaWiFS estimates. This is due to a

combination ofmodel and observational errors. SeaWiFS

observations generally underestimate surface chlorophyll

in the Southern Ocean (Moore et al. 1999) and contain

the largest uncertainty in the Southern Ocean because of

under sampling and frequent deep chlorophyll maxima

that cannot be observed on satellites. The models tend to

overestimate NPP in the Southern Ocean as a result of

too shallow simulated mixed layers in summer months

and uncertainty in light parameterizations (S�ef�erian et al.

2013). The models with the greatest overestimation of

springtime NPP in the high-latitude Southern Ocean are

MPI models and NorESM1-ME with peak values of

;3 PgC yr21 compared to;0.75 PgC yr21 for SeaWiFS-

based NPP estimates. All these models use the same

biogeochemical model, the Hamburg Oceanic Carbon

Cycle Mode (HAMOCC5; Table 2), although with

different parameterizations. It should also be noted

that these latter models show the largest bias in the

MLD seasonal cycle and this can contribute to the

poor representation of temporal evolution of primary

production.

4. Model ranking

Different diagnostics were used in section 3 to investi-

gate the performances of CMIP5 Earth system models

during the twentieth century at reproducing the mean

value, IAV, trends, and mean annual cycle for various

different variables crucial to characterizing the global

carbon cycle. These measures or ‘‘diagnostics’’ show that

in general the CMIP5 models simulate all the variables

well when compared to the observations used here, al-

though a few of the models do show notably poorer

agreement than others and general problems exist for

quite a few of the models. Specifically, all the variables

in the tropical regions prove to be problematic for the

models, reinforcing well-known deficiencies of models

FIG. 16. Ocean primary production integrated over the ocean subdomains as simulated by CMIP5 models and observed (SeaWiFS) in the

period 1998–2005.
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in reproducing the decadal variations in the ocean–

atmosphere system, but also questioning the availability

and quality of the data in the tropics.

However, the diagnostics presented in section 3 are not

sufficient to clearly identify the best models; for such

a purpose we need to define specific metrics that allow

a quantitative model ranking. Metrics can be contrasted

with ‘‘diagnostics,’’ which may take many forms (e.g.,

maps, time series, power spectra, error bars, zonal

means, etc.) and may often reveal more about the causes

of model errors and the processes responsible for those

errors. Following Gleckler et al. (2008), the metrics used

in this paper are designed to quantify how much the

model simulations differ from observations.

a. Land carbon ranking

We used two different metrics to estimate the

models’ skills. In the case of the mean annual cycle, the

skill score is computed following Eq. (3), and the model

performances and ranking of the land variables are

shown in Fig. 18. Considering the mean annual cycle in

addition to this skill score, in order to check how models

reproduce only the phase of the observations, we also

have computed the correlation coefficient (not shown). In

fact, the correlation coefficient allows identification of

models that are in phase with observations (r . 0) and

models that are out of phase (r , 0). Correlation values

close to 1 indicate models that perfectly reproduce the

seasonal phase of observations.

Looking at the land surface temperature, at the global

scale and in the Southern and Northern Hemisphere the

best performances reproducing the mean annual cycle

have been found for MPI models, CESM1-BGC, and

NorESM1-ME,while in the tropicsBNU-ESMandBCC-

CSM1.1 have the highest scores. All the models have

a correlation coefficient greater than 0.9 at the global

scale, and in the two hemispheres while in the tropics it

ranges between 0.6 and 0.8.

The precipitation shows a similar pattern, with MPI

models having the best performances in all the subdomains,

except the SouthernHemisphere, whereBCC-CSM1.1 and

IPSL-CM5A-MR have the best scores (Fig. 18).

FIG. 17. Comparison of ocean primary production (PgC month21) mean annual cycle as simulated by CMIP5 models and SeaWiFS

observations in the period 1998–2005.
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Unlike seasonal variation in temperature, which at

large scales is strongly determined by the insolation pat-

tern, seasonal precipitation variations are strongly influ-

enced by vertical movement of air due to atmospheric

instabilities of various kinds and by the flow of air over

orographic features. For models to simulate accurately

the seasonally varying pattern of precipitation, they must

correctly simulate a number of processes (e.g., evapo-

transpiration, condensation, and transport) that are dif-

ficult to evaluate at a global scale (Randall et al. 2007).

The precipitation exhibits a correlation never exceeding

a value of 0.8 in all the subdomains and for all themodels,

with the lowest value (0.4) found in the Northern Hemi-

sphere for the BNU-ESM model (not shown).

Looking at the GPP, at the global scale CESM1-BGC

shows the best performances, albeit its GPP decrease

during fall does not match the phase of observation

(Fig. 9). In fact, for a given seasonal skill score it is

impossible to determine how much of the error is due

to a difference in structure and phase and how much is

simply due to a difference in the amplitude of the varia-

tions. Also, in the Southern Hemisphere and the tropics

CESM1-BGChas the highest scores for theGPP,while in

the Northern Hemisphere the best results are found in

BCC-CSM1.1-M.

Looking at the phase of GPP there is a relevant

agreement with the reference data, the correlation being

systematically positive. This is particularly evident in the

Northern Hemisphere where all the models have a cor-

relation above 0.8 (not shown). Contrarily, in the tropics

there is a poorer agreement and some models (e.g.,

CanESM2 and IPSL-CM5B-LR) show a correlation

around 0.4 (not shown).

The same considerations drawn for the GPP are also

valid for the LAI, with CanESM2 showing the best skills

at the global scale, although it seems to be 2 months out

of phase with respect to observations during the peak

season (Fig. 11). In addition, all the models show a cor-

relation greater than 0.6 both at the global scale and in

the Northern Hemisphere, while in the tropics we found

the poorest results with somemodels (BNU-ESM,BCC-

CSM1.1, and BCC-CSM1.1-M) having a correlation of

about 0.2.

Considering the global NBP, consistent with results of

Fig. 7, MPI-ESM-LR and MIROC-ESM have the best

performances, while CanESM2, BNU-ESM,MPI-ESM-

MR, and CESM1-BGC show the poorest scores. Con-

trarily, in the Southern Hemisphere CESM1-BGC and

CanESM2 have the highest scores, while in the tropics

the two Hadley models show the best results.

Several models show a negative correlation compared

to inversion estimates in the tropical region and the

SouthernHemisphere, while in theNorthernHemisphere

quite a few models have a correlation above 0.9 (not

shown).

The second skill score is computed following Eq. (5),

and it essentially allows assessment of the skills of models

in reproducing the mean state of the systemwith its IAV.

Figure 19 shows an absolute measure of ESMs skill in

simulating the observed PDFs of the variables under

examination for the land carbon. There is no obvious way

to define good or bad or, indeed, adequate performance

from the skill score, but identifying those models with

a relatively better skill is straightforward.

According to the skill threshold defined in section 2c,

looking at global temperature, only a few models are

close to the threshold value of 0.68. Consistent with

Fig. 1, the best performances have been found in theMPI

models, while the poorest skills are found in INM-CM4.

The same considerations are valid also for the Southern

and Northern Hemisphere. Looking at the tropics (con-

sistent with Fig. 1) INM-CM4 shows a very poor skill,

related to the large cold bias previously described.Unlike

Fig. 1, the skill score shows that BCC-CSM1.1 is not the

best model in the tropical region. This result, however, is

not surprising; the agreement in the mean tropical tem-

perature shown in Fig. 1 could arise from a compensation

between overestimation in some regions of the tropics

and underestimation in other regions of the tropics, while

the skill score does not lead to the same optimistic pic-

ture. In fact, the overlapping of the PDFs allows equal

weighting of all the points with a relevantly poor mis-

match to themean value. This suggests that themodels we

found using the previous diagnostics that have a bias in the

mean values still score badly, but models with a good

agreement with the mean do not necessarily score well.

The precipitation shows the same picture of tempera-

ture with a generally good agreement in the Southern and

Northern Hemisphere and poorer skills in the tropical

region, likely related to the poor skill reproducing the

IAV (Fig. 2). Relevant skills are found in the Southern

Hemisphere for the Hadley models, where the overall

score is greater than 0.7.

Contrarily, very poor skills are found for GPP and

LAI, both the global scale and in all the subdomains. In

Figs. 8 and 10, we show how almost all CMIP5 models

overestimate these two variables, possibly because these

models do not have nutrient limitations or any ozone

impact on carbon assimilation. Consequently none of

models achieve a relevant score and for quite a few

models the skill score is less than 0.3. As pointed out

before, we cannot exclude risks of significant bias in the

GPP and LAI evaluation datasets as these are not true

observations.

Unlike other variables related to the land carbon cy-

cle, good scores are found for the NBP. As already
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shown in Fig. 6 most of the models match both the mean

value and the IAV, therefore (except GFDL-ESM2M

that significantly overestimates the IAV) at the global

scale we found a score above 0.5 for all the models, with

the best result found in IPSL-CM5A-LR that simulates

more than 2s of the reference PDF. Conversely, none of

the models are able to simulate the observed PDF for

the NBP in the Northern Hemisphere, and this is con-

sistent with the negative bias already shown in Fig. 6.

However, it should also be noted that the NBP PDFs are

built from regional averages, while other variables are

based on the comparisons of skills at each grid point

then averaged over large subregions; this explains why

the NBP skill scores are consistently better than the

scores of the other variables.

In case of soil and vegetation carbon, the skill scores

reported in Fig. 19 are not based on the PDF overlapping,

but they have been computed as a relative bias. Results in

general agree with the finding of Fig. 12, namely that the

best results for the soil carbon are found in BCC models,

while MIROC and MPI models show the poorest per-

formances because of the large positive bias. Consider-

ing the vegetation carbon, INM-CM4 has the best skill

score, while BNU-ESM and GFDL-ESM2M show the

poorest performances. The only exception is the tropical

region, where the bestmodel reproducing the vegetation

carbon is MPI-ESM-MR, with BNU-ESM still showing

the poorest results.

b. Ocean carbon ranking

The skills of CMIP5 models at reproducing the mean

annual cycle of relevant variables for the ocean carbon

cycle are shown in Fig. 20.

Considering the SST, there is a large variability in the

skill score of models between the different subdomains;

in general, the best results are found for CanESM2,

CESM1-BGC, and the MPI models, while BNU-ESM

and GFDL models show the poorest skills. Consistent

with results of Fig. 4, the Hadley models show the best

performances at reproducing the mean annual cycle of

the MLD, with the MPI models having the poorest skill

scores (Fig. 20).

We also have found excellent performances of CMIP5

models in reproducing the only phase of the mean annual

cycle of physical variables (i.e., SST and MLD), with

correlations above 0.85 for all the models and sub-

domains (not shown).

As discussed previously, the poor performances of

the MPI models in reproducing the seasonal evolution

of the MLD also affect the overall skill score of the

ocean–atmosphere CO2 fluxes; in particular, we found

the MPI models to have the worst performances at the

global scale, as a consequence of the poor results found

in the extreme Southern Ocean, while in the tropical

bound and in the twoNorthernHemisphere subdomains

the MPI models show a relevant skill in reproducing the

CO2 fluxes (Fig. 20).

Nevertheless, severe problems exist in reproducing

the only phase of the global seasonal cycle of CO2 fluxes

where several models are anticorrelated with observa-

tions. The poor performances in the global values are

caused by the inability of models in simulating the correct

seasonal cycle in the tropical subdomain as well as

in the high-latitude Southern and Northern Oceans.

Conversely, in the midlatitude Southern and Northern

Oceans, except INM-CM4, all the models are posi-

tively correlated with JMA inversions and the corre-

lation coefficient is generally higher than 0.7 (not

shown).

Considering the ocean primary production, the best

performances have been found for CESM1-BGC and

IPSL models, while the worst results are found for the

MPI models and NorESM1-ME. It should be noted that

all these models use the same ocean biogeochemical

model (Table 2). Conversely, with only the exception of

CanESM2, all the models show a relevant correlation

with SeaWIFS data in all the subdomains (not shown).

Considering the PDF-based skill score, consistent

with land surface temperature and precipitation results,

the SST skill score for several models is above the

threshold of 1s, with some models having a score above

0.8 (Fig. 21). This is particularly evident in the temperate

Southern and Northern Oceans as well as in the tropics.

Although the models exhibit relevant skills at reproducing

the SST in some basins, in the Northern and Southern

Ocean none of themodels are able to reproduce at least 1s

of the reference dataset.

Since the observedMLD is a climatology, the ranking

is tricky and the values shown in Fig. 21 do not represent

the skill score defined in section 2. Therefore, for this

variable only the ranking is based on the bias rather than

on the overlapping of the PDFs. Globally, we found

HadGEM2-ES and HadGEM2-CC are the best models

at reproducing theMLD, and NorESM1-ME is found to

have the largest bias in all the subdomains, except in the

Southern Ocean where MPI models show the worst

agreement to the observations.

The ocean–atmosphere CO2 flux shows an acceptable

skill score for most of the models; however, it should

be likewise noted that the NBP and also the ocean–

atmosphere CO2 flux PDFs are based on regional com-

parisons. Globally several models have a score higher

than 0.7, and only IPSL-CM5A-MR, INM-CM4, and

NorESM1-ME show poor performances. As already seen

in Fig. 14, the poor skill found in INM-CM4 at the global

scale is due to the poor performances of this model to
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correctly reproduce the fluxes in the tropical regions

(188S–188N) and in theNorthernHemisphere. Therefore,

consistent with results of Fig. 14 INM-CM4 shows the

poorest performances in these subdomains. Conversely,

INM-CM4 has the best performances in the temperate

Southern Hemisphere where it is able to reproduce al-

most 2s of the observed PDF.

As we previously discussed, the simulated global ocean

primary production is affected by a negative (or positive

forGFDLmodels andMPI-ESM-LR) bias, consequently

the skill score does not exceed a value of 0.4. The same

considerations are also valid for the other subdomains,

and the only relevant performances are found in the

Southern Hemisphere where several models show a skill

score above 0.6. In previous sections we speculated that

the ocean primary production underestimation bymodels

is likely due to a coarse resolution of the ocean grids that

does not allow proper simulation of the dynamics in the

shallow waters; the good performances found in the

Southern Ocean would support this assumption.

5. Conclusions

In this study the evaluation of the CMIP5 ESMs fo-

cused on the ability of the models to reproduce the

seasonal cycle, the mean state with its interannual var-

iability, and trends of land and ocean variables related to

the carbon cycle. This task allows the identification of the

strengths and weaknesses of individual coupled carbon–

climate models as well as identification of systematic

biases of the models.

We have highlighted that the evaluation is partly

subjective resulting from the choice of the variables. In

this paper we focused only on the validation of carbon

fluxes and main variables affecting the fluxes; however,

muchmore data [e.g., dissolved inorganic carbon (DIC),

pCO2, and chlorophyll concentration] could be used

to evaluate the ESMs.

Multimodel databases offer both scientific opportu-

nities and challenges. One challenge is to determine

whether the information from each individual model in

the database is equally reliable and should be given equal

‘‘weight’’ in a multimodel detection and attribution study

(Santer et al. 2009).

We used a skill score based on the overlapping of

PDFs and the centeredRMS error for themodel ranking.

In general we found that the ranking is sensitive to the

large latitudinal bounds and the variable under exami-

nation (i.e., models that poorly perform in some sub-

domains could have relevant skills in other subdomains).

Although both the skill scores identify somemodels as

having the best global performances, several criticisms

must be noted.

First, the evaluation presented here is partly subjective

because of the choice of the variables, and these are

sensitive to the choice of reference data. In other words,

the best models for our reference variables might have

poor performances reproducing other variables of in-

terest. This suggests, therefore, that users of the CMIP5

models need to assess each model independently for

their regions of interest, against those variables that are

important for their specific subject of research.

Second, we did not account for the uncertainty in the

reference data; in general, for the physical variables it is

expected that errors remain much smaller than the er-

rors in the models, but in case of biological variables this

is not true. However, we believe that considering the

uncertainties in the observed datasets does not signifi-

cantly change our model ranking, except for land GPP

interannual variability and ocean NPP that might suffer

large uncertainty in the mean value. For instance, Gregg

and Casey (2004) report an uncertainty in the ocean

primary production of about 30% and considering this

uncertainty the model ranking could significantly differ

from our results.

In addition the observations used in this study do not

always come from direct measurements, and in the case

of biological variables some models or algorithms have

been used to retrieve the values used in this study. This

suggests that additional uncertainty should be added to

the reference data, or in some case (e.g., GPP trend) the

data should simply not be used in the model evaluation.

Third, the aggregation of regions can give distorted

results. The choice of regions in itself affects the outcome

of the regional metrics calculated but also affects the

global result through neutralizing or enhancing regional

outcomes when the Northern and Southern Hemispheres

are combined.

In addition, the skill scores could be sensitive to the

spatial scale. Considering 22 coupled ocean–atmosphere

general circulation models (OAGCMs), Gleckler et al.

(2008) have evaluated the impact of alternative reference

dataset, other available realizations, and different resolu-

tion grids to the final ranking, finding that ‘‘in some cases

these variations on our analysis choices lead to small dif-

ferences in a model’s relative ranking, whereas in others

the differences can be quite large. Rarely, however, would

the model rank position change by more than 5 or 6.’’

To cross check the sensitivity of the skill score to

resolution, we regridded the surface temperature to four

different resolutions (i.e., 0.58, 18, 1.58, and 28), finding
that the resolution does not significantly affect the

ranking. Best models and poor models are always the

same for all the resolutions, and in general the model

rank position does not change by more than four (not

shown).
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Fourth, considering the model ranking, one could ar-

gue that choosing the highest score would favor models

with more than one realization. However, we also pro-

duced alternative rankings using either only the first re-

alization from all the models or computing the mean skill

score averaged over the available realizations. We found

no relevant differences in the model ranking between the

three different methods (not shown).

Last, a PDF-derived skill score is a useful means of

evaluating models since skill in this measure implies an

ability to simulate a range of behavior (e.g., mean, IAV,

and trend); however, we do not argue that the skill met-

rics used in this paper are definitive nor do these identify

models that are more predictive. We believe that it is

a substantial advance on the assessment of climate and

carbon cyclemodels skill but, as with all statistics, must be

interpreted with a degree of caution so as to avoid mis-

leading assertions.
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