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Abstract

Many hormones are released in pulsatile patterns. This pattern can be modified, for instance by changing pulse frequency,
to encode relevant physiological information. Often other properties of the pulse pattern will also change with frequency.
How do signaling pathways of cells targeted by these hormones respond to different input patterns? In this study, we
examine how a given dose of hormone can induce different outputs from the target system, depending on how this dose is
distributed in time. We use simple mathematical models of feedforward signaling motifs to understand how the properties
of the target system give rise to preferences in input pulse pattern. We frame these problems in terms of frequency
responses to pulsatile inputs, where the amplitude or duration of the pulses is varied along with frequency to conserve
input dose. We find that the form of the nonlinearity in the steady state input-output function of the system predicts the
optimal input pattern. It does so by selecting an optimal input signal amplitude. Our results predict the behavior of
common signaling motifs such as receptor binding with dimerization, and protein phosphorylation. The findings have
implications for experiments aimed at studying the frequency response to pulsatile inputs, as well as for understanding how
pulsatile patterns drive biological responses via feedforward signaling pathways.
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Introduction

In endocrine and other systems, oscillations or rhythmic pulses

can be more efficient in evoking responses than the same input

dose given at a constant level. For instance, calcium oscillations

can evoke enhanced gene expression compared to a fixed level in

lymphocytes [1]. Pulses of insulin and glucagon are more

efficacious at stimulating glucose uptake [2,3] or production [4],

respectively, than an equivalent constant level of hormone. In the

stress response system, ultradian pulses of corticosteroids (cortico-

sterone in rodents, cortisol in humans) occur at a frequency of

roughly once per hour with a circadian rise and fall in amplitude,

and abnormal pulsatility has been linked to depression [5]. During

the ovarian cycle, gonadotropin-releasing hormone (GnRH) is

secreted in pulses with frequency that varies from once per five

hours to once per hour in women [6]. This signal drives

gonadotrophs in the pituitary gland to produce the gonadotropins

follicle-stimulating hormone (FSH) and luteinizing hormone (LH)

preferentially in response to low and high frequency GnRH pulses,

respectively. A pulsatile pattern of GnRH within an appropriate

frequency range supports reproductive function, while a constant

GnRH input at the same mean dose is ineffective [7,8,9].

In a target system with an increasing steady-state input-output

relationship, pulses of increasing frequency will elicit an increasing

response, since increasing pulse frequency alone leads to an

increase in input dose. In this situation, it is difficult to distinguish

the direct effect of frequency from the effect of input dose.

However, an increase in the input frequency is often accompanied

by a change in other features of the input. The mean dose may

increase with frequency due to a concomitant increase in pulse

amplitude or pulse duration, as occurs with synaptic facilitation

[10] or with oxytocin pulses during parturition [11], respectively.

In other systems, particularly where there are constraints on the

production or secretion of a hormone, the mean dose decreases

with pulse frequency. For instance in the ewe, as GnRH pulse

frequency increases in response to increasing levels of estradiol,

there is a striking decrease in pulse amplitude and a modest

decrease in pulse duration, leading to a decrease in the average

GnRH dose per pulse [12]. It is therefore of interest to understand

how systems respond when more than one pulse parameter varies

at a time.

Experiments and mathematical modeling studies aimed at

understanding the responses to pulsatile inputs often use pulses at

increasing frequencies with no change in other pulse character-

istics, leading to increases in input dose. An alternative experi-

mental approach sometimes used is the idea of compensating for

changes in pulse frequency by adjusting the pulse amplitude to

maintain a constant input dose at all stimulation frequencies. For

instance, this was used to show that the frequency preference for

gonadotropin subunit primary transcript production in gonado-
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trophs occurs even with a fixed input dose of GnRH [13,14]. In an

experimental context, it is thus desirable to understand the

consequences of adjusting pulsatile signals to conserve total dose.

When the dose of input is conserved, what pattern of pulses is

best at stimulating responses? The dose of an input signal can be

packaged in many ways. For a single pulse, the same dose may be

given as a brief large-amplitude pulse, or as a long small-amplitude

pulse (Fig. 1A). Alternatively, the input may be broken up into

repeated pulses at different frequencies. To ensure that the average

dose per pulse is maintained across frequencies, the amplitude or

duration of rectangular pulses can be chosen to vary inversely with

the pulse frequency (Fig. 1B,C). We refer to these input dose

conservation strategies as amplitude compensation (red dotted

curve) and duration compensation (blue dashed curve), respec-

tively. Is there a higher output in response to infrequent large

pulses, or to frequent small pulses (amplitude compensation)? Is it

better to give long pulses with long intervals, or brief pulses with

brief intervals (duration compensation)? In general, the answers to

these questions depend on the properties of the target system,

which can be complex and include negative and positive feedback

loops. Here we aim to find rules that describe how to package the

input signal for maximal output for the simpler class of single-

branch feedforward systems, which are a prevalent building block

of intracellular signaling systems.

In this paper we show that some mathematical models for

feedforward intracellular signaling motifs, including receptor

binding and phosphorylation, exhibit frequency selectivity to

pulsatile signals in which the total dose is conserved. We show that

this selectivity differs depending on the manner in which the signal

is adjusted (amplitude or duration compensated) to maintain

constant total dose. We then develop minimal models to analyze

the cause of this frequency dependence and show that the

relationship between the size of the output and the input frequency

can be predicted by the concavity of the input-output function.

Finally, we demonstrate that the principles deduced from studying

the minimal models hold for the more realistic intracellular

signaling motifs.

Results

Receptor-ligand binding and dimerization
The first event in any target cell response to a hormone pulse is

the binding of the hormone to its receptor. For illustrative

purposes, we will first consider a simple generic model of this

signaling event. We define [R] and [L] to be the concentration of

unbound receptor and hormone ligand, respectively. Dividing

both quantities by the total amount of receptor then gives

dimensionless quantities, R and L. Upon binding of the hormone

to its receptor, the bound receptor RL is formed, as is illustrated by

the reaction diagram:

LzR/?
kz

1

k{
1

RL

If we consider the total amount of receptor to be conserved (i.e.

L+R = 1), the fraction of hormone-bound receptor can be

described by a single ordinary differential equation (ODE):

dRL

dt
~kz

1 L 1{RLð Þ{k{
1 RL ð1Þ

where RL is the fraction of ligand-bound receptors, and kz
1 and

k{
1 are the binding and dissociation rates, respectively. Without

trying to model a specific receptor system, we use kz
1 ~0:5 s21

and k{
1 ~0:25 s21. During a pulse of ligand with amplitude A0,

duration d0, and period T0, the fraction of bound receptor will rise

at a rate dependent on the input amplitude, while dissociation

occurs between pulses at a constant, slower rate (Fig. 2A). For this

and all subsequent figures, the initial signal parameters A0, d0, and

T0 are indicated in the figure legend, and the set of input signals

used is generated from the appropriate dose conservation protocol

Figure 1. Dose conservation for rectangular pulse signals. (A) A
pulse that is large and brief (black curve, amplitude A0 and duration d0)
will have the same dose as a small and long pulse (green dash-dotted
curve) as long as the new pulse satisfies A = A0d0/d. (B) For periodic
signals, the initial signal (black curve) is defined by its amplitude A0,
duration d0, and period T0, and its mean dose per period is A0d0/T0.
When the pulse period is changed from T0 to T, the dose can be
conserved by changing the amplitude to A = A0T/T0 (B, dotted red
curve) or the duration to d = d0T/T0 (C, dashed blue curve), such that
Ad/T = A0d0/T0. We refer to these as amplitude compensation and
duration compensation, respectively.
doi:10.1371/journal.pone.0095613.g001
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described in Figure 1. If the frequency is then increased fourfold,

the mean fraction of bound receptor during one input period,

,RL.‘, increases even though the mean input dose is conserved

by adjusting pulse amplitude (amplitude compensation, Fig. 2B) or

pulse duration (duration compensation, Fig. 2C). This results in a

monotonic increasing frequency response (Fig. 3A). The response

to amplitude compensated signals (red dotted curve) and duration

compensated signals (blue dashed curve) have similar shapes,

although amplitude compensated signals elicit a steeper response

with a larger dynamic range.

A common next step in many hormone receptor signaling

systems is dimerization of the receptor. For example, steroid

hormone receptors, such as glucocorticoid, estrogen, and andro-

gen receptors, homodimerize before binding to their DNA target

sites [15]. A simple model for this is illustrated by the following

reaction diagram:

RLzRL/?
kz

2

k{
2

D

where D represents homodimers of bound receptors. We add

terms to the previous ODE and add a second equation for D

resulting in the system:

dRL

dt
~kz

1 L 1{RL{2Dð Þ{k{
1 RLz2k{

2 D{2kz
2 (RL)2 ð2Þ

dD

dt
~kz

2 (RL)2{k{
2 D

where kz
2 and k{

2 are the association and dissociation rates of the

dimer. Here, we use kz
2 ~k{

2 ~0:1 s21, with kz
1 and k{

1 as

before. Considering the mean level of dimer, ,D.‘, as the

output, we now observe a bell-shaped frequency response for both

amplitude and duration compensated signals (red dotted curve and

blue dashed curve, respectively, Fig. 3C). Again, the response is

steeper and has a larger range when amplitude compensation is

used, and the peak response does not happen at the same

frequency for duration compensated pulses.

A key distinction between the two models is their steady state

nonlinear input-output functions. The receptor-ligand binding

model alone exhibits a concave down, monotonic increasing

concentration of bound receptor as a function of the input

amplitude of ligand (Fig. 3B). Adding receptor dimerization leads

to a sigmoidal steady state concentration of dimer as a function of

the input ligand concentration (Fig. 3D), even though there is little

overall impact on the shape of the curve for L away from zero. In

the following sections, we will see that the shape of this

nonlinearity plays a key role in explaining the shape of the

frequency response curve. We will also show that the kinetics of

the system help to explain why the peak response is different

between the two types of dose conserved signals.

Nonlinearity selects for input amplitude
We first investigate how a simple nonlinearity determines the

magnitude of response in a feedforward system. Consider a

signaling molecule, b, that is produced at a rate given by a

nonlinear production rate function F of the input signal c(t). The

ODE governing the concentration of b is:

db

dt
~F c tð Þð Þ{b: ð3Þ

We will refer to this as the b-model. The function F could be

thought of as a rapid equilibrium approximation to fast signaling

dynamics that occur prior to the production of b. A similar model

was shown to respond to increases in mean input dose in a study of

GnRH receptor induced signaling pathways (Model 1 in [16]).

The steady state level of b in response to a constant input c(t) = A is

simply F(A). For a rectangular pulse input, b will rise toward the

steady state during a pulse, and will decay toward zero after the

pulse ends. With periodic input pulses, there is a steady-state

periodic response in b. We will consider the average value of b

during one period to be the output of the system. To compute this,

we obtain an equation for the time average of b, ,b., by time

averaging equation 3. For periodic rectangular pulse inputs, the

asymptotic value of ,b. from the time averaged ODE is

vbw?~
1

T
F(A):dzF (0):(T{d)ð Þ, ð4Þ

where A, d, and T are the amplitude, duration and period of the

input pulses. We chose a time constant tb = 1 in Eq. 3 for

simplicity since it does not affect the steady-state mean value of b,

only the time it takes to approach this mean value.

Given a particular choice of a nonlinear production rate F(c)

and a fixed mean input dose, we can find the pulse shape that will

maximize the response by first considering the period T to be fixed

at a value T0. To conserve the input dose during the pulse, the

pulse amplitude is inversely proportional to the pulse duration

Figure 2. Responses of the ligand-receptor binding model to dose conserved input pulses. (A) An initial signal (black) elicits a response in
the fraction of bound receptors (RL, purple) with mean value shown by a horizontal line and circle. The initial signal has A0 = 1 and d0 = 10 at
frequency f0 = 0.01. (B) Responses to input signals with four times the initial frequency are shown in green, with input dose conservation by
amplitude compensation (red). (C) As in (B), but with duration compensation (blue). The mean response in both (B) and (C) is increased compared to
(A).
doi:10.1371/journal.pone.0095613.g002
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(A = A0d0/d, Fig. 1A). We illustrate this for particular choices of

monotonic increasing F, for which more input (c) leads to more

activation of downstream signaling (b).

When F is a sublinear, strictly concave down function (as is the

saturating steady state for the receptor model in Fig. 3B), ,b.‘ is

larger for smaller-amplitude inputs (Fig. 4A). To understand this,

recall that if the duration of a pulse is doubled, the pulse amplitude

will be halved to conserve dose. This is the same as having two

small pulses instead of one large pulse. The production rate of b

during the small pulse is less than halved due to the saturating

shape of the production rate function F: F (
1

2
A)w

1

2
F (A). Thus the

longer pulse at half the amplitude will generate a larger production

of b (Fig. 4B, green bars) than the shorter large pulse (Fig. 4B, blue

bar), despite the fact that the input dose was the same.

Results are quite different if F has different concavity. If F is

linear, then ,b.‘ is the same for all pulse amplitudes, since

F (
1

2
A)~

1

2
F(A). This invariance of the mean response for dose

conserved inputs is not limited to rectangular pulses but occurs

with any shape of periodic input. If F is a superlinear, strictly

convex function F, the response ,b.‘ increases with input

amplitude (Fig. 4C). In this case, it is better to give a brief large

pulse than a long small pulse, since F(
1

2
A)v

1

2
F (A) (Fig. 4D).

Finally, if F is a sigmoidal function, which is superlinear for small A

but sublinear for large A, a bell shaped ,b.‘ response is observed

(Fig. 4E). This means the best response will be obtained for an

intermediate pulse amplitude. Intuitively, this is expected when-

ever the set of inputs sample both the superlinear and the sublinear

portions of the F curve leading to the increasing and decreasing

responses, respectively, for the reasons explained above. Perhaps

Figure 4. The optimal pulse shape depends on the shape of the
nonlinearity. (A) The response is maximized for a sublinear
production rate function when the pulse amplitude is minimized.
A0 = 1 and d0 = 10 at frequency T0 = 100 so the minimum amplitude
possible is A = A0d0/T0 = 0.1. (B) When the duration of the initial signal
(blue circle) is doubled (green square), the amplitude of input is halved.
Because of the saturating shape of the production rate function (here
F(A) = A/(A+1) is shown), the production of b caused by two small
pulses (green bars) is more than the production caused by one large
pulse (blue bar), despite the input having the same total dose. (C)
Superlinear production rate functions lead to large responses for large
pulse amplitudes. (D) The production of b caused by two small pulses
(green bars) is less than the production caused by one large pulse (blue
bar). The production rate function is F(A) = A2. (E) Sigmoidal production
rate functions give rise to bell-shaped response. (F) For low amplitude
input (red diamond), F(A) is superlinear, so the response is increasing.
For high amplitude input (blue circle), the production rate function is
saturating, so a decreasing response is expected. A maximal response
therefore occurs at an intermediate frequency (green square). The slope
of the response curve (,b.‘) is proportional to D, the difference
between F(0) and the y-intercept of the line tangent to F(A). The peak
frequency occurs when D= 0. The production rate function is F(A) = A2/
(A2+1).
doi:10.1371/journal.pone.0095613.g004

Figure 3. The frequency response differs for systems with
different steady state nonlinearity. (A) The ligand-receptor binding
model exhibits a monotonic-increasing mean concentration of mean
bound receptor (,RL.‘) to both amplitude and duration compensated
signals (red dotted and blue dashed curves, respectively). The circle,
square, and diamond indicate the mean response to the signals shown
in Figure 2. Note that for amplitude compensated signals, the fixed
duration d0 = 10 limits the maximum frequency to f = 0.1. (B) The steady
state fraction of bound receptors (RL) is a monotonic increasing,
concave function of the input ligand concentration (L). (C) Adding
receptor dimerization to the system results in bell-shaped responses of
mean level of dimer (,D.‘) to both amplitude and duration
compensated signals (red and blue curves, respectively). (D) The steady
state level of dimer (D) is a sigmoidal function of the input ligand
concentration. For (A) and (C), A0 = 1 and d0 = 10 at frequency f0 = 0.01
for both amplitude and duration compensated signals.
doi:10.1371/journal.pone.0095613.g003
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surprisingly, however, the location of the peak response does not

occur at the input amplitude corresponding to the inflection point

of F.

To find the optimal amplitude we compute the slope of the

response with respect to A, which can be written as:

Lvbw?

LA
~{

A0d0

T0A2
F (A){A:F 0(A){F(0)ð Þ: ð5Þ

The quantity in parentheses, which we will define as

D~F (A){A:F 0(A){F (0), has a geometric interpretation; it is

the difference between the y-intercept of the line tangent to F at A,

and F(0). One can therefore predict the shape of the response from

shape information contained in F(A), namely its set of tangent

lines. Concave down production rate functions have D.0 and

exhibit larger responses to smaller input amplitudes (Fig. 4F, blue

circle). Since D,0 for convex functions, one expects larger

responses for larger input amplitudes (Fig. 4F, red diamond). For a

sigmoidal F, the peak of the bell shaped response occurs for the

input signal with the amplitude that results in D= 0 (Fig. 4F, green

square), which is typically not the inflection point of F. For the

specific sigmoidal curve used here, the Hill function F(A) = A2/

(A2+K2) with K = 1, this occurs when A = K.

All the results above apply directly for the case of amplitude

compensated signals, since in that case amplitude is a function of

pulse frequency (A = A0T/T0 = A0f0/f, Fig. 1B). Thus, frequency

responses to amplitude compensated signals in the b-model occur

because of the different input amplitude associated with each

frequency. The slope of the frequency response is given by:

Lvbw?

Lf
~d0 F (A){A:F 0(A){F (0)ð Þ~d0D: ð6Þ

The sign of D therefore determines whether the frequency

response is increasing, decreasing, or has a critical point.

Frequency responses do not occur in this model for duration

compensated inputs. The response is the same at all frequencies

when the dose is conserved using pulse duration, since pulse

amplitude A0 is the same at all frequencies. This means that when

the frequency of input is doubled, two pulses at the high frequency

produce exactly the same production of b as one pulse at the low

frequency, leading to a flat response (Fig. 5). This shows that if the

input amplitude is fixed, long pulses with long intervals produce

the same response as short pulses with short intervals.

Taken together, these results suggest that the b-model responds

primarily to the amplitude of the input. The optimal amplitude of

input can be determined by examining the shape of the

nonlinearity in the system. The system will produce a maximal

response when this amplitude of input is used, regardless of how

the dose is packaged.

The role of system kinetics
The kinetics of chemical reactions that comprise intracellular

signaling pathways may affect the response by filtering the input

signal. In the b-model, the nonlinear function F can be thought of

as the steady state input-output relation of the signaling system, so

in that case the system kinetics were not accounted for. We

therefore extend the b-model to incorporate kinetics by introduc-

ing an intermediate variable, a, where the production of a is linear

in the input signal, c(t). The model equations are:

ta

da

dt
~c tð Þ{a ð8aÞ

db

dt
~F að Þ{b ð8bÞ

where ta is the time constant of a, and tb is again 1 for simplicity.

Unless otherwise stated, ta = 10 for the following results. We will

refer to this as the ab-model. The first stage in the cascade acts as a

linear low-pass filter on the amplitude of the input, with ta

controlling the cutoff frequency. This means the variable a

achieves larger values during long pulses than it does during short

pulses, effectively converting pulse duration into amplitude before

the nonlinear stage (Fig. 6A). Here, we treat the case of small pulse

duration relative to the period. Considering the mean value of a(t)

during a pulse, ,a.on,‘, as an approximation (green squares and

blue circles, Fig. 6) we see now that ,a.on,‘ varies enough to

sample the relevant parts of the nonlinear function F and give rise

to a frequency response (Fig. 6B). A bell-shaped frequency

response to duration compensated signals (Fig. 6C) is demonstrat-

ed for a sigmoidal F function.

Using the same three examples of sublinear (Fig. 7A), super-

linear (Fig. 7B), and sigmoidal functions F (Fig. 7C), the ab-model

exhibits responses similar to the amplitude-compensated case of

the b-model when either amplitude compensated signals (red

dotted curves) or duration compensated signals (blue dashed

curves) are used as inputs.

As seen with the receptor-ligand binding and dimerization

model, the amplitude compensated inputs elicit steeper frequency

responses with a larger range of mean outputs than duration

compensated inputs. These differences can be explained by the

filtering effect of the kinetics of the linear stage of the cascade. The

range of response is smaller for duration compensated signals since

the linear filter leads to significant changes in ,a.on,‘ only for an

intermediate range of frequencies near the cutoff frequency. At

low frequencies, pulses have a large duration and the value of the

variable a rises to its equilibrium value, a = A0, long before the end

of the pulse. The input to b therefore consists of rectangular pulses

whose amplitude changes very little with frequency and flat

frequency response is observed regardless of the choice of F. At

high frequencies, the amplitude of oscillations in a gets very small,

so the input appears to be a constant mean level and the response

is again flat.

Figure 5. Duration compensated signals yield a flat frequency
response in the b-model. (A) The flat frequency response. (B) Since
the amplitude is fixed for all frequencies for duration compensation,
doubling the frequency of an initial signal leads to production of b at
the high frequency (green bars) that exactly matches the production
caused by one pulse at the low frequency (blue bar). A0 = 1, d0 = 10, and
T0 = 100.
doi:10.1371/journal.pone.0095613.g005
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In contrast, with amplitude compensated signals the input pulse

amplitude varies widely across frequencies and filtering plays a less

significant role. The steeper response to amplitude compensated

signals can be explained by the observation that the frequency

response in ,a.on,‘ is always steeper for amplitude compensation

(compare green solid curves, Fig. 8A and C).

Matching input signals to the nonlinear production rate
We now show how the input signal can be matched (or

mismatched) to the system’s kinetics and nonlinearity and how this

changes the frequency response, using the sigmoidal production

rate function F(a) = a2/(a2+K2) with K = 1 as an example. Input

signals that result in ,a.on,‘ = 1 correspond to a peak in the

response ,b.‘ for both amplitude and duration compensated

signals (green curves, Fig. 8). As long as the input signals generate a

range of ,a.on,‘ values that includes ,a.on,‘ = 1, we will observe

a bell-shaped response in the frequency range tested.

When the mean dose of the input signals is changed,

demonstrated here by changing the amplitude of the initial signal

A0, the system may no longer display a bell-shaped response. With

amplitude compensation, if the mean input dose is sufficiently

large, there will be no input frequency that results in ,a.on,‘ = 1

(tan dashed curve, Fig. 8A). In this case, all inputs will have large

amplitude and therefore will sample only the saturating part of the

production rate function F, leading to a monotonically increasing

frequency response (tan dashed curve, Fig. 8B). For smaller input

doses, a bell-shaped frequency response is guaranteed since

,a.on,‘ will cross K = 1 at some frequency, thereby sampling

both the sublinear and superlinear portions of F (teal dashed-

dotted curve and green solid curve, Fig. 8A). As the input dose is

decreased, the peak frequency shifts to the left and the amplitude

of the response decreases (Fig. 8B). If the input dose is sufficiently

small, ,a.on,‘ may not cross K = 1 in the frequency range tested,

which would result in the observation of a monotonic decreasing

frequency response (not shown).

With duration compensated inputs, there is an intermediate

range of input doses where a bell-shaped frequency response is

produced (green curves, Fig. 8C,D). For input amplitudes that are

too large, the response is again monotonically increasing, since

,a.on,‘.1 (tan dashed curves, Fig. 8C,D). Alternatively, if the

input amplitudes are too small, ,a.on,‘,1; this means only the

superlinear region of the sigmoidal F function is sampled, and

there is a monotonically decreasing frequency response (teal

dashed-dotted curves, Fig. 8C,D). A bell-shaped response occurs

for a more limited range of A0 due to the fact that significant

changes in ,a.on,‘ only occur for a limited range of frequencies.

From these illustrations we see that even with a sigmoidal

production rate function F, the frequency response could be

increasing, decreasing, or bell-shaped, depending on the magni-

tude of the input. Thus, the frequency response can be tuned by

the strength of the input. Another way that the frequency response

can be tuned is through the kinetics of the system. To see this we

vary ta from its default value of 10 and observe the responses to

inputs known to produce a bell-shaped response in a given

Figure 6. Adding a linear component to the b-model results in frequency sensitivity to duration compensated signals. (A) The mean
value of a(t) during the on and off phases of the pulsatile signal varies with pulse frequency. In particular, the mean value during the on-phase of
pulses (colored horizontal lines) decreases as duration decreases, thereby allowing the relevant portions of the nonlinearity of the production rate
function F(a) to be sampled by the input signals (B). (C) For a sigmoidal production rate function, F(a) = a2/(a2+1), this leads to a bell shaped response.
A0 = 3 and d0 = 10 at frequency f0 = 0.01.
doi:10.1371/journal.pone.0095613.g006

Figure 7. The ab-model displays the responses predicted by the nonlinear production rate function. The model has increasing (A),
decreasing (B) and bell-shaped (C) responses when the production rate function is sublinear, superlinear, and sigmoidal, respectively. Frequency
responses for amplitude compensated signals and duration compensated signals are shown in red (dotted curve) and blue (dashed curve),
respectively. A0 = 3 and d0 = 10 at frequency f0 = 0.01.
doi:10.1371/journal.pone.0095613.g007
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frequency range (green solid curves, Fig. 9). In this case, the

kinetics of the linear filter determine the location of the peak

frequency, again by setting the frequency at which ,a.on,‘ = 1.

For amplitude compensated signals faster kinetics (decreasing ta)

right-shifts the peak frequency, but the range of ,a.on,‘ values

always includes values above and below K = 1. Thus, the response

in the limit taR0 remains bell-shaped (tan dashed curves, Fig. 9A,

B). This corresponds to the response expected from the simpler b-

model. When ta is increased, the first stage of the cascade responds

to inputs more slowly and the filter’s cutoff frequency decreases.

This leads to a crossing of ,a.on,‘ = 1 at a lower frequency and a

left-shifted peak response in ,b.‘ (teal dash-dotted curves,

Fig. 9A, B). If the system kinetics are slow enough, it is possible

that a purely decreasing response could be observed, since only

values of ,a.on,‘,1 would be produced for the tested frequency

range (not shown).

When duration compensated signals are used as inputs, the

response in ,b.‘ is again shifted left or right if ta is increased or

decreased, respectively (teal dash-dotted and tan dashed curves,

Fig. 9C,D). The shift in peak response frequency appears to

change linearly with ta. Contrary to the case of amplitude

compensation, the shape of the response here is unchanged when

it is shifted by changes in ta. If the system has fast enough kinetics,

a purely increasing response may be observed since values of

,a.on,‘ attained will all be larger than K. In the limit taR0, the

response approaches the flat response seen in the b-model.

Similarly, if the system has very slow kinetics, the response

observed may be decreasing or flat, due to only values smaller than

K being attained by ,a.on,‘ in the tested frequency range.

Protein phosphorylation: another sigmoidal nonlinearity
We now return to a more realistic model of an intracellular

signaling motif. A common signaling motif, ubiquitous in

eukaryotic cells, is the reversible covalent modification of a

protein. An example of this is the reversible phosphorylation of a

protein by kinase and phosphatase enzymes. A well-studied model

for such a chemical reaction is due to Goldbeter and Koshland

[17], which involves a loop of two coupled enzymatic reactions.

Using their original notation we let W and W* represent the

protein in its dephosphorylated and phosphorylated states, and E1

and E2 represent the kinase and phosphatase, respectively. For the

phosphorylation reaction, E1 reversibly binds the unmodified

protein W to form a complex C1. The kinase may then

phosphorylate the protein, producing W*. The dephosphorylation

reaction, involving W*, E2, and the complex between them, C2, is

similar. The reactions involved are:

WzE1/?
a1

d1

C1 �?
k1

W �zE1

Figure 8. Input signal dose can affect whether a bell-shaped
response is observed. The production rate function is F(a) = a2/
(a2+K2) with K = 1. (A) Amplitude compensated signals with A0 = 10 (tan
dashed curve) leads to ,a.on,‘ that is larger than K (i.e. above the
horizontal dotted line) for all possible frequencies, while any choice of
A0 smaller than 10 allows ,a.on,‘ to cross K (teal dash-dotted curves
and green solid curves). (B) When A0 = 10, all values of ,a.on,‘ are in
the sublinear, saturating part of the sigmoidal F, and a strictly increasing
response in ,b.‘ is observed. When the mean input dose is lower, bell
shaped responses are observed, with the peak frequency correspond-
ing to the frequency at which ,a.on,‘ = K. (C) Duration compensated
signals may lead to responses of ,a.on,‘ that are strictly below K, cross
K at some frequency, or are strictly above K (teal dash-dotted curves,
green solid curves, and tan dashed curves, respectively). (D) The
frequency responses of ,b.‘ are strictly decreasing (teal), bell-shaped
(green), and strictly increasing (tan), respectively. For each A0 used,
d0 = 10 at frequency f0 = 0.01.
doi:10.1371/journal.pone.0095613.g008

Figure 9. The kinetics of the linear component affect the peak
frequency of a bell shaped response. The production rate function
is F(a) = a2/(a2+K2) with K = 1. (A) Amplitude compensation: when the
time constant of variable a is increased to ta = 100 (teal dash-dotted
curve) or decreased to ta = 1 (tan dashed curve) from the default value
of ta = 10, the frequency at which ,a.on,‘ crosses K = 1 shifts to the left
or right, respectively. (B) The corresponding bell-shaped responses
have a peak that shifts to the right accordingly. (C) Duration
compensation: increasing ta shifts the response in ,a.on,‘ and its K
crossing point to the right. The fastest system (tan dashed curve) no
longer crosses K in the frequency range examined. (D) The bell-shaped
response shifts to the right accordingly, and ,b.b is a strictly
increasing response in the frequency range examined. A0 = 3 and
d0 = 10 at frequency f0 = 0.01.
doi:10.1371/journal.pone.0095613.g009
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W �zE2/?
a2

d2

C2

k2
WzE2

where constants a1, a2 and d1, d2 are the complex association and

dissociation rates, while k1 and k2 represent the phosphorylation

and dephosphorylation rates, respectively. If the total amount of

protein, kinase, and phosphatase are each conserved, the system of

six chemical species can be described using three ODEs along with

three conservation laws:

dC1

dt
~a1W :E1{ d1zk1ð ÞC1

dC2

dt
~a2W �:E2{ d2zk2ð ÞC2

dW �

dt
~k1C1zd2C2{a2W �:E2 ð9Þ

WT~WzW �zC1zC2

E1,T~E1zC1

E2,T~E2zC2

where WT, E1,T, and E2,T are the total protein, kinase, and

phosphatase, respectively. Following the binding of a hormone to

its receptor, the total available amount of active kinase often

increases (for instance, GnRH binding to its receptor leads to

increases in protein kinase A activity [18,19], protein kinase C and

mitogen-activated protein kinases – see [20,21] for review).

Therefore, we consider the total kinase E1,T as the input to the

system, and we will consider the initial input signal to be pulses of

E1,T with amplitude A0, duration d0, and period T0. The

phosphorylated form of the protein is often the active form so

we will consider the mean phosphorylated fraction W*, ,W*.‘,

to be the relevant output. We normalize by dividing by WT to

show the fraction of phosphorylated protein.

At steady state, the fraction of phosphorylated protein is an

increasing nonlinear function of the input level of kinase, E1,T. In

the regime where WT&E1,T, E2,T the steady state concentration

W* is a steep sigmoidal function of the input E1,T, with the half-

maximum value set by E2,T (not shown). To achieve this, we use

the parameter values WT = 1000 nM, E2,T = 50 nM,

a1 = a2 = 50 nM21 s21, d1 = d2 = 499 s21, and k1 = k2 = 1 s21. In

this regime, the system exhibits a steep bell-shaped frequency

response to dose conserved inputs (Fig. 10, solid green curves).

That is, there is an optimal pattern of input pulses that yields a

maximal mean level of phosphorylated protein, W*. Again, the

range of response to amplitude compensated signals is greater and

the responses are steeper when compared to duration compensa-

tion.

Considering signals with different A0, we observe qualitatively

similar results to the simple cascade model studied in the previous

section. For large A0, the response to both amplitude and duration

compensated signals is monotonically increasing, due to the

saturating property of the nonlinearity (tan dashed curves, Fig. 10A

and B, respectively). For small A0, the bell-shaped response is

retained for amplitude compensated signals (teal dash-dotted

curve, Fig. 10A), while it becomes a decreasing response for

duration compensated signals (teal dash-dotted curve, Fig. 10B).

This is in agreement with the results of the ab-model (Fig. 8B, D).

To study the effect of system kinetics, we multiply all rate

constants in the system by a common factor, l. We consider a set

of input signals that elicits a bell-shaped response in the system

with default parameter values (l = 1, green solid curves, Fig. 10C,

D). As was seen in the ab-model (Fig. 9B, D), a system with slower

kinetics has a left-shifted peak frequency (l = 0.2, teal dash-dotted

curves), while a faster system has a right-shifted peak (l = 5, tan

dashed curves) for both amplitude and duration compensated

signals (Fig. 10 C and D, respectively). When the system has fast

kinetics, the bell-shaped response is retained for amplitude

compensated signals (tan dashed curve, Fig. 10C), while the bell-

shape may be shifted out of the tested frequency range when

duration compensated signals are used (tan dashed curve,

Fig. 10D). This means that if the system has fast kinetics, one

might observe a flat response when using duration compensated

signals, as was observed with the ab-model.

Figure 10. Matching input signal characteristics to the
sigmoidal nonlinearity and system kinetics in the Goldbeter-
Koshland model. (A) Amplitude compensated signals with a
sufficiently large A0 lead to a monotonic increasing response (tan
dashed curve), while signals with smaller A0 elicit bell-shaped responses
(green solid curve, teal dash-dotted curve). (B) Duration compensated
signals with the same A0 as in (A) elicit monotonic increasing (tan,
A0 = 600), bell-shaped (green, A0 = 350), or monotonic decreasing (teal,
A0 = 100) responses. For each A0 used, d0 = 10 at frequency f0 = 0.01. (C)
Multiplying all rate constants by a factor l shifts the location of the
peak response to amplitude compensated input signals (A0 = 350)
relative to the default system (green solid curve, l= 1). Slower kinetics
lead to a left-shifted response curve, while faster kinetics lead to a right
shifted curve with a peak that remains in the frequency range tested.
(D) For duration compensated signals, a system with slower kinetics
(teal dash-dotted curve, l= 0.2) has a left shifted peak, while fast
kinetics (tan dashed curve, l= 5) may shift the peak beyond the
frequency tested. Note that the ,W*.‘ values have been normalized
by dividing by WT. A0 = 350 and d0 = 10 at frequency f0 = 0.01.
doi:10.1371/journal.pone.0095613.g010
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Discussion

In this study, we sought to understand how simple feedforward

signaling pathways best respond to pulsatile inputs, given a fixed

total amount of input to the system. We asked whether the system

responds better to low-frequency periodic application of brief

pulses with large amplitude, or to a high frequency application

with small amplitude. A similar question is whether it is better to

use long pulses separated by long intervals, or short pulses with

short intervals. We framed these questions in terms of finding the

maximum in the frequency response to amplitude or duration

compensated signals, and found that for simple feedforward

signaling motifs the shape of the steady-state input/output

function selected for an input amplitude that maximized the

response. The kinetics of the system and the mean input dose

could also affect the result, largely by reshaping the input signal

amplitudes. The results from the study of our minimal ab-model

were a good predictor for the responses in the more realistic

models of feedforward signaling motifs, namely receptor dimer-

ization and phosphorylation.

There are many ways to conserve the input dose of a pulsatile

signal while varying the pulse frequency. The two simplest dose

conservation methods, compensating by altering pulse amplitude

or pulse duration, produced different frequency responses, and are

therefore not equivalent despite having the same input dose. Our

finding that the nonlinearity in the input/ouput function selects for

an optimal amplitude demonstrates that these responses are not

direct responses to frequency, but instead are reflections of the

association of an input amplitude to each frequency. Thus, the

large dynamic range in the responses to amplitude compensated

signals is due to the fact that amplitude compensated signals

introduce large variations in signal amplitude in order to conserve

dose.

Duration compensation stretches the input signal without

introducing variations in input amplitude seen in amplitude

compensation. Frequency responses to duration compensated

signals in feedforward systems therefore required the conversion of

input durations to amplitudes, achieved in the ab-model by using a

simple linear low-pass filter. In more realistic systems, this filtering

of inputs would be due to the system’s kinetics.

Analysis of the ab-model provides some insight into different

situations that might affect whether a frequency response is

observed when using dose-conserved pulsatile inputs to study cell

responses, in particular when feedforward pathways are involved.

Our observation that the type of frequency response can change

with the total input dose suggests that in laboratory studies, one

should determine the frequency response at several values of the

total dose. This may be necessary to see the full response

characteristics.

A second consideration is the filtering properties due to the

system kinetics. We observed that the low-pass filtering of the

system modulated the input amplitude, and thus affected the

frequency response (Fig. 9). In experiments, the observation of a

flat, decreasing, or increasing response could be due to the fact

that the range of frequencies tested was not appropriately matched

to the system kinetics. Note also that linear dispersion that may

occur during transport of pulses of hormone through a perfusion

system or blood vessels could introduce low-pass filtering of the

input signal. As we observed in the ab-model, the low-pass filtering

properties may shift the observed frequency response in the target

cell.

The results described in this paper were deduced specifically for

single branch feed forward motifs. However, it is common that a

ligand may stimulate more than one feedforward branch of

signaling pathways, which then converge to a common down-

stream output. Examples include GnRH-stimulated parallel

extracellular signal-regulated kinase (ERK) and nuclear factor of

activated T cells (NFAT) pathways which converge to stimulate

gonadotropin synthesis [22], or the parallel activation and

inhibition seen in Dictyostelium discoideum response to cAMP [23],

and in the control of the inflammatory response by Toll-like

receptor 4 (TLR4) signaling [24]. In these systems, the overall

depends on the mechanism by which they converge at the

common output. Our results apply to understanding the behavior

of isolated signaling motifs, and how the behavior of these motifs

link together in longer chains or parallel chains to yield an overall

output response is a topic of future research. Another common

motif in signaling pathways are feedback loops, where a

downstream component of the pathway affects an upstream

component. Examples include negative feedback of mitogen-

activated protein kinase (MAPK) phosphatases in the GnRH-

stimulated ERK signaling pathway [25] and the negative and

positive feedback in the epidermal growth factor (EGF) and nerve

growth factor (NGF) pathways [24]. The behaviors of systems that

include feedback loops were also not considered here.

The variations in GnRH pulse amplitude with pulse frequency

reported in the ewe in response to increasing levels of estradiol

[12] are similar to the amplitude compensated input signals

studied here. Thus, the results demonstrated in this study may help

in understanding responses in feed-forward signaling pathways

triggered by GnRH. While there have been many detailed

experimental (for review, see [20,21]) and theoretical (for instance,

[16,22,25]) studies of the GnRH receptor-induced signaling

network, it remains to be determined precisely which components

are responsible for the bell-shaped frequency responses of LH and

FSH production in pituitary gonadotrophs.

In physiological situations, constraints on the dose of the input

signal could arise due to high costs of production and secretion of

hormone from the signal generating cells. Biological systems may

therefore change the pattern of the signal as a way to transmit

information. Taken together, our results suggest some mechanisms

for how a biological system could adjust the responses in various

target tissues, without needing to dramatically change the dose of

the signal. If the nonlinear input-output function is different for

different target systems, they will respond best to different input

amplitudes. Also, the kinetics of different pathways may favor

higher or lower frequency pulses. This may help to explain how in

some cases, given that a receptor can activate many downstream

pathways, some signaling pathways may be optimally stimulated

by a specific pattern of input, while others are not.

Methods

Analytical solutions to periodic rectangular pulse forcing were

computed for RL(t) in the receptor binding model (Fig. 2) and for

a(t) in the ab-model (Figs. 6A). The mean output for all models is

defined as the time average of the output variable (e.g. RL(t)). Due

to the periodic input and the globally stable nature of feed-forward

systems, the output variable approaches a stable steady-state

periodic solution. Thus, we consider the mean output to be the

mean over one period T of the steady-state periodic solution x(t):

vx(t)w?~
1

T

ðT

0

x(t)dt:

When the analytical solution was available, we computed the

mean output at each frequency using adaptive Lobatto quadra-
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ture, quadl in MatLab (R2010a, The Mathworks, Natick, MA),

with tolerance 1e-6 (Fig. 3A for receptor binding, and Figs. 6–9 for

the ab-model, respectively).

The results for the dimerization model and the phosphorylation

model (Figs. 3C, 10) were obtained by numerical integration using

the ode15s routine in MatLab. Successive on and off phases of the

pulsatile input were sequentially simulated. The steady state mean

value was approximated by discarding the first portion of the

simulation (initial transient behavior) so the system was close to the

periodic solution. The mean was computed using ode15s by

adding an auxiliary equation, dx/dt = x, to the system, where x = D

or x = W* for the dimer and phosphorylation models, respectively.

The MatLab code is available at www.math.fsu.edu./,bertram/

software/pituitary.
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